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Abstract

In this work we present a three-stage Machine Learning strategy to country-level risk

classification based on countries that are reporting COVID-19 information. A K% binning

discretisation (K = 25) is used to create four risk groups of countries based on the risk of

transmission (coronavirus cases per million population), risk of mortality (coronavirus deaths

per million population), and risk of inability to test (coronavirus tests per million population).

The four risk groups produced by K% binning are labelled as ‘low’, ‘medium-low’, ‘medium-

high’, and ‘high’. Coronavirus-related data are then removed and the attributes for prediction

of the three types of risk are given as the geopolitical and demographic data describing each

country. Thus, the calculation of class label is based on coronavirus data but the input attri-

butes are country-level information regardless of coronavirus data. The three four-class

classification problems are then explored and benchmarked through leave-one-country-out

cross validation to find the strongest model, producing a Stack of Gradient Boosting and

Decision Tree algorithms for risk of transmission, a Stack of Support Vector Machine and

Extra Trees for risk of mortality, and a Gradient Boosting algorithm for the risk of inability to

test. It is noted that high risk for inability to test is often coupled with low risks for transmis-

sion and mortality, therefore the risk of inability to test should be interpreted first, before con-

sideration is given to the predicted transmission and mortality risks. Finally, the approach is

applied to more recent risk levels to data from September 2020 and weaker results are

noted due to the growth of international collaboration detracting useful knowledge from

country-level attributes which suggests that similar machine learning approaches are more

useful prior to situations later unfolding.

1 Introduction

According to the Future of Humanity Institute there is a 2.05% chance that mankind will go

extinct by the year 2100, through either a natural or engineered pandemic [1]. If there is one

lesson to learn from the ongoing COVID-19 Coronavirus (SARS-CoV-2) pandemic, it is that

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0241332 October 28, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bird JJ, Barnes CM, Premebida C, Ekárt
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we were not prepared. The virus initially spread rapidly across the globe, mortality began to

rise, and countries desperately struggled to test their citizens for the virus once it became

known that many infectious carriers of it show no noticeable symptoms [2–4]. This suggests

three main risk factors to be observant of: the initial risk of transmission due to varying factors

such as, for example, population density [5] and international travel [6]; the risk of mortality

due to ageing populations [7] and underlying health issues [8, 9]; and finally the risk of a coun-

try not being able to test citizens aptly and thus producing possibly under-reported measures

of the previous two [10].

Machine learning has shown success in contributing to research during the COVID-19

pandemic. Health service data trend models have shown to aid in classification of the virus

[11, 12], vaccine design [13], estimation of cases, deaths, and recoveries [14, 15], simulating

what could have happened if ‘lockdown’ was not instituted [16], and also simulating behaviour

of the spread of the disease by prior knowledge from other locations [17].

In this work, we devise a machine learning based strategy to predict three-fold risk at the

country-level: (i) risk of transmission, (ii) risk of mortality, and (iii) risk of inability to test.

Through these three quantifiable measures, preparedness and risk can be assessed, providing

some quantitative reasoning behind global decisions, should another deadly disease grip our

species again. Our main contribution is the exploration of the idea that country-level demo-

graphic and geopolitical attributes can aid in the classification of pandemic risk and prepared-

ness in terms of transmission, mortality, and an inability to test (which the previous two

depend on, since testing allows for accurate measurements of transmission and mortality). In

order to do this, various supervised learning classifiers are explored in order to discern how

much useful information these country-level attributes carry for the classification of these

three risks.

We note that the classification problems are difficult, where many powerful techniques

achieve unsatisfactory scores on the dataset, scoring around 10-20% higher than an approxi-

mate 25% random guess on the dataset, showing that learning useful rules from the data is not

an easy task. This is not unexpected, since the classes have not been directly derived from the

data used to predict them, rather, they have been derived from COVID-19 statistics and then

given as classes for country-level demographic and geopolitical information.

Due to this, strategies of linear searching and genetic optimisation are also followed in

order to achieve more accurate results. Although results are varied, the fact that all final models

achieve much higher than 25% accuracy We formulate the problem as a 4-class problem.

(which would be achieved via a random guess), shows that the geopolitical and demographic

attributes at the country-level do carry predictive ability when it comes to pandemic risk and

preparedness. The final models chosen are characterised by high classification accuracy for the

risks of transmission, mortality, and inability to test, and are trained with no prior knowledge

of the new coronavirus pandemic (other than the class). This may allow for generalisation to

classify a nation’s risk in the early days of a future pandemic.

The remainder of this work is organised as follows: Section 2 details the method followed

with Subsection 2.1 describing machine learning approaches in particular. Section 3 presents

the results for the risk of transmission (3.1), the risk of mortality (3.2) and the risk of inability

to test (3.3). Finally, the limitations of the study are described, future work is suggested, and

the study is concluded in Section 4.

