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Abstract—Optical communication systems, operating in
C–band, are reaching their theoretically achievable capac-
ity limits. An attractive and economically viable solution
to satisfy the future data rate demands is to employ the
transmission across the full low–loss spectrum encompass-
ing O, E, S, C and L band of the single mode fibers
(SMF). Utilizing all five bands offers a bandwidth of up
to ∼53.5 THz (365 nm) with loss below 0.4 dB/km. A key
component in realizing multi–band optical communication
systems is the optical amplifier. Apart from having an
ultra–wide gain profile, the ability of providing arbitrary
gain profiles, in a controlled way, will become an essential
feature. The latter will allow for signal power spectrum
shaping which has a broad range of applications such as the
maximization of the achievable information rate × distance
product, the elimination of static and lossy gain flattening
filters (GFF) enabling a power efficient system design,
and the gain equalization of optical frequency combs.
In this paper, we experimentally demonstrate a multi–
band (S+C+L) programmable gain optical amplifier using
only Raman effects and machine learning. The amplifier
achieves >1000 programmable gain profiles within the
range from 3.5 to 30 dB, in an ultra–fast way and a very
low maximum error of 1.6 · 10−2 dB/THz over an ultra–
wide bandwidth of 17.6–THz (140.7–nm).

Index Terms—optical communications, multi–band sys-
tems, optical amplifiers, machine learning, neural networks.

I. INTRODUCTION

OVER the past two decades, a great evolution of
optical communication systems, in terms of spec-

tral efficiency×distance product, has been enabled by
the advances in digital coherent detection. So far, most
of the efforts, on reaching the capacity of the nonlinear
fiber–optic channel, have been focusing on the C–band
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only [1]. However, squeezing the information inside
this transmission window will soon reach its theoretical
limit [2]. To cope with the constant demand for higher
throughput, novel solutions must be explored.

Optical communication systems operating across
multi–band transmission, are an attractive solution for
providing the future capacity scaling. They can provide
up to 10× higher capacity, compared to the C–band [3],
on the already deployed SMF fiber infrastructure. To
make multi–band systems commercially deployable in
the near future, large research efforts in terms of com-
ponents, system and network design are needed [4]–[11].

One of the main challenges in realizing multi–band
systems is the development of optical amplifiers that
are able to provide sufficiently high gains over such
a wide bandwidth. Additionally, a novel feature that
may become essential is the ability to provide arbitrary
gain profiles in a controlled and ultra–fast way. This
is because different signal channels in a multi–band
system are unevenly impacted by the interaction between
the Kerr nonlinearity, amplified spontaneous emission
(ASE) noise and stimulated Raman scattering (SRS) [3].
Consequently, for the maximization of the achievable
information rate (AIR) × distance product, non–flat
signal channel power profiles are needed. Depending on
the system configuration, signal channel power profiles
will be a result of a complex optimization and may
assume arbitrary shapes. Moreover, to address the future
requirements on high capacity optical networks, ultra–
fast gain profile re–configurability is needed [12].

A current and by far the most dominant approach for
performing programmable signal channel power profile
shaping is by leveraging the use of wavelength selective
switches (WSSs) whose primary function is to route the
signals throughout the optical network. However, this
approach is highly power inefficient since it adjusts the
channel powers by means of attenuation.

A novel approach for realizing signal channel power
shaping is by employing optical amplifiers with pro-
grammable (arbitrary) gain profiles. What we mean by
programmable is that the targeted gain profiles can be
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obtained in a single–step by applying the appropriate
pump laser driving voltages. To express it differently, a
programmable optical amplifier is an amplifier that can
provide arbitrary gain profiles, in a controlled way, with a
single–set of instructions. This is somehow equivalent to
field-programmable-gate-arrays (FPGAs) in electronics.

Programmable gain amplifiers could be a potential
game changer as they would be able to simultaneously
amplify the optical data signal and perform gain shaping.
This has many impactful applications such as compen-
sation of wavelength–dependent loss in devices such
as modulators and frequency combs, gain–shaping in
fixed-gain profile amplifiers and channel power profile
adjustments to optimize the AIR in multi–band systems.
Especially, if integrated–combs are targeted for multi-
channel sources, an efficient approach for gain shaping
would be desirable. This is because for integrated–combs
there is a large variation in power of their frequency
components. Finally, optical amplifiers providing arbi-
trary gain profiles can be used in hybrid approaches to
complement the gain, and overcome the limitations of
other optical amplifier technologies [13]–[18].

