
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-020-00209-5

ORIG INAL ART ICLE

A computational intelligence enabled honeypot for chasing ghosts in
the wires

Nitin Naik1 · Paul Jenkins2 · Nick Savage3 · Longzhi Yang4

Received: 31 March 2020 / Accepted: 26 September 2020
© The Author(s) 2020

Abstract
A honeypot is a concealed security system that functions as a decoy to entice cyberattackers to reveal their information.
Therefore, it is essential to disguise its identity to ensure its successful operation. Nonetheless, cyberattackers frequently
attempt to uncover these honeypots; one of the most effective techniques for revealing their identity is a fingerprinting
attack. Once identified, a honeypot can be exploited as a zombie by an attacker to attack others. Several effective techniques
are available to prevent a fingerprinting attack, however, that would be contrary to the purpose of a honeypot, which is
designed to interact with attackers to attempt to discover information relating to them. A technique to discover any attempted
fingerprinting attack is highly desirable, for honeypots, while interacting with cyberattackers. Unfortunately, no specific
method is available to detect and predict an attempted fingerprinting attack in real-time due to the difficulty of isolating it
from other attacks. This paper presents a computational intelligence enabled honeypot that is capable of discovering and
predicting an attempted fingerprinting attack by using a Principal components analysis and Fuzzy inference system. This
proposed system is successfully tested against the five popular fingerprinting tools Nmap, Xprobe2, NetScanTools Pro,
SinFP3 and Nessus.

Keywords Cyberattack · Honeypot · Computational intelligence · Fingerprinting attack · Principal components analysis ·
Fuzzy inference system

Introduction

Security experts adapted their strategy due to the signifi-
cant increase in cyberattacks, in particular, the increase in

B Nitin Naik
n.naik1@aston.ac.uk

Paul Jenkins
pjenkins2@cardiffmet.ac.uk

Nick Savage
nick.savage@port.ac.uk

Longzhi Yang
longzhi.yang@northumbria.ac.uk

1 School of Informatics and Digital Engineering, Aston
University, Birmingham, UK

2 Cardiff School of Technologies, Cardiff Metropolitan
University, Cardiff, UK

3 School of Computing, University of Portsmouth, Portsmouth,
UK

4 Department of Computer and Information Sciences,
Northumbria University, Newcastle upon Tyne, UK

their complexity and resolution; which led to the applica-
tion of both active and passive defence systems as a part of
their defensive strategies [8]. As an active defence system,
a honeypot functions as a decoy to entice cyberattackers to
reveal information which can be utilised by security experts
in updating their security procedures [28]. As a concealed
system, it is essential to disguise its identity for its success-
ful operation. Nonetheless, cyberattackers always attempt to
uncover these honeypots and one of the most effective tech-
niques for revealing their identity is a fingerprinting attack.
Generally, for any unconcealed system fingerprinting is not
of great concern, but for a honeypot it may be end of its life,
resulting in significant consequences, for example, it can be
exploited as a zombie by an attacker to attack others [35].

A Honeypot can be protected from a fingerprinting attack,
however, this is not consistent with the principle of a hon-
eypot, which is established with the purpose of gaining
information about attackers. It would be beneficial if an
attempted fingerprinting attack can be predicted timely.
Unfortunately, no specific method is available to detect and
predict an attempted fingerprinting attack in real-time as it is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-020-00209-5&domain=pdf
http://orcid.org/0000-0002-0659-9646


Complex & Intelligent Systems

challenging to distinguish it from other attacks. Therefore,
this paper presents aComputational Intelligence (CI) enabled
honeypot that is capable of discovering and predicting an
attempted fingerprinting attack by using a principal compo-
nents analysis (PCA) and fuzzy inference system (FIS). The
proposed CI-enabled design is focused on the most common
Operating System (OS) fingerprinting attack, which is per-
formed on the target system to obtain specific information
regarding the OS, services, device type and type of architec-
ture [3]. Themechanismused is to send a streamof fabricated
TCP/IP packets by an attacker to prompt a response in the
formof TCP/IP packets containing fingerprint information of
the target system [33]. Conversely, the proposed CI-enabled
honeypot analyses this stream of TCP/IP packets sent by an
attacker to obtain signs of an attempted fingerprint attack on
the honeypot.

Initially, this paper performs a simulation of fingerprint-
ing attacks on the honeypot to collect attack data (TCP/IP
packets). The simulation is accomplished by employing a
KFSensor honeypot, and Nmap and Xprobe2 fingerprinting
tools. The attack simulation data is captured in two differ-
ent logs by the KFSensor honeypot and Wireshark analyser
for forensic analysis. Subsequently, based on preliminary
observations and empirical evidence, a number of important
fields of collected TCP/IP packets are analysed to ascertain
abnormalities or patterns as an indication of an attempted
fingerprinting attack. Successively, it applies PCA to deter-
mine the most influential fields, which can be further utilised
to develop an effective approach to predict the fingerprint-
ing attack. Later, it proposes an FIS to correctly correlate
the identified influential fields by the PCA and predict an
attempted fingerprinting attack and its severity level on the
honeypot. Finally, the proposed system is successfully tested
against the five popular fingerprinting tools. This testing
includes two previous tools Nmap and Xprobe2 and three
new toolsNetScanTools Pro, SinFP3 andNessus;whichwere
not involved in the development of the CI-enabled honeypot.

The rest of the paper is organised into the subsequent sec-
tions: “Background information” explains about honeypots,
fingerprinting attack and an OS fingerprinting attack. “Simu-
lation of various types ofOSfingerprinting attacks” describes
the fingerprinting attack simulation on the honeypot for the
collection of attack data and its detailed analysis. “Identi-
fying abnormalities/patterns in the various fields of TCP/IP
protocols as signs of os fingerprinting attack” discusses a
comprehensive examination of the chosen TCP/IP fields
and their related abnormalities/patterns as signs of a finger-
printing attack. “Design and development of computational
intelligence enabled honeypot for predicting fingerprinting
attacks on honeypots” presents the design and develop-
ment of a CI-enabled honeypot for predicting fingerprinting
attacks on honeypots. For this design it performs PCA on the
selected TCP/IP fields to establish the most significant fields

to predict fingerprinting attacks on honeypots. Subsequently,
it proposes a fuzzy inference system to predict fingerprint-
ing attacks and their severity levels on honeypots. Finally,
“Conclusion” concludes the paper and discusses the possi-
ble future enhancement of the CI-enabled honeypot.

Background information

Honeypots

A honeypot is a concealed security system that functions
as a decoy to entice cyberattackers to reveal their infor-
mation [31]. It deceives, detects and diverts cyberattackers,
whilst contemporaneously gathering their information [11].
Honeypots are designed to represent themselves as a poten-
tial target for cyberattackers; subsequently, deployed in an
isolated manner and closely monitored to uncover vulner-
abilities and new attacks to the network and to develop an
enhanced defensive strategy [37]. Most honeypots are used
to imitate the functionalities of a real network to entice cyber-
attackers to attack them assuming them to be a real network
and revealing their information.

Honeypots are categorized into different categories on the
basis of their design and level of interaction with cyber-
attackers: low-interaction honeypots, medium-interaction
honeypots and high-interaction honeypots [1,29,36]. Low-
interaction honeypots normally imitate real systems and
have restricted communicationwith cyberattackers;whereas,
high-interaction honeypots are normally real systems that
have unrestricted communication with cyberattackers [38].
Medium-interaction honeypots have greater ability to com-
municate with cyberattackers than low-interaction hon-
eypots, however, they have less functionality than high-
interaction honeypots [7]. Honeypots can be a crucial active
defence tool for organisations or researchers in an attempt
to discover advanced attacks and related techniques which
are not possible through other security tools; however, for
effective operation, additional cost and skills are required in
their design and management. Honeypots are effective secu-
rity systems but should not be used as the only defensive
system or an alternative to replace other security systems to
protect the network.