2 Method

Firstly, a numerical risk score is calculated for all countries that record publicly the number of

COVID-19 cases, deaths, and tests performed, which are grouped into four classes after being
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collected from [18] Formalised on the 12th May 2020, updated experiments for newer data can

be found in Section 3.7, with the relative ordering based on the three metrics with regards to

population (cases, deaths, and tests per million). The risk classes are low, medium-low,

medium-high and high for each type of risk. As defined in other works [19–21], discretisation

of the continuous features into bins is performed by the K% method in which K = 25 (equal

frequency binning), resulting in four close-to-equal classes, with the difference being that the

highest risk class is a minor 1.2% larger than the other three classes. Future work aims to

explore other methods of discretisation, whereas this work initially focuses on the machine

learning pipeline on the basis of equal class error weighting.

COVID-19 data are then removed, and the attributes to complement the country-level clas-

ses are the following: UN Region [22], 2020 Population Estimate [18], Median Age [18], Popu-

lation Density per km2 [18], Urban Population % [18], Urban Population total [18], Nursing

and midwifery personnel per 10,000 (most recently recorded) [23], Medical doctors per 10,000

(most recently recorded) [23], Tobacco prevalence 2016 [24], Obesity prevalence 2016 [25],

Gross Domestic Product 2019 [22], Land area KM2 [22], Net Migration [22], Infant mortality

per 1,000 births [22], Literacy rate % [22], Arable land % [22], Crop land % [22], Other land %

[22], Climate classification type [22], Birth rate per 1,000 [22], Death rate per 1,000 [22], GDP

expenditure on Agriculture [22], GDP expenditure on Industry [22] and GDP expenditure on

Services [22]. Since some countries are not recorded by The World Health Organisation, fig-

ures for Nursing, midwifery and medical doctors personnel per 10,000 people from Hong

Kong are collected from an alternative source [26]. Missing data which occurred mostly for

tobacco prevalence, was given as ‘-1’, which flags as an attribute that the data have not been

collected (which could in itself provide useful information).

The classification problem of risk is therefore formulated based on prior knowledge of the

pandemic in terms of class only, but the attributes to attempt to classify them are purely coun-

try-level information regardless of number of cases, deaths and other coronavirus specific

data. Thus the problem becomes a pandemic risk and preparedness classification problem

based on demographic and geopolitical attributes only. We aim for a generalisable model,

which can be applied to the future state of countries, should another potential pandemic begin

prior to any meaningful measurements being available. The method is illustrated in Fig 1.

Following this, a set of machine learning models are tasked with predicting a country’s risk

class by learning from all other countries in a process of Leave One Out cross-validation [27],

which is performed for all three types:

Fig 1. Overall diagram of the experiment. Risk is calculated with COVID-19 information but is then classified via

country-level geopolitical and demographic attributes.

https://doi.org/10.1371/journal.pone.0241332.g001
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1. Risk of Transmission—derived from COVID-19 cases per million population

2. Risk of Mortality—derived from COVID-19 deaths per million population

3. Risk of Inability to Test—derived from COVID-19 tests performed per million population

Finally, the best models for each risk factor are organised into a predictive framework,

which produces an output for the three risks.

Since testing is taken into account, countries that have not reported testing data cannot be

considered, but are later classified by the model generalised on those countries that do. A

three-fold machine learning approach is proposed following observing the maps for the three

separate risk quarters in Figs 2, 3 and 4 which show the discretised inability to test risk, trans-

mission risk, and mortality risk respectively. We note that the countries with seemingly fewer

cases have performed far fewer tests as can be observed in Fig 5, and thus this should be con-

sidered an important observation; to give examples, the nation of Yemen has performed only 4

tests per million population, Burundi 24 per million, Malawi 70 per million, and Angola 91

per million—the fewest four of any country on earth. In comparison, Spain has performed

52,781 tests per million population, Italy 43,112, the United Kingdom 29,566 and the United

States of America 29,147 COVID-19 tests per million population. Additionally, Fig 5 shows

that the growth of cases and testing tend to increase alongside one another. That is, a country

with more cases will test more, and as such will have more confirmed cases, since the larger

number of tests have identified more cases. The data for the two experiments were accessed on

12th May 2020 and 16th September 2020.

2.1 Machine learning approaches

Trained with the strategy of Leave One Out cross-validation (LOO CV) where every country’s

risk is predicted based on learning from all other countries, a set of supervised classification

models are benchmarked. This section details the models focused upon, and the methods used

to search for others. The metrics reported following the models described in this section are

Fig 2. A map of COVID-19 tests performed per million people divided into four classes with outlier countries

removed. Note that this map is juxtapose to those shading transmission and mortality.

https://doi.org/10.1371/journal.pone.0241332.g002
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mean classification accuracy due to close-to-equal class balance [28] (Low, Med-low, Med-

High are equal and High is minimally larger by a factor of 1.2%) and high variance often

observed due to the nature of LOO CV [29, 30].

