Augmented YARA Rules Fused With Fuzzy
Hashing in Ransomware Triaging

Nitin Naik!?, Paul Jenkins'?, Nick Savage!, Longzhi Yang?, Kshirasagar Naik* and Jingping Song’

'School of Computing, University of Portsmouth, United Kingdom
Faculty of Science and Technology, Bournemouth University, United Kingdom
3Department of Computer and Information Sciences, Northumbria University, United Kingdom
“Department of Electrical and Computer Engineering, University of Waterloo, Canada
SSoftware College, Northeastern University, China
Email: {nitin.naik, paul.jenkins, nick.savage} @port.ac.uk, {nnaik, pjenkins} @bournemouth.ac.uk,
longzhi.yang @northumbria.ac.uk, snaik@uwaterloo.ca, songjp@swc.neu.edu.cn

Abstract—Triaging is an initial stage of malware analysis to
assess whether a sample is malware or not and the degree of
similarity it holds with known malware. It can be applied to
any malware category such as ransomware, which is a type
of malware that blocks access to a system or data, usually
by encrypting it. It has become the main modus operandi for
cybercriminals to extort monies from victims due to the growth
of cryptocurrencies. Consequently, it severely affects all types
of users whether they be from corporates or ordinary home
users. Ransomware can be prevented in several different ways,
however, the simple and initial step in prevention is its triaging
without execution. Several triaging methods are in use such
as fuzzy hashing, import hashing and YARA rules, amongst
all, YARA rules are one of the most popular and widely
used methods. Nonetheless, its success or failure is dependent
on the quality of rules employed for malware triaging. This
paper performs ransomware triaging using fuzzy hashing, import
hashing and YARA rules and demonstrates how YARA rules
can be improved using fuzzy hashing to obtain relatively better
triaging results. Subsequently, it proposes the augmented YARA
rules fused with fuzzy hashing to obtain improved triaging results
and performance efficiency in comparison to all three triaging
methods individually. Finally, the paper demonstrates how the use
of the fused YARA rules can improve triaging results irrespective
of the type of malware.

Index Terms—YARA Rules; Fuzzy Hashing; Import Hash-
ing; Ransomware; SSDEEP; SDHASH; mvHASH-B; WannaCry;
WannaCryptor.

I. INTRODUCTION

Cyberattacks have become more sophisticated over the years
and cybercriminals are inventing novel attack techniques to
cause maximum damage and gain. With the invention of
cryptocurrencies, ransomware has now become the primary
modus operandi for cybercriminals as their preferred extortion
tool, whilst maintaining their anonymity. Due to the financial
incentive, cybercriminals are developing a large volume of
ransomware daily, which is increasing at an exponential rate.
Nonetheless, the large volume of ransomware samples requires
an effective assessment technique to determine the authenticity
of samples and its prioritisation for the further analysis. This
assessment can generate significant savings in computational

resources by filtering out a large number of hoax samples,
leading to the precise analysis of likely malware samples,
saving significant time of cyber analysts [1]. This process of
preliminary assessment and prioritisation of samples is known
as triaging [2]. Triaging can be performed as a static process or
dynamic process [3], however, the static process is relatively
safe as it investigates samples without their execution. Several
methods are used as a means of static assessment such as fuzzy
hashing, import hashing and YARA rules, amongst all, YARA
rules are one of the most popular and widely used methods.

YARA rules are created based on the descriptions of mal-
ware families and text or binary strings contained within mal-
ware samples. YARA Rules can be used to assess static files or
running processes to determine whether a sample belongs to a
particular malware family. However, the success or failure of
YARA rules is dependent on the quality of rules employed for
malware triaging. This paper performs ransomware triaging
using fuzzy hashing, import hashing and YARA rules and
demonstrates how YARA rules can be improved using fuzzy
hashing to obtain relatively better triaging results. It employs
the three fuzzy hashing methods SSDEEP, SDHASH and
mvHASH-B, import hashing method IMPHASH and standard
YARA rules for ransomware triaging. Later, based on all
triaging results and their analysis, it proposes the augmented
YARA rules fused with fuzzy hashing to perform triaging that
can generate optimal triaging results in comparison to all three
triaging methods individually. The proposed fused YARA
rules can produce improved triaging results irrespective of
the type of malware with almost similar operational efficiency
to that of standard YARA rules, as demonstrated through the
ransomware triaging experimentation.