Fingerprinting attack

In a fingerprinting attack, an attacker usually sends a
sequence of fabricated packets to the target system to provoke
a response in the form of packets containing fingerprint infor-
mation with the intention of its identification. Fingerprinting
attacks are categorized into two categories on the basis of the
activity of cyberattackers: active and passive fingerprinting
attacks. In an activefingerprinting attack, cyberattackers send

123



Complex & Intelligent Systems

carefully constructed packets to the target system, analysing
their response packets to extract fingerprinting information
[31]. In a passive fingerprinting attack, cyberattackers do not
send any packets to the target system rather they sniff, capture
and analyse traffic from the target system to extract finger-
printing information [31]. Active fingerprinting attacks are
more accurate than passive fingerprinting attacks as the result
is based on the direct response from the target system. There-
fore, in this design of CI-enabled honeypot, only an active
fingerprinting attack is considered.

OS fingerprinting attack

OS fingerprinting attacks are the most prevalent fingerprint-
ing attack, which is performed on the target system to obtain
specific information regarding the OS, services, device type
and type of architecture [3]. The mechanism is to send a
streamof fabricatedTCP/IP packets from the attacker to elicit
response TCP/IP packets containing fingerprint information
of the target system [33]. After analysing a number of the
fields of certain TCP/IP protocols of the response packets,
a fingerprint is constructed and compared against the finger-
print database to find the exact or closest matched fingerprint
of the target system. Cyberattackers are highly successful in
performing OS fingerprinting attacks as the same TCP/IP
protocol suite is implemented by every OS distinctively, as a
result, distinct responses are produced for the same TCP/IP
query. Consequently, different responses generated by differ-
ent operating systems divulge substantial information about
that system to cyberattackers. The complete process of anOS
fingerprinting attack is dependent on TCP/IP protocol suite;
therefore, it is sometimes referred to as TCP/IP stack finger-
printing. After obtaining precise information about the OS
and target system, cyberattackers can launch more complex
attacks with greater severity against the target system.

Simulation of various types of OS
fingerprinting attacks

Each OS implements the TCP/IP protocol suite distinctively,
therefore, acquiring a fingerprint of any OS requires an anal-
ysis of the TCP/IP packets sent by that OS, which can offer
significant information to construct an accurate fingerprint of
that OS. This process of finding a fingerprint of a particular
OS is primarily based on the analysis of the TCP, ICMP and
UDP protocols as every fingerprinting tool/technique sends
and receives these three protocol-based packets to the target
machine. However, certain fingerprinting tools/techniques
primarily employ TCP packets to perform the fingerprinting
attack and certain primarily employ ICMP packets, thus, the
development of any successful method to detect this attack
should involve examination of both categories (TCP and

ICMP) of tools/techniques. Thus, this simulation covers both
TCP-based and ICMP-based OS fingerprinting attacks to
acquire the OS fingerprint (and information about associated
services) of a honeypot system for resolving its identity. This
information about OS and associated services of a honeypot
system would assist an attacker to identify and exploit that
honeypot system and possibly transform it into a zombie to
attack others. The simulation of all OS fingerprinting attacks
are accomplished by employing a KFSensor honeypot, and
Nmap and Xprobe2 fingerprinting tools. KFSensor is a com-
mercially available graphical user-interface honeypot for the
Windows platform [14], Nmap is TCP-based and Xprobe2
is an ICMP-based OS fingerprinting tool. This experimen-
tal simulation generated fingerprinting data for analysis and,
abnormalities and patterns detection as symptoms of an OS
fingerprinting attack.

TCP-based OS fingerprinting attack using Nmap

Nmap is the most powerful and reliable scanning tool which
is very effective in performing an OS fingerprinting attack
(mainly TCP-based). Many Nmap scripts use heuristics and
fuzzy signature matching to reach conclusions about the tar-
get host OS or services [19]. During an OS fingerprinting
attack, Nmap sends a stream of TCP/IP packets (approxi-
mately 16 or more), to identified open and closed ports on
the target machine [18]. This stream of TCP/IP packets con-
tains TCP, UDP, and ICMP packets, however, this counting
does not include all the retransmitted packets. These pack-
ets/probes are aimed at several existing ambiguities and their
exploitation in the standard protocol Request for Comments
(RFCs). When the target machine sends a reply back to the
Nmapmachine for these packets/probes, Nmap analyses val-
ues of various parameters of TCP, ICMP and UDP packets
and constructs anOSfingerprint tomatch against its database
ofOS signatures [10]. Depending on theOS signaturematch-
ing result, it predicts the possible OS of the target machine,
when there is no exact match it can use its fuzzy technique
to predict the result [15].

Table 1 shows the five different Nmap scripts for an OS
fingerprinting attack. The first Nmap script is the basic OS
fingerprinting command that reveals the OS fingerprint and
several other details such as OS version numbers, device type
and architectural information [20]. The second Nmap script
offers more descriptive fingerprinting information such as
OS type, device type, host script and traceroute. The third
Nmap script utilises the fuzzy approach to predict the clos-
est matched OS (in percentages) in event that it does not
find exact match [15]. The fourth Nmap script is used to
perform OS fingerprinting continuously for the given num-
ber of attempts to improve the accuracy of prediction. The
fifth and last Nmap script is completely different from other
four scripts and utilises a different signature database for

123



Complex & Intelligent Systems

Table 1 Nmap OS fngerprinting attack scripts

No. Nmap OS Fingerprinting Attack Script

1 nmap − O < Honeypot I P >

2 nmap − A < Honeypot I P >

3 nmap − O −− f uzzy −−osscan − guess <

Honeypot I P >

4 nmap −O −−max−OS−tr ies n < Honeypot I P >

5 nmap−sV−−version−intensi t y n < Honeypot I P >

matching any fingerprint. It discovers information relating
to various services running on different ports such as HTTP,
FTP, SMTP, SSH, Telnet and DNS. This script can be exe-
cuted with different intensity from 0 to 9, where 9 is the
highest intensity which improves the accuracy of prediction
[17], [16]. The first four Nmap scripts use Nmap database
called nmap-os-db [22], and the fifth Nmap script uses Nmap
database called nmap-services [21]. For accuracy and to
discount any outlier data, each Nmap script (with various
sub-options) is executed 100 times to record the results in var-
ious network conditions and observe the retransmitted packet
pattern.

ICMP-based OS fingerprinting attack using Xprobe2

Nmap is a powerful and reliable fingerprinting tool, how-
ever, its results largely rely on TCP packets; consequently, an
ICMP-based fingerprinting simulation and analysis is essen-
tial to propose a generic solution. Xprobe2, is one of the
first ICMP-based fingerprinting tools, which utilises ICMP
packets and is based on the signature engine and fuzzy sig-
nature matching [5]. During an OS fingerprinting attack,
Xprobe2 sends a stream of TCP/IP packets (approximately
10 or more), to identified open and closed ports on the target
machine [40]. This stream of TCP/IP packets contains ICMP,
TCP, and UDP packets, not including all the retransmitted
packets. Xprobe2 consists of 13 modules, and Xprobe2++ or
Xprobe2-ng consists of an additional 3 modules (fingerprint:
icmp_info, app: ftp, app: http), which it utilises to find an OS
fingerprint [40]. This tool is both more effective and quicker
than Nmap due to the utilisation of fewer number of TCP/IP
packets. Nevertheless, it is obsolete and not updated, as a
result of this, it is not able to ascertain latest OSs including
Windows 7 on the honeypot system [2]. Nonetheless, this
paper is focused on the counter strategy of identifying and
predicting anOSfingerprinting attack, and for this, Xprobe2-
based simulation is imperative to analyse the ICMP-basedOS
fingerprinting attack as it is one the very first ICMP-basedOS
fingerprinting tools and the basis for all ICMP-based tools.

