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Abstract. The efficacious fuzzy rule based systems perform their tasks with ei-
ther a dense rule base or a sparse rule base. The nature of the rule base decides on
whether compositional rule of inference (CRI) or fuzzy rule interpolation (FRI)
should be applied. Given a dense rule base where at least one rule exists for every
observation, CRI can be effectively and sufficiently employed. For a sparse rule
base where rules do not cover all possible observations, FRI is required. Nonethe-
less, certain observations may be matched partly or completely with any of the
existing rules in the sparse rule-base. Such observations can be directly dealt with
using CRI and the conclusion can be inferred via firing the matched rule, thereby
avoiding extra overheads of interpolation. If no such matching can be found then
correct rules should be selected to ensure the accuracy while performing FRI.
This paper proposes a generalised approach for the integration of FRI and CRI.
It utilises the notion of alpha-cut overlapping to determine the matching degree
between rule antecedents and a given observation in order to determine if CRI
is to be applied. In the event of no matching rules, the nearest rules will be cho-
sen to derive conclusion using FRI based on the the best suitable distance metric
among possible alternatives such as the Centre of Gravity, Hausdorff Distance
and Earth Mover’s Distance. Comparative results are presented to demonstrate
the effectiveness of this integrated approach.

Keywords: Computational Rule of Inference · Rule Interpolation · Rule Extrap-
olation · Integration of Interpolation and Inference · Multi-antecedent Rules.

1 Introduction

Fuzzy systems infer the results based on the use of either dense or sparse rule bases. For
a sparse rule base where rules do not cover possible observations, fuzzy rule interpola-
tion (FRI) is the most popular way of approximating a conclusion [2], [4]. Nonetheless,
interpolation generally incurs more overheads for generating approximate conclusions
[8], [10]. Despite the sparsity of a rule base, on many occasions, observations may
still match with a certain existing rule partly or completely, which may avoid the need
of conducting rule interpolation [9], [11]. This can be ensured using a suitable pre-
interpolation inference technique such as compositional rule of inference (CRI) [22]. If
this pre-interpolation inference technique could not find any matching rule then inter-
polation would be the next operation to obtain the result [12]. This leads the way for
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finding a simple and fast mechanism to determine when to apply CRI or FRI given a
sparse rule base [18], [19].

Fuzzy rule interpolation and extrapolation requires only few closest rules to infer
results [5]. Therefore, the selection of appropriate closest rules determines the correct-
ness of results generated by interpolation or extrapolation. Consequently, if the selected
rules are not realistically the closest ones then the results may be inaccurate irrespective
of the FRI approach employed, even though it may be a generally powerful technique.
This reveals the fact that the selection of what distance metric to use is critical in finding
the correct closest rules for the given observation [6]. Many rule interpolation or extrap-
olation methods use the most popular distance metric based on the Centre of Gravity
(COG) of the membership functions concerned [7]. Unfortunately, the COG values may
be the same for two completely different fuzzy sets, which can be seen in Fig. 2. This
leads to present further investigation for effective distance metrics in an effort to im-
prove the accuracy of FRI approach, especially those transformation based techniques
[3].

The potential efficiency gains of running CRI prior to interpolation and the effec-
tive use of distance metrics in FRI have both motivated the development of an integrated
solution for inference with fuzzy rule-based systems [13], [15], [16], [17]. This paper
presents an integration of interpolation and inference to obtain the best of both for sys-
tems with a sparse fuzzy rule base. This integrated approach determines the possibility
of applying CRI based on exact or partial matching rule(s) in the sparse rule base,
whereby minimising the interpolation overheads [20]. If no matching rule is found in
the rule base then certain efficacious distance metric is applied to obtain the best clos-
est rules. Here, alongside with COG, two alternatives, namely the Hausdorff Distance
(HD) and the Earth Mover’s Distance (EMD) are introduced, which are tested and com-
pared against the use of COG to determine the more correct nearest rules for interpo-
lation/extrapolation. The HD calculates the proximity of two fuzzy sets and provides
the scalar score of the similarity between them, while the EMD calculates the similar-
ity between the two multi-dimensional distributions over a region. As a result, HD and
EMD distances can find the closest rules for a given observation more precisely than the
COG based distance metric. This helps increase the overall accuracy of the integrated
approach.