There are several approaches and technologies for
realizing optical amplifiers covering multiple bands.
To date, works on multi–band optical amplifiers have
focused on: rare–earth–doped fiber amplifiers (xDFAs)
covering 17.56 THz over O+E–band [11] and 10.7 THz
over S+C–band [19], semiconductor optical amplifiers
(SOAs) for 12.7 THz on S+C+L–band [20], optic para-
metric amplifiers (OPAs) with 10 THz of bandwidth on
S+C+L–band [21], Raman amplifiers (RA) in combina-
tion with EDFAs, SOAs and OPAs achieving bandwidths
ranging from 10.7 to 14 THz on C+L and S+C+L–
band [13]–[18], and pure RAs with bandwidths of up to
19.1–THz S+C+L–band [22]–[26]. So far, the majority
of works in [11], [13]–[17], [19]–[26] have focused on
realizing flat gain profiles in C+L and S+C+L–band. Re-
cently, an amplifier that relies on a hybrid SOA/Raman
configuration has been demonstrated to achieve arbitrary
loss/gain profile generation in S+C+L–band in 12.3 THz
of bandwidth [18].

Among all different solutions, RAs are most suitable
for realizing arbitrary gain profiles, in a controlled way.
This is because the RAs allow for a flexible gain profile
design by adjusting the pump powers and wavelengths,
and provide gain availability across a broad range of
wavelengths, when operated in multi-pump configura-
tions.

The challenge with Raman amplifier design is on the
selection of pump powers and wavelengths that would
result in a targeted gain profile. Several solutions to
this optimization problem have been reported in the

literature but have mainly focused on realizing flat gain
profiles [24]–[32]. Recently, a machine learning frame-
work for the ultra–fast configuration of the pump powers
and wavelengths has been theoretically proposed and as
a proof–of–principle experimentally demonstrated in C–
band only [33], [34]. The proposed approach can be used
for the design of Raman amplifiers, where an arbitrary
gain profile is achievable in a controlled way. However,
moving from C–band to multi–band and realizing wider
gain profiles is significantly more challenging. This is
partly due to the increased number of pumps that need
to be controlled and also the increased nonlinearity given
the higher overall powers in the optical fiber.

In this paper, we use the proposed machine learning
framework for the experimental realization of multi–
band RAs that can provide arbitrary gains, in a controlled
way, in C+L and S+C+L–band. Up to 8 pumps are
employed to provide more than 5000 arbitrary gain
profiles over up to 17.6-THz of bandwidth. We achieve a
highly–accurate programmable set of gain profiles with
a very low average maximum error, (defined between
the target and realized gain profiles), per bandwidth,
EMAX/BW , of 1.6 · 10−2 dB/THz.

This is the first experimental demonstration of
S+C+L–band optical amplifier, that can realize arbitrary
gain profiles in a controlled way, using Raman effects
only. We have achieved an important breakthrough by
demonstrating an extremely low root mean square error
per bandwidth (RMSE/BW) of 0.0045 dB/THz, over an
ultra–wide bandwidth of 17.6 THz (140.7 nm). More
specifically, in terms of maximum error per bandwidth,
our results are a record low. The presented approach
and the obtained results have therefore great potential
to become a relevant reference point for future research
on this upcoming topic.

The previous experimental results that we have pub-
lished in [33], [34] were limited to the C–band only. In-
creasing the bandwidth from C to S+C+L–band (a factor
of 4.4 for the considered case) is highly–challenging. We
demonstrate that the proposed machine learning frame-
work plays a key role in addressing those challenges.

Machine learning for broadband gain optimisation is a
topic of growing interest, which is reflected in the recent
work [18] reporting a root mean squared error per band-
width, RMSE/BW , of 0.033 dB/THz in a 12.3 THz
bandwidth SOA/distributed Raman link scenario. This
is an order of magnitude higher RMSE/BW when
compared to our current result of 0.0045 dB/THz over a
larger bandwidth of 17.6 THz.

The structure of the paper is as follows: Section I
describes the experimental setup for realizing Raman
amplifiers operating in C+L and S+C+L–band. We also
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Fig. 1. (a) Experimental setup for the multi–band RA: path 1 refers to the C+L–band RA and path 2 is for the S+C+L–band dual–stage discrete
RA. (b) Input optical signal spectrum. (c) Pump lasers spectrum and their expected contribution to the overall Raman gain.

give a brief overview of the ML framework used to
obtain programmable arbitrary gain profiles. Section III
presents, discusses and evaluates the experimental re-
sults. In Section IV conclusions and future work are
presented and outlined.

II. EXPERIMENTAL SETUP

The experimental setup for realizing the multi–band
RA is shown in Fig. 1(a). By selecting path 1 or 2,
the operation in either C+L (1) or S+C+L–band (2) can
be enabled. To achieve gains in the C+L and S+C+L–
band, 5 and 8 pump lasers are employed, respectively.
Fig. 1(c) illustrates the spectral pump allocation and
their individual contribution to the overall Raman gain.
We only consider counter propagating pumps whose
wavelengths are fixed and shown in Table I.

