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Abstract: We demonstrate that the conical refraction of the input elegant Laguerre–Gaussian
beams can be effectively described through generalized Bessel–Gaussian light beams. We
performed numerical simulations and show good agreement between the exact solution and our
proposed Bessel–Gaussian approximation model. Physical clarity of the proposed model has
allowed us to explain the transition of the classical double-ring pattern of conical refraction in the
Lloyd plane into a multi-ring one and predict new phenomenon such as the Raman spot shift and
dependence of the conical refraction ring radius on the value of the orbital angular momentum.
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1. Introduction

Internal conical refraction (CR) is a phenomenon, which was predicted by Hamilton in 1832. It
can be observed for the light propagating along the optical axis of a biaxial crystal. In this case, a
narrow beam evolves as a hollow double-walled cone and emerges as a cylinder of light behind the
exit facet of the crystal. A strong interest in the CR investigations over the last 20 years was driven
by the two significant factors. Firstly, as the 21st century began, the Belsky–Khapalyuk–Berry
paraxial theory of CR [1,2] has been finally formulated, which laid a solid theoretical foundation
for subsequent progress in the experimental field. Secondly, developing the technical capabilities
of modern laboratories made it possible to produce a substantial number of the CR practical
applications for optical communication [3], ultra-efficient CR lasing [4–6], polarimetry [7],
high–harmonic generation [8], particle trapping and optical manipulation [9,10], and for singular
beams generation and annihilation [11]. See also recent review [12]. However, utilization of
vortex input beams for CR now is one of the most novel and intriguing phenomena in the CR
field, because it can significantly change the familiar CR patterns [13]. New specific properties of
CR have already been demonstrated, such as the formation of a multi-ring image in the Lloyd’s
plane [13]. In this sense, studies of CR with elegant Laguerre-Gaussian beams, which are the
complete set of solutions to the paraxial wave equation in free space, can be very fruitful.
However, it must be said that expressions describing the spatial evolution of the CR field

have an integral structure, which not only complicates numerical calculations but leads to a lack
of physical clarity. Thus, the above-mentioned paraxial model of conical refraction contains
complete information about CR features, but due to its integral structure, it is extremely unclear
from what mechanism certain specific properties of the studied CR phenomenon are formed.
This problem can be solved by describing CR through a superposition of beams whose spatial
distribution would be determined by a simple and understandable law. With this approach, many
properties, such as the multi-ring intensity distribution in the focal plane, Poggendorff’s rings,
and Raman spots could arise “naturally” as a consequence of the propagation properties of such
superposition beams.
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In this work, we demonstrate the analogy between CR of the elegant Laguerre-Gaussian beams
and Bessel-Gaussian beams in precise quantitative terms. We show that CR of such beams under
the condition R0>>w0, where R0 is the radius of the CR ring beyond the crystal and w0 is a
beam width, can be effectively described in terms of generalized Bessel-Gaussian beams. Also,
we determine the parameters of the generalized Bessel-Gaussian beam from comparing it with
the corresponding CR beam and finally analyze the correspondence between the exact solution
and the proposed Bessel-Gauss model for the most important CR patterns. This approach, finally,
allowed us to predict the Raman spot shift and the dependence of the CR ring radius R0 from
the value of orbital angular momentum, which leads to the necessary renormalization of the
proposed BG model parameters.