This paper is organised as follows. Section 2 presents an overview of the proposed
method for integrating inference and interpolation. It works by exploiting the α-cut
threshold in an effort to decide on the suitability of whether to run CRI or FRI, and on
the applicability of which preferred distance metric to employ for selecting the closest
rules to perform interpolation or extrapolation. Section 3 elucidates the implementation
procedure of the integrated system and its components. Section 4 reports on the experi-
mental results with detailed comparison among the use of COG, HD and EMD. Section
5 summarises the proposed approach and discusses relevant further research.

2 Integrating Interpolation and Inference

Rule inference (CRI) and rule interpolation (FRI) have been a vital part of developing
fuzzy rule-based systems. The use of any particular method is dependent on the type
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Fig. 1: Integrated system with both interpola-
tion and inference

Fig. 2: Two dissimilar trapezoidal
fuzzy sets of the same COG value

Fig. 3: α-cut concept in trapezoidal
fuzzy sets

of the rule base employed in the system. CRI is useful for dense rule base, where an
observation matches with any existing rule partly or completely [21]. However, in real-
life applications, the design of the dense rule base is expensive or unachievable [14]. In
such situations, sparse rule base is the default options and thus FRI. FRI only generates
approximate conclusions, which may not be necessarily equally accurate as the CRI
result which may be achieved via partial or complete rule matching. The integration of
the two methods can provide the best of both whilst compensating the limitations of
each other. A particular implementation of this idea is proposed here.

Figure 1 outlines the operational procedure of the proposed integrated system. For
any given observation, first it checks the applicability of the CRI by finding a matching
rule in the existing rule base based on the use of a pre-determined α-cut threshold. If
one or more matching rules are found to be above the pre-determined α-cut threshold,
it selects the most overlapped rule amongst all the matched ones and infer the conclu-
sion using CRI. However, if it fails to find any matching rule above the pre-determined
α-cut threshold, the interpolation (or extrapolation) becomes the natural choice to infer
the conclusion [7]. For improving the results of such interpolation, it utilises one of
the possible alternative distance metrics, taken from the set of COG, HD and EMD, to
identify the closest rules to the observation. The choice of which distance metric to use
depends on its suitability for a given problem domain. From the above, depending on
the locations of the closest rules, the system performs the relevant operation of interpo-
lation or extrapolation. In this work, owing to the popularity and availability, the scale
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and move transformation interpolation (T-FRI) method [3] is applied to compute the
interpolated conclusions. Nevertheless, if desired, any other FRI approach may be used
in place of the T-FRI method.

3 Implementation of Proposed Approach

The integrated inference and interpolation system as proposed above has two distinct
sub-systems: an α-cut matching component for CRI and a distance metric (COG, HD or
EMD) based component for selecting closest rules for interpolation/extrapolation. For
this implementation, by following the conventional T-FRI implementations, trapezoidal
fuzzy sets are considered. Also, each rule is entitled to involve multiple antecedent
variables.

3.1 α-cut Matching for Inference

An α-cut level is used to acquire a crisp set from a fuzzy set based on the pre-determined
threshold of α-cut. Suppose that in the universe of discourse X , A is a fuzzy set with
the membership function µA(x). Then, for α ∈ [0, 1], the α-cut of A is [4]:

Aα = {x ∈ X|µA(x) ≥ α} (1)

This notion of α-cuts for two rule antecedents that take on trapezoidal fuzzy sets
A1 and A2 and that for an observed trapezoidal fuzzy set A◦ are together shown in
Fig. 3, where inf and sup stand for infimum and supremum operators respec-
tively, and α is the given α-cut threshold. In computing α-cut matching, an observa-
tion A◦,j = (a◦,0, a◦,1, a◦,2, a◦,3) over a certain variable Xj is compared with the
possible antecedent values Ai,j = (ai,j,0, ai,j,1, ai,j,2, ai,j,3), based on the given α
level, where i = 1, 2, ..., n (indicating that there are n rules which involve xj) and
j = 1, 2, ..., N, (indicating that there are N antecedent variables in the problem). Sup-
pose that [inf{A◦,j}, sup{A◦,j}] and [inf{Ai,j}, sup{Ai,j}] denote the α-cut ofA◦,j
and that of Ai,j respectively. Then the check for α-cut matching is simply implemented
by assessing whether either of the following holds:

inf{A◦,j} ≤ inf{Ai,j} ≤ sup{A◦,j} or inf{A◦,j} ≤ sup{Ai,j} ≤ sup{A◦,j}.
Finding the matching rules requires computation only above the pre-determined

threshold of α-cut. As such, it saves a significant amount of computation for otherwise
firing all those rules below the α-cut threshold and improves the efficiency of the sys-
tem. In particular, if there is only one existing rule matching with the observation with
all antecedents above the threshold of α-cut, thereupon, the conclusion is derived from
this matched rule using CRI. In case of more than one matched rule, the rule with the
greatest degree of matching is selected to derive the conclusion using CRI.