The gain profile control is performed by only adjusting
the pump powers. Pump lasers P1...P7 are semiconduc-

TABLE I
Pump lasers wavelengths and frequencies

P1 P2 P3 P4

Wavelength [nm] 1508 1485 1465 1445
Frequency [THz] 198.8 201.9 204.6 207.5

P5 P6 P7 P8

Wavelength [nm] 1425 1405 1385 1365
Frequency [THz] 210.4 213.4 216.5 221.1

tor laser diodes. Their output power is controlled by
adjusting the driving currents. The corresponding power
going into the RA is in the range from ∼16 dBm to
∼27 dBm. Pump laser P8 is a Raman–based fiber laser
and is controlled by adjusting its voltage. It provides
power to the RA ranging from ∼20 dBm to ∼27 dBm.

The reason why we only optimize pump lasers powers
is because there are no tunable, high power pump
lasers available within the considered frequency ranges.
However, the selected pump laser frequencies fall within
the ranges that would provide Raman gain profiles within
the desired frequency bands.

A. C+L–band Raman amplifier

The C+L–band RA can either be operated as a dis-
crete, (7.5 km of inverse dispersion fiber (IDF)) or
distributed (75 km span of standard SMF) amplifier. An
input optical signal covering the C+L–band, for testing
the performance of the RA, is generated by using two
ASE sources for C and L bands channelized through a
WSS to generate 90 lines placed at 100 GHz ITU-T grid
covering a 9.4 THz (77 nm) bandwidth. The total input
signal power to the amplifier is adjusted by means of
a variable attenuator to 0 and 10 dBm for the discrete
and distributed C+L–band Raman amplifier, respectively.
The corresponding optical spectrum is shown in Fig. 1(b)
(inside bracket 1) and is measured with a resolution of
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∆λ = 0.1 nm. The gaps between the C and L signal
bands are due to the different ASE sources for these
two bands. An isolator is placed at the input to the IDF
to prevent pump powers entering the C+L–band signal
source and to minimize the double Rayleigh backscat-
tering induced multipath interference [35]. Finally, an
optical spectrum analyser (OSA) is used to capture the
optical spectrum.

B. S+C+L–band Raman amplifier

The S+C+L–band RA is implemented as a two–stage
sequential discrete RA. The first stage is responsible for
providing the gain in the S–band and it consists of 7.5 km
of IDF and three pump lasers, P6...P8 used to control
the gain profiles. The second stage is the same as the
one used for the C+L–band RA. Note that distributing
the pumps into two sequential stages reduces the strong
depletion of shorter wavelength pumps [36]. The multi–
band input optical signal (17.6 THz/140.7 nm) is gener-
ated by combining the optical signal from the C+L–band
with a supercontinuum S–band source [37] and a single
frequency laser operating at 185 THz. The resulting
signal has a total of 148 frequency lines at 100 GHz
ITU-T grid. A variable attenuator is used to adjust the
input signal power to 7 dBm. The corresponding optical
spectrum is shown in Fig. 1(b) (inside bracket 2). Due
to the amplifier configuration, two pumps from the first
stage (P1−2) fall within the S-band signal. This means
that some channels from the S–band need to be removed
to avoid overlapping with the Rayleigh backscattered
components of the pumps, leaving the gaps as shown
in Fig. 1(b) [38].

C. Pump power control

The objective is to determine pump power settings that
result in user defined target gain profiles such as: tilted
gain, flat gain or an arbitrary gain. These settings are
achieved off–line using the machine learning framework
presented and then later applied on–line for the pump
laser currents and voltage control [33]. As the framework
in [33] is based on supervised learning, a data–set is
required. This is achieved by varying the currents and
the voltage of the pump lasers and measuring the corre-
sponding gain profiles. The gain profiles are measured
on a 100-GHz grid, as the difference in power between
the output optical spectrum when the pump lasers are
turned on and off, also known as the on–off gain. As the
currents and the voltage, I1, ...I7, V8, are drawn from a
uniform distribution whose bounds are shown in Table II,
we refer to the corresponding gain profiles as arbitrary.

In Fig. 2, the measured on–off gain profiles, G,
obtained for the C+L and the S+C+L–band are shown.
For the discrete Raman amplifiers, increasing the pump
laser output powers, beyond certain levels, leads to gain
instabilities. The maximum allowable driving currents,
for the pump lasers, are shown in Table II as the
maximum values of the uniform distribution interval. As
a consequence of the limited pump lasers output powers
on the discrete C+L–band amplifier, we could not obtain
as large gains and gain profile variations as compared to
the distributed C+L–band amplifier. More specifically,
the decreased driving currents for the lower frequency
pumps (P1 and P2) is the reason why the gains in lower
frequency region in Fig. 2(b), (186 THz–188 THz), are
not as high as for the distributed amplifier (Fig. 2(a)).
Additionally, the reduced current on the low frequency
pump leads to a lower depletion experienced by the high
frequency pumps.