2. Theory

Let us first consider the elegant Laguerre–Gaussian beams [14]. One can write the electric field
vector E at its waist (z= 0) in the form:
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where (r, ϕ) are the polar coordinates in the transverse plane, w0 is the beam width in the
focal plane, ein = [dL, dR] is the polarization vector, where we choose left and right circular
polarizations as basis functions and L`n(x) is the Laguerre polynomial of order n and index `
[15]. The dual-cone model of CR is used for a description of the CR beam evolution [16,17].
Under this model, the electric field vector behind the biaxial crystal can be represented as a sum
of two CR cones E=C(+)+C(−) as shown in Figs. 1(a) and (b):
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In these equations (ρ, ϕ, ξ) are the cylindrical coordinates normalized to the beam waist and
Rayleigh length of the incident beam, i.e. ξ = z/zR and ρ=r/w0, ρ0=R0/w0 is a normalized radius
of the CR ring beyond the crystal, which plays a central role in the determination of the resulting
CR intensity distribution, J`+m is the Bessel function of the first kind of order `+m, m=0, ±1
is an integer number. It can be seen from Eqs. (2) that, for the input field with the orbital
angular momentum (OAM) of `, the CR beam comprises two extra components with the OAM
of `±1, depending on the input polarization. This phenomenon was first studied by Peet [13]
and then properly discussed in [18], where the simplest Laguerre–Gaussian optical vortices
were considered. It is worth noting, that two components C(+) and C(−) have a clear physical
interpretation as two cones that diverge and converge behind the exit facet of the CR crystal,
correspondingly [16,17]. Axial intensity distribution of the individual cone C(+) is presented in
Fig. 1(b) for n=0 and `=0 (input Gaussian beam).
In this paper, we suppose that if condition ρ0 >> 1 is met, then CR cones C(±) of arbitrary

elegant Laguerre–Gaussian modes can be approximated by a superposition of Gaussian beams,
whose centers are placed on a circle of radius R0 in the focal plane and whose wave vectors lie on
a cone of semi-aperture ±α, as shown in Figs. 1(b) and (c) for C(+). We are going to show that
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Fig. 1. (a) The axial evolution of the CR beam and associated transverse intensity
distributions. (b) Theoretical axial distribution of the individual CR cone C(+), for n=0,
`=0 (input Gaussian beam). White solid curves show how CR cone can be substituted by
approximation Gaussian beams. (c) Geometry of the approximation Gaussian beam, where
R0 is a displacement vector of the beam center in the focal plane (z=0), which varies by
changing the value of the angle θ, k0 is a vacuum wave vector, whose tilt with respect to the
z direction amounts to the angle α, k⊥ is a transverse wave vector, which is the projection of
k0 onto the x-y plane.

this approach gives a simple propagation law of CR cones C(±) for any values of coordinates (r,
z). Furthermore, this approach, as we will see, elegantly explains many CR features, such as
multi-ring Lloyd’s pattern, the Poggendorff’s rings, and the Raman spots, the transverse intensity
distributions for which are shown in the lower part of Fig. 1(a).

The electric field vector of the approximating Gaussian beam, thus, in our paraxial treatment
has the form:
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where, k0 is a vacuum wavenumber, k⊥= k0·α[cos(θ), sin(θ)] is a transverse wave vector that
appears due to the tilt of the Gaussian beam direction by an angle α, R0 =R0 [cos(θ), sin(θ)] is a
displacement vector of the beam center in the focal plane (z=0), W0 is a Gaussian beam width in
the focal plane,W(z) = W0

√
1 + iz/k0W2

0 is responsible for diffraction broadening and wavefront
changing during the spatial propagation. The displacement vector R0 and the transverse wave
vector k⊥ are the functions of θ. Furthermore, it must be pointed out that in the last term of the
Eq. (5) we neglect phase contribution exp(ik0z), which is obtained from exp(ik0cos(α)z) under
the assumption α<<1. The vector A(θ) defines polarization dependence, which is common to
the CR beam:
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where, A0 is a complex amplitude. We need to integrate over the θ angle from 0 to 2π in (5) to
obtain a total field:
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where we derive the same polarization pattern as in formula (2) and define beam components
with different OAM as:
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In Eq. (8) we use normalized coordinates (ρ, ξ) and introduce new definitions, as follows:
a0=αkw0 is a normalized tilt parameter of CR cones, σ(ξ) =