In implementation, the total degree of matching between one rule and an observation
is calculated as follows: it sums up all areas constructed by the overlap between the two
α-cut fuzzy sets involved in each pair of the fuzzy sets that describe a certain antecedent
variable and its counterpart in the observation. The selected rule should have the largest
sum of the overlapping areas amongst all the matched rules. Consequently, interpolation
is avoided for sparse rule base in such α-cut matching situations. However, if no rule is
matched with at least the α-cut level, then fuzzy rule interpolation becomes necessary.
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3.2 Closest Rule Selection for Interpolation

When no rule from the existing rule base is matched with the given observation above
the α-cut threshold, FRI is the most preferred choice to infer the conclusion. However,
its accuracy is dependent on the selected closest rules to derive the conclusion. This
highlights the importance of a suitable distance metric to determine the correct closest
rules for FRI. Most FRI techniques utilise the centre of gravity (COG) distance metric,
which performs well for certain situations but not in many others. When it measures the
distances incorrectly, inaccurate or even incorrect interpolation/extrapolation results. To
address this issue, in this paper, the Hausdorff Distance (HD) metric and Earth Mover’s
Distance (EMD) are implemented with FRI as potential alternatives to the COG-based
metric. For completeness, more details of these metrics are given below.

Centre of Gravity (COG) COG is computed regarding an imaginary point in a phys-
ical object of matter where, for convenience in certain calculations, the total weight
of the object is deemed to be concentrated an average of the masses factored by their
distances from a unique reference point. The closeness of two fuzzy sets can be deter-
mined based on their unique COG points. In particular, given an observation O: A◦,j =
(A◦,j,1, A◦,j,2, A◦,j,3, A◦,j,4) and the antecedent value of the corresponding variable xj
within the ith rule Ri: Ai,j = (Ai,j,1, Ai,j,2, Ai,j,3, Ai,j,4), the COG distance between
these two fuzzy sets is defined by:

COG(Ri, O) =

N∑
j=1

d(COG(A◦,j), COG(Ai,j))

rangexj

(2)

whereCOG(A◦,j) andCOG(Ai,j) are the COGs of the setsA◦,j andAi,j respectively,
and rangexj = maxxj −minxj is defined over the domain of the variable xj .

Hausdorff Distance (HD) HD computes the proximity of two arbitrary subsets (sets
of points) of a metric space, returning a scalar score of similarity between the two sets
of points [1]. It measures the maximum distance of one set A◦,j from the closest point
of the other set Ai,j . For the proposed work herein, given an observation O: A◦,j =
(A◦,j,1, A◦,j,2, A◦,j,3, A◦,j,4) and the antecedent value of the corresponding variable
xj within the ith rule Ri: Ai,j = (Ai,j,1, Ai,j,2, Ai,j,3, Ai,j,4), the HD metric is defined
by:

HD(Ri, O) =

N∑
j=1

max
l∈{1,2,3,4}

{
min

k∈{1,2,3,4}
{dj,kl(A◦,j,l, Ai,j,k)}

}
rangexj

(3)

where rangexj
= maxxj − minxj , and dj,kl is any conventional distance metric

between the two points involved.

Earth Mover’s Distance (EMD) EMD calculates the similarity between two multi-
dimensional distributions over a region. The EMD is the minimum amount of work re-
quired to transform one distribution into another distribution. The distance is measured
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by the minimum amount of computation needed to transform a set Ai,j to another A◦,j .
Here, a unit of computation corresponds to the cost required to calculate the ground
distance (i.e., the base distance metric employed as follows) [23]. For this work, given
an observationO:A◦,j = (A◦,j,1, A◦,j,2, A◦,j,3, A◦,j,4) and and the antecedent value of
the corresponding variable xj within the ith ruleRi:Ai,j = (Ai,j,1, Ai,j,2, Ai,j,3, Ai,j,4),
the EMD metric is defined by:

EMD(Ri, O) =

N∑
j=1

minFj

∑m
k=1

∑n
l=1 fj,kldj,kl∑m

k=1

∑n
l=1 fj,kl

rangexj

(4)

where fj,kl is the amount of mass transported from Ai,j,k to A◦,j,l for morphing Ai,j
intoA◦,j , and dj,kl is the base distance metric that may be implemented by any standard
distance measure.