Decision Trees are tree structures, where each internal node represents a condition based

on attributes that allows splitting the data and leaf nodes represent class labels [31]. A Random

Decision Forest (RDF) [32], used in this study, creates multiple random decision trees, where

Fig 3. A map of COVID-19 cases per million people divided into four classes with outlier countries removed. Note

that many countries at “low risk” by number of cases are at “high risk” for inability to test.

https://doi.org/10.1371/journal.pone.0241332.g003

Fig 4. A map of COVID-19 deaths per million people divided into four classes with outlier countries removed.

Note that many countries at “low risk” by number of deaths are at “high risk” for inability to test.

https://doi.org/10.1371/journal.pone.0241332.g004
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each decision tree votes on the class of the input data object, and the predicted class is that,

which receives the majority vote. Splitting of the trees is based on information gain:

IGðT;XÞ ¼ EðTÞ � EðT;XÞ; ð1Þ

where IG is the observed difference in information entropy, which is expressed in Eq (2), that

is, the nodes split data based on reducing the randomness of object class distribution.

K-Nearest Neighbours (KNN) is similar to an RDF in that the prediction is derived by a

majority vote. The voters, rather than decision trees, are the data objects within the observa-

tions that are closest in terms of n-dimensional Euclidean space where n is the number of

attributes.

Gradient Boosting [33] forms an ensemble of weak learners (decision trees) and aims to

minimise a loss function via a forward stage-wise additive method. In these classification prob-

lems, deviance is minimised. At each stage, four trees (n = classes) are fit on the negative gradi-

ent of the multinomial deviance loss function, or cross-entropy loss [34, 35]:

�
XK

c¼1

ix;ylogðpx;yÞ; ð2Þ

where, for K classes, i is a binary indicator of whether the prediction that class y is the class of

observed data x is correct, and finally p is the probability that aforementioned data x belongs

to the class label y. XGBoost [36] differs slightly in that it penalises trees, leaves are shrunk pro-

portionally, and extra randomisation is implemented.

Naïve Bayes is a probabilistic classifier that aims to find the posterior probability for a num-

ber of different hypotheses and selecting the most likely case. Bayes’ Theorem is given as:

PðhjdÞ ¼
PðdjhÞPðhÞ

PðdÞ
; ð3Þ

Fig 5. Comparison of the distributions of tests performed per million people and confirmed cases per million

people. Number of fatalities per million people show a similar behaviour w.r.t tests but are omitted for readability

purposes. Position on the X axis denotes each country.

https://doi.org/10.1371/journal.pone.0241332.g005
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where P(h|d) is the posterior probability of hypothesis h given the data d, P(d|h) is the condi-

tional probability of data d given that the hypothesis h is true. P(h) i.e., the prior, is the proba-

bility of hypothesis h being true and P(d) = P(d|h)P(h) is the probability of the data. Naïvety in

the algorithm is due to the assumption that each probability value is conditionally independent

for a given target, calculated as PðdjhÞ ¼
Qn

i¼1
PðdijhÞ where n is the number of attributes/

features.

Linear Discriminant Anaylsis (LDA), based on Fisher’s linear discriminant [37], is a statisti-

cal method that aims to find a linear combination of input features that separate classes of data

objects, and then use those separations as feature selection (opting for the linear combination)

or classification (placing prediction objects within a separation). Classes k 2 {1, . . ., K} are

assigned priors p̂k (
Pk

i¼1
p̂k ¼ 1). With Eq (3) in mind, maximum-a-posteriori probability is

thus calculated as:

GðxÞ ¼ arg max
k

PrðG ¼ kjX ¼ xÞ ¼ arg max
k

fkðxÞpk; ð4Þ

where fk(x) is the density of X conditioned on k:

fkðxÞ ¼ j2pSkj
� 1=2exp �

1

2
ðx � mkÞ

T
S� 1

k ðx � mkÞ

� �

; ð5Þ

Sk is the covariance matrix for samples of class k and class covariance matrices are assumed to

be equal. The class discriminant function δk(x) is given as:

dkðxÞ ¼ xTS� 1mk �
1

2
mT

kS
� 1mk þ log pk; ð6Þ

where m̂k is the class mean, and finally classification is performed via

GðxÞ ¼ arg max
k
dkðxÞ: ð7Þ

Quadratic Discriminant Analysis (QDA) is an algorithm that uses a quadratic plane to sepa-

rate classes of data objects. Following the example of LDA, QDA estimates the covariance

matrices of each class rather than operating on the assumption that they are the same. QDA

follows LDA with the exception that:

dkðxÞ ¼ �
1

2
logjSkj �

1

2
ðx � mkÞ

T
S� 1

k ðx � mkÞ þ log pk : ð8Þ

Support Vector Machines (SVM) optimise a high dimensional hyperplane to best separate a

set of data point by class by maximising the margin and minimising the empirical risk, and

then predict new data points based on the distance vector measured from the hyperplane [38].