√
σ2
0 + iξ is a spatial propagation

function by analogy toW(z), where σ0=W0/w0 is defined as a ratio of the approximating Gaussian
beam’s width (5) and width of the input elegant Laguerre–Gaussian beam (1), ρ(ξ)=ρ0+a0ξ is a
ring radius for arbitrary ξ value, I`+m(x) is the modified Bessel function of the first kind of order
`+m. To obtain formulae for the second CR cone C(−), one needs to replace the Eq. (8) by its
complex conjugate and substitute ξ → -ξ.
The Eq. (8) is known as a generalized Bessel-Gaussian (BG) beam of order `+m. BG beams

were introduced in [19] to overcome problems relating to an infinite amount of energy required
for Bessel beam formation. Generalized BG beams with ρ0 , 0 and a0 , 0 for the first time
were considered in [20]. However, as it turns out, many of the CR features are typical for
generalized BG beams, such as ring distribution with a radius ρ0 in the focal plane, which is
forming axial spike during the spatial propagation along the ξ-axis, that corresponds to a Raman
spot. Furthermore, for a0 , 0 generalized BG beams have a nonzero projection of k0 onto the
transverse coordinate plane, which leads to the interference picture in the focal plane, caused by
the intersection of two BG beams with an opposite value of a0, that corresponds to two CR cones
C(+) and C(−). It is worth mentioning, that the idea of the relationship between CR beam and BG
beam was introduced in [21] by Peet. However, he considered a modified BG beam, which is a
special case of a generalized BG beam for a0=0, under the assumption ρ0≈0. . . 2. As we show
further, for the case of ρ0>>1, one needs to use generalized BG beams with a0 , 0.

To determine the parameters of the BG beams, we will consider the CR field in the focal plane,
under the condition ρ0>>1, which corresponds to a well-defined CR ring. In this case, we can
replace the Bessel function under the integral (3) with its asymptotic expansion and obtain a
formula for cone propagation, that is valid far away from the propagation axis, i.e. for ρ>>0:
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where we introduce f (κ) as a one dimensional Fourier transform of the function F(x) that is, for
CR integrals, equal to:
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where θ(κ) is the Heaviside step function. From (9)–(11), one can immediately see that for
ρ>>0, CR cone components with different index m are equal to each other. It should be noted
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that the lower limit of integration in Eq. (10) can be extended to -∞. This is to demonstrate the
presence of converging and diverging waves from the ξ-axis with κ>0 and κ<0, respectively.
From formula (11), it is pretty obvious that cone S(+) comprises only converge waves, because of
the Heaviside function θ(κ).

By this approach, the Hankel transform for the components of the BG beam, which are given
by formula (8), will be as follows:
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um(κ) = A0 exp(−σ0
2(κ2 + ã20)/2)J`+m(κ · µ), (13)

where we define µ=ρ0+ia0σ0. Using the same procedure as in (9)–(11), we can obtain from the
Eq. (13) the following expression for a one-dimensional Fourier transform:

f (κ) = f (κ)U ≈ (A0/
√
µ )exp(−σ2

0 (κ − a0)
2/2), (14)

where we use the subscripts of the functions f (κ) to draw attention to the fact that we have
two different Fourier transforms. In these Fourier transforms, “C” in (11) means that we are
dealing with function Sm

(+) from Eq. (3), and “U” in (14) is related to the function Um from
Eq. (12). Thus, to find three parameters of the proposed BG model: a0, σ0, and A0, one needs
to approximate the one-dimensional Fourier transform (11) with the Gaussian function (14).
This approach in the area of classical optics was applied in [22], where the replacement of the
Gaussian and power function with the shifted Gaussian function was necessary to demonstrate
the asymptotic equivalence of the BG beams to elegant Laguerre-Gaussian beams with the index
n>>1. This is the main reason why the elegant modes fit better to the stated problem than their
‘standard’ counterparts. Thus, using the method proposed in Appendix B of [22], we can obtain
the following formula:
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where it was assumed n>> |` |>>1. Comparing (15) with (14) and (11) one can get all parameters
of the BG model:
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As will be shown later, we propose a method for determining the model parameters that will
be valid for arbitrary values of n and `, and under assumption n>> |` |>>1 will give directly
the expressions (15) and (16). Of course, the exact equality between expressions (11) and (15)
will be valid only for the case n>> |` |>>1, but for arbitrary n and `, we can understand this
substitution as an effective description of the CR cones by the generalized BG beams with a tilt
a0 and a beam width σ0 in the normalized coordinates. This procedure is similar to introducing
the M2 parameter for the effective description of the multimode laser radiation.
Thus, we suggest the following definition for the BG model parameters, where we use the

