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High frequency oscillations 
in epileptic and non‑epileptic 
human hippocampus 
during a cognitive task
Martin Pail  1*, Jan Cimbálník2, Robert Roman1,3, Pavel Daniel1,3, Daniel J. Shaw3,4, 
Jan Chrastina5 & Milan Brázdil1,3

Hippocampal high-frequency electrographic activity (HFOs) represents one of the major discoveries 
not only in epilepsy research but also in cognitive science over the past few decades. A fundamental 
challenge, however, has been the fact that physiological HFOs associated with normal brain function 
overlap in frequency with pathological HFOs. We investigated the impact of a cognitive task on HFOs 
with the aim of improving differentiation between epileptic and non-epileptic hippocampi in humans. 
Hippocampal activity was recorded with depth electrodes in 15 patients with focal epilepsy during 
a resting period and subsequently during a cognitive task. HFOs in ripple and fast ripple frequency 
ranges were evaluated in both conditions, and their rate, spectral entropy, relative amplitude and 
duration were compared in epileptic and non-epileptic hippocampi. The similarity of HFOs properties 
recorded at rest in epileptic and non-epileptic hippocampi suggests that they cannot be used alone to 
distinguish between hippocampi. However, both ripples and fast ripples were observed with higher 
rates, higher relative amplitudes and longer durations at rest as well as during a cognitive task in 
epileptic compared with non-epileptic hippocampi. Moreover, during a cognitive task, significant 
reductions of HFOs rates were found in epileptic hippocampi. These reductions were not observed in 
non-epileptic hippocampi. Our results indicate that although both hippocampi generate HFOs with 
similar features that probably reflect non-pathological phenomena, it is possible to differentiate 
between epileptic and non-epileptic hippocampi using a simple odd-ball task.

The discovery of high-frequency electrographic activity represents one of the essential milestones not only 
in epilepsy research, but also in cognitive science over the past few decades. These transient high and very 
high-frequency oscillations (HFOs/VHFOs) in invasive EEG (stereoelectroencephalography; SEEG) have been 
recorded repeatedly in several allocortical and neocortical structures. These short-lasting field potentials, both 
ictal and interictal phenomena, can be divided further into “ripples” (80–250 Hz), “fast ripples” (250–600 Hz), 
“very fast ripples” (VFR; 600–1000 Hz), and “ultra-fast ripples” (UFR; 1–2 kHz), all of which have been studied 
widely in humans under physiological and pathological conditions1–12.

HFOs are believed to stem from the short-term synchronization of neuronal populations and their activity, 
and it appears that they are connected to normal as well as pathological brain functions6,13. While physiological 
HFOs seem to represent summated synchronous inhibitory postsynaptic potentials (IPSP) generated by interneu-
ronal cell subpopulations regulating the principal cell activity and their discharges14. Epileptic HFOs might reflect 
the field potentials which are formed by the activity from clusters of abnormal synchronously bursting pyramidal 
cells, generating population spikes, and decreased inhibitory interneuron firing6,15. The detected HFO frequency 
can be determined purely from the behavior and activity of one cell subpopulation (“pure” HFOs). However, the 
observed HFOs (especially beyond the physiologic limits of neuronal firing; > 300 Hz), may also represent the 
net frequency of neuronal populations, more specifically due to the activity of different cell subpopulations of 
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synchronized neurons between which is a phase delay in activity. Each cell assembly then usually oscillate with 
a lower frequency than observed (“emergent” HFOs)16,17.

There is evidence that ripple generation is influenced by larger networks; smaller networks are involved 
in fast ripples and even less in VFR and UFR generation, which can be observed focally9. Interest in HFOs is 
related primarily to the localization of the epileptogenic zone, since they are considered as being more focal and 
specific than classical epileptic spikes18 that are only partially concordant with the epileptogenic zone19. As HFO 
rates are higher in focal seizure-generating tissue, they have attracted attention as a possible clinical biomarker3.

Unfortunately, pathological and physiological HFOs cannot be distinguished by rate of their occurrence, as 
some regions are identified as generators of physiological HFOs12. Moreover, another significant problem, has 
been the fact that pathological HFOs overlap in frequency with physiological HFOs associated with normal brain 
function8,20–22. How these two types of electrographic phenomena can be separated remains unclear6, as frequency 
and/or amplitude analysis alone seem to be insufficient for their delineation23–25. Therefore, the translation of 
HFOs into clinical practice is hindered by the inability to differentiate between pathological and normal HFOs 
in SEEG recordings. And so, more than twenty years after their discovery, there still exist questions about HFOs 
as biomarkers of epileptogenic brains and epileptogenic zones, and about their utility in clinical practice12,26,27.