Table 2 shows the five different Xprobe2 scripts for an OS
fingerprinting attack. The first Xprobe2 script is a basic OS
fingerprinting command that determines a fingerprint of an

Table 2 Xprobe2 OS fingerprinting attack scripts

No. Xprobe2 OS fingerprinting attack script

1 xprobe2 < Honeypot I P >

2 xprobe2−D/−M < ModuleName >< Honeypot I P >

3 xprobe2 − B < Honeypot I P >

4 xprobe2 −T /−U < Port Range > < Honeypot I P >

5 xprobe2 − p < Protocol : Port : Status > <

Honeypot I P >

OS running on an intended system as per its basic operation
[5]. The secondXprobe2 script determines a fingerprint of an
OS depending on the utilisation of specific modules, which
can provide different results based on the selected modules.
The thirdXprobe2 script determines a fingerprint of anOS by
sending more traffic to an intended system because param-
eter -B sends consecutive TCP handshake requests to any
open TCP port such as 80, 443, 23, 21, 25, 22, 139, 445 and
6000 on an intended system and expects a SYN ACK reply
[6]. The fourth Xprobe2 script determines a fingerprint of an
OS by utilising an internal port scanning module that per-
forms a port scanning of indicated TCP and/or UDP port(s)
[6]. The fifth Xprobe2 script determines a fingerprint of an
OS by utilising additional details regarding a protocol, port
and the current status via parameter -p. The protocol can
be chosen from TCP or UDP, the port number from 1 to
65,535, and the current status (Open or Closed) of a port.
In case of a closed port, an intended system may reply with
RST packet for a TCP port, and may reply with ICMP Port
Unreachable packet for a UDP port. In case of an open port,
an intended system may reply with SYN ACK packet for
a TCP port, and may not reply (send a packet) for a UDP
port [6]. Similar to the Nmap experiment, to obtain accurate
results and removing any outliers in the data, each Xprobe2
script (with various sub-options) is executed 100 times to
record the results in various network conditions and observe
the pattern of retransmitted packets.

Identifying abnormalities/patterns in the
various fields of TCP/IP protocols as signs of
OS fingerprinting attacks

The experimental simulation data for both TCP and ICMP
based OS fingerprinting attacks collected in the previous
section is analysed in this section. Each stream of TCP/IP
packets received from the attacker is analysed to reveal
any observed abnormalities/patterns in the various fields of
TCP/IP protocols (i.e. TCP, ICMP, UDP and IP) [34]. This
analysis identifies the ten indicator fields of TCP/IP protocols
based on their detected discrepancies in the attack simula-
tion data. These ten indicator fields mostly include TCP and

123



Complex & Intelligent Systems

IP fields as shown in Figs. 1 and 5. Additionally, these ten
TCP/IP fields are analysed to emphasis their weight based
on the literature and the core attack principles of popular OS
fingerprinting tools/techniques.

Discovering abnormalities/patterns in TCP Flags

TCP is comprised of six standard flags (SYN, ACK, URG,
PSH, RST, FIN) that controls the nature and flow of the trans-
mission. There are several flags or combination of flagswhich
are considered as illegal/abnormal flags based on the RFCs
of TCP, however, it does not explain the handling of such
illegal/abnormal flags. As a result, it is managed by the OS
and thus, different OSs generate different responses for an
illegal/abnormal flag or combination of flags. This is a signif-
icant concern for the security community as attackers exploit
these responses to determine the OS of the target machine. A
number of these illegal/abnormal TCP flags can be utilised
as a good indicator of an OS fingerprinting attack, which rel-
atively straightforward to find as they are renowned. Some
OSfingerprinting tools utilise additional control flags (CWR,
ECN) and three ReservedBits in their attack techniques. This
analysis includes all the possible illegal/abnormal flags or
combination of flags which can be an indication of an OS fin-
gerprinting attack. The inclusion of these additional flags are
to ensure that the proposed approach is a generic approach,
however it explains the findings of the experiment regarding
illegal/abnormal flags.

URG/PSH/FIN probing

This is one of the well-known abnormal flag combinations
(called Xmas probe), which exploits flaws in the TCP RFC
793 to determine the open and closed ports. This URG/PSH/-
FIN probing is only effective with those operating systems
that conform to the TCP RFC 793. Nevertheless, an attacker
can send this URG/PSH/FIN packet to understand the sta-
tus of any port. Upon receiving this packet on the port of
the target machine, a specific OS-based response is gener-
ated by that machine, which can give an indication the OS
of a target machine. This is an important probe in an OS
fingerprinting attack; however, it is an abnormal flag combi-
nation that can be combined with other indicators as a sign of
an OS fingerprinting attack. The captured TCP packet with
URG/PSH/FIN probing during an OS fingerprinting attack
is shown in Fig. 2.

NULL packet

TheNULL probe is another abnormal packet wherein no flag
is set but contains a packet sequence number. Nevertheless,
an attacker can send this NULL packet to understand the sta-
tus of any port. Upon receiving this packet on the port of the

target machine, a specific OS-based response is generated by
that machine, which can give an indication of the OS of a
target machine. This is an important probe in an OS finger-
printing attack; however, it is an abnormal flag combination
that can be combined with other indicators as a sign of an OS
fingerprinting attack. The captured TCP packet with NULL
probing during an OS fingerprinting attack is shown in Fig.
3.

Reserved Bit Probing

There are 3 reserved bits in the TCP header for future use.
These reserved bits should not be used and are always set to
zero. The captured TCP packet utilising reserved bits during
an OS fingerprinting attack is shown in Fig. 4. This symptom
can be combined with other indicators as a sign of an OS
fingerprinting attack.

ECN-echo probing

TheExplicitCongestionNotification (ECN)flagoffers added
functionality for notifying hosts about network congestion
without dropping packets. It is an additional feature that may
be used for the two hosts if they are ECN-enabled. The cap-
tured TCP packet with ECN-Echo probing during an OS
fingerprinting attack is shown in Fig. 4. This symptom can
be combined with other indicators as a sign of an OS finger-
printing attack (Fig. 5).

FIN Probing

The FIN flag is used to close the connection and, it should
only be sent when the connection was initiated previously.
Therefore, this FIN packet is violating the rules of TCP that
would never occur in the real world. Nevertheless, an attacker
can send this FIN packet as an unconnected packet for know-
ing the status of any port. Upon receiving this packet on the
port of the target machine, a specific OS-based response is
generated by that machine, which can give an indication of
the OS of a target machine. This is a very important probe in
an OS fingerprinting attack; however, it is an abnormal flag
that can be combined with other indicators as a sign of an OS
fingerprinting attack.