original one-dimensional Fourier transform of the CR cones (11):
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+∞∫
−∞
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This definition is rigorous for the Gaussian distribution (15). Substituting the Fourier spectrum
of the CR beam (11) to (17), after simple algebra, one can obtain:

a0 = Γ(3/2 + s)/s!, σ2
0 = 1/(2(1 + s − a02)), (18)
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where s=2n+|` | and Γ(x) is a Gamma function. For s=0: a0 ≈ 0.886 and σ0
2≈2.33. Also,

with the growth of s, a0 grows as a root of s, and σ0
2 decreases to 2, which corresponds to the

asymptotic behavior of the parameters (16). A comparison of the modulus of the normalized
Fourier spectrum f (κ) from (11) and (15) with parameters (18) is shown in Fig. 2.

Fig. 2. Modulus of the normalized Fourier spectrum f (κ) for the CR beam are calculated
from the exact formula (11) (thick black line) and the BG approximation (14) (dashed red
line), for n=0, `=0 (a), n=0, `=1 (b) and n=1, `=1 (c). Both functions are normalized by the
maximum value.

In this case, the complex amplitude A0, which determines the normalization of the BG beams
relative to the CR cones, is naturally to obtain from a comparison between the maximum intensity
of the beams at the ρ=ρ0 and ξ=0, using the approximation ρ0 >> 1 and the Eqs. (9) and (10).
Thus, we get:
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As a result, all the model parameters for arbitrary values of n and ` have been obtained. In the
next section, we analyze the behaviour of the proposed BG model for certain space regions, such
as the Lloyd plane with a characteristic multi-ring distribution, the Poggendorff’s rings, and the
Raman spots.

3. Lloyd’s plane and transitional region

Furthermore, the proposed BG model elegantly explains the transition of the classical double-ring
pattern of CR in the Lloyd plane into a multi-ring one reported earlier for the simplest optical
vortex with `>0 [13,18]. As mentioned above, the electric field behind the output facet of
the crystal similarly consists of two BG beams converging and diverging, correspondingly, i.e.
E(ρ,ϕ,ξ)=U(ρ,ϕ,ξ)+U(ρ,ϕ,-ξ)*. We will assume that the light is unpolarized since the exact CR
beam and BG approximation have the same polarization feathers and we will be more interested
in the space propagation properties of such beams. Since the transverse wave vector k⊥ has the
opposite sign for converging and diverging BG beam, we will observe an interference pattern in
the focal plane where they intersect. Its intensity I=E·E* which, in the approximation ρ0 >>1,
will be, up to a constant, equal to:

I(ρ, 0) ∼
1

2πρ
exp

(
−
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2

σ02

)
cos
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2
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where the Gaussian function determines the width of the intensity profile, the tilt parameter a0 is
inversely proportional to the period of the interference, and the phase determines the shift of the
interference picture relative to the point ρ= ρ0. It was previously discussed that the width σ0
weakly depends on the parameters ` and n, but a0 grows as a root of 2n+|` |.

Due to this fact, the interference period with the growth of Laguerre-Gaussian mode indices
will decrease, and, with a fixed area of interference, we will observe an increase in the number of
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dark and light rings, as shown in Figs. 3(a)-(c). Since the phase depends on `, the maximum of
the interference pattern will be either to the right of the point ρ= ρ0 for even `, or to the left for
odd `. It should be noted that the formula (20) was previously obtained in [23], for the case n=0,
`=0. It was used for the phenomenological description of CR laser beams with M2>1.