The paper is organised into the subsequent sections: Section
IT describes different triaging methods: YARA Rules, Import
Hashing and Fuzzy Hashing with its different methods SS-
DEEP, SDHASH and mvHASH-B; Section III explains the
process of gathering WannaCry/WannaCryptor ransomware
samples for performing triaging operations using the selected
triaging methods. Section IV explains the ransomware triaging

process using the selected triaging methods. Section V de-
scribes the proposed fused YARA rules for triaging operation.
Section VI presents the experimental evaluation of all selected
triaging methods and their comparative analysis with the
proposed fused YARA rules. Finally, Section VII presents the
summary of the paper and suggests some future enhancements.

II. TRIAGING METHODS
A. YARA Rules

YARA rules based technique is a pattern matching technique
developed for the research community to discover and classify
malware [4]. It is also known as a swiss knife for malware
analysis. It offers a simple and effective way of creating
customised rules (called YARA rules), comprising descriptions
of aimed malware dependent on strings or byte sequences
discovered in it, which are used to find malevolent files or
processes. YARA syntaxes and semantics are very similar to
the C programming language [4]. It can be used through its
command-line interface or Python scripts with the yara-python
extension. YARA rules are an adaptable and effective approach
to deal with the swiftly rising issue of malware. It can be used
on all main operating systems Windows, Linux and Mac OS
X [5].

rule RuleNamel rule WannaCry

{ {

strings: strings:
Stext_stringl = “text1 you wish to find in malware” Stext_stringl = “encrypt”
Stext_string2 = “text2 you wish to find in malware” Stext_string2 = “bitcoin”

Shex_stringl = {B6 D3 56 A5 78 43}
Shex_string2 = {E8 27 F9 83 C4 82}

Shex_stringl = {hex1 you wish to find in malware}
Shex_string2 = {hex2 you wish to find in malware}

condition:
any of them

condition:
Stext_stringl or Stext_string2 or

Shex_stringl or Shex_string2
} }

Fig. 1. Structure of YARA Rules Fig. 2. Example of YARA Rules

B. Import Hashing - IMPHASH

Import hashing is a very simple and efficient approach of
triaging developed by Mandiant [6]. It can be used to discover
the similarity of unknown samples with known malware based
on the hash generated from the import address table (IAT)
of a portable executable (PE) [6]. This hashing technique is
different from most other hashing techniques, where hash is
generated from only one section of PE file (called Imports)
rather than from an entire file. Imports are mainly functions
that a program/file calls from other programs/files (usually
numerous DLL, EXE, SYS files that provide functionality
to the Windows operating system). Therefore, the hash is
generated based on the Imports/Functions and dependent on
their particular order within the executable file. The hash
generated by this technique is known as IMPHASH. The
generation of IAT and subsequently the IMPHASH from the
IAT is profoundly dependent on the sequence of functions
written in the source file and the sequence of source files
during compile time. Therefore, when the two files based on

the same source code are compiled, they will generate an
identical IAT and an identical IMPHASH value. Likewise,
when the two files have different source code, they will
generate distinct IATs and distinct IMPHASH values.

} IMPHASH

Fig. 3. Generation of IMPHASH Value from the Import Address Table (IAT)
of a Portable Executable (PE) File

C. Fuzzy Hashing

In security analysis, hashing is used to determine both the
integrity and similarity of files under examination, the latter
utilising cryptographic techniques and the former utilising
fuzzy techniques [7], [8]. In malware investigation, when
attempting to determine malware strains it is the similarity of
the sample which is of interest as often malware developers
utilise similar code, leading to different variants [9]. In this
type of analysis, generally, a file is divided into multiple blocks
and a hash value is calculated for each block, the final step
being the concatenation of all hash values of the blocks to
generate the fuzzy hash value as shown in Fig. 4. Several
factors are involved in determining the length of fuzzy hash
value including the block size, the file size, and the output size
of the selected hash function [10]. In contrast the complete
file is hashed in cryptographic hashing with the output hash
having a fixed size irrespective of input file size. There are
different categories of fuzzy hashing techniques, classified
as follows: Context-Triggered Piecewise Hashing (CTPH),
Statistically-Improbable Features (SIF), Block-Based Hashing
(BBH) and Block-Based Rebuilding (BBR) [11], [12], [13].
The comparison of files in forensic analysis, where known
malware files are compared with unknown samples for the
purpose of triaging and clustering of malware to identify new
variants, requires an understanding of the degree of similarity
between samples. This suggests the use of the similarity
preserving characteristic of fuzzy hashing which is effective
in forensic investigation when comparing new samples with
existing malware families for their triage and clustering, in
samples which have the same functionality, but not the same
cryptographic hash values [2].