SYN/FIN probing

This pair of flags are reciprocally exclusive and usually not
used in the same packet. Therefore, this SYN/FIN packet
is violating the rules of TCP that would never occur in the
real world. Nevertheless, an attacker can send this SYN/FIN
packet to understand the status of any port. Upon receiv-
ing this packet on the port of the target machine, a specific
OS-based response is generated by that machine, which can

123



Complex & Intelligent Systems

Fig. 1 Investigated fields of
TCP Header for the attempted
OS fingerprinting attack

Fig. 2 Captured TCP packet
with URG/PSH/FIN probing
during an OS fingerprinting
attack

Fig. 3 Captured TCP packet
with NULL probing during an
OS fingerprinting attack

123



Complex & Intelligent Systems

Fig. 4 Captured TCP packet
with Reserved Bit and
ECN-Echo probing during an
OS fingerprinting attack

Fig. 5 Investigated fields of IP
Header for the attempted OS
fingerprinting attack

give an indication of the OS of a target machine. This is an
important probe in an OS fingerprinting attack; however, it
is also an abnormal flag combination that can be combined
with other indicators as a sign of an OS fingerprinting attack.

Discovering abnormalities/patterns in TCP Options

The majority of fingerprinting tools utilise TCP Options
field of the TCP header because it is an adaptable field and
can be of any size from 0 to 40 bytes. The TCP options
field may contain some or all attributes: Maximum Segment
Size (MSS), Window Scaling, Selective Acknowledgements
(SACK), Timestamps, and Nop. Therefore, every OS cus-
tomises this TCP Options field based on its implementation
which can be identified as a pattern of that OS. Conversely,

the TCP options field can be used to identify an OS fin-
gerprinting attack by finding abnormalities/patterns in the
packets received from an attacker. This can be combined
with other indicators as a sign of an OS fingerprinting attack.

Discovering abnormal/frequent uses of TCP urgent
pointer

TCP provides the facility to mark certain amount of data
as urgent, which is indicated by setting the URG flag. This
Urgent Pointer field indicates how much of the data in the
segment is urgent. This field and URG flag jointly allow
an application to forward urgent data immediately by cre-
ating a secondary out of band channel without waiting in
sequential send queue. Nonetheless, most users are uncertain

123



Complex & Intelligent Systems

Table 3 IP service type/Type of service (TOS) specifications

Bit positions Descriptions

Bits 0–2 Precedence (e.g., 000 (0) - Routine, 001 (1) -
Priority, 010 (2) - Immediate)

Bit 3 Delay (0 = Normal Delay, 1 = Low Delay)

Bit 4 Throughput (0 = Normal Throughput, 1 = High
Throughput)

Bit 5 Reliability (0 = Normal Reliability, 1 = High
Reliability)

Bit 6 Cost (0 = Normal Cost, 1 = Low Cost)

Bit 7 Reserved for Future Use

about using this field correctly. Thus, this ambiguity offers
a possible opportunity to attackers to exploit this field for a
fingerprinting attack. At the same time, the improper use of
this Urgent Pointer may reveal a potential OS fingerprinting
attack.

Discovering abnormalities/variations in TCPWindow
Size

TCP Window Size is important field to decide the total
amount of bytes that can be sent successfully without waiting
for an acknowledgement. TCP Window Size is maintained
by both sender and receiver due to the bidirectional nature of
TCP, however, fixed limit is determined by receiver [27,32].
This field is mainly used for network troubleshooting, appli-
cation baselining or preventing network congestion at the
receiver end. This is the important field for flow control and
could be exploited for a fingerprinting attack. Equally, this
TCP Window Size can be looked at for finding substantial
discrepancies and repetitive cases of zerowindows that could
reveal a potential OS fingerprinting attack.

Discovering abnormal/frequent uses of IP service
type/Type of service (TOS) Field

This is an IP datagram field that is used to describe its various
quality of services. It is an 8-bit field consisting of several
quality parameters, namely, Precedence, Speed, Throughput,
Reliability and Cost as shown in Table 3 [4]. Some of the
QoS parameters may not be frequently used in regular com-
munications; therefore, their frequent or anomalous use may
reveal irregular actions and perhaps the probability of an OS
fingerprinting attack.

Discovering abnormalities/commonalities in IP
identification (IPID) field

In a TCP/IP network, the maximum size of a datagram is
limited to the processing capacity of that network, which is

called the Maximum Transmission Unit (MTU). Therefore,
the successful data transmission process requires fragmenta-
tion of all those datagrams, which are greater than the MTU.
The IPID field facilitates fragmentation (and later reassem-
bly) of IP datagrams with a unique ID, which is incremented
whenever an IP datagram is sent from source to the desti-
nation. This IPID is used to reassemble all fragmented IP
datagrams (which will have the same IPID) at the receiver
end. The exact order of the fragmented datagrams during the
reassembly is determined by the fragment offset. The More
Fragments (MF) flag is used to determine if fragmentation is
allowed, andwhethermore fragments are pending. Similarly,
the Don’t Fragment (DF) flag is used to deny fragmentation,
resulting the drop of packets greater than the MTU size.

The updated specification of the IPID Field (RFC 6864)
states that it must not be utilised for any purpose other
than fragmentation (and reassembly) [39]. However, it is not
uncommon to set its value to zero while using it for numer-
ous pings, and for numerous SYN-ACKs from the same
source. Irrespective of IPID standard guidelines, its imple-
mentation is still ambiguous, which leads to its exploitation
by attackers for various types of attacks and possibly a fin-
gerprinting attack. Similarly, this field can be analysed for
various sequences of IPID or commonality of fragmented
packets of the same IPID number for finding a sign an OS
fingerprinting attack.

Discovering abnormalities in IP time-to-live (TTL)
value

The IP TTL field is used to determine the lifetime of an
IP datagram in the network. It can be defined as a counter
or timestamp and once it is elapsed, the corresponding IP
datagram is discarded or revalidated. This field was added to
the IP header to restrict the time an IP datagram can spend
on any network due to the connectionless nature of IP. This
field can be exploited to perform various kinds of attacks
including an OS fingerprinting attack, where an abnormal
TTL value or a TTL value of less than or equal to one can
be used. Conversely, these TTL abnormalities may provide
a sign of an OS fingerprinting attack.

Discovering abnormalities/patterns in UDP Requests

UDP is a very useful protocol in many probing techniques
due to its connectionless nature. All OS fingerprinting tools
use UDP packets in conjunction with TCP and/or ICMP
packets to collect fingerprinting information from the tar-
get machine. An attacker sends UDP packets to a port of the
target machine andmay or may not receive response depend-
ing on the open/closed port. The target machine replies with
an ICMP error message- Destination Unreachable (ICMP
Type 3) if the port is closed, otherwise, receives no reply for

123



Complex & Intelligent Systems

an open or filtered port. Generally, the UDP packet used in
OS fingerprinting is either empty or set to a fixed payload.
An attacker can also set IP DF flag in the UDP packet that
can prompt the target machine to reply with an ICMP error
message. These symptoms can be found in the UDP packets
received from an attacker to identify an OS fingerprinting
attack. This can be combined with other indicators as a sign
of an OS fingerprinting attack.

Discovering abnormalities/patterns in ICMP
requests

ICMP is an error announcing protocol that is used for
troubleshooting, control and error message services. It is
used by network devices (e.g. routers, gateways, hosts) to
announce error messages when there is an issue in delivering
packets. As a result of this, an attacker can use legiti-
mate ICMP request packets, ICMP Echo Request (Type 8),
ICMP Router Solicitation Request (Type 10), ICMP Times-
tamp Request (Types 13), ICMP Information Request (Type
15-Deprecated) and ICMP Address Mask Request (Type 17-
Deprecated) to collect significant information about an OS
of the target machine [25,26,30]. However, most OS finger-
printing tools/techniques utilise abnormal ICMP requests by
changing some of the parameters of these ICMP requests. For
example, an abnormal ICMP Echo request (Type 8) can be
easily determined by examining itsCode value which should
always beCode 0, however, someOS fingerprinting tools use
the invalid Code value in their attacks. These abnormalities
can be found in the ICMP request packets received from an
attacker to identify an OS fingerprinting attack. This can be
combined with other indicators as a sign of an OS finger-
printing attack.