Until now, various analytical approaches have been sought to distinguish pathological and physiological 
HFOs. The methods used most commonly are based on, for example, a specific regional distribution in mesial 
temporal structures28; the association of HFOs with epileptiform discharges4,26,29, slow waves30 o spindles31, or 
the difference between HFOs produced spontaneously and those induced by a cognitive task8,23,24. In the recent 
study of Sakuraba et al., epileptogenic region was determined based on less suppressive effect of REM sleep on 
HFOs in contrast to non-epileptogenic/physiological region32. Some authors have suggested separating HFOs 
by clustering them based on features such as frequency, duration, and amplitude24,25,33. Other reports have 
addressed this problem proposing several methods for dissociating different origins based on the width of the 
spectral frequency content of individual events, number of distinct cycles observed, and the presence of actual 
oscillations in the unfiltered raw signal34,35. Finally, when investigating electrophysiological brain recordings, the 
term HFO should be used to describe true high-frequency local field potential oscillations in the invasive EEG, 
that is oscillations visible in the raw recording and not the high-frequency Fourier components from a bandpass 
filter36. The ability to distinguish between pathological and physiological HFOs is crucial for understanding 
normal cognitive functions and no less important for the translation of HFOs into clinical practice.

In a recent study, we tested the hypothesis whether the presumed effect of cognitive task on hippocampal 
ripples can be used as a new approach for distinguishing pathological HFOs in the epileptic hippocampus (EH) 
from physiological HFOs in the non-epileptic hippocampus (NEH)8. To differentiate them, a simple oddball task 
was used. This study revealed different and, in some cases, opposing behavior of ripples within EH and NEH: 
Ripples were significantly more reduced during a cognitive task than in a resting period in EH, but in NEH this 
difference remained statistically marginal8. Moreover, we observed a significant suppression of ripple rate in the 
first second after stimulus onset only in NEH8. Importantly, however, we did not examine fast ripples due to a 
low sampling frequency.

In the present study, we tested the hypothesis that not only ripples, but also fast ripples are modulated by 
cognitive tasks. We aimed to find a distinct impact of a cognitive task on HFOs (the rate and other HFO char-
acteristics) within EH and NEH. To test the hypothesis, we analyzed hippocampal SEEG of 15 patients during 
resting period and during a simple cognitive oddball task.

Methods
Subjects.  In our study we included 15 patients (7 females) ranging in age from 24 to 56 (mean: 38.3 ± 9.3) 
years. All patients suffered from medically intractable focal temporal epilepsies. For demographic and clinical 
characteristics of the included subjects, see Table 1. In most patients, chronic anticonvulsant medication was 
reduced slightly for the purposes of video-SEEG monitoring. The study procedures were approved by Masaryk 
University and St. Anne’s University Hospital Ethics Committees. All subjects gave their written informed con-
sent prior to the study investigation. All methods were performed in accordance with the relevant guidelines 
and regulations.

EEG recordings.  Patients underwent the implantation of depth electrodes as part of their evaluation for 
pharmacoresistant focal epilepsy in order to localize seizure origin prior to surgical treatment. The location of 
the implanted electrodes was determined by clinical requirements. Each patient received 3–14 intracerebral 
electrodes containing either 5, 8, 10 or 15 individual contacts, in the temporal lobe and facultatively in other 
brain lobes using the Talairach stereotaxic system37. Standard platinum depth electrodes (ALCIS) were used 
(diameter = 0.8  mm; inter-contact distance = 1.5  mm, contact surface area = 5  mm2; contact length = 2  mm). 
After implantation, each patient underwent MRI scanning to localize electrode placement. We used a 192-chan-
nel research EEG acquisition system (M&I; Brainscope, Czech Republic) for recording 30 min of an awake rest-
ing interictal period as well as the cognitive task. The sampling rate was 25 kHz and dynamic range of ± 25 mV 
with 10 nV (24 bits). The EEGs were low-pass filtered and downsampled to 5 kHz for further processing. All 
recordings were referenced to the average of intracranial signals. EEG data from a total of 111 electrode contacts 
positioned in either epileptic hippocampi (76) or non-epileptic hippocampi (35) were investigated (Table 1). 
No other structures were analyzed for the presence of spikes and HFOs. In identifying epileptic (EH) and non-
epileptic hippocampi (NEH), we followed a process similar to that reported elsewhere8,24—specifically, based on 
the results of a standard visual analysis of interictal and ictal SEEG recordings: EH were identified by the pres-
ence of a seizure onset zone (confirmed by recording multiple seizures): the site in which contacts showed the 
first EEG ictal activity, with characteristic desynchronization and low voltage fast activity pattern. As presented 
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Subject Gender
Age at 
SEEG FS

Age at 
Seizure 
onset

MRI before 
SEEG

Side of 
epilepsy SOZ

Intervention/ 
histopathology

Postoperative 
outcome Engel 
(follow-up, 
year)

Number of 
analyzed 
contacts 
in EH

Number of 
analyzed 
contacts in 
NEH

Number of 
analyzed events in 
EH (spikes/R/FR)