Generally, the similarity of samples can be measured based
upon their syntactic or semantic levels [2]. At a syntactic level,
two files are compared to find similarity on the basis of their
byte sequence of data but not the context of data. Whereas
at semantic level, two files are compared to find similarity on
the basis of their context [2]. Fuzzy hashing is only utilised
to find similarity between two files at syntactic level.

Divide File Generate Hash for Concatenate all
into Segments each Segment Hashes to generate
Fuzzy Hash
F Segment 1 Hash 1
Fuzzy Hash =
Hash 1 + Hash 2 + Hash 3 + Hash N
I Segment 2 =X Hash 2
) —{ FU[zzY | HA|SH
L Segment 3 [~ Hash 3
E Segment N Hash N

Fig. 4. Generation of Fuzzy Hash Value in Fuzzy Hashing Method

1) SSDEEP: The SSDEEP fuzzy hashing method was
initially developed for finding spam emails [9]. This method
divides a file into number of blocks based on the content of
that file. The endpoint points of these blocks are determined
by a rolling hash method utilising the Adler32 function [10].
Generating the SSDEEP fuzzy hash value for the file, consists
of calculating an individual hash value for each block and con-
catenating these into a single hash value. Similarity between
the two files is calculated by utilising Damerau-Levenshtein
distance function.

2) SDHASH: The SDHASH fuzzy hashing method finds
common and rare features in a file and matches the rare
features in another file to determine the degree of similarity
between the two files [14]. Generally a feature is a 64-byte
string and is found using an entropy calculation. It employs
the cryptographic hash function SHA-1 and Bloom filters to
calculate the SDHASH fuzzy hash value of a file [15]. A
Bloom filter is a space-efficient probabilistic data structure to
find whether the element is definitely not present in the set or
may be present in the set. Similarity between the two files is
calculated by utilising a Hamming distance function.

3) mvHASH-B: The mvHASH-B fuzzy hashing method
is slightly different from SDHASH fuzzy hashing method,
which focuses on keeping the data unchanged even if there
is a small change in it. Thus resulting the same hash value
in case of a minor change and preserving the similarity.
However, mvHASH-B transforms the input data based on the
concept of majority votes, then encodes the majority vote bit
sequence with RLE (Run-Length Encoding - a type of lossless
data compression approach), and finally generates mvHASH-
B fuzzy hash value utilising Bloom filters [16]. Moreover, it
uses a self-defined hash function which has a higher run time
efficiency and its complexity is equivalent to the cryptographic
hash function SHA-1.

III. COLLECTING WANNACRY/WANNACRYPTOR
RANSOMWARE SAMPLES

A Ransomware attack is a nefarious attack to extort money
from victims which is a more sophisticated tactic than the
DDoS attack [17], [18], [19]. It causes loss of money and
reputational damage to the business and sometimes potentially
permanent loss of data. Ransomware attacks could be a minor
or severe depending on the category of ransomware, nonethe-
less, certain types of ransomware have iniquitous intentions.
Such ransomware are the priority for this investigation such as
WannaCry or WannaCryptor ransomware is one of the most
significant variants of ransomware recently and is selected for
this study [20], [21], [22], [23]. The most labour intensive
task was the collection of credible samples of the WannaCry
ransomware. As a result of this process, it was decided to
collect a reasonable number of WannaCry or WannaCryptor
ransomware samples which could be easily investigated man-
ually. All the WannaCry samples were gathered from two
sources Hybrid Analysis [24] and Malshare [25] and their
analysis were performed through the information acquired
by VirusTotal [26]. The main difficulty was to verify the
credibility of the collected ransomware samples that they
were very likely to be WannaCry ransomware samples. The
credibility of samples was evaluated through the criteria set
on the basis of the result of various detection engines on
VirusTotal, which was greater than or equal to 40, meaning
a minimum of 40 detection engines on VirusTotal diagnosed
the particular sample as ransomware/malware. To verify that
they were WannaCry or WannaCryptor ransomware, they
were manually checked on every detection engine, where a
number of the engines identified a sample as a WannaCry
or WannaCryptor ransomware. Nevertheless, this ransomware
verification process was complex, and mainly dependent on
the discretion of authors [27], [28], [29], [30], [31]. The
selection process was lengthy and demanding, consequently,
112 samples of WannaCry or WannaCryptor ransomware were
selected after each sample was fully analysed manually.