We measure M = 5600 and M = 4025 gain
profiles, each with K = 90 and K = 148 data
points per gain profile, for C+L and S+C+L–band,
respectively. We denote the respective data–sets as:
DM×(K+5)

C+L = {(Gi
1, ..., G

i
K , I

i
1, ...I

i
5), |i = 1, ...,M}

and DM×(K+8)
S+C+L = {(Gi

1, ..., G
i
K , I

i
1, ...I

i
7, V

i
8 ), |i =

1, ...,M}.

TABLE II
Current and voltage ranges

C+L dist. C+L disc. S+C+L disc.
I1 [A] [0.20 : 1.00] [0.20 : 0.90] [0.20 : 1.00]
I2 [A] [0.20 : 1.00] [0.20 : 0.80] [0.20 : 0.80]
I3 [A] [0.20 : 1.20] [0.20 : 1.20] [0.20 : 1.00]
I4 [A] [0.20 : 1.50] [0.20 : 1.40] [0.20 : 1.40]
I5 [A] [0.20 : 1.50] [0.20 : 1.50] [0.20 : 1.40]
I6 [A] - - [0.20 : 1.20]
I7 [A] - - [0.60 : 1.30]
V8 [V] - - [1.80 : 2.40]

To find the machine learning model with the lowest
prediction error, we allocate 3400 and 3000 data points,
for C+L and S+C+L–band, correspondingly. We employ
10–fold cross–validation, which means that we use 90%
for training (includes hyperparameter optimization) and
10% for testing as described [33], [39]. For a more
detailed explanation on the training of the employed
machine learning model, see the Appendix Section.
The remaining data points are later used for the final
validation of the machine learning model for the pump
laser current prediction of arbitrary gains.

The procedure of obtaining pump current configura-
tion is then as follows: 1) a single-layer neural network,
NNinv , is employed to learn the mapping between the
target gain profiles and currents and voltage – inverse
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Fig. 2. Measured on–off gain profiles for various pump laser currents and voltage configurations. C+L–band RA (a) distributed, (b) discrete
and (c) dual stage discrete RA S+C+L–band.

system learning, 2) once the neural network has learned
the inverse mapping, given a set of target gain pro-
files, the corresponding pumps currents and voltages
are predicted, 3) the predicted currents and voltages are
then applied to the second multi–layer neural network,
NNfwd, that has learned the forward mapping between
pump currents/voltage and gain profiles. The NNfwd

thereby predicts the gain profile given the pump currents
and the voltage. If the error between the predicted and
targeted gain profile is not satisfactory pump currents and
voltages are adjusted accordingly, i.e. fine–optimization.
The fine–optimization uses iterative gradient descent by
backpropagating the error through NNfwd to adjust the
currents and voltage as described in [33], 4) the obtained
currents and voltages are applied to the pump lasers in
the experimental set–up, and new sets of measurements
are performed, and 5) finally, to investigate the accuracy
of the predicted pump currents and voltage, we calculate
the maximum absolute error between the target and the
newly measured gain profiles (i.e. EMAX ) and normalize
it with the bandwidth (BW ). The optimized topologies
of the employed neural networks NNfwd and NNinv ,
as well as their performance evaluation, are found in the
Appendix Section.

III. RESULTS AND DISCUSSION

A. Arbitrary gain profiles

Fig. 3(a)–(c) show the probability, (PDF), and the cu-
mulative, (CDF), density functions of the EMAX/BW
for the C+L–band (distributed and discrete) and S+C+L–
band (discrete) Raman amplifiers. The error is defined
between the targeted arbitrary gain profiles, taken di-
rectly from the data–set (not used for training the
machine learning framework), and the predicted gain
profiles obtained from the measurement using the pump
currents and voltage allocation provided by the machine
learning framework. We use 2100, 2600 and 1025 target
arbitrary gain profiles for the distributed C+L–band,

discrete C+L–band and discrete S+C+L–band validation,
respectively. We compare the accuracy of allocating
pump currents and voltage, by using only the inverse
mapping multi–layer neural network, (NNinv), and both
the inverse and forward mapping multi–layer neural
networks, (NNinv + NNfwd), which allows for fine–
optimization of pump currents and the voltage.

The PDFs shown in Fig. 3(b)–(c), illustrate that for the
discrete RA, highly–accurate pump current predictions,
resulting in a low mean and standard deviation, can be
obtained using only NNinv . Thus, the currents and the
voltage prediction is obtained in an ultra–fast way as
NNinv only involves matrix computations. We notice
that the mean and standard deviations are decreased
by a factor of ∼2 when going from C+L to S+C+L–
band. This is mainly because these two schemes have
the same performance in terms of EMAX and S+C+L–
band has almost two times wider bandwidth. However,
qualitatively the results for C+L and S+C+L–band are
comparable.

If NNinv + NNfwd is used a slight increase in the
mean and the standard deviation is observed. This is
because the NNinv has already found pump current
configuration that minimizes the mean square error.
Applying the fine–optimization introduces some small
random deviations around this minimum and worsens
the performance.