Number of 
analyzed 
events 
in NEH 
(spikes/R/
FR)

1 F 26 – 17 Normal Left Left hip-
pocampus

Left AMTR/ 
FCD IB IA (5) 6 (left) 3 (right) 1950/517/835 205/69/302

2 F 56 – 28
Right hip-
pocampal 
atrophy

Right Right hip-
pocampus

Right AMTR/not 
available IIIA (5) 6 (right) – 1623/1991/1380 –

3 M 40 – 1
Left hip-
pocampal 
atrophy

Left Left hip-
pocampus Left AMTR/negat IA (5) 8 (left) – 4501/2212/1454 –

4 M 38 – 27 Normal Bilaterally

Hippocam-
pus bilater-
ally (mainly 
right side)

VNS – 3 (right) – 812/420/404 –

5 M 41 – 33

Focal 
hyperinten-
sity within 
right basal 
temporal 
lobe

Right
Right hip-
pocampus, 
lesion

Right AMTR/FCD 
IIIb ganglioglioma IA (5) 7 (right) 3 (left) 1735/672/623 499/209/286

6 F 33 – 2

Posten-
cephalitic 
changes of 
left T lobe, 
left hip-
pocampal 
atrophy

Left
Left hip-
pocampus, 
lesion

Left AMTR/hip-
pocampal sclerosis, 
postencephalitic 
changes

IA (5) 6 (left) 5 (right) 1241/1029/97 155/50/297

7 M 35 – 21

Bilateral 
hippocam-
pal atrophy, 
RX > LT

Bilaterally

Hippocam-
pus bilater-
ally (mainly 
right side)

VNS – 7 (right) – 2314/978/560 –

8 M 37 FS 31 Normal Bilaterally

Hip-
pocampus 
bilaterally 
(mainly left 
side)

Left AMTR/negat IA (4) 8 (left) – 1149/1247/1002 –

9 F 27 – 9
Left hip-
pocampal 
atrophy

Left Left hip-
pocampus

Left AMTR/FCD 
IIIA IIIA (4) 7 (left) – 2767/1878/1767 –

10 M 51 FS 2
Right hip-
pocampal 
atrophy

Right Right hip-
pocampus

Right AMTR/hip-
pocampal sclerosis IA (4) 5 (right) 7 (left) 636/568/895 222/171/435

11 M 24 – 10

Left hip-
pocampal 
atrophy, 
mild post-
traumatic 
gliosis of 
left pericen-
tral region

Left Left hip-
pocampus

Left AMTR/hip-
pocampal sclerosis IIA (4) 5 (left) – 815/507/228 –

12 F 33 – 29

Asymetry 
of colateral 
sulci in 
temporal 
lobe

Left

Temporal 
pole and 
lateral 
temporal 
cortex

Resection of 
temporal pole and 
anterior part of 
lateral temporal 
cortex/negat

IIIA (4) – 5 (left) – 308/69/125

13 F 45 – 26
Left hip-
pocampal 
atrophy

Left Left T pole Left AMTR / negat IIIA (4) – 6 (right) – 155/53/328

14 F 36 – 16

Nodular 
heteroto-
pia along 
dorsal part 
of lateral 
ventricle 
and lateral 
cortex TO 
left

Left
Left lateral 
cortex TO 
junction

Lateral cortical 
resection TO left/
FCD IIA

IIA (4) – 4 (left) – 326/181/137

15 M 53 – 33
Left hip-
pocampal 
atrophy

Left Left hip-
pocampus Left AMTR IA (1) 8 (left) – 3560/1641/1064 –

Table 1.   Demographic and clinical data. M = male, F = female; SEEG = stereoelectroencephalography; 
T = temporal; O = occipital; FS = febrile seizures; SOZ = seizure onset zone; AMTR = anteromedial temporal 
resection; FCD = focal cortical dysplasia; EH = epileptic hippocampus; NEH = non-epileptic hippocampus; 
VNS = vagus nerve stimulation, R = ripples, FR = fast ripples.
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in the Table 1, epileptic hippocampus was selected in 12 patients. A unilateral hippocampal epileptic region was 
found in 9 patients (6 patients with Engel IA (seizure free), 1 patient with Engel IIA (histologically confirmed 
hippocampal sclerosis), 2 patients with Engel IIIA (in one case histologically confirmed hippocampal sclerosis)). 
Bilateral epileptic hippocampal regions were determined in three, in which we analyzed the data only within a 
more pathologically active hippocampus. Putative NEH were defined by the absence of (a) a seizure onset zone 
and (b) frequent interictal spikes (IEDs; > 50 per 10 min). The putative non-epileptic hippocampi with spiking 
above the threshold were visually reviewed whether the IEDs were propagated from other brain structures. The 
putative non-epileptic hippocampi that generated IEDs were excluded from the analysis. NEH were identified 
in either the left or right hippocampus in extramesiotemporal epilepsy, but contralateral to the epileptogenic 
hippocampus in unilateral mesiotemporal epilepsy. In this way, each hippocampus could be classified either as 
epileptic or non-epileptic. We always analyzed all the electrode contacts within a particular hippocampus. In 
each subject, all the obtained data were reviewed to identify artifactual and pathological traces by expert neu-
rologists (M.B. and M.P.).