IV. RANSOMWARE TRIAGING USING SELECTED TRIAGING
METHODS: YARA RULES, Fuzzy HASHING AND IMPORT
HASHING

Initially, the three triaging methods fuzzy hashing, import
hashing and YARA rules are selected to perform the triaging
operation on the collected WannaCry ransomware corpus. The
main reason for selecting these three triaging methods is to
perform static, fast and efficient analysis of collected samples.
Most hashing methods are resource-optimised, cost-effective
and fast in execution; in particular, import hashing is one of the
best-fit method for all these criteria [2]. Alongside the accuracy
of a triaging method, all these criteria are very crucial while
considering any triaging method for the analysis of a large
volume of malware. However, both fuzzy hashing and import
hashing only check structural similarity and are not effective
on packed samples.

The fuzzy hashing method is applied on the unpacked
sample (the sample requires unpacking prior to fuzzy hashing

if it is a packed sample). The fuzzy hashing method generates
a fuzzy hash value of the sample and matches it against the
database of fuzzy hashes of known ransomware or it can be
directly matched against the database of known samples. If it
finds one or more matched ransomware samples it generates
the results in the form of their degree of similarity with the
sample. It can indicate which is the exact or closest matched
ransomware sample based on the highest degree of similarity.
However, the interpretation of the fuzzy hashing result is
dependent on the security expert and how efficiently they
utilise it for further advanced analysis. The fuzzy hashing is
a triaging process and its result is a preliminary indication
which requires a further clustering or classification operation
to conclude as a meaningful result [32]. Import hashing
generates an IMPHASH value for each sample and works
in a similar way to fuzzy hashing with the exception that it
only determines binary similarity (i.e. whether the sample is
matched or not without giving any degree of similarity). Both
hashing methods can only be used for detecting similarity of
samples with known malware samples.

YARA rules are different from hashing methods and per-
forms triaging of malware based on the created customised
rules. It is a more flexible and effective method, however, its
effectiveness is dependent on the quality of the rules. Develop-
ing effective rules is a challenging task and requires expertise
and experience. YARA rules can be generated automatically,
however, these rules require further processing to customise
and may still not be effective for the targeted operation. In
this ransomware triaging experiment, the utilised YARA rules
are created by yarGen tool [33]. It is based on Fuzzy Regular
Expressions, Naive Bayes Classifier and Gibberish Detector
[34] with the default setting of the top 20 strings based on their
score and without IMPHASH, because IMPHASH is used as
an independent triaging method in this work. To ensure that
YARA rules are comparable with the other triaging methods,
individual rules are tested alongside super rules. YARA rules
based triaging operation may be slower as it is dependent on
the set of attributes included in the rules and its searching
criteria.

V. RANSOMWARE TRIAGING USING THE PROPOSED
FUSED YARA RULES

Standard YARA rules include certain strings/attributes
unique to malware or malware families and may not be
effective in cases where it could not find those included
strings/attributes of the rule(s) due to intelligible modifications
made by threat actors in their new malware samples for
the purpose of evading common YARA rules. Increasing the
number of strings/attributes or rules may not be effective for
triaging as it can cause redundancy, slow down the operation
and increase computational overheads. Furthermore, writing
sophisticated YARA rules requires sufficient knowledge of
advanced aspects of YARA rules, which demands expertise,
experience and significant time [35], [36], [37]. Therefore,
it is important to make simple and effective YARA rules
without having all these adverse effects on the triaging

performance. This necessitates the requirement to augment
YARA rules using some different mechanism other than
unique strings/attributes. Fuzzy hashing is a fast and resource-
optimised method which can sometimes produce improved
triaging results in comparison to YARA rules, as demonstrated
in ransomware triaging [2]. This indicates that fuzzy hashing
could be effective in case of structural similarity even though
the selective strings/attributes of YARA rules may not be found
in malware.

If the fuzzy hashing is embedded in YARA rules then it
can increase the triaging performance of the fused YARA
rules by matching the structural similarity, other than selective
strings/attributes without affecting the efficiency and over-
heads as fuzzy hashing is compact and fast. Additionally, it
can provide the degree of similarity for the matched sample
with the existing malware due to the fuzzy characteristic
of fuzzy hashing which is not possible in standard YARA
rules. It can further improve the clustering or classification
results of YARA rules by obtaining the combined results
of both triaging methods, increasing the confidence level of
the triaging operation. In this paper, three fuzzy hashing
methods SSDEEP, SDHASH and mvHASH-B are evaluated
to determine the best-fit fuzzy hashing method to embed with
YARA rules offering fast, efficient, and more precise triaging
results.