Depending on the problem domain and computational requirements as discussed
next, the best suitable metric out of COG, HD and EMD can be selected and the closest
rules discovered for performing interpolation or extrapolation. When all the selected
neighbouring rules are on one side of the given observation, extrapolation is carried
out to infer the conclusion, if not then interpolation is performed. Here, for simplicity,
only two closest rules are considered to perform interpolation or extrapolation using
the T-FRI mechanism as per the approach reported in [3]. However, the number of the
closest rules needed can be increased if it is desirable for a certain problem domain.
The algorithms required to implement the integrated system are shown in Figs. 4-6.

IntegratedSystem(Ri, O, α)
Ri: Ai,j = (Ai,j,1, Ai,j,2, Ai,j,3, Ai,j,4),
O: A◦,j = (A◦,j,1, A◦,j,2, A◦,j,3, A◦,j,4),
α, α-cut threshold.

1: Roverlap = α-CutOverlapping(Ri, O, α);
2: if Roverlap 6= NULL then
3: Bo = CRI(Roverlap, O) ;
4: else
5: Rclose1 = COG/HD/EMD Closest(R,O);
6: Rclose2 = COG/HD/EMD Closest(R−Rclose1, O);
7: if Rclose1 < O < Rclose2 or Rclose2 < O < Rclose1 then
8: Bo = Interpolation(Rclose1, O,Rclose2) ;
9: else

10: Bo = Extrapolation(Rclose1, Rclose2, O) ;
11: end if
12: end if

Fig. 4: Integrated approach to interpolation and inference
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α−CutOverlapping(Ri, O, α)
inf{A◦,j}, infimum value of crisp set A◦,j
sup{A◦ j}, supremum value of crisp set A◦,j

1: maxArea = 0,maxIndex = −1;
2: for each Ri in R do
3: if inf{A◦,j} ≤ inf{Ai,j} ≤ sup{A◦,j} or inf{A◦,j} ≤ sup{Ai,j} ≤

sup{A◦,j} then
4: overlap = overlapping area of A◦,j and Ai,j above α;
5: if overlap > maxArea then
6: maxArea = overlap ;
7: maxIndex = i;
8: end if
9: end if

10: end for
11: if maxIndex == −1 then
12: return NULL;
13: else
14: return RmaxIndex;
15: end if

Fig. 5: α-cut matching approach

3.3 General Node on Choice of Appropriate Distance Metric

The likelihood of successfully selecting the most appropriate distance metric for use in
a given application depends on multiple factors. Experimental evaluation is expected
in general to reach such a decision. However, COG can be employed if computational
complexity is the main consideration for the problem domain. The complexity of COG
is O(nm) for the two polygons having n and m vertices respectively, whereas the com-
plexity of HD is O(nm2). The complexity of using EMD is O(N3logN) for an N-bin
histogram. Both HD and EMD may be particularly suitable for multidimensional envi-
ronments to achieve higher accuracy as empirically proven (see later). In addition, EMD
is often better for matching perceptual similarity where the ground distance is percep-
tually meaningful, whilst HD can be more effective and utilised for those applications
where the presence of noise or occlusion is significant.

4 Illustrative and Experimental Case Studies

This section shows the experimental results for the integrated approach. This is based
on the use of a sparse rule base, as shown in Table 1 consisting of eight rules each
involving four antecedents. The confidence (i.e. α-cut ) level α = 0.5 is utilised for α-
cut matching to check the suitability of CRI and also, for comparing the performances
of COG, HD and EMD in their respective action for identifying the best neighbouring
rules to perform either interpolation or extrapolation.
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COG/HD/EMD Closest(R, O)
1: closeDist =Max V alue, closeIndex = −1;
2: for each Ri in R do
3: dist = COG/HD/EMD(Ri, O);
4: if dist < closeDist then
5: closeDist = dist;
6: closenIndex = i;
7: end if
8: end for
9: return RcloseIndex;