Awake resting state was recorded with the subject’s eyes closed with the minimization of possible external 
stimuli.

Behavioral tasks.  Subjects were seated comfortably in a moderately lighted room. A monitor screen was 
placed approximately 100 cm in front of their eyes. During the task, they were asked to focus their gaze on a 
small fixation point in the center of the monitor screen. We performed a standard visual oddball task: three 
types of stimuli (target, frequent, and distractor) were presented in the center of the screen (black background) 
for 500 ms in random order at a ratio of 1:4.6:1. The interstimulus interval varied randomly between 4 and 6 s. 
Specifically, the experimental stimuli comprised clearly visible yellow capital letters “X” (target), “O” (frequent), 
and various other capital letters (distractor). The number of targets was 50. The task was divided into four blocks, 
each block consisting of 12 or 13 target stimuli. Each subject was instructed to count the target stimuli sub-
vocally and to report the calculated number after each block.

Data analysis.  Using a modified pipeline for automated HFO detection21, we analyzed potential ripple and 
fast ripple rates in EH and NEH. We also carried out an automated detection of interictal spikes in the dataset 
used in this study38. Further, we compared the influence of the cognitive task on HFO and spikes occurrence in 
EH and NEH. Analyses of the HFO and spike occurrences and HFO features (relative amplitude, duration, and 
spectral entropy) were performed separately in the first 10-min window of the visual oddball task (i.e. through-
out the whole epoch, not just in the short segments after specific stimuli) and during the resting state.

The detector of HFOs utilizes a sequence of power envelopes in consecutive logarithmically spaced frequency 
bands within a 10 s statistical window. The z-score of each separate power envelope is computed and a matrix 
of the z-scored power envelopes is created. The segment of each power envelope above the threshold (> 3) and 
with the number of oscillations larger than 1 is marked as a band detection. Band detections overlapping in the 
temporal domain are joined into one event (Fig. 1).

The relative amplitude is calculated as the highest z-score value of the event and the frequency is determined 
as the frequency band in which this value occurred. The duration is derived from the first and last value above 
the threshold across frequency bands. Spectral entropy was computed as the entropy of normalized power 
spectral density of detected events. Only detections longer than 5 oscillations at the determined frequency were 
processed.

To investigate how many HFOs occurred simultaneously with spikes and could be influenced by the changes 
in spike rates, we analyzed the number of HFOs that are superimposed on detected spikes. We analyzed the 
counts of spike-HFOs as well as standalone HFOs.

Statistical analysis.  The statistical analysis was performed using in-house Python scripts. The individual 
data sets were first tested for distribution normality with D’Agostino’s normality test. Subsequently, since most 
of the data sets were not normally distributed, the Wilcoxon rank-sum test was used to investigate differences 
between studied data sets (the average for individual channels were compared statistically). Bonferroni cor-
rection for multiple comparisons was applied where necessary. We also performed an analysis of differences 
between task-induced and resting HFO rates in each hippocampus (for each contact) using the Wilcoxon paired 
signed-rank test.

Ethics approval and consent to participate.  We confirm that we have read the Journal’s position on the 
issues involved in ethical publication and affirm that this report is consistent with those guidelines. All subjects 
gave their written informed consent prior to the investigation.

Results
Interictal spikes, ripples, and fast ripples were detected in the hippocampi of all subjects included in the study. 
The mean percentage of HFOs that occurred simultaneously with spikes was 41% (in detail see Table 2); that is, 
most HFOs were observed independently of spikes. The degree of success in completing the cognitive task across 
all patients was at least 96%; this translates to a maximum of 2 errors out of 50 targets.

During the resting period, a comparison of HFO features revealed that both epileptic and non-epileptic hip-
pocampi exhibited HFOs with similar properties. In the EH compared with NEH, however, we observed both 
ripples and fast ripples significantly more frequently and with higher relative amplitude and longer duration 
(Table 3). Furthermore, there was no significant difference in HFO spectral entropy. An illustration of these 
comparisons for ripples and fast ripples are presented in Figs. 2, 3 and 4.
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The mean HFO rate in the resting period across all contacts was 219.9 ± 151.6 and 40.1 ± 44.3 per 10 min 
within EH and NEH, respectively. In cognitive-task periods, the mean HFOs rate within EH and NEH changed 
to 95.5 ± 82.9 and 43.3 ± 19.0 per 10 min, respectively. The change of HFO rate during the cognitive task was 
significant in EH (p < 0.001) but not in NEH. Similar results were revealed by statistical analysis of the differ-
ences between the task-induced and the resting period HFO rates using Wilcoxon signed-rank test: A significant 
reduction of HFO was observed only in contacts within EH (p < 0.001).