Fused YARA Rules

Samples for Initial

Triaging Result with
/
Assessment

Finding Unique Strings, S
Degree of Similarity

Attributes

Finding Structural
Similarity

Fig. 5. YARA Rules Fused with Fuzzy Hashing

VI. EXPERIMENTAL EVALUATION OF DIFFERENT
TRIAGING METHODS FOR WANNACRY RANSOMWARE

All the collected ransomware samples belong to only one
ransomware category (i.e. WannaCry) and therefore they pos-
sess some similarity with each other despite the fact that
they are different variants of WannaCry ransomware. These
WannaCry samples are also analysed manually to check that
each sample possesses some similarity with at least one other
sample. After the manual analysis and verification of all the
samples, the testing criterion for all the triaging methods is
set to find the total number of samples that are successfully
identified as a known WannaCry ransomware (i.e. each sample
is matched with at least one other sample in the corpus as every
sample is a WannaCry ransomware) by each triaging method.
In other words, this criterion is to find the miss rate of each
triaging method that is how many samples it could not identify
as WannaCry ransomware.

A. Comparative Evaluation of the Triaging Results of Dif-
ferent Fuzzy Hashing Methods (SSDEEP, SDHASH and
mvHASH-B)

Initially, the three fuzzy hashing methods SSDEEP, SD-
HASH and mvHASH-B were applied to the collected Wan-
naCry ransomware corpus evaluating the similarity detection
success rate of each fuzzy hashing method. The similarity
detection results were analysed on the basis of different
similarity threshold criteria (covering all matched samples
(from 1-100%), matched above 10%, matched above 20%,
and matched above 30%) as shown in Table I. Here, the first
row of Table I shows the total number of matched samples
with one or more than one other samples in the ransomware
corpus of 112 samples, where SSDEEP found similarity in
104 samples, SDHASH found similarity in 108 samples and
mvHASH-B found similarity in 108 samples. Likewise, the
other similarity detection results were determined for three
similarity thresholds of above 10%, 20% and 30% (see Table
I), where only those results were considered which were above
the decided similarity threshold. The analysis of these four
similarity detection results shows that most of the SSDEEP
similarity scores are above the set highest threshold of 30%,
resulting in its lowest matched samples of 103. In case of
SDHASH and mvHASH-B, several similarity scores are below
the set highest threshold of 30% resulting in its lowest matched
samples of 104 and 102 respectively. While comparing SD-
HASH and mvHASH-B, the latter producing greater lower
similarity scores than SDHASH methods reflected by its
lowest matched samples size of 102. In summary, the similarity
detection rate for all the three fuzzy hashing methods was quite
high (above 91%). This comparison of similarity scores and
success rate of each fuzzy hashing is very important because it
will be combined with other performance criteria to determine
the best-fit fuzzy hashing method for embedding in YARA
rules.

B. Comparative Evaluation of the Triaging Results of Fuzzy
Hashing, Import Hashing and YARA Rules

In the previous subsection, the three different fuzzy hashing
methods and their triaging results are analysed and finally their
triaging results above the threshold of 30% similarity scores
are considered as final results of each method for further
analysis purposes. These triaging results are compared with
triaging results of two other triaging methods: import hashing
and YARA rules as shown in the Table II. However, the
results of both triaging methods are slightly lower than any
of the fuzzy hashing methods for this particular WannaCry
ransomware corpus. This indicates that despite the success of
YARA rules, sometimes it cannot generate good results and
this leads to the requirement of some additional enhancement
to include such situations and produce better results.

C. Comparative Evaluation of the Triaging Results of Fused
YARA Rules with Different Fuzzy Hashing Methods

As indicated the moderate results of YARA rules and
the slightly better results of fuzzy hashing in the previous

subsection, when the YARA rules are fused with fuzzy hashing
to obtain better triaging results irrespective of any malware
corpus. The results of the fused YARA rules with three fuzzy
hashing methods are shown in Table III, where all three fuzzy
hashing methods have provided the same triaging results of
110 matched samples (i.e. approximately 98.21%) for this
particular WannaCry ransomware corpus. This triaging result
of fused YARA rules is better than any individual fuzzy
hashing method and YARA rules. This shows the successful
fusion of these two training methods and the success of the
proposed fused YARA rules.