Discovering abnormalities/patterns in ICMP packet
size

ICMP packets are normally used to report errors in the stan-
dard format and therefore, their size is relatively stable with
respect to particular OS, and it is in the predictable range
[25,26,30]. When the common size of an ICMP packet is
determined as a network baseline, it is relatively straightfor-
ward to compare normal and abnormal ICMPpacketswithout
investigating their contents in a detailed way. For example,
in an Nmap-based experimental simulation, the baseline size
was 74 bytes (i.e. most common ICMP packet size in Win-
dows), and the size of collected ICMP packets by KFSensor
Honeypot was 149 and 179 respectively. The recorded size
of these two ICMP packets for all the Nmap experimental
iterations was the same. This is one clear indication of pat-
tern/abnormality found in the ICMP request packets received
from an attacker to identify an OS fingerprinting attack. This

can be combined with other indicators as a sign of an OS
fingerprinting attack.

Design and development of computational
intelligence enabled honeypot for predicting
fingerprinting attacks on honeypots

The design of Computational Intelligence (CI) enabled
honeypots to utilise two approaches, namely a Principal
Components Analysis (PCA) and a Fuzzy Inference Sys-
tem (FIS). The PCA is utilised to determine only the most
influential TCP/IP fields from the previously observed sev-
eral TCP/IP fields, which can be further utilised to develop
an effective approach to predict an OS fingerprinting attack.
Then FIS is designed to utilise and correctly correlate the
identified influential fields by PCA and predict an attempted
OS fingerprinting attack and its severity level on the hon-
eypot. The complete working procedure of this CI-enabled
honeypot is shown in Fig. 6.

Principal components analysis to determine the
most influential TCP/IP fields for predicting
fingerprinting attacks on honeypots

Principal components analysis is one of the most effective
computational techniques for dimensionality reduction by
feature extraction while retaining most of the information.
The primary reasons for the preferred choice of PCA over
other techniques are:

– A very efficient technique for smaller dimensions which
is the case here

– The decreased requirements for capacity and memory
which makes the proposed design, a lightweight system

– The low noise sensitivity which is a great advantage for
the volatile network traffic

– It uses simple statistical calculations which is available
with most of the ordinary tools that avoids the need of
complex programming or machine learning tasks

– A lack of redundancy of data due to orthogonal compo-
nents

– A synchronized low-dimensional representation of the
variables

Based on the comprehensive research on the exploitation
of various TCP/IP fields in several attacks, and subsequent
experimental simulation of an OS fingerprinting attack in
this work concluded the ten evidential TCP/IP fields that may
reveal an OS fingerprinting attack. To aid prediction of an OS
fingerprinting attack, it is worthwhile to select only the most
significant fields out of the ten chosenfields and also establish
their corresponding relationships with each other. This can

123



Complex & Intelligent Systems

Fig. 6 Computational
Intelligence enabled honeypot
for predicting OS fingerprinting
attacks on honeypots

Table 4 Principal components analysis of targeted TCP/IP fields of collected fingerprinting data

Importance of components Standard deviation Proportion of variance Cumulative proportion

Principal Component1 (PC1) 1.8632531 0.3471712 0.3471712

Principal Component2 (PC2) 1.3222377 0.1748313 0.5220025

Principal Component3 (PC3) 1.2714464 0.1616576 0.6836601

Principal Component4 (PC4) 1.0285482 0.1057911 0.7894512

Principal Component5 (PC5) 0.9629541 0.0927281 0.8821793

Principal Component6 (PC6) 0.7542089 0.0568831 0.9390624

Principal Component7 (PC7) 0.5752591 0.0330923 0.9721547

Principal Component8 (PC8) 0.5200373 0.0147899 0.9869446

Principal Component9 (PC9) 0.3845766 0.0111769 0.9981216

Principal Component10 (PC10) 0.137055 0.0018784 1.0000000

be accomplished using a PCA, where principal components
with higher variances will be considered the best compo-
nents, showing extra information about the data. Based on
this analysis, only the best components are selected for the
subsequent analysis as they practically signify the complete
data, and rest of the components can be ignored based on the
pre-decided threshold values, namely, Cumulative Propor-
tion of Variance, Eigenvalue and/or Loading (contribution
of each variable to the principal component). The tradition-
ally accepted threshold values considered for this experi-
ment are: Cumulative Proportion of V ariance >85%,
Eigenvalue >1 (from Kaiser’s rule [13]) and Loading for
any variable should be relatively higher than other variables
or at least Loading2 >1/Total Number of V ariables
[9], [41], [12]. Prior to the PCA, data profiling of the col-
lected data is required, converting mostly categorical fields
into numerical fields for the analysis purposes.

Table 4 illustrates the standard deviation, variances and
cumulative proportion of variances for the chosen ten princi-

pal components. The cumulative proportion of variance for
the first five components is 0.8821793 (≈ 88%), which is
higher than the pre-decided threshold value of 85%, and thus,
this PCA analysis suggests, the first five components are the
best components based on the collected attack simulation
data. The contribution of the rest five components to the data
is very low because their cumulative value is only around
12%. Nonetheless, it is also crucial to further evaluate the
first five best components, such as examining their eigenval-
ues >1 (see Fig. 7), which is true for the first four components,
however, the fifth component is marginally smaller than 1 (≈
1), but the inclusion of the fifth component is crucial to con-
stitute 85% value of cumulative proportion of variance as
mentioned earlier [12].

The final evaluation and selection of influential vari-
ables are additionally based on the Loading, which shows
the correlation between an original variable and a princi-
pal component. In this analysis, the Loadings of the first
five most significant principal components are computed as

123



Complex & Intelligent Systems

Fig. 7 PCA graph
demonstrating Eigenvalues for
the principal components

Table 5 Loading/rotation
matrix of the selected most
significant principal components

Fields PC1 PC2 PC3 PC4 PC5

TCP Flags 0.46395 0.66868 0.10247 0.20834 0.43479

TCP Options 0.44029 0.58625 0.11341 0.22636 0.51578

ICMP Requests 0.42547 0.13763 0.77126 0.50812 0.21459

ICMP Packet Size 0.41512 0.12637 0.50132 0.64353 0.22927

UDP Requests 0.35459 0.33253 0.21872 0.26654 0.32253

TCP Window Size 0.12435 0.10501 0.01978 0.24361 0.29201

IP Time-To-Live 0.08543 −0.12875 −0.25983 0.13523 −0.30287

IPID Value 0.07653 −0.10182 0.10455 0.23156 −0.27128

IP Type Of Services −0.09123 0.11764 0.04627 0.10138 0.28026

TCP Urgent Pointer −0.27362 0.10763 −0.01774 −0.13982 0.11261

shown in Table 5, wherein, the five variables (TCP Flags,
TCP Options, ICMP Requests, ICMP Packet Size and UDP
Requests) have greater Loadings than the rest of the five
variables (TCP Window Size, IP Time-To-Live, IPID Value,
IP Type Of Services and TCP Urgent Pointer), which indi-
cate that the first five variables have greater correlation with
the five most significant principal components. Moreover, an
in-depth analysis of Loadings of the first five variables for
five components reveals some new attributes emerging from
these five principal components.