HFO rates were significantly different in EH compared to NEH during resting state as well as during the 
cognitive task (p < 0.001 and p = 0.002, respectively). Looking at HFOs separately in the ripple and fast ripple 
frequency ranges, we obtain similar results. Ripple and fast ripple rates were significantly reduced during the 

Figure 1.   HFO detection. Raw data (A) and band-pass filtered data in the high gamma band frequency (65–
80 Hz; (B), ripple band (80–250 Hz; (C) and fast ripple band (250–600 Hz; (D,E) Z-scored power envelopes in 
a series of log spaced band-pass filtered bands. The time scale of all subplots (A–E) is identical. The detection is 
represented by red lines in (A,C,E). The brightest spot of the detected event in (E) corresponds to the maximum 
peak relative amplitude. The frequency of the event is determined by the frequency band in which this peak 
occurred. The duration of the event is calculated as the difference between earliest onset and latest offset across 
frequency bands.

Table 2.   Rates of spikes, spike-HFOs and standalone HFOs per 10 min for individuals within resting-state 
recording.

Subject

Epileptic hippocampus Non-epileptic hippocampus

Spikes Spike-HFOs Standalone HFOs Spikes Spike-HFOs Standalone HFOs

1 1950 586 766 205 0 371

2 1623 840 2531 – – –

3 4501 2841 838 – – –

4 812 477 347 – – –

5 1735 1012 299 499 254 241

6 1241 138 988 155 0 347

7 2314 832 706 – – –

8 1149 391 1858 – – –

9 2767 1450 2204 – – –

10 636 295 1168 222 30 576

11 815 277 458 – – –

12 – – – 308 6 188

13 – – – 155 5 376

14 – – – 326 168 150

15 3560 1195 1106 – – –
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cognitive task in EH only, however (p < 0.001); the rate of HFOs was not significantly influenced by the cognitive 
task in NEH (Fig. 2).

During the cognitive task, HFOs (both ripples and fast ripples) were detected with the same features as during 
the resting period in epileptic and non-epileptic hippocampi. However, ripples exhibited higher spectral entropy 
in both EH and NEH during the cognitive task compared with the resting period. The relative amplitude and 
duration of R did not change in neither NEH nor EH.

During performance of the cognitive task, more HFOs in the fast ripple frequency range with lower relative 
amplitude, shorter duration, and higher spectral entropy were detected in EH than during the resting period. 
In NEH, all characteristics of fast ripples did not differ significantly between rest and the cognitive task. The 
comparisons of the specific HFO characteristics in the ripple and fast ripple ranges are summarized in Table 3.

Spikes exhibited a similar significant decrease in their rate during the cognitive task in the epileptic hippocam-
pus, but this was observed also in non-epileptic hippocampus. Counts of spike-HFOs as well as standalone HFOs 
also showed significant reductions during the cognitive task in the epileptic hippocampi (Table 4).

Table 3.   HFO characteristics per contact in the ripple and fast ripple ranges during rest and the oddball task.

Rate (N/10 min) Log relative amplitude Duration (ms) Spectral entropy

Rest Oddball p value Rest Oddball p value Rest Oddball p value Rest Oddball p value

Ripples

NEH 16.06 (± 16.57) 9.0 (± 6.74) Nonsig 1.92 (± 0.30) 1.95 (± 0.22) Nonsig 45.73 
(± 10.83)

38.39 
(± 13.58) Nonsig 4.32 (± 0.51) 4.71 (± 0.25) 0.001

EH 125.50 
(± 75.91)

54.96 
(± 52.29)  < 0.001 2.32 (± 0.21) 2.25 (± 0.27) Nonsig 52.71 

(± 10.97)
53.06 
(± 14.12) Nonsig 4.46 (± 0.29) 4.61 (± 0.35)  < 0.05

p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.05  < 0.001 Nonsig Nonsig

Fast ripples

NEH 28.52 (± 22.09) 34.54 
(± 18.82) Nonsig 1.89 (± 0.23) 1.88 (± 0.12) Nonsig 19.14 