The optimisation of the hyperplane is to achieve the goal of maximising the average margins

between the points and separator. Generation of a multi-class SVM is performed through

Sequential Minimal Optimisation (SMO) [39] by breaking down the optimisation into smaller

linearly-solvable sub-problems. For multipliers a, reduced constraints are given as:

0 � a1; a2 � C;

y1; a1þ y2; a2 ¼ k;
ð9Þ

where there are data classes y and k are the negative of the sum over the remaining terms of

the equality constraint.

Stacked Generalisation (Stacking) [40] is the process of training a machine learning algo-

rithm to interpret the predictions of an ensemble of algorithms trained upon the dataset in a
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process of meta-learning. Generally, a stack can represent any kind of ensemble, but the inter-

pretation algorithm is often Logistic Regression. It has been noted in multiple domains that

Stacking often outperforms the individual models in the ensemble [41–43].

2.2 Initial observations

It was observed during experimentation that the classification problems were difficult, lead-

ing to many models achieving relatively bad results, i.e., the results outperformed an approx-

imate 25% chance random guess by around 10-20% classification accuracy, with many state-

of-the-art models predicting the wrong value more than half of the time (< 50%). The solu-

tions explored to solve this are the following: A linear search is performed for Random Deci-

sion Forests (RDF) and K-Nearest Neighbours (KNN) from 10, 20, . . ., 1000 decision trees

and 1, 2, . . ., 50 neighbours, respectively. Random Forests are often found to be powerful

ML algorithms, and so an in-depth search is performed in order to maximise their ability.

This is also followed for KNN since it is of low complexity and can thus be quickly

benchmarked.

A genetic search is also performed via the Tree-based Pipeline Optimization Tool (TPOT)

algorithm detailed in [44] with consideration to the whole Scikit-learn toolkit [45] Where not

detailed in the previous section, more information is available on the models in [46]. TPOT is

an algorithm that treats each machine learning operator as a Genetic Programming (GP)

primitive which include, modified features, feature combinations, feature selections and

dimensionality reductions, learning algorithms as well as their predictions (for exploration of

ensembles). GP Trees were chosen since they best represented a machine learning pipeline

and are implemented with the DEAP framework [47], and best solutions are selected by the

Multi-objective NSGA-II algorithm [48] by aiming to increase classification accuracy while

reducing minimising the number of machine learning operators as previously described. 5%

of offspring produced by the best models cross-over with another through a process of one-

point crossover, and the remaining offspring randomly mutate at a 33% chance of point, inser-

tion, or shrinkage. Thus, the algorithm introduces and tunes ML operators with promising

effect and removes operators that cause the results to degrade. Finally, the best machine learn-

ing pipeline is presented from the search.

To conclude, the method described in this section follows the process of manual explora-

tion, linear search, and genetic programming in order to explore the best classification models

for these problems in terms of classification accuracy. As previously described, accuracy is cho-

sen as the metric of comparison since the datasets are closely balanced, and the drawback of

LOO is high variance (large standard deviation due to binary per-fold results) while enabling

classification model validation of a small dataset.

2.3 Implementation

All of the experiments in this paper were performed using the Scikit-learn toolkit [45] imple-

mented in Python. The algorithms were executed on an Intel Core i7 Processor (3.7GHz).

Due to the large computational complexity when searching a problem space with LOO, the

algorithm was executed three times with a population size of 10 for 10 generations, if a model

scored lower than the manually or linearly explored models then it was discarded, and other-

wise presented if it achieved a higher score. This decision was based on the fact that results for

the three problems attained were only 49.67%, 43.79%, and 56.21%, and more robust models

were required in order to provide accurate predictions.
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3 Results

In this section, the three sets of results are presented. For readability purposes, linear searches

of RDF and KNN are presented as the same Figs (6) and (7).

3.1 Risk of transmission

Fig 6 shows the linear search for RDF estimators towards risk of transmission, where the best

model was a forest 30 trees, which scored 55.6%. Fig 7 shows the linear search for KNN simi-

larly, where the best model was K = 9 which scored 45.76%. In the RDF approach for the three

Fig 6. A linear search of RDF estimators for the three classification problems. Many of the solutions are weak due

to the difficulty of the classification problem.

https://doi.org/10.1371/journal.pone.0241332.g006

Fig 7. A linear search of KNN for the three classification problems. Results show that KNN is a weak solution for

this problem.

https://doi.org/10.1371/journal.pone.0241332.g007
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different classification problems, risk of transmission always scored second, and first for KNN,

albeit that the solutions presented were relatively weak.