The Loadings of the first principal component highlight
the higher weighting and importance of the first five vari-
ables in the data. The PC2 and PC5 are mainly represented
by the two variables TCP Flags and TCP Options due their
greater Loadings, thus, the two variables can be grouped
as a new TCP attribute (TCP Flags + TCP Options). Sim-
ilarly, the PC3 and PC4 are mainly represented by the two
variables ICMP Requests and ICMP Packet Size due their
greater Loadings, thus, the two variables can be grouped as
a new ICMP attribute (ICMPRequests + ICMP Packet Size).

The fifth variable UDP requests has consistently greater
Loadings in all the five principal components, which high-
lights its higher weighting and importance in the data, but as
a separate networking protocol, thus, it can be considered as
a separate UDP attribute to combine with TCP attribute and
ICMP attribute for representing any principal components
from PC1 to PC5. Eventually, these three derived attributes
from PCA collectively represent the data and can be used for
the subsequent operation.

Fuzzy inference system for predicting OS
fingerprinting attacks and their severity levels on
honeypots

In the previous analysis, the three new attributes (related to
TCP, ICMP and UDP) are derived from the five most signif-
icant principal components as a sign of OS fingerprinting
attack which can be used to predict the potential attack.
However, it is not feasible to use the precise value of these
attributes for developing a generic prediction approach due

123



Complex & Intelligent Systems

Fig. 8 Fuzzy input variable
MTCPF and its fuzzy sets

Fig. 9 Fuzzy input variable
MICMPF and its fuzzy sets

to the coverage of several OS fingerprinting tools/techniques.
Additionally, it is equally important to correlate these
attributes in a way that the proposed prediction approach can
predictmostOSfingerprinting attacks accurately irrespective
of tools/techniques. Fuzzy logic can address both problems
effectively by offering a value range for each attribute to
cover most OS fingerprinting tools/techniques in the predic-
tion range and correlating attributes in a way that fuzzy rules
can cover majority of the OS fingerprinting tools/techniques
accurately.

Fuzzy input and output variables

In designing the fuzzy inference system, the three influen-
tial attributes are employed and their corresponding fuzzy

input variables are derived. Here, TCP flags and TCP options
are merged as a single attribute called Malicious TCP Field
(MTCPF); ICMP requests and ICMP packet size are merged
as a single attribute calledMalicious ICMPField (MICMPF);
and the last variable UDP requests is kept unchanged
with renaming as Malicious UDP Field (MUDPF). There-
fore, the three derived fuzzy input variables are: MTCPF,
MICMPF and MUDPF. This PCA-based evolution of only
three attributes could offer a highly optimised and effective
rule base for better prediction accuracy of the proposed sys-
tem.

The value ranges for these three fuzzy input variables are
determined based on the analysis of thousands of TCP/IP
packets collected fromNmapandXprobe2 experimental sim-
ulations and on the main principles of fingerprinting tools.

123



Complex & Intelligent Systems

Fig. 10 Fuzzy input variable
MUDPF and its fuzzy sets

Fig. 11 Fuzzy output variable
PAFA and its fuzzy sets

The common value range is set 1–15 packets for all three
input variables based on the observation of various streams
of TCP/IP packets. Subsequently, this value range is split into
three fuzzy sets Low, Medium and High to represent three
severity levels of an OS fingerprinting attack in the predic-
tion. The corresponding value ranges set for Low is 0-6-
packets, Medium is 4–10 packets, and High is 8–15 pack-
ets. Matlab is used to simplify this design. Figures 8, 9 and
10 illustrate three fuzzy input variables MTCPF, MICMPF
andMUDPF inMatlab. As a preliminary design, a triangular
membership function is selected, however, any other func-
tion can be selected and is very straightforward to adapt and
analyse in Matlab.

Finally, the fuzzy output variable Probability of an
Attempted Fingerprinting Attack (PAFA) is derived to repre-

sent the future correlation of three fuzzy input variables as a
result. This variable is represented in percentage (0–100%)
and split into three fuzzy sets Low, Medium and High to rep-
resent three severity levels of OS fingerprinting attack in the
prediction. The corresponding value ranges set for Low is 0–
40%, Medium is 30–70%, and High is 60–100%. Its Matlab
design based on the similar triangular membership function
is shown in Fig. 11 (Fig. 12).

Fuzzy rules and fuzzy rule base system

The fuzzy rules are created based on the correlation of three
fuzzy input variables and their corresponding results in the
form of a fuzzy output variable. The relation among these
three input variables is established in a way that the fuzzy

123



Complex & Intelligent Systems

Fig. 12 Fuzzy inference system
consisting of input and output
variables for the proposed
system

Fig. 13 Fuzzy rules of the
proposed system to predict the
fingerprinting attack on
honeypots

123



Complex & Intelligent Systems

Fig. 14 Fuzzy rule base of the
proposed system to predict the
fingerprinting attack on
honeypots

Fig. 15 Testing results of the CI-enabled honeypot based on the level of accuracy for each prediction for the five selected fingerprinting tools

123



Complex & Intelligent Systems

Fig. 16 Testing results of prediction accuracy and prediction sensitivity of the CI-enabled honeypot for the five selected fingerprinting tools

rule base system should be the generic rule base for several
OS fingerprinting tools/techniques. The created sample rules
are shown in Fig. 13 and the corresponding fuzzy rule base
system is shown in Fig. 14. This designed fuzzy inference
system (see Fig. 12) is based onMamdani’s inferencemethod
[23].

Test results of the computational
intelligence enabled honeypot

The proposed CI-enabled honeypot system is employed to
test the prediction results for an attempted OS fingerprinting
attack from the five different OS fingerprinting tools: Nmap,
Xprobe2, NetScanTools Pro, SinFP3 and Nessus. A total of
250 OS fingerprinting attacks using different attack scripts
were carried out, i.e., 50 attacks from each tool. The testing
results for all the tools and their level of prediction accuracy
are shown in Fig. 15. In calculating the prediction accuracy of
the proposed system, the prediction of attack levels as High,
Medium and Low are translated into their corresponding per-
centage accuracy as 100%, 66.7% and 33.3% for the purpose
of evaluation. The failure to detect an attempted attack is
considered as 0%. The prediction accuracy of the proposed
system was 82.67% for Nmap, 82% for Xprobe2, 92% for
NetScanTools Pro, 86% for SinFP3 and 80% for Nessus,
which is shown in Fig. 16. The overall prediction accuracy of
the proposed systemwas 84.53%.Alongside prediction accu-
racy, the prediction sensitivity of the proposed system was
also calculated based on the total True Positive (TP) andFalse
Negative (FN) to determine whether the system can detect
an attempted attack or not. Out of 50 attacks from each tool,
the proposed system predicted attempted attacks 46 times for

Nmap, 41 times for Xprobe2, 46 times for NetScanTools Pro,
43 times for SinFP3 and 45 times for Nessus. The prediction
sensitivity of the proposed system was 92% for Nmap, 82%
for Xprobe2, 92% for NetScanTools Pro, 86% for SinFP3
and 90% for Nessus, which is shown in Fig. 16. The overall
prediction sensitivity of the proposed systemwas 88.4%. The
prediction accuracy and sensitivity of the proposed system
demonstrates its success for the five different types of finger-
printing tools (TCP-based, ICMP-based and combination of
both).