(± 10.90) 16.40 (± 5.31) Nonsig 4.82 (± 0.39) 4.89 (± 0.22) Nonsig

EH 94.38 (± 93.88) 41.26 
(± 39.47)  < 0.001 2.16 (± 0.27) 2.02 (± 0.25)  < 0.005 27.51 

(± 11.55) 21.75 (± 8.66)  < 0.005 4.65 (± 0.34) 4.87 (± 0.34)  < 0.001

p value  < 0.005 Nonsig  < 0.001  < 0.01  < 0.01  < 0.01 Nonsig Nonsig

Figure 2.   Fast ripple and ripple rates during resting and cognitive-task periods within the epileptic and non-
epileptic hippocampi across all investigated subjects. Black asterisks indicate significant differences in epileptic 
hippocampi (p < 0.001). Black diamonds indicate outliers.
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Discussion
Widespread cortical and subcortical neuronal networks are thought to be coordinated into synchronous oscilla-
tions spanning ripples or fast ripples frequency ranges during cognitive phenomena but also pathologic epileptic 
processes20. In this study, we investigated HFOs only in the hippocampus, which plays a pivotal role in both 
cognitive (especially learning and memory) and epileptogenic processes and which is the most studied brain 
structure in relation to HFOs. Unsurprisingly, we observed that the ripples and fast ripples were detected at 
relatively low rates in NEH but at much higher rates in the EH (seizure onset zone), which confirms previously 
published data concerning the pathogenicity of this phenomena4,18,39,40. Importantly, our results not only confirm 

Figure 3.   Ripple duration, relative amplitudes and spectral entropy during the resting period within the 
epileptic and non-epileptic hippocampi across all subjects. Black asterisks indicate significant differences 
(p < 0.001). Black diamonds indicate outliers.

Figure 4.   Fast ripple duration, relative amplitudes and spectral entropy during resting periods within the 
epileptic and non-epileptic hippocampi across all investigated subjects. Black asterisks indicate significant 
differences (p < 0.001). Black diamonds indicate outliers.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18147  | https://doi.org/10.1038/s41598-020-74306-3

www.nature.com/scientificreports/

our previous findings of significantly different behavior of ripples within the EH and NEH, suggesting diverse 
mechanisms of their generation8, but also extend these previous findings by revealing similar results in the fast 
ripples frequency range.

Our results suggests that a distinction between epileptic and non-epileptic hippocampus cannot be based 
solely on HFO rates or characteristics at rest; there is no clear limit of HFO rates per 10 min of recording, nor 
any HFO characteristics that could be used to classify the hippocampal tissue surrounding individual contacts 
as epileptic or non-epileptic. Only during the very specific discriminative task did we observe a differential 
decrease in the rate of HFOs in EH. Our results observed within epileptic hippocampi show that its activity is 
modified by the cognitive task and confirm that a specific discriminative task suppresses pathological HFOs in 
the epileptic hippocampus, which we discuss below.

Hippocampal and parahippocampal physiological ripples have been proposed to be functionally involved 
in memory consolidation, strengthening and reorganizing memory traces during both rest and slow wave sleep 
and providing a link between information transfer and memory formation20,41–44. However, this concept of rip-
ples as a physiological phenomenon in the hippocampus during memory-related memory processes has been 
questioned several times8,12. Our previous study showed a significant decrease of ripple rate in epileptic hip-
pocampus during event processing. This may suggest increased involvement of normal hippocampal neurons in 
physiological cognitive processing and reduced involvement in the epileptic network impelled by synchronously 
bursting neurons8. The prevalence of pathologic ripples is seen usually during non-REM sleep, likely resulting 
from the sleep-dependent enhancement of network synchronization5,45–47. This suggests that a proportion of 
ripples present in EH are connected to underlying pathological network activity8. Our observation that a cogni-
tive task only partly affects general ripple rate within NEH (a large overlap was observed between both EH and 
NEH) may be explained by the expected physiological role of normal hippocampal neurons during both rest 
(memory consolidation/awake neuronal replay) and task (complex event discrimination processing) periods8.

Conversely, hippocampal fast ripples, VFR, and UFR have been repeatedly reported and considered as bio-
markers of epileptogenesis and epileptogenicity, related to pathological processes and occurring in close proxim-
ity to the epileptic focus1,9,10. VFR and UFR seem to be more localized to the epileptogenic zone than fast ripples; 
surgical removal of the tissue generating these interictal HFOs leads to favorable surgery outcome9. Although 
fast ripples are considered pathological, they were also detected in a non-epileptic hippocampus48. Based on 
our results, both epileptic and non-epileptic hippocampi have a population of fast ripples with similar proper-
ties (i.e. with low fast ripple counts, low relative amplitude, short duration, and non-significant higher spectral 
entropy), but in the epileptic hippocampus, higher rates of HFOs with extra values of properties tend to occur 
more often. In other words, the variance is much larger for all the HFO features measured in EH than in NEH.