Fig. 6: COG/HD/EMD distance metric for finding the closet rules

4.1 α-Cut Overlapping Operation for Inference

This case demonstrates how the α-cut overlapping procedure is used to determine
the applicability of CRI for a sparse rule base, avoiding the use of FRI and saving
computational overheads. Table 4 shows the considered five observations, which over-
lap with the existing rules of the sparse rule base. The first observation O1: A◦,1 =
(12.6, 14.3, 15.6, 16.7),A◦,2 = (14.6, 16.3, 17.6, 18.7),A◦,3 = (16.6, 18.3, 19.6, 20.7),
and A◦,4 = (19.6, 11.3, 22.6, 23.7), overlaps with the existing rule-5 to rule-8 above
the α-cut threshold. Where, rule-5 has the least and rule-7 has the most overlapping area
with this observation. Therefore, rule-7 is chosen to infer the conclusion using CRI.

Similarly, the second observationO2:A◦,1 = (3.8, 4.9, 5.9, 7.0),A◦,2 = (5.8, 6.9, 7.9, 9.0),
A◦,3 = (8.8, 9.9, 10.9, 12.0), and A◦,4 = (10.8, 11.9, 12.9, 14.0), overlaps with the
existing rule-1 to rule-4 above the α-cut threshold. Where, rule-1 has the least and
rule-4 has the most overlapping area with this observation. Therefore, rule-4 is cho-
sen for firing to infer the conclusion using CRI. The third observation O3: A◦,1 =
(11.2, 12.3, 13.2, 13.7),A◦,2 = (13.2, 14.3, 15.2, 15.7),A◦,3 = (16.2, 17.3, 18.2, 18.7),
andA◦,4 = (18.2, 19.3, 20.2, 20.7), overlaps with the existing rule-5 to rule-8 above the
α-cut threshold. Where, rule-7 has the least and rule-5 has the most overlapping area
with this observation. Therefore, rule-5 is chosen to infer the conclusion using CRI.
For the fourth observation O4: A◦,1 = (2.5, 3.8, 4.7, 7.3), A◦,2 = (4.5, 5.8, 6.7, 9.3),
A◦,3 = (7.5, 8.8, 9.7, 12.3), and A◦,4 = (9.5, 10.8, 11.7, 14.3), overlaps with the ex-
isting rule-1 to rule-4 above the α-cut threshold. Where, rule-3 has the least and rule-1
has the most overlapping area with this observation. Therefore, rule-1 is chosen for
firing to derive the conclusion using CRI. The final and fifth observation O5: A◦,1 =
(11.6, 13.1, 14.5, 15.4),A◦,2 = (13.6, 15.1, 16.5, 17.4),A◦,3 = (16.6, 18.1, 19.5, 20.4),
and A◦,4 = (17.1, 18.6, 20.0, 20.9), overlaps with the existing rule-5 to rule-8 above
the α-cut threshold. Where, rule-5 has the least and rule-8 has the most overlapping area
with this observation. Therefore, rule-8 is chosen to infer the conclusion using CRI.

4.2 Closest Rules Selection Using COG, HD or EMD

This experiment exhibits and compares the performances of using COG, HD or EMD
for closest rules selection. Table 2 shows all given observations and their selected clos-
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Table 1: Sparse Fuzzy Rule Base
No. Antecedents Consequent

R{Ai,1, Ai,2, Ai,3, Ai,4} Bi

R1 (2.4, 3.7, 4.6, 7.1),
(4.4, 5.7, 6.6, 9.1),

(5.9, 7.2, 8.1, 10.6)

(7.4, 8.7, 9.6, 12.1),
(9.4, 10.7, 11.6, 14.1)

R2 (3.1, 3.7, 4.8, 7.0),
(5.1, 5.7, 6.8, 9.0),

(6.6, 7.2, 8.3, 10.5)

(8.1, 8.7, 9.8, 12.0),
(10.1, 10.7, 11.8, 14.0)

R3 (4.3, 4.6, 5.8, 6.8),
(6.3, 6.6, 7.8, 8.8),

(7.8, 8.1, 9.3, 10.3)

(9.3, 9.6, 10.8, 11.8),
(11.3, 11.6, 12.8, 13.8)