Fig 8 details the other models explored for the classification of transmission risk. Likewise

to the linear searches, many solutions were weak, achieving between only 32.67% and 49.67%

for the four classes. The TPOT genetic search on the other hand suggested two relatively strong

algorithms. Both were stacking algorithms, Stacking(Naïve Bayes, XGBoost) scored 67.97%

accuracy and Stacking(Gradient Boosting, Decision Tree) scored the highest at 74.51%

accuracy.

3.2 Risk of mortality

The linear searches for RDF and KNN are shown in Figs 6 and 7, respectively. The best RDF

was a forest of 230 trees which scored 43.8%, and the best KNN had a value of K = 30 which

scored 36.6%.

Fig 9 shows the model comparison for risk of mortality. The difficulty of the problem can

be seen with the low results achieved, with the exception of two models discovered by the

genetic model search algorithm. The second best model, which utilised Extra Trees via Recur-

sive Feature Elimination scored 61.97% and the best model found was a process of Stacking

SVM and Extra Trees which had a classification ability of 71.24%.

3.3 Risk of inability to test

Fig 6 shows the linear search of RDF estimators for the risk of inability to test. The best models

were forests of 30 and 790 decision trees which both scored a LOO accuracy of 64.71%. Fig 7

shows a linear search of KNN estimators, the best was K = 14 which scored only 39.87% LOO

accuracy. Finally, Fig 10 shows a comparison of all models benchmarked for risk of inability to

test, where Gradient Boosting and Extra Trees (found by the genetic search algorithm) scored

77.12% and 71.24% LOO accuracy on the dataset.

Fig 8. Comparison of models towards the risk of transmission, an asterisk denotes algorithms found by the

genetic search algorithm.

https://doi.org/10.1371/journal.pone.0241332.g008
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Fig 10 shows a comparison of other models that were explored. Many solutions were quite

weak, but achieving higher results in comparison to the other two problems, suggesting that

the problem is a slightly less difficult one. The best algorithms, as was the case for the other

problems, were also discovered by the genetic search algorithm. Unlike the previous two prob-

lems, the best models found were singular rather than either an ensemble or feature elimina-

tion pipeline, where Extra Trees scored 71.21% and Gradient Boosting scored 77.12%.

3.4 Comparison and interpretation

Following the original outline of the experiment in Figs 1 and 11 builds upon this by including

the best findings from the three benchmarking experiments. The best model for Risk of Trans-

mission was a Stacking algorithm combining Gradient Boosting and a Decision Tree for

74.51% accuracy, the best model for Risk of Mortality was a Stacking algorithm combining

Support Vector Machine and Extra Trees for 71.24% accuracy, and the best model for Risk of

Inability to Test was a Gradient Boosting algorithm for 77.12% accuracy. All of the best models

were found by the genetic model search algorithm.

As previously discussed, the classification of risks must be interpreted relative to one

another. For example, if the maps in Figs 2, 3 and 4 are observed, note that countries that do

not test much also seemingly, on the surface, report fewer cases and deaths per million. On

one hand, this could simply be due to the fact that there are fewer cases and thus fewer tests are

Fig 9. Comparison of models towards the risk of mortality, an asterisk denotes algorithms found by the genetic search algorithm.

https://doi.org/10.1371/journal.pone.0241332.g009
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required, but on the other hand, could imply that fewer tests performed have themselves led to

unreported figures of the other two [49–52].

With this in mind, it is important to consider the output for Risk of Inability to Test in

order to interpret the other two risks. In the case where the Risk of Inability to Test is towards

the lower end of the spectrum, then risks for transmission and mortality are more likely to be

an accurate representation of the situation. Vice versa, though, where there is a high risk of

inability to test, this in itself should be considered the most descriptive risk factor for the coun-

try since there is less prior knowledge to base risks of transmission and mortality upon.

Fig 10. Comparison of models towards the risk of the inability to test, an asterisk denotes algorithms found by the

genetic search algorithm.

https://doi.org/10.1371/journal.pone.0241332.g010

Fig 11. The final configuration of the framework following benchmarking experiments for each of the three risks.

The best models found for each of the tasks are used in unison to predict the three risk metrics.

https://doi.org/10.1371/journal.pone.0241332.g011
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3.5 Application of the best models to outlier countries

Table 1 shows the predicted class values for the best models applied to each of the respective

risk classification problems. Please note the discussion of interpretation in Section 3.4, where

high inability to test is often coupled with lower risks of the prior two, as can be seen in Fig 5,

for as of yet unknown reasons i.e. they could either be actually true to the pattern observed, or

on the other hand, very low testing leads to naturally fewer reported cases and deaths than the

actual values. Many countries bare similarity to others and so have been generalised, further

outliers still such as China may not have accurately predicted labels since the population is

much larger than those observed in the training data, likewise this may be the case with other

geopolitical information within the outlier set.