D. Performance Evaluation of Fused YARA Rules with Fuzzy
Hashing

Table IV and Fig. 6 show the comparison of the triaging
results of fused YARA rules with all the three triaging methods
and its success in producing the best triaging results amongst
all. However, it is important to evaluate the operational ef-
ficiency and overheads of this fused YARA rules method in
comparison to the standard YARA rules. This performance
evaluation of fused YARA rules is shown in Table V, where
YARA rules fused with SSDEEP fuzzy hashing methods offers
almost similar performance with slightly increased rule gener-
ation time. Nonetheless, the other two fuzzy hashing methods
SDHASH and mvHASH-B offer good performance but with
relatively higher overheads than the SSDEEP fuzzy hashing
method. Therefore, for this particular WannaCry corpus and
implementation, YARA rules can be fused with SSDEEP fuzzy
hashing method to obtain the better results and performance
efficiency.

10000%

s19ew 9286% 91.07%

i 892
9000% [[esyiw —

8000% +—— —

7000% +—— —

2000% +——1 —

1000% || —

SSDEEP - Fuzzy SDHASH-Fuzzy ~ mvHASH-B-Fuzzy IMPHASH- Import
Hashing Hashing Hashing Hashing

YARA Rules* Fused YARA Rules

Fig. 6. Comparison of Similarity Detection Rate of Fused YARA Rules with
other Triaging Methods

VII. CONCLUSION

This paper proposed the augmented YARA rules fused
with fuzzy hashing method to obtain better triaging results
and performance efficiency in ransomware triaging. Initially,
it performed ransomware triaging using fuzzy hashing, im-
port hashing and YARA rules. For this ransomware triaging
purpose, it employed the three fuzzy hashing methods SS-
DEEP, SDHASH and mvHASH-B, import hashing method
IMPHASH and standard YARA rules. The triaging results of
all fuzzy hashing methods were slightly better than YARA

COMPARISON OF TRIAGING RESULTS OF Fuzzy HASHING METHODS - SSDEEP, SDHASH AND MVHASH-B

TABLE I

Fuzzy Hashing Matching Criteria | Number of Sam- | Number of Sam- | Number of Sam-
for Ransomware Samples ples Matched by | ples Matched by | ples Matched by
SSDEEP SDHASH mvHASH-B
Based on all Fuzzy Similarity Scores| 104 108 108
(from 1-100%)
Based on Fuzzy Similarity Scores|104 108 108
above the threshold of 10%
Based on Fuzzy Similarity Scores|104 106 103
above the threshold of 20%
Based on Fuzzy Similarity Scores|103 104 102
above the threshold of 30%
TABLE 11

COMPARISON OF TRIAGING RESULTS OF TRIAGING METHODS - FUZZY HASHING, IMPORT HASHING AND YARA RULES

Number of Sam-
ples Matched by
SSDEEP

WannaCry
Ransomware Corpus
SDHASH

Number of Sam-
ples Matched by

Number of Sam-
ples Matched by
YARA Rules*

Number of Sam-
ples Matched by
IMPHASH

Number of Sam-
ples Matched by
mvHASH-B

Total samples matched | 103

out of 112 samples

‘ 104

‘ 102 ‘96 100

without IMPHASH.

Where * represents that employed YARA rules are generated by yarGen tool (based on Fuzzy Regular Expressions,
Naive Bayes Classifier and Gibberish Detector) with the default setting of the top 20 strings based on their score and

TABLE III
COMPARISON OF TRIAGING RESULTS OF FUSED YARA RULES WITH DIFFERENT FUZZY HASHING METHODS

WannaCry YARA Rules | YARA Rules | YARA Rules
Ransomware Corpus |Fused with | Fused with | Fused with
SSDEEP SDHASH mvHASH-B
Total samples matched | 110 110 110
out of 112 samples
TABLE IV

COMPARISON OF TRIAGING RESULTS OF FUSED YARA RULES WITH Fuzzy HASHING, IMPORT HASHING AND YARA RULES

WannaCry

Number of Sam- | Number of Sam- | Number of Sam- | Number of Sam- | Number of Sam- | Number of

Ransomware Corpus | ples Matched by | ples Matched by | ples Matched by | ples Matched by | ples Matched by | Samples Matched

SSDEEP SDHASH mvHASH-B IMPHASH YARA Rules* by Fused YARA
Rules
Total samples matched | 103 104 102 98 100 110

out of 112 samples

rules and IMPHASH. This means that despite the success of
YARA rules, on some occasions, it could not generate good
results, resulting in augmented YARA rules fused with fuzzy
hashing which were developed and tested, producing optimal
results in comparison to any other individual triaging methods.
Furthermore, the performance efficiency of the fused rules was
compared against the standard YARA rules and it showed that
fusion of YARA rules with the SSDEEP fuzzy hashing method
can offer almost similar performance efficiency as standard
YARA rules, however, the other two fuzzy hashing methods
SDHASH and mvHASH-B are good but could cost slightly
more in performance overheads. This proposed fused YARA

rules performed well for this particular WannaCry corpus
and implementation. However, in future, this proposed fused
YARA rules would be tested on the two grounds: large samples
size and diverse samples of ransomware or malware.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Hybrid-
Analysis.com, Malshare.com and VirusTotal.com for this re-
search work.