For both discrete RA schemes, the CDF shows that
most of the cases already present an EMAX/BW lower
than 6 · 10−2 dB/THz, before the fine–optimization,
i.e. 97% of the cases for the C+L–band and ∼100%
for the S+C+L–band.

Compared to the discrete RA, the resulting PDF
for the distributed RA (Fig. 3(a)) has a higher mean
and standard deviation when considering only NNinv .
On the other hand, a significant reduction can be
obtained after applying fine–optimization NNinv +
NNfwd, as also illustrated by the CDF. Indeed, the fine–
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Fig. 3. Probability density function (PDF, top) and cumulative density function (CDF, bottom) of the EMAX/BW , with indication of mean,
µ and standard deviation, σ: (a) C+L–band distributed RA, (b) C+L–band discrete RA and (c) S+C+L–band discrete RA.

0

30

60

90

120

P
D

F

(a) C+L-band distributed RA

0 0.2 0.4 0.6 0.8 1.0

RMSE/BW [ 10
-1

dB/THz]

0

0.5

1

C
D

F

NN
inv

NN
inv

+NN
fwd

: 0.48, : 0.11

: 0.26, : 0.08

98.4%

17%

0

30

60

90

120

P
D

F
(b) C+L-band discrete RA

0 0.2 0.4 0.6 0.8 1.0

RMSE/BW [ 10
-1

dB/THz]

0

0.5

1

C
D

F

NN
inv

NN
inv

+NN
fwd

: 0.23, : 0.07

: 0.23, : 0.05

99%

0

100

200

300

400

P
D

F

(c) S+C+L-band discrete RA

0 0.2 0.4 0.6 0.8 1.0

RMSE/BW [ 10
-1

dB/THz]

0

0.5

1

C
D

F

NN
inv

NN
inv

+NN
fwd

: 0.05, : 0.03

: 0.04, : 0.01

100%

Fig. 4. Probability density function (PDF, top) and cumulative density function (CDF, bottom) of the RMSE/BW , with indication of mean,
µ, standard deviation, σ: (a) C+L–band distributed RA, (b) C+L–band discrete RA and (c) S+C+L–band discrete RA.

optimization significantly increases the number of cases
with EMAX/BW lower than 6 ·10−2 dB/THz, i.e. from
18.7% to 95.4%.

To understand why only the distributed amplifier ben-
efits from the fine–optimization, we need to consider the
mean and the standard deviation of the predicted RMSE
for the arbitrary gain profiles when applying NNinv

only. This information is obtained from Fig. 4(a)–(c)
by de-normalizing it with the amplifier bandwidth. The
corresponding mean and standard deviations, (µ ± σ),
for the distributed C+L–band, discrete C+L–band and
discrete S+C+L–band amplifier are: 0.46 ± 0.10 dB,
0.21 ± 0.06 dB and 0.08 ± 0.05 dB. As the RMSE
values for the discrete C+L-band and, especially, dis-
crete S+C+L–band amplifier are already low, there are
no observable improvements when applying the fine–
optimization.

Finally, in Fig. 4(a)-(c), the resulting PDF and CDF
of the RMSE per bandwidth is plotted for the distributed
and discrete amplifiers. The Figure shows that very low
mean and standard deviation values are achievable.

B. Flat and tilted gain profiles

Next, we investigate the ability of the machine learn-
ing framework to predict accurate pump current and
voltage allocations for the design of flat and tilted gain
profiles using the discrete and distributed RAs, in C+L
and S+C+L–band. Flat gains ranging from 6 to 16 dB
(C+L–band distributed RA), 7 to 15 dB (C+L–band
discrete RA), and 14 to 20 dB (S+C+L–band discrete
RA) are evaluated in steps of 1 dB. For the tilted profiles,
slopes of approximately 0.24 dB/THz (C+L–band RAs)
and 0.20 dB/THz (S+C+L–band RA) are considered.
These values were chosen to provide an overall tilt of
around 1 dB on each band.

Fig. 5, shows the predicted and target flat ((a)-(c)) and
tilted ((d)-(f)) gain profiles, as a function of frequency,
for the distributed and the discrete RA operating in
C+L and S+C+L–band. Just a subset of gains (2 dB
step) is shown for better visualization. The corresponding
EMAX/BW for all gains under consideration is shown
in Fig. 5(g)-(i). We only show results obtained after using
NNinv +NNfwd as the fine–optimization significantly
reduced the error for all the amplifier schemes and their
evaluated gains.