3.6 Usefulness of country-level features for forecasting

In this section, we perform a preliminary exploration of how useful country-level attributes are

in addition to lag-window features (seven days prior, with mean and standard deviation for

Table 1. Predicted class labels for the outlier countries removed from the dataset. Observations show that high inability to test should be considered primarily, since it

is often coupled with supposed ‘low risk’ of the other two classes w.r.t tests and deaths reported per million population.

Outlier Country Risk Predictions

Transmission Mortality Inability to Test
Anguilla 2 2 2

Burkina Faso 1 1 4

Cameroon 1 1 4

Chad 1 1 4

China� 2 2 2

Comoros 3 1 4

Repub. Congo 1 1 4

DRC 1 1 4

Eritrea 3 1 4

French Guiana 1 2 3

Guadeloupe 3 2 2

Guinea 1 1 4

Liberia 3 1 4

Macao 3 2 2

Martinique 1 4 2

Monaco 4 4 1

Nicaragua 1 2 4

Saint Martin 1 3 4

Saint Pierre Miquelon 3 4 1

Seychelles 1 3 4

Sierra Leone 1 1 4

Somalia 1 1 4

Saint Barthélemy 1 1 2

Sudan 1 1 4

Syria 3 2 3

Tajikistan 1 1 4

Tanzania 1 1 4

Western Sahara 4 3 3

� Note that China has a much higher population than observed within the training data. (1—LOW, 4—HIGH).

https://doi.org/10.1371/journal.pone.0241332.t001
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days 1 − n via a growing lag-window). The process is implemented via a 10-fold temporal vali-

dation process (predicting future fold k from growing training data 1 to k − 1). This approach

is explored for the forecasting of cases and deaths.

3.6.1 Transmission (Cases). The table within Appendix A in S1 Appendix shows the

Pearson correlation coefficient of each attribute in relation to the total cases for each day. As

can be expected, the most correlative feature are the cases recorded for the previous day. Inter-

estingly, mean values of the previous two and three days have more correlation to the total

cases on the current day compared to the previous day lag value alone. Gross Domestic Prod-

uct and Urban Population have a weak but useful correlation for regression of the total cases.

As can be expected, the singular Pearson’s correlation coefficient of each of the isolated attri-

butes tend to be low with exception to the lag windows due to the nature of increasing growth

in infections.

The tables within appendices B, C, and D in S1 Appendix detail the scores given to the attri-

butes by Linear Regression, M5P and SVR respectively. It is observed that the rankings

achieved by the lag window attributes are the same for each algorithm, and the order otherwise

is relatively similar. All algorithms then rank the country at the same place above other fea-

tures, which actually had a negligible correlation of 0.03. Another interesting observation is

that the M5P algorithm ranks medical doctors per 1,000 population as relatively high in the

ranking, second only to country when lag windows are not considered. Urban population

totals are considered important by all of the algorithms, likely since this is an indication of

both spread as well as a rule of thumb for total number of infected.

Table 2 shows the results for total case prediction by all of the chosen algorithms. The best

algorithm achieved a RMSE of 325.66 when considering 41 features chosen by Linear Regres-

sion ranking, which were the 19 time-window attributes and 22 geopolitical or demographic

attributes. This provides a decrease in RMSE of 17.08 when this algorithm only considers lags

of the series, and many instances can be observed in which this metric was reduced by consid-

ering additional attributes explored within this study. The best results achieved by all of the

seven algorithms considered at least two of the additional attributes, it is worth noting that the

best of the best models is also the model which chose the most of the additional attributes (as

well as the best SVR, which also chose 41 attributes in total).

3.6.2 Mortality (Deaths). The table under Appendix E in S1 Appendix shows the correla-

tion of each singular attribute towards the prediction of deaths. As can be observed, the rank-

ings of the lag windows are the same as those for total confirmed infections described in the

previous section. Otherwise, rankings are similar and differ only slightly, as well as their

observed correlation.

Appendices F, G, and H in S1 Appendix detail the scores given to each attribute by the Lin-

ear Regression, M5P and Support Vector Regression algorithms respectively. As can be

expected, the rankings match those of the highest correlation coefficient. Interestingly, a small

change is noted within the attributes for SVR whereas quite a disparity can be seen when

observing the scores given by the other two algorithms.

Table 3 shows the 189 models trained for forecasting total deaths. Similarly to the total case

predictions, the best model found was within a voting ensemble of Linear Regression and

SVR. Unlike total case predictions, introducing geopolitical and demographic attributes had

negative effect on the result, with the best model taking only the temporal lag window features

as input. Once 40 attributes were introduced, the linear regression model had an absurdly high

RMSE of 2.93E+05, which since average values were taking during voting regression, also

affected the ensembles that included it.
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3.7 Application of the approach to recent data

Given the nature of research and peer review, the approach in this work was formalised on the

12th of May 2020 and as such the data is over three months out of date at the time of writing

(16th of September, 2020). Given this, the experiments devised in this work are re-applied to

the new data. It was noted that all manual models failed to generalise with the new data. That

is, a range of scores between 24.95% to 28.63% for all models, for all three risk classification

problems. This is most likely due to international collaboration towards the three risk factors,

and as such, country-level attributes lose classification prediction ability towards the risk

factors.