Finally, Table 6 illustrates the summary of prediction
results for the five OS fingerprinting tools, where the pro-
posed system can predict the severity level of an attempted
OS fingerprinting attack as HIGH for all the five tools with
some exceptions as discussed in Table 6. These are related
to Nmap and Nessus as they can perform a wide range of
OS fingerprinting attacks, some of which rely on HTTP and
other application layer protocols, however, this investigation
concentrated on the core protocols of the network and trans-
port layer (TCP, ICMP, UDP and IP). As a result of using
HTTP and some other application layer protocols, there is a
reduced reliance on the core TCP/IP protocols to obtain OS
fingerprinting information leading to the generation of lower
TCP/IP traffic and fewer abnormalities/patterns for the pre-
diction of the system. However, HTTP and some application
layer protocols can be included, with each protocol targeting
a very specific attack, significantly increasing the complexity
and overheads of the method. Whereas core TCP/IP proto-
cols are included in all tools/attacks based on the TCP/IP
stack fingerprinting technique, offering a lightweight generic
approach that can predict all TCP/IP based fingerprinting
attacks.

123



Complex & Intelligent Systems

Table 6 Fuzzy inference system (FIS) based prediction for attempted OS fingerprinting attacks and their severity levels for various tools

OS Fingerprinting Tool Main Protocol for
Reconnaissance

Prediction of a Severity Level of
Attempted OS Fingerprinting Attacks by
FIS

Exception in the Prediction of Attempted
OS Fingerprinting Attacks by FIS

Nmap TCP-Based H IGH∗ Severi t y Level The protocols affected are where
HTTP-based attack scripts (e.g. nmap
-sV ) are used, where it may not be able
to predict HIGH severity levels

Xprobe2 ICMP-Based H IGH Severi t y Level

NetScanTools Pro ICMP-Based H IGH Severi t y Level

SinFP3 TCP-Based H IGH Severi t y Level

Nessus Both TCP and ICMP-Based H IGH∗ Severi t y Level The protocols affected are where SMB,
NTP, SNMP, SSH and HTTP-based
attack scripts are used, where it may not
be able to predict HIGH severity levels

Where * means that FIS predicts HIGH severity for the majority of OS Fingerprinting Attacks, with the Exception of some application layer
protocol-based attacks (see the last column)

Conclusion

This paper presented a computational intelligence enabled
honeypot for discovering and predicting an attempted finger-
printing attack by using a Principal Components Analysis
and Fuzzy Inference System. The proposed CI-enabled
design was focused on the most common OS fingerprint-
ing attack. The simulation of fingerprinting attacks and data
(TCP/IP packets) collection was accomplished by employ-
ing - KFSensor honeypot tool and Nmap and Xprobe2
fingerprinting tools. Subsequently, based on preliminary
observations and empirical evidence, some of the important
fields of collected TCP/IP packets were analysed to establish
abnormalities or patterns as a sign of an attempted finger-
printing attack. Successively, it applied a PCA to determine
the most influential fields, which were further utilised by
the proposed FIS to predict the fingerprinting attack and its
severity levels. Finally, the proposed system was success-
fully tested against the five popular fingerprinting tools. This
included two previous tools Nmap and Xprobe2 and three
new toolsNetScanTools Pro, SinFP3 andNessus;whichwere
not involved in the development of CI-enabled honeypot.
Notwithstanding, the CI-enabled honeypot being promising
and encompassing several types of TCP/IP based fingerprint-
ing attacks, it may omit some fingerprinting attacks which
exploit some of the application layer protocols HTTP, SMB,
NTP, SNMP and SSH. Thus, in the future, it is essential
to enhance this CI-enabled honeypot and incorporate these
fingerprinting attacks. Additionally, the developed fuzzy
inference system can be improved to cover new attacks by
utilising an adaptive rule base through dynamic fuzzy rule
interpolation approach [24].

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alata E, Nicomette V, Kaâniche M, Dacier M, Herrb M (2006)
Lessons learned from the deployment of a high-interaction honey-
pot. In: 2006 Sixth European Dependable computing conference,
pp 39–46. IEEE

2. Alex: Backtrack 5: Information gathering: network analysis: OS
fingerprinting: Xprobe2 (2012, March 31). https://www.question-
defense.com/2012/03/31/backtrack-5-/information-/gathering-
network-analysis-os-/fingerprinting-xprobe2. Accessed Dec 2017

3. Allen JM (2008) OS and application fingerprinting techniques.
https://www.sans.org/reading-room/whitepapers/authentication/
os-application-/fingerprinting-techniques-32923. Accessed Dec
2017

4. Almquist P (1992) Type of service in the internet protocol suite.
https://tools.ietf.org/html/rfc1349. Accessed Dec 2017

5. Arkin O, Yarochkin F (2003) A fuzzy approach to remote
active operating system fingerprinting. http://www.sys-security.
com/archive/papers/Xprobe2.pdf. Accessed Dec 2017

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.question-defense.com/2012/03/31/backtrack-5-/information-/gathering-network-analysis-os-/fingerprinting-xprobe2
https://www.question-defense.com/2012/03/31/backtrack-5-/information-/gathering-network-analysis-os-/fingerprinting-xprobe2
https://www.question-defense.com/2012/03/31/backtrack-5-/information-/gathering-network-analysis-os-/fingerprinting-xprobe2
https://www.sans.org/reading-room/whitepapers/authentication/os-application-/fingerprinting-techniques-32923
https://www.sans.org/reading-room/whitepapers/authentication/os-application-/fingerprinting-techniques-32923
https://tools.ietf.org/html/rfc1349
http://www.sys-security.com/archive/papers/Xprobe2.pdf
http://www.sys-security.com/archive/papers/Xprobe2.pdf


Complex & Intelligent Systems

6. Arkin O, Yarochkin F (2018) Xprobe2(1)–Linuxman page. https://
linux.die.net/man/1/xprobe2. Accessed Dec 2017

7. Cabral W, Valli C, Sikos L, Wakeling S (2019) Review and anal-
ysis of cowrie artefacts and their potential to be used deceptively.
In: 2019 International Conference on computational science and
computational intelligence (CSCI), pp 166–171. IEEE

8. Cantrell C, Willebeek-LeMair M, Cox D, McHale J, Smith B, Kol-
blyD (2008)Active networkdefense systemandmethod.USPatent
7,454,499

9. Costello AB, Osborne JW (2005) Best practices in exploratory
factor analysis: Four recommendations for getting the most from
your analysis. Pract Asses Res Eval 10(7):1–9

10. Greenwald LG, Thomas TJ (2007) Toward undetected operating
system fingerprinting. WOOT 7:1–10

11. Grimes RA (2017) Honeypots, in hacking the hacker: learn from
the experts who take down hackers. Wiley, Indianapolis. https://
doi.org/10.1002/9781119396260.ch19

12. Horn JL (1965) A rationale and test for the number of factors in
factor analysis. Psychometrika 30(2):179–185

13. Kaiser HF (1960) The application of electronic computers to factor
analysis. Educ Psychol Measur 20(1):141–151

14. Keyfocus.net (2018) KFSensor: advanced windows honeypot
system–enhanced intrusion and insider threat detection for your
network (2018). http://www.keyfocus.net/kfsensor/. AccessedDec
2017

15. LyonGF (2009) Chapter 15. NmapReferenceGuide. https://nmap.
org/book/man-os-detection.html. Accessed Dec 2017

16. Lyon GF (2009) Chapter 15. Service and version detection. https://
nmap.org/book/man-version-detection.html. Accessed Dec 2017

17. Lyon GF (2009) Chapter 7. Service and application version detec-
tion. https://nmap.org/book/vscan.html. Accessed Dec 2017