The reason why NNinv is not able to provide ac-
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Fig. 5. (a)–(f): the predicted and the target flat and tilted (on–off) gain profiles as a function of wavelength. (g)–(i) EMAX/BW and (j)–(l)
RMSE/BW as a function of gain for the flat and the tilted gains.

curate solutions for the flat and tilted gain profiles is
because, in general, multi–layer neural–networks are
good at interpolating and not so good at extrapolating.
More precisely, the neural–networks will provide highly
accurate predictions for examples that are close to the
examples in the training data set. The number of cases
in the training data–set with a “close to flat gain“ profiles
(max([G1, ..., GK ]) − min([G1, ..., GK ]) ≤ 1.2 dB),
out of the total data–set size, are: 13/3464, 61/3000,
0/3000, for the distributed C+L, discrete C+L and dis-
crete S+C+L–band amplifiers, respectively. These low
“close to flat gain“ profile cases on the training data–set
is an indication that the NNinv is extrapolating when
predicting the pump configuration for these flat gains.
The same analysis goes to the tilted gain profiles.

Additionally, for the increasing input dimension of
the neural network, an increasing number of training
data points is needed to cover all the combinations.
This is explained in details in [33], [39]. The input
dimension of the NNinv for the S+C+L and C+L–
band amplifiers are 148 and 90, respectively (Table IV
in the Appendix Section). The NNfwds used on the
fine–optimization routine, on the other hand, have a
significantly smaller input dimensions compared to the
NNinvs, i.e. 5 for the distributed and the discrete C+L

and 8 for the discrete S+C+L–band amplifier (Table V
in the Appendix Section). This implies that they are
easier to train and can provide accurate predictions when
trained over a smaller data–set size. That is why the fine–
optimization is able to outperform NNinv even using
another neural network NNfwd trained over the same
data–set.

Furthermore, we would like to stress that by employ-
ing the fine–optimization, large data sets for training
NNinv are not necessary as we are still able to obtain
highly–accurate gain designs.

A general trend observed in Fig. 5(a)–(f), is that the
predicted gain oscillates around the target gain profile.
The magnitude of the oscillations has a tendency to
increase for increasing gains. Moreover, for the S+C+L–
band RA, the oscillation amplitude increases with the
frequency, achieving up to 2 dB of maximum error
compared to the target.

To understand what is happening, it is worth men-
tioning that it was observed some power instabilities on
the supercontinuum S–band source and the Raman-based
fiber laser P8. Additionally, recall that the broadband
and nonuniform Raman gain spectrum for a single
pump, with a peak located near 12.5 THz below the
pump frequency for the IDF, is partially overlapped
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in the multiple-pump configurations considered in this
work as illustrated in Fig. 1(c). On the S–band, besides
pumps P6−8, there are also contributions of pumps
P1−5 because the S–band lies within the Raman gain
spectrum bandwidth of all these pumps. This makes the
design more complex on this region. Thus, although it
is expected that the machine learning framework is able
to deal with these broadband effects when adjusting the
pumps (once the two stages on the S+C+L–band discrete
RA are jointly trained), it is also expected to achieve a
higher error on the S–band.

It is observed in Fig. 5(h)-(i) that the EMAX/BW
for the discrete RA in C+L and S+C+L–band is similar
for the flat and the tilted gain profiles. The EMAX/BW
is kept below 1.1 · 10−1 and 0.9 · 10−1 dB/THz for the
design of flat and tilted gain profiles, respectively. On
the other hand, the EMAX/BW for the distributed RA
shown in Fig. 5(g) is higher for the design of the flat
gains, but it is still kept below 1.4 · 10−1 dB/THz. The
reason may be related to the pump distributions, i.e. the
number of pumps and wavelength being more suitable
to provide a tilted gain profile. This can be observed on
the experimental data–set gain profiles shown in Fig. 2.
The same analysis does not apply for the S+C+L–band,
since there it no clear flat/tilted profile trend on its data–
set gain curves. Therefore, we also need to take into
account that there will be a limitation on the theoretically
achievable gain tilt and flatness given experimental set–
up that has fixed wavelengths of pump lasers. Fig. 5(j)-(l)
shows RMSE/BW and it observed that the trends are
very similar to as for EMAX/BW .

Finally, we have demonstrated that by only changing
the pump powers we are able to achieve low design
errors for arbitrary, flat and tilted gain profiles. In conclu-
sion, adjusting the pump powers only, may be sufficient
to obtain low errors for various gain profiles. This also
points in the direction that the Raman gain profile is
more sensitive to pump lasers powers with sufficient
number of pump frequencies evenly distributed. We may
expect even lower errors if we are able to control pump
laser frequencies. However, there are no tunable pump
laser available within the considered frequency ranges.

To put the presented work in the perspective, in
Fig. 6, EMAX/BW , is plotted for various experimental
demonstrations of multi–band amplifiers. It is observed
that the presented work results in a low–error and broad
bandwidth by means of machine learning.

IV. CONCLUSION

A multi–band programmable gain Raman amplifier
operating in C+L and S+C+L–band is experimentally
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Fig. 6. EMAX/BW as a function of amplifier bandwidth.

demonstrated. The key enabling technique is the machine
learning framework that allows for ultra–fast and highly–
accurate prediction of the pump currents and voltage
for providing the targeted gain profiles. The ability to
generate arbitrary gain profiles in a controlled and fast
way, may provide novel approaches for the intelligent
utilization of the ultra–wideband spectrum and become
a key feature for future optical communication systems.
Moreover, the programmable gain optical amplifier may
advance other areas of fundamental science requiring
spectral shaping, such as optical frequency combs.