R4 (3.5, 4.8, 6.1, 6.9),
(5.6, 6.8, 8.1, 8.9),

(7.1, 8.3, 9.6, 10.4)

(8.6, 9.8, 11.1, 11.9),
(10.6, 11.8, 13.1, 13.9)

R5 (11.9, 12.5, 13.4, 14.0),
(13.9, 14.5, 15.4, 16.0),

(15.4, 16.0, 16.9, 17.5)

(16.9, 17.5, 18.4, 19.0),
(18.9, 19.5, 20.4, 21.0)

R6 (11.8, 13.2, 14.1, 14.8),
(13.8, 15.2, 16.1, 16.8),

(15.3, 16.7, 17.6, 18.3)

(16.8, 18.2, 19.1, 19.8),
(18.8, 20.2, 21.1, 21.8)

R7 (11.5, 14.4, 15.2, 16.0),
(13.5, 16.4, 17.2, 18.0),

(15.3, 17.7, 18.9, 19.5)

(16.5, 19.4, 20.2, 21.0),
(18.5, 21.4, 22.2, 23.0)

R8 (11.7, 13.1, 14.4, 15.3),
(13.7, 15.1, 16.4, 17.3),

(15.2, 16.6, 17.9, 18.8)

(16.7, 18.1, 19.4, 20.3),
(18.7, 20.1, 21.4, 22.3)

Table 2: Two Closest Rules Determined
by COG, HD and EMD

No. Observation Closest Rules Closest Rules Closest Rules
O{A◦,1, A◦,2, A◦,3, A◦,4} by COG by HD by EMD

O1 (7.1, 8.4, 9.8, 11.6),
(9.1, 10.4, 11.8, 13.6),

R5 R7 R7

(12.1, 13.4, 14.8, 17.6),
(14.1, 15.4, 16.8, 19.6)

R3 R1 R4

O2 (7.1, 7.8, 8.6, 9.5),
(9.1, 9.8, 10.6, 11.5),

R3 R1 R4

(12.1, 12.8, 13.6, 14.5),
(14.1, 14.8, 15.6, 16.5)

R4 R2 R2

O3 (7.7, 8.6, 9.6, 11.3),
(9.7, 10.6, 11.6, 13.3),

R5 R7 R7

(12.7, 13.6, 14.6, 16.3),
(14.7, 15.6, 16.6, 18.3)

R3 R8 R4

O4 (9.7, 10.6, 11.3, 12.0),
(11.7, 12.6, 13.3, 14.0),

R6 R7 R5

(14.7, 15.6, 16.3, 17.0),
(16.7, 17.6, 18.3, 19.0)

R8 R8 R6

O5 (8.4, 8.9, 9.8, 10.3),
(10.4, 10.9, 11.8, 12.3),

R5 R7 R2

(13.4, 13.9, 14.8, 15.3),
(15.4, 15.9, 16.8, 17.3)

R3 R1 R7

O6 (8.0, 8.5, 9.0, 9.7),
(10.0, 10.5, 11.0, 11.7),

R3 R1 R4

(13.0, 13.5, 14.0, 14.7),
(15.0, 15.5, 16.0, 16.7)

R4 R2 R7

O7 (7.5, 8.5, 9.0, 10.3),
(9.5, 10.5, 11.0, 12.3),

R3 R1 R4

(12.5, 13.5, 14.0, 15.3),
(14.5, 15.5, 16.0, 17.3)

R4 R2 R3

O8 (8.1, 8.8, 9.6, 10.3),
(10.1, 10.8, 11.6, 12.3),

R5 R1 R2

(13.1, 13.8, 14.6, 15.3),
(15.1, 15.8, 16.6, 17.3)

R3 R2 R1

O9 (8.8, 9.3, 10.1, 10.5),
(10.8, 11.3, 12.1, 12.5),

R5 R7 R7

(13.8, 14.3, 15.1, 15.5),
(15.8, 16.3, 17.1, 17.5)

R6 R8 R2

O10 (8.6, 9.0, 9.5, 10.6),
(10.6, 11.0, 11.5, 12.6),

R5 R7 R7

(13.6, 14.0, 14.5, 15.6),
(15.6, 16.0, 16.5, 17.6)

R3 R8 R6

est rules for interpolation or extrapolation, based on these three distance metrics. Here,
the results for most of the observations are completely different for the three distance
metrics. Surprisingly, for the first observation O1: A◦,1 = (7.1, 8.4, 9.8, 11.6), A◦,2 =
(9.1, 10.4, 11.8, 13.6),A◦,3 = (12.1, 13.4, 14.8, 17.6), andA◦,4 = (14.1, 15.4, 16.8, 19.6),
the closest rule (i.e., rule-7) selected by HD and EMD is the furthest rule found by COG
as shown in Table 3. The HD and EMD metrics have determined most of the closest
rules, where the shapes of the membership functions of their antecedent variables are
quite similar to their counterparts in the given observation. This is helpful in maintain-
ing the interpretability of the integrated system.