In line with published data, by evaluating fast ripple occurrence in resting and active periods, we observed the 
rates of fast ripples spreading to much higher values in EH, and a decreasing number of fast ripples in EH during 
the discriminative task processing. A similar mechanism like ripple range could be supposed, i.e. the increased 
involvement of preserved normal hippocampal neurons that are active in some physiological cognitive process-
ing and the reduced involvement of synchronously bursting neurons within the epileptic network generating 
pathological HFOs8. Since the degree of success in completing the cognitive task in all patients was at least 96%, 
it can be assumed that the changes observed in task performance are really related to the mental processing dur-
ing the cognitive task. The observed HFO changes in the epileptic hippocampus during the cognitive paradigm 
could partially reflect the result of activity in many neuronal networks and cognitive processes, including e.g. 
attention, conscious processing of an event, working memory, stimulus evaluation and response preparation49,50. 
Therefore, the HFO changes observed in the epileptic hippocampus during the oddball task cannot be assigned 
to a specific function but rather generally related to mental processing.

According to published studies, most brain cortical areas react (with task-induced modulation of high fre-
quency activity) to at least one of the cognitive tasks performed by the patient51, except for brain epileptogenic 
regions that are heavily contaminated by epileptiform activity51. Similarly, in a recent animal study, the authors 
revealed that pathological HFO rate is independent of brain state, though they did not test cognitive load52. Based 
on these results, we would expect that the occurrence of interictal spikes and HFOs is unlikely to be altered during 
state changes or by stimulation in the epileptic hippocampal region, compared to areas not responsible for seizure 
generation. Nevertheless, we observed changes just in EH. This would suggest that the epileptic hippocampus 
was actually participating in processing the stimulus. It is very well known that even within the epileptic hip-
pocampi, some portion of physiological cognitive functions is often preserved. Ewell´s group confirmed that both 
pathological and non-pathological HFOs can co-occur in the same memory circuits and moreover, up to 28% 
CA1 principal cells participate in generating both events52. However, as can be seen, the majority of hippocampal 

Table 4.   Spikes, spike-HFOs and standalone HFOs rates per contact during rest and the oddball task.

Spikes Spike-HFOs Standalone HFOs

Rate (N/10 min) Rate (N/10 min) Rate (N/10 min)

Rest Oddball p value Rest Oddball p value Rest Oddball p value

NEH 27.15 (± 18.86) 14.13 (± 13.57)  < 0.01 0.72 (± 0.97) 0.88 (± 1.76) Nonsig 33.88 
(± 29.69)

38.88 
(± 19.34) Nonsig

EH 187.9 
(± 120.34)

114.00 
(± 83.59)  < 0.001 98.68 

(± 77.77)
41.25 
(± 47.30)  < 0.001 122.51 

(± 122.65)
56.88 
(± 68.94)  < 0.001

p value  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001 Nonsig
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neurons are modulated by only one event type or the other52. Besides clinical and neuropsychological indices, 
several studies with intracerebral event-related potentials detected cognitive P3 phenomena in both normal and 
epileptic hippocampi53–55. In epileptic hippocampi, these ERPs are often changed but not completely missing.

As mentioned already, in our study fast ripples were also observed in NEH distant from the epileptogenic 
zone. The fast ripples detected in NEH cannot be clearly defined as pathological or physiological or as a mani-
festation of the propagation of pathological HFO generated elsewhere. But this propagation effect will not play 
a significant role, as SEEG measures the local field potentials generated within a centimeter radius and the field 
formed by neurons over a centimeter from a recording site contribute only a marginal part of the signal56.

Moreover, which is essential, the cognitive task obviously did not change the rate of HFOs in NEH. This 
of course raises the question of whether fast ripples are the result of the non-epileptic activity of neurons in 
the NEH, since the fast ripple number did not change between resting state and cognitive task. If there were 
only pathological fast ripples within NEH, we assume that their number would decrease during a cognitive 
task, similarly to what we found in EH. Not observing a significant change in HFO rate within non-epileptic 
hippocampi, we hypothesize that healthy hippocampal neurons activated in our specific cognitive task are not 
involved in physiological HFO genesis. It is widely accepted that physiological HFOs are reflecting memory 
consolidation and are much more active during sleep20,41–44; this is the opposite of our task, which demands a 
very high attentional load.

Actually, the phenomenon of physiological fast ripples (up to 600 Hz) induced in the hippocampus during a 
cognitive task was also described in a recent study by Kucewicz et al.21. The number of induced HFO was decreas-
ing with increasing frequencies. Most of these induced oscillations lasted between 10 and 25 ms, similarly to the 
gamma cycle synchronization time frame (correlating with memory formation, loading and maintenance) and 
the time window for synaptic interactions of neuronal ensembles21. This finding supports a physiological origin 
of fast ripples also in the hippocampus, not only within the primary motor cortex, somatosensory cortex, and 
visual cortices as was previously published23,24,26,57. All things considered, Kucewicz et al.21 hypothesized that 
these induced both ripples and fast ripples likely reflect the coordinated activity of a number of stimulus-specific 
neurons responding to stimuli. Finally, these phenomena play an important role for fast network synchroniza-
tion in human cognition.