With the previous successful experiments in mind, this argues that risk classification would

be more useful when performed prior to the situation unfolding, given that country-level

information is seemingly more important at this stage when compared to the current post-

peak climate. Though much weaker results are now observed, this could in fact be viewed as a

Table 2. Predicting total cases: RMSE for each model via 10-fold timeseries split validation in regards to number of input features.

Inputs Single Regressor Voting Regressor

LR M5 SVR LR, M5P LR, SVR M5P, SVR LR, M5P, SVR
19 370.22 382.94 439.52 719.09 342.74 421.82 560.88

20 385.85 401.72 428.66 712.86 344.47 354.51 419.36

21 428.45 369.37 428.66 706.07 362.26 358.07 345.73

22 393.85 362.10 428.66 1770.95 347.08 1117.17 682.11

23 352.50 1424.73 428.66 349.94 330.62 765.78 332.76

24 354.78 409.42 419.53 998.97 328.38 505.94 330.48

25 405.91 1034.08 419.53 562.31 347.90 420.13 1548.25

26 405.70 667.00 414.42 381.82 346.82 402.45 391.52

27 373.01 4171.85 414.42 1010.58 335.26 466.74 352.93

28 372.23 385.73 408.36 382.89 334.90 382.62 344.33

29 375.56 392.29 408.36 882.83 335.55 720.94 443.78

30 361.56 672.70 408.36 923.23 328.38 413.81 378.54

31 358.64 589.31 408.36 740.90 327.17 1622.69 358.53

32 388.40 1107.19 407.44 548.76 342.30 658.87 387.71

33 388.20 870.35 407.44 491.99 342.41 425.96 745.70

34 424.00 603.28 407.44 550.33 359.73 761.37 412.64

35 430.93 4742.20 407.43 521.89 362.10 873.98 639.61

36 446.80 486.57 407.43 2218.82 369.12 561.46 720.25

37 427.19 900.55 407.43 1132.58 358.86 1020.05 755.47

38 409.68 819.97 407.42 721.11 353.83 474.81 1028.22

39 562.55 4844.91 407.42 655.19 425.90 1319.26 477.66

40 499.31 3003.03 411.51 748.44 393.63 769.39 489.73

41 355.58 909.69 400.67 789.99 325.66 672.00 621.68

42 375.79 2177.87 400.68 2187.51 333.76 456.30 381.07

43 375.61 2287.24 400.68 786.87 333.28 379.21 370.89

44 375.61 7807.16 400.68 428.02 333.28 1237.57 445.27

45 375.61 862.69 400.68 2890.89 333.28 3215.68 910.77

46 375.61 3307.37 400.68 714.07 333.28 444.19 367.25

Best 352.50 362.10 400.67 349.94 325.66 354.51 330.48

Inputs 23 22 41 23 41 21 24

Features >19 denotes the input of geopolitical and demographic attributes selected by the model.

https://doi.org/10.1371/journal.pone.0241332.t002
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positive situation, given that country-level data i.e. who you are and where you are from no lon-

ger impacts risk as it was observed to in the initial experiments performed in May 2020. It has

been noted during mid-2020 that organisations such as the United Nations and World Health

Organisation have implemented and released humanitarian packages to Lower Economically

Developed Countries (LEDCs) [53–55]. It has also been noted that many healthcare profes-

sionals returned to their native countries (often also LEDCs) in order to aid in tackling the

virus [56]. The positive effects of these factors likely contribute towards the reason why coun-

try-level information was useful for risk classification earlier in the pandemic, but are less-so

later on post-peak.

4 Future work and conclusion

With the nature of the data streaming from the ongoing pandemic with regards to the time

taken to run model benchmarks, the largest and most obvious limitation to this study is that

Table 3. Predicting total deaths: RMSE for each model via 10-fold timeseries split validation in regards to number of input features.