In this experiment, following conventional T-FRI approaches and empirical results
obtained elsewhere [5], only two nearest rules are chosen by either of COG, HD and
EMD distance metrics to perform interpolation/extrapolation. However, more than two
nearest rules can also be chosen if preferred. For all the observations, these three dis-
tance metrics could not find one similar result. For every observation, these distance
metrics selected different nearest rules, which lead to different inference results. In-
terestingly, the experiment shows a distinctive pattern of selecting the nearest rules by
every distance metric. The use of COG has regularly chosen rule-3, rule-4 and rule-5;
that of HD has regularly chosen rule-1, rule-2 and rule-7; and that of EMD has regularly
chosen rule-7, rule-4 and rule-2. Also, examining the outcomes of using EMD, it can
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Table 3: Distance Measures between Rule and Obser-
vation Using COG, HD and EMD

Observation Rules Order of Rules by COG Order of Rules by HD Order of Rules by EMD

O R dCOG(Ri,O) dHD(Ri,O) dEMD(Ri,O)

R1 4.78 4.50 3.51

R2 4.57 4.60 3.34

(7.1, 8.4, 9.8, 11.6), R3 3.85 4.80 3.58

(9.1, 10.4, 11.8, 13.6), R4 3.88 4.69 3.21

(12.1, 13.4, 14.8, 17.6), R5 3.72 4.80 3.40

(14.1, 15.4, 16.8, 19.6) R6 4.25 4.70 3.33

R7 5.05 4.40 2.89
R8 4.40 4.60 3.82

Table 4: Results for α-Cut
Matching for Inference
Observation Best
O{A◦,1, A◦,2, A◦,3, A◦,4} Rule

(12.6, 14.3, 15.6, 16.7),
(14.6, 16.3, 17.6, 18.7),

R7

(16.6, 18.3, 19.6, 20.7),
(19.6, 11.3, 22.6, 23.7)

(3.8, 4.9, 5.9, 7.0),
(5.8, 6.9, 7.9, 9.0),

R4

(8.8, 9.9, 10.9, 12.0),
(10.8, 11.9, 12.9, 14.0)

(11.2, 12.3, 13.2, 13.7),
(13.2, 14.3, 15.2, 15.7),

R5

(16.2, 17.3, 18.2, 18.7),
(18.2, 19.3, 20.2, 20.7)

(2.5, 3.8, 4.7, 7.3),
(4.5, 5.8, 6.7, 9.3),

R1

(7.5, 8.8, 9.7, 12.3),
(9.5, 10.8, 11.7, 14.3)

(11.6, 13.1, 14.5, 15.4),
(13.6, 15.1, 16.5, 17.4),

R8

(16.6, 18.1, 19.5, 20.4),
(17.1, 18.6, 20.0, 20.9)

be seen that employing EMD yields a greater sensitivity than utilising the other two, as
it changes the nearest rules with any minor change in the value of the observation.

4.3 Selection of Interpolation/Extrapolation Mechanism

There are a range of variations in selecting the type of inference method in response
to the use of different distance metrics. Indeed, while one selects interpolation and
the others may select extrapolation as illustrated in Table 6. Interestingly, however,
despite different nearest rules may be chosen, the selected inference operation can be
the same for almost half of the given observations. Specially, the use of COG or EMD
appears somewhat similar in signifying the type of inference method. Nonetheless, HD
is rather different from COG and EMD as its use leads to two interpolation and eight
extrapolation operations.