REFERENCES

[1] J. Jang, D. Brumley, and S. Venkataraman, “Bitshred: feature hashing
malware for scalable triage and semantic analysis,” in Proceedings of

(2]

(3]

(4]
(5]
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

TABLE V

COMPARISON OF PERFORMANCE EFFICIENCY OF FUSED YARA RULES WITH STANDARD YARA RULES

Performance Criteria

Standard YARA
Rules*

YARA
Fused
SSDEEP

Rules
with

YARA
Fused
SDHASH

Rules
with

YARA
Fused
mvHASH-B

Rules
with

Similarity ~ Detection

Criteria

Textual/Binary
Patterns

Textual/Binary
Patterns and Byte
Structure

Textual/Binary
Patterns and Byte
Structure

Textual/Binary
Patterns and Byte
Structure

Rule Size

Size is dependent
on the nature
of of the
rule (mainly
number of
Strings/Attributes)

It will not affect
significantly

Slight increase in
size

Slight increase in
size

Run-Time Efficiency

Speed is also
dependent on
the nature of of
the rule (mainly
number of
Strings/Attributes)

Slightly slower
than standard
YARA Rules

It requires time
upto twice than
standard YARA
Rules

It requires time
upto twice than
standard YARA
Rules

Minimum File Size for
Fuzzy Hash Generation

It does not in-
clude fuzzy hash
value in rules

It may not gener-
ate fuzzy hash of
a file lower than 4
KB in size

It may not gener-
ate fuzzy hash of
a file lower than
512 Byte in size

It may not gener-
ate fuzzy hash of
a file lower than 2
KB in size

the 18th ACM conference on Computer and communications security.
ACM, 2011, pp. 309-320.

N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 1: Triaging Ransomware using Fuzzy Hashing, Import Hashing
and YARA Rules,” in [EEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE, 2019.

C. Harrell. (2013) Finding Malware: Like Iron Man. [Online].
Available: https://digital-forensics.sans.org/summit-archives/DFIR _
Summit/Finding-Malware- Like-Iron-Man-Corey-Harrell.pdf
VirusTotal. (2019) YARA in a nutshell. [Online]. Available:
/Ivirustotal.github.io/yara/

Readthedocs. (2019) Writing YARA rules. [Online].
https://yara.readthedocs.io/en/v3.5.0/writingrules.html
Mandiant. (2014) Tracking malware with import hashing.
[Online]. Available: https://www.fireeye.com/blog/threat-research/2014/
01/tracking-malware-import-hashing.html

N. Naik, P. Jenkins, and N. Savage, “A ransomware detection method
using fuzzy hashing for mitigating the risk of occlusion of information
systems,” in 2019 IEEE International Symposium on Systems Engineer-
ing (ISSE), 2019.

N. Naik, P. Jenkins, J. Gillett, H. Mouratidis, K. Naik, and J. Song,
“Lockout-Tagout Ransomware: A detection method for ransomware
using fuzzy hashing and clustering,” in IEEE Symposium Series on
Computational Intelligence (SSCI), 2019.

J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91-97, 2006.

A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University Canberra, 1999.

F. Breitinger and H. Baier, “A fuzzy hashing approach based on random
sequences and hamming distance,” in Annual ADFSL Conference on
Digital Forensics, Security and Law. 15, 2012. [Online]. Available:
https://commons.erau.edu/adfsl/2012/wednesday/15

C. Sadowski and G. Levin, “Simhash: Hash-based similarity detection,”
2007. [Online]. Available: www.webrankinfo.com/dossiers/wp-content/
uploads/simhash.pdff

V. Gayoso Martinez, F. Hernandez Alvarez, and L. Herndndez Encinas,
“State of the art in similarity preserving hashing functions,” 2014.
[Online]. Available: http://digital.csic.es/bitstream/10261/135120/1/
Similarity_preserving_Hashing_functions.pdf

V. Roussev, “Data fingerprinting with similarity digests,” in IFIP Inter-
national Conference on Digital Forensics. Springer, 2010, pp. 207-226.
, “An evaluation of forensic similarity hashes,” digital investigation,
vol. 8, pp. S34-S41, 2011.

https:

Available:

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

F. Breitinger, K. P. Astebgl, H. Baier, and C. Busch, “mvhash-b-
a new approach for similarity preserving hashing,” in 2013 Seventh
International Conference on IT Security Incident Management and IT
Forensics. 1EEE, 2013, pp. 33-44.