Inputs Single Regressor Voting Regressor

LR M5 SVR LR, M5P LR, SVR M5P, SVR LR, M5P, SVR
19 53.73 260.87 39.64 135.28 38.98 43.95 58.65

20 54.15 127.71 39.64 90.35 39.20 69.42 72.83

21 54.54 324.05 39.55 47.52 39.32 72.09 53.40

22 62.54 164.76 39.75 61.18 41.79 76.75 41.99

23 62.80 49.82 39.30 102.89 41.98 80.73 42.61

24 63.20 57.32 39.30 129.20 42.16 39.82 59.99

25 63.51 64.68 39.30 51.91 42.32 40.07 42.14

26 63.70 59.86 39.29 83.76 42.39 44.16 43.57

27 67.78 157.60 39.29 53.84 44.45 103.40 81.46

28 64.97 56.71 39.29 56.87 43.04 144.12 44.45

29 65.01 154.23 39.29 71.13 43.07 47.01 70.55

30 68.31 155.96 39.29 108.55 44.56 40.63 44.66

31 71.17 63.24 39.30 149.10 46.03 93.16 67.95

32 70.85 165.38 39.30 123.68 45.82 55.12 93.80

33 182.45 165.99 39.35 115.57 101.66 91.77 151.65

34 156.53 191.46 39.35 141.29 88.61 53.06 77.72

35 78.32 245.34 39.36 139.82 49.58 160.23 152.77

36 78.29 87.45 39.36 77.59 49.65 213.65 75.67

37 77.20 316.22 39.39 125.16 48.90 55.41 48.91

38 77.20 267.06 39.39 133.38 48.90 143.74 56.71

39 76.02 123.55 39.62 59.53 48.55 77.34 51.08

40 2.93E+05 238.19 51.98 1.46E+05 1.46E+05 59.48 9.76E+04

41 2.93E+05 61.81 51.98 1.46E+05 1.46E+05 106.12 9.76E+04

42 2.93E+05 111.44 51.98 1.46E+05 1.46E+05 99.72 9.76E+04

43 2.93E+05 65.04 51.98 1.46E+05 1.46E+05 70.60 9.76E+04

44 2.93E+05 283.47 51.98 1.46E+05 1.46E+05 184.21 9.75E+04

45 2.93E+05 126.11 51.98 1.46E+05 1.46E+05 153.30 9.75E+04

46 2.93E+05 292.20 51.98 1.46E+05 1.46E+05 55.08 9.76E+04

Best 53.73 49.82 39.29 47.52 38.98 39.82 41.99

Inputs 19 23 26-30 21 19 24 22

Features >19 denotes the input of geopolitical and demographic attributes selected by the model.

https://doi.org/10.1371/journal.pone.0241332.t003
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the models are constantly going out of date by the day, since more up to date data is constantly

becoming available. It is for this reason that the models should be updated at a later date, and

the statistical differences that occur, if any, noted. Secondly, though relatively good results

were found through a complex process of genetic optimisation, further models could be

explored in order to possibly reach better results than the final models in this study. Finally,

the interpretation that is required as aforementioned, i.e. that the risk of inability to test is the

most important metric and possibly enables the other two for interpretation, suggests that the

ternary approach followed could be better optimised through a unified approach. That is, one

singular “metric of risk” that is calculated via the three metrics explored in this work as separate

problems. Prior to this study, a metric of (c + d)/t was explored (where c, d, and t denote cases,

deaths, and tests respectively, all with regards to per million population), but this metric is, at

this point, impossible to classify.

The K% method was used to divide the continuous features into four bins where K = 25.

Other methods of binning such as MDL [57], CAIM, CACC, and Ameva [58] could also be

explored and benchmarked in future experiments.

To conclude, the main hypothesis that this work has argued in favour of is that geopolitical

and demographic attributes at the country-level hold value in terms of classifying risk pro-

duced by the COVID-19 dataset. This was shown when the four class distribution which was

close to equal (’HIGH’ was 1.2% larger than the other classes) could be classified far above the

approximate 25% class distribution through LOO CV. Though this is observably possible from

the results presented in this study, it is worth noting that the classification problem proved

extremely difficult for many powerful machine learning techniques, which often scored

around only 40%, and a genetic search had to be followed in order to devise complex strategies

of ensemble and hyperparameter optimisation in order to achieve better results at 74.51%,

71.24%, and 77.12% for the three problems. Future work aims to keep the data up to date to

the point at which the pandemic is over, and also to explore other methods of solving the issue

of risk and preparedness classification through a more unified approach as well as through

stronger machine learning models, if possible.
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Faria.

Software: Jordan J. Bird, Chloe M. Barnes.

Supervision: Cristiano Premebida, Anikó Ekárt, Diego R. Faria.
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References
1. Bostrom N, Sandberg A. Global Catastrophic Risks Survey. In: Global Catastrophic Risk Conference,

Oxford, UK; 2008. p. 17–20.

2. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, et al. Presumed asymptomatic carrier transmission of

COVID-19. Jama. 2020; 323(14):1406–1407. https://doi.org/10.1001/jama.2020.2565 PMID:

32083643

3. Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung S, Hayashi K, et al. Estimation of the asymptomatic

ratio of novel coronavirus infections (COVID-19). medRxiv. 2020.

4. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village.

Bmj. 2020; 368:m1165. https://doi.org/10.1136/bmj.m1165 PMID: 32205334
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