4.4 Accuracy of Interpolation/Extrapolation Results

Table 5 shows the interpolation/extrapolation results with respect to all the given obser-
vations using T-FRI based on COG, HD and EMD. These results are further compared
against the underlying ground truth values, as reflected in Table 7. Thus, those clos-
est rules selected by HD have produced the best results (over this set of observations).
These outcomes confirm the intuition that the use of a carefully chosen distance metric
can help improve (or otherwise, affect adversely) the interpolation/extrapolation result.
However, it requires further evaluation of the HD and EMD distance metrics on dif-
ferent types of rule and other observations, in order to better verify the accuracy and
consistency of their use.

5 Conclusions

This paper has presented an integrated system to perform interpolation and inference
effectively and efficiently. Initially, it performs a pre-interpolation inference assessment
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Table 5: Interpolation/Extrapolation Results
Obs. Result Based on COG Result Based on HD Result Based on EMD
Oi ConsequentCOG(B◦,i) ConsequentHD(B◦,i) ConsequentEMD(B◦,i)

O1 (10.66, 12.81, 12.16, 14.16) (10.73, 11.97, 13.31, 15.09) (10.73, 11.99, 13.29, 15.07)

O2 (10.62, 11.78, 11.54, 13.02) (10.60, 11.3, 12.1, 13.0) (10.62, 11.67, 11.66, 13.02)

O3 (11.27, 12.75, 12.15, 14.77) (11.36, 12.57, 12.53, 14.74) (11.36, 12.58, 12.52, 14.74)

O4 (13.18, 14.51, 14.45, 15.48) (13.29, 14.17, 14.81, 15.52) (13.18, 14.55, 14.42, 14.48)

O5 (11.90, 12.40, 13.30, 13.8) (11.99, 12.46, 13.33, 13.83) (11.99, 13.46, 13.33, 13.83)

O6 (11.52, 12.33, 12.09, 13.22) (11.5, 12.0, 12.5, 13.2) (11.59, 12.28, 12.24, 13.23)

O7 (11.03, 12.55, 11.84, 13.83) (11.01, 11.58, 12.14, 13.81) (11.03, 12.55, 11.84, 13.83)

O8 (11.51, 12.53, 12.51, 13.80) (11.60, 12.30, 13.10, 13.80) (10.1, 10.8, 11.6, 12.3)

O9 (12.30, 12.80, 13.60, 14.0) (12.38, 12.86, 13.63, 14.02) (12.40, 12.86, 13.63, 14.03)

O10(12.07, 12.81, 12.40, 14.17) (12.23, 12.75, 12.68, 14.16) (12.23, 12.74, 12.71, 14.15)

Table 6: Suggested Inference Operation
Using COG, HD or EMD
Obs. Inference Method Inference Method Inference Method
Oi Based on COG Based on HD Based on EMD

O1 Interpolation Interpolation Interpolation
O2 Extrapolation Extrapolation Extrapolation
O3 Interpolation Extrapolation Interpolation
O4 Extrapolation Extrapolation Extrapolation
O5 Interpolation Interpolation Interpolation
O6 Extrapolation Extrapolation Interpolation
O7 Extrapolation Extrapolation Extrapolation
O8 Interpolation Extrapolation Extrapolation
O9 Extrapolation Extrapolation Interpolation
O10 Interpolation Extrapolation Extrapolation

Table 7: Accuracy of Interpola-
tion/Extrapolation in Relation to the
Use of COG, HD and EMD

Metrics
Ground Truth vs.
Result Based on
COG

Ground Truth vs.
Result Based on HD

Ground Truth vs.
Result Based on
EMD

ε%COG ε%HD ε%EMD

AVG 5.38 1.87 3.62
SD 3.46 2.26 2.34

to determine whether to use compositional rule of inference (CRI). For this, it utilises
the α-cut operation to determine the applicability of CRI despite the sparsity of the
given rule base. This helps avoid any unnecessary interpolation/extrapolation while at-
taining better accuracy. Consequently, interpolation/extrapolation is only applied when
no match is found for the given observation. For enhancing the accuracy of interpo-
lated/extrapolated results, this paper has introduced a method which utilises the HD or
EMD metric to decide on the nearest rules for interpolation or extrapolation. Both HD
and EMD metrics are very effective in multidimensional environment, facilitating ef-
ficient computation of the required distance measures between values represented by
fuzzy sets. Experimental results have shown that the use of either HD or EMD leads to
moderately better results for this implementation than the utilisation of the conventional
COG-based metric. In future, it is worthwhile to investigate the effectiveness of this ap-
proach for a large rule base and multiple rule selection for interpolation/extrapolation.
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