APPENDIX

The machine learning framework used in this pa-
per to achieve highly accurate Raman amplifier (RA)
programmable gains is based on two artificial neural
networks. The first neural network NNinv models the
RA inverse mapping, i.e. the mapping between gain
profiles and pump lasers’ currents/voltage. Whereas the
forward mapping, i.e., the mapping between the pump
lasers’ currents/voltage and gain profiles, is learned by
a second neural network NNfwd. Following, in Section
A we describe how these two NNs are trained for the
different RA schemes considered in this paper. We also
show their prediction accuracy in Section B. Training
and validation are performed on disjoint experimental
data–sets, whose total number of elements are shown
in Table III. Section C presents the pump configuration
obtained after using NNinv +NNfwd for flat and tilted
gain profiles.

TABLE III
Experimental data–set distribution

RA scheme C+L dist. C+L disc. S+C+L disc.
Training 3464 3000 3000

Validation 2100 2600 1025
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A. Neural networks training

NNinv is trained using random projection (RP). This
training algorithm, also known as extreme learning ma-
chine (ELM) [40], initializes the weights of the hidden
layers randomly, according to a normal distribution with
mean zero and a certain standard deviation σNNinit

,
corresponding to NN initialization variance. This random
weight assignment is independent from the training data–
set and requires a high number of hidden nodes as
these weights are kept untrained. The training data–
set is used to optimize only the last layer weight by
regularized least squares, with a regularization parameter
λ. Since it is performed in a single step, the training
time is drastically reduced when compared to standard
approaches that updates all the weights in a numerical
iterative routine. NNinv models for each RA scheme are
shown in Table IV, where fact is the nonlinear activation
function for all nodes (except the ones on the last layer,
which use linear functions), numHL is the number
of hidden layers, numHN is the number of hidden
nodes, and Dinput/output is the input/output dimension.
To reduce the impact of the randomly initialized weights
on the RP method, 20 parallel and independent NNinv

are trained and the pump configuration prediction is the
average of the 20 NNinv outputs [33]. In Table IV,
fact, numHN , σNNinit and λ were obtained after a
hyperparameter optimization routine using k-fold cross
validation [39].
NNfwd is trained differently for each RA scheme. For

the C+L–band RA (discrete and distributed), NNfwd is
trained traditionally updating all weights on the NN iter-
atively by using the Levenberg-Marquadt (LM) method.
However, the high input and output dimensions of the
S+C+L–band RA scheme makes the use of LM opti-
mization challenging due to the long convergence time.
Thus, RP is applied again only for this scheme. Table V
summarizes NNfwd parameters for each RA scheme,
where only the RP parameters fact, numHN , σNNinit

and λ were obtained after a hyperparameter optimization

TABLE IV
Neural network models for NNinv

RA scheme C+L dist. C+L disc. S+C+L disc.
Training alg. RP RP RP

fact logsig sine sine
numHL 1 1 1
numHN 760 500 500
Dinput 90 90 148
Doutput 5 5 8
numHN 760 500 500
σNNinit

6.0 · 10−3 2.6 · 10−2 1.0 · 10−2

λ 1.0 · 109 1.0 · 103 1.0 · 104

TABLE V
Neural network models for NNfwd

RA scheme C+L dist. C+L disc. S+C+L disc.
Training alg. LM LM RP

fact tanh tanh tanh
numHL 2 2 1
numHN 10 10 500
Dinput 5 5 8
Doutput 90 90 148
σNNinit

* * 1.0 · 10−3

λ ** ** 1.0 · 108

(*) Nguyen-Widrow initialization algorithm [41]; (**) Dynamically
modified during training according to [42].

routine. Table V also shows that the RP faster training
comes with the cost of having a larger network, with 500
hidden nodes instead of 20 when using LM.

B. Neural networks validation

NNinv’s performance in predicting pump cur-
rents/voltage is presented in Fig. 7. The metric used
is the absolute error relative to the maximum cur-
rent/voltage excursion for each pump laser. Fig. 7 shows
the probability density functions (PDF) and the cumu-
lative density functions (CDF) over all the cases on the
validation data–set and all pump lasers. Notice that the
errors are kept bellow 2% for 95% of the cases for all
the RA schemes.

The prediction performance for the NNfwd is evalu-
ated in terms of root mean squared error (RMSE) and
maximum absolute error (EMAX ) between predicted GP

and target GT gain profiles, extracted from the K WDM
points (spectrum), given by

RMSE =

√√√√ 1

K

K∑
i=1

(GP,i −GT,i)2, (1)

EMAX = max{|GP,1 −GT,1|, |GP,2 −GT,2|, · · ·
· · · , |GP,K −GT,K |} (2)

where K = 90 and K = 148 for C+L and S+C+L-band
RAs, respectively. Fig. 8 shows the PDF for RMSE and
EMAX over all the cases on the validation data–set.