18. Lyon GF (2009) Chapter 8. Remote OS detection: TCP/IP fin-
gerprinting methods supported by Nmap. https://nmap.org/book/
osdetect-methods.html. Accessed Dec 2017

19. Lyon GF (2009) Chapter 9. Nmap scripting engine. https://nmap.
org/book/nse-usage.html. Accessed Dec 2017

20. LyonGF (2009)Nmap network scanning: the official Nmap project
guide to network discovery and security scanning. Insecure, Sunny-
vale CA, United States, pp 468. https://doi.org/10.5555/1538595.
Accessed Dec 2017

21. Lyon GF (2011) Nmap service DB. https://svn.nmap.org/nmap/
nmap-services. Accessed Dec 2017

22. Lyon GF (2017) Nmap OS fingerprinting 2nd generation DB.
https://svn.nmap.org/nmap/nmap-os-db. Accessed Dec 2017

23. Mamdani EH, Assilina S (1975) An experiment in linguistic syn-
thesis with a fuzzy logic controller. Int JMan-Mach Stud 7(1):1–13

24. Naik N, Diao R, Shen Q (2018) Dynamic fuzzy rule interpolation
and its application to intrusion detection. IEEE Trans Fuzzy Syst
26(4):1878–1892

25. Naik N, Jenkins P (2016) Enhancing windows firewall secu-
rity using fuzzy reasoning. In: IEEE International Conference on
dependable, autonomic and secure computing, pp 263–269

26. Naik N, Jenkins P (2016) Fuzzy reasoning based windows fire-
wall for preventing denial of service attack. In: IEEE International
Conference on fuzzy systems, pp 759–766

27. Naik N, Jenkins P (2016) Web protocols and challenges of web
latency in the web of things. In: 2016 Eighth International Con-
ference on ubiquitous and future networks (ICUFN), pp 845–850.
IEEE

28. NaikN, Jenkins P (2018)Discovering hackers by stealth: predicting
fingerprinting attacks on honeypot systems. In: 2018 IEEE Inter-
national Symposium on systems engineering (ISSE)

29. Naik N, Jenkins P (2018) A fuzzy approach for detecting and
defending against spoofing attacks on low interaction honeypots.
In: 21st International Conference on information fusion, pp 904–
910. IEEE

30. Naik N, Jenkins P, Cooke R, Ball D, Foster A, Jin Y (2017) Aug-
mented windows fuzzy firewall for preventing denial of service
attack. In: 2017 IEEE International Conference on fuzzy systems
(FUZZ-IEEE), pp 1–6

31. Naik N, Jenkins P, Cooke R, Yang L (2018) Honeypots that bite
back: a fuzzy technique for identifying and inhibitingfingerprinting
attacks on low interaction honeypots. In: 2018 IEEE International
Conference on fuzzy systems (FUZZ-IEEE)

32. Naik N, Jenkins P, Davies P, Newell D (2016) Native web com-
munication protocols and their effects on the performance of web
services and systems. In: 16th IEEE International Conference on
computer and information technology (CIT), pp 219–225. IEEE

33. Naik N, Jenkins P, Savage N (2018) Threat-aware honeypot for
discovering and predicting fingerprinting attacks using principal
components analysis. In: IEEE Symposium Series on computa-
tional intelligence (SSCI)

34. Naik N, Jenkins P, Savage N, Katos V (2016) Big data security
analysis approach using computational intelligence techniques in
R for desktop users. In: IEEE Symposium Series on computational
intelligence (SSCI)

35. Naik N, Shang C, Jenkins P, Shen Q (2020) Building a cognizant
honeypot for detecting active fingerprinting attacks using dynamic
fuzzy rule interpolation. Expert Syst. https://doi.org/10.1111/exsy.
12557

36. Naik N, Shang C, Shen Q, Jenkins P (2018) Vigilant dynamic
honeypot assisted by dynamic fuzzy rule interpolation. In: IEEE
Symposium Series on computational intelligence (SSCI)

37. RoweNC (2006)Measuring the effectiveness of honeypot counter-
counter deception. In: System sciences, 2006. HICSS’06. Proceed-
ings of the 39th Annual Hawaii International Conference on, vol. 6,
p 129c. IEEE

38. Spitzner L (2003) Honeypots: tracking hackers, vol 1. Addison-
Wesley Reading, Boston

39. Touch J (2014) Updated specification of the IPv4 ID Field. https://
tools.ietf.org/html/rfc6864. Accessed Dec 2017

40. Yarochkin FV, Arkin O, Kydyraliev M, Dai SY, Huang Y, Kuo SY
(2009) Xprobe2++: low volume remote network information gath-
ering tool. In: Dependable Systems & Networks, 2009. DSN’09.
IEEE/IFIP International Conference on, pp. 205–210. IEEE

41. Zwick WR, Velicer WF (1986) Comparison of five rules for deter-
mining the number of components to retain. PsycholBull 99(3):432

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://linux.die.net/man/1/xprobe2
https://linux.die.net/man/1/xprobe2
https://doi.org/10.1002/9781119396260.ch19
https://doi.org/10.1002/9781119396260.ch19
http://www.keyfocus.net/kfsensor/
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-version-detection.html
https://nmap.org/book/man-version-detection.html
https://nmap.org/book/vscan.html
https://nmap.org/book/osdetect-methods.html
https://nmap.org/book/osdetect-methods.html
https://nmap.org/book/nse-usage.html
https://nmap.org/book/nse-usage.html
https://doi.org/10.5555/1538595
https://svn.nmap.org/nmap/nmap-services
https://svn.nmap.org/nmap/nmap-services
https://svn.nmap.org/nmap/nmap-os-db
https://doi.org/10.1111/exsy.12557
https://doi.org/10.1111/exsy.12557
https://tools.ietf.org/html/rfc6864
https://tools.ietf.org/html/rfc6864

	A computational intelligence enabled honeypot for chasing ghosts in the wires
	Abstract
	Introduction
	Background information
	Honeypots
	Fingerprinting attack
	OS fingerprinting attack

	Simulation of various types of OS fingerprinting attacks
	TCP-based OS fingerprinting attack using Nmap
	ICMP-based OS fingerprinting attack using Xprobe2

	Identifying abnormalities/patterns in the various fields of TCP/IP protocols as signs of OS fingerprinting attacks
	Discovering abnormalities/patterns in TCP Flags
	URG/PSH/FIN probing
	NULL packet
	Reserved Bit Probing
	ECN-echo probing
	FIN Probing
	SYN/FIN probing

	Discovering abnormalities/patterns in TCP Options
	Discovering abnormal/frequent uses of TCP urgent pointer
	Discovering abnormalities/variations in TCP Window Size
	Discovering abnormal/frequent uses of IP service type/Type of service (TOS) Field
	Discovering abnormalities/commonalities in IP identification (IPID) field
	Discovering abnormalities in IP time-to-live (TTL) value
	Discovering abnormalities/patterns in UDP Requests
	Discovering abnormalities/patterns in ICMP requests
	Discovering abnormalities/patterns in ICMP packet size

	Design and development of computational intelligence enabled honeypot for predicting fingerprinting attacks on honeypots
	Principal components analysis to determine the most influential TCP/IP fields for predicting fingerprinting attacks on honeypots
	Fuzzy inference system for predicting OS fingerprinting attacks and their severity levels on honeypots
	Fuzzy input and output variables
	Fuzzy rules and fuzzy rule base system


	Test results of the computational intelligence enabled honeypot
	Conclusion
	References