Concerning the HFO entropy, we found that fast ripples had higher entropy during oddball task than in 
the rest in the EH. Our results are congruent with those published recently by Liu et al.58. Consistently, in all 
patients, the typical HFOs with the highest degree of waveform similarity (in our case, we can use the term “low 
entropy”) were seen within epileptogenic tissue only, whereas HFOs embedded in random waveforms (high 
entropy) were generated by sites in the functional regions independent from the epileptogenic locations58. The 
repetitive waveform pattern was evident in fast ripple range also in our data. This result confirms the possibil-
ity of physiological fast ripples in NEH and reduced pathological FR in EH, since these oscillations had higher 
entropy than those seen during rest in EH and therefore probably have a different origin.

Additionally, we have shown that the “physiological” HFOs have significantly different properties from “path-
ological” HFOs, primarily shorter duration and lower amplitude21,24. In line with this, during the cognitive task in 
EH the fast ripples were detected with lower mean relative amplitude and shorten duration. In summary, during 
the cognitive task, more fast ripples were observed in EH with similar characteristics as in the NEH.

The fundamental question remains of whether the resting state and task-related ripples and fast ripples 
(normal and pathological) exhibit similar or different mechanisms of generation or possess any functional sig-
nificance. As was shown, HFOs can simply represent a marker of highly activated and synchronized neurons, 
regardless of the structure or mechanism underlying them. These high frequency signals appear to aggregate 
local (spiking) activity of neuronal populations or network oscillations59. However, the spectral content of local 
field potential oscillations, which reflects high spectral components arising from sharply contoured transients, 
is not considered true/standalone HFOs in the invasive EEG36,60. Neurons firing broader spikes contaminate the 
local field potential to a greater extent because their waveforms have stronger components in lower frequencies 
than short spikes. Moreover, neurons that fire coupled to a certain rhythm and spike synchrony can increase the 
extent of spike contamination34. Signals occurring over larger spatial extents are expected to have greater effect on 
high frequencies and contribute to a broader range of frequencies34. In our study we analyzed true HFOs in the 
majority of cases as the mean percentage of HFOs that occurred simultaneously with spikes was only 35% (46% 
in EH and 6% in NEH). We also analyzed the counts of spike-HFOs as well as standalone HFOs. Both analyses 
showed significant reduction during the cognitive task in the epileptic hippocampus.

Physiological HFOs result from phasic inhibitory input on the soma of pyramidal cells, while epileptic HFOs, 
usually superimposed on interictal epileptiform sharp waves, appear to reflect the field potentials which are 
formed by the activity from clusters of abnormal synchronously bursting pyramidal cells, generating population 
spikes, and decreased inhibitory interneuron firing6,15. Based on the functioning of synaptic transmission, the 
contribution of this mechanism to HFO genesis is limited to approximately 80–150 Hz61. The true high frequency 
local field potential oscillations above ~ 250 Hz are above the physiological firing rate of pyramidal neurons and 
cannot be generated by synaptic currents61. It is assumed, these local field potential oscillations are an arising 
rhythm generated by the in and out of phase action potential firing of populations of neuronal cell assemblies 
or clusters9,61. Originally suggested pathologically interconnected neurons emitting hypersynchronous bursts, 
as the source of fast ripple oscillations15 and a population of these clusters might underlie generation of activity 
above ~ 500 Hz9.

The fact that our study consists of analyses of chronic epileptic patients is an obvious limitation. The brain tis-
sue from which the signal is acquired is not organized in the same way as normal tissue; this may lead to a bad and 
misleading model of physiological human neural processing and functional organization56. The possibility of the 
disease-related processes interfering with the reported physiological oscillations cannot be completely ruled out 
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and must be taken into account, although usually many epileptic patients perform behaviorally as well as normal 
subjects56. Certain caution must be taken when interpreting “normal” results onto normal hippocampal behavior.

It is important to highlight that the majority of previous studies evaluated results drawn from HFO analysis 
at a group level, and when considering individual patients the rates of HFOs are often highly variable and less 
specific for epileptic brain localization12,36. HFOs could reflect increased cortical excitability, perhaps more than 
epileptogenicity. Our results support a possible physiological origin of fast ripples as well. Thus, in individual 
patients, the count of fast ripples may include fast ripples of physiological origin and therefore fast ripples may 
not be a sensitive and unique biomarker of epileptogenicity12. This finding, however, does not alter the fact that 
pathological fast ripples clearly prevail in epileptic hippocampi.

Conclusion
Based on our results using a visual oddball task, it is possible to differentiate between epileptic and non-epi-
leptic hippocampi, even though both hippocampi have HFOs with similar features that probably reflect non-
pathological phenomena. And so, fast ripples recorded in the hippocampus should not be considered as only a 
pathological. Our results confirm the distinct impact of a very specific discriminative task processing on ripples 
and fast ripples within epileptic and non-epileptic hippocampi, particularly the suppression of pathological 
HFOs in epileptic hippocampus.
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