In Fig. 8, the overall NNfwd performances for both
C-L–band RAs are consistent with the ones obtained
in [43], which also considers a C+L–band RA (dis-
tributed scheme only) with same NN model and training
algorithms. On the other hand, the worst performance ob-
tained here by the S+C+L–band RA scheme in terms of
EMAX can be explained by its more complex mapping
relating more pumps to the gain over a wider bandwidth.
S+C+L–band RA scheme was also the only model that
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used RP, but the same study presented in [43] showed
that, for the Raman amplifier case, the performance of
the LM only overcomes the RP for higher number of
hidden nodes, which requires even more time to train.

The errors RMSE and EMAX are non-convex and
unknown functions of the pump configuration that might
not share the same local minimums, i.e. the pump
configuration that minimizes RMSE might not mini-
mize EMAX . However, since the fine–optimization is a
gradient-based procedure, it needs to use a differentiable
cost function with respect to the pump parameters, which
makes the MSE the only candidate for this. When
the pdf curves in Fig. 8(a) and (b) present similar
shapes, like for the C+L–band RAs, it might be an
indication that minimums of these two errors occur for

similar pump configurations and, consequently, mini-
mizing MSE (which scales with the RMSE), may
also minimizes EMAX . For the S-C-L–band RA, on
the other hand, where EMAX and RMSE pdf curves
have completely different shapes, it is more likely that
minimizing MSE is not the same as minimizing EMAX .

C. Pump configuration for flat and tilted gain profiles

The pump configurations to achieve flat and tilted
gain profiles in Fig. 5 are shown in Tables VI to XI.
Current/voltage values are presented from the minimum
(first line) to the maximum (last line) gain values, i.e.,
for the distributed C+L RA case presented in Table VI,
the first line corresponds to the bottom gain curve in
Fig. 5(a) (minimum gain), and the last line corresponds
to the upper gain curve. Recall that these values were
obtained after fine optimization.

TABLE VI
C+L dist. - pump configuration for flat gain profiles

I1 I2 I3 I4 I5
[A] [A] [A] [A] [A]
0.43 0.20 0.23 0.42 0.22
0.49 0.20 0.29 0.54 0.30
0.52 0.21 0.35 0.65 0.39
0.50 0.22 0.40 0.74 0.53
0.45 0.24 0.43 0.82 0.70
0.39 0.28 0.44 0.87 0.92

TABLE VII
C+L dist. - pump configuration for tilted gain profiles

I1 I2 I3 I4 I5
[A] [A] [A] [A] [A]
0.49 0.20 0.21 0.22 0.20
0.60 0.20 0.27 0.39 0.21
0.66 0.20 0.34 0.53 0.26
0.67 0.21 0.41 0.66 0.35
0.63 0.23 0.46 0.77 0.47
0.57 0.26 0.49 0.87 0.63

TABLE VIII
C+L disc. - pump configuration for flat gain profiles

I1 I2 I3 I4 I5
[A] [A] [A] [A] [A]
0.51 0.26 0.27 0.45 0.29
0.55 0.29 0.34 0.59 0.38
0.56 0.31 0.40 0.71 0.51
0.52 0.35 0.45 0.82 0.68
0.46 0.41 0.48 0.92 0.89
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TABLE IX
C+L disc. - pump configuration for tilted gain profiles

I1 I2 I3 I4 I5
[A] [A] [A] [A] [A]
0.65 0.24 0.24 0.29 0.20
0.71 0.30 0.32 0.45 0.23
0.72 0.34 0.39 0.60 0.32
0.69 0.39 0.46 0.73 0.45
0.63 0.44 0.50 0.85 0.63

TABLE X
S+C+L disc. - current and voltage configuration for flat gain

profiles

I1 I2 I3 I4 I5 I6 I7 V8
[A] [A] [A] [A] [A] [A] [A] [V]
0.72 0.47 0.49 0.72 0.61 0.37 0.60 2.01
0.70 0.49 0.56 0.82 0.73 0.37 0.60 2.23
0.67 0.50 0.62 0.92 0.89 0.38 0.64 2.40
0.65 0.49 0.65 1.07 1.09 0.41 0.85 2.40

TABLE XI
S+C+L disc. - current and voltage configuration for tilted gain

profiles

I1 I2 I3 I4 I5 I6 I7 V8
[A] [A] [A] [A] [A] [A] [A] [V]
0.94 0.51 0.47 0.63 0.42 0.38 0.60 1.80
0.88 0.55 0.56 0.72 0.56 0.39 0.60 1.98
0.85 0.57 0.65 0.82 0.69 0.39 0.60 2.19
0.82 0.58 0.72 0.93 0.83 0.39 0.62 2.40
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