N. Naik, P. Jenkins, R. Cooke, D. Ball, A. Foster, and Y. Jin, “Augmented
windows fuzzy firewall for preventing denial of service attack,” in 2017
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017,
pp. 1-6.

N. Naik and P. Jenkins, “Fuzzy reasoning based windows firewall for
preventing denial of service attack,” in IEEE International Conference
on Fuzzy Systems, 2016, pp. 759-766.

——, “Enhancing windows firewall security using fuzzy reasoning,” in
IEEE International Conference on Dependable, Autonomic and Secure
Computing, 2016, pp. 263-269.

J. M. Ehrenfeld, “Wannacry, cybersecurity and health information tech-
nology: A time to act,” Journal of medical systems, vol. 41, no. 7, p.
104, 2017.

R. Richardson and M. North, “Ransomware: Evolution, mitigation and
prevention,” International Management Review, vol. 13, no. 1, pp. 10—
21, 2017.

K. Cabaj, P. Gawkowski, K. Grochowski, and D. Osojca, “Network ac-
tivity analysis of Cryptowall ransomware,” Przeglad Elektrotechniczny,
vol. 91, no. 11, pp. 201-204, 2015.

Y. Klijnsma. (2019) The history of Cryptowall:
cryptographic ransomware threat. [Online]. Available:
cryptowalltracker.org/

Hybrid-Analysis. (2019) Hybrid Analysis. [Online]. Available:
/Iwww.hybrid-analysis.com/

Malshare. (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. [Online].
Available: https://malshare.com/index.php
VirusTotal. (2019) Virustotal. [Online].
virustotal.com/#/home/upload

N. Naik, P. Jenkins, B. Kerby, J. Sloane, and L. Yang, “Fuzzy logic
aided intelligent threat detection in cisco adaptive security appliance
5500 series firewalls,” in 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), 2018.

N. Naik, P. Jenkins, R. Cooke, and L. Yang, “Honeypots that bite back:
A fuzzy technique for identifying and inhibiting fingerprinting attacks
on low interaction honeypots,” in 2018 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2018.

N. Naik, P. Jenkins, and N. Savage, “Threat-aware honeypot for discov-
ering and predicting fingerprinting attacks using principal components

a large scale
https://www.

https:

Available: https://www.

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

analysis,” in [EEE Symposium Series on Computational Intelligence
(SSCI), 2018.

N. Naik and P. Jenkins, “A fuzzy approach for detecting and defending
against spoofing attacks on low interaction honeypots,” in 21st Interna-
tional Conference on Information Fusion (Fusion). 1EEE, 2018, pp.
904-910.

——, “Discovering hackers by stealth: Predicting fingerprinting attacks
on honeypot systems,” in 2018 I[EEE International Symposium on
Systems Engineering (ISSE), 2018.

N. Naik, P. Jenkins, N. Savage, and L. Yang, “Cyberthreat Hunting-
Part 2: Tracking Ransomware Threat Actors using Fuzzy Hashing and
Fuzzy C-Means Clustering,” in IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). 1EEE, 2019.

F. Roth. (2018) yarGen is a generator for YARA rules. [Online].
Available: https://github.com/Neo23x0/yarGen

—— (2017) How to post-process YARA rules generated
by yarGen. [Online]. Available: https://medium.com/@cyb3rops/
how-to-post-process-yara-rules-generated-by-yargen-121d29322282

V. Alvarez. (2019) YARA Documentation, Release 3.10. 0.
[Online]. Available: https://buildmedia.readthedocs.org/media/pdf/yara/
latest/yara.pdf

R. Dias. (2014) Intelligence-Driven Incident Response with YARA.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/
forensics/intelligence-driven-incident-response-yara-35542

C. S. Culling. (2018) Which YARA Rules : Basic or Advanced?
[Online]. Available: https://vt-gtm-wp-media.storage.googleapis.com/
2.0-Which- YARA-Rules-Rule-Basic-or- Advanced- 1.pdf