Fig. 3. The radial intensity profiles of the CR beam are calculated using integrals (3) (blue
dotted curve) and using BG Eqs. (8) (red solid curve). They show growth of the number of
dark and light rings with the growth of ` and n in the focal (Lloyd’s) plane (a-c) and the
formation of the Poggendorff’s rings at the distance of ξ=2 (d-f). Numerical simulations
were performed for ρ0=14 and n=0, `=0 (a, d), n=0, `=1 (b, e), n=1, `=0 (c, f). Associated
transverse intensity distributions are shown on the top right of each figure.

Also, Figs. 3(d)-(f) shows that if we move away from the focal plane by a distance ξ, CR cones
and corresponding BG beams will start to spread from and to the axis, respectively. This will lead
to their spatial separation and formation of the Poggendorff’s rings. Moreover, the separation will
be bigger, the larger the value of the mode indices n or |` |. One of the CR cones subsequently
focuses near the axis, forming a Raman spot, the properties of which we will consider in the next
section.

4. Axial spike and the Raman spot shift

In the focal plane and near it, in the approximation ρ0 >>1, the CR field Cm
(±) for different

values of m do not differ from each other, as is obvious from formulas (9)–(11). Nevertheless,
near the ξ-axis where the radiation is focused, different components will form different spatial
intensity distributions, since in (3) and (13) the order of the Bessel function depends on the index
m. It should be noted that the “focusing” here is employed in a more specific meaning of the
light intensity growth in the near-axis region, since the intensity value directly on the axis for
`+m>0 will be strictly zero. Let’s consider how the components of the BG beam U(ρ,ϕ,-ξ)*,
which correspond to the CR cone C(−), behave for ρ≈0 and ξ>>1. First, consider the behaviour
of the argument of the modified Bessel function in (8), explicitly describing the dependence on
the longitudinal coordinate ξ:

Φ ≈ ρ(σ2
0 (ρ0 − a0ξ)/ξ

2 − iρ0/ξ). (21)

Since the condition ξ≈ρ0/a0 is fulfilled near the Raman spot, the real part of expression (21) is
reset to zero and only the imaginary part remains, which is correspondingly equal to -iρρ0/ξ and
does not depend on σ0.
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Since the argumentΦ is completely imaginary, it is necessary to replace the modified Bessel
function I`+m(-iρρ0/ξ) with the Bessel function J`+m(ρρ0/ξ), which is consistent with the results
of Berry’s paper [1], where the asymptotic of the CR field near the Raman spots was considered.
Besides, as shown earlier, the tilt parameter a0 increases with the growth of n and `, which

is why the Raman spot should focus earlier, shifting closer to the focal plane. To demonstrate
this, we need to consider the argument of the Gaussian function of expression (8) and, using the
approximation ρ≈0 and ξ>>1, we get:

U`,m(ρ, ξ) ∼
1
ξ1/2

exp

(
−
σ2
0 (ρ0 − a0ξ)

2

2ξ2
+ i

ρ0
2

2ξ

)
J`+m

(
ρρ0
ξ

)
. (22)

From (22), it becomes obvious that the maximum value of such a function is reached at the
point ξ≈ρ0/a0. This shifts the Raman spot closer to the focal plane with the growth of the tilt
parameter a0. This statement is illustrated in Fig. 4, on which the CR axial intensity distribution
for different values of the index ` of the input Laguerre-Gaussian mode is calculated.

Fig. 4. The axial distributions of the CR beam intensity are computed numerically from
the CR integrals (3) (first column), and the BG beam Eqs. (8) (second column) for different
values of the OAM `=0 (first row), `=1 (second row) and `=2 (third row) and ρ0=15. One
can see that with the growth of `, the Raman spots move closer to the focal plane. Also,
we calculated the Raman spot intensity profiles (third column) from the exact solution
(blue dotted curve) and the BG model (red solid curve) for different values of the OAM.
Furthermore, for profiles we neglect contribution of the Bessel function in (22), which zeroes
the intensity strictly on the axis for higher-order modes.

5. Renormalization of the Bessel–Gaussian model parameters

The transition from formula (13) to (14), in which the Bessel function is replaced by an
exponential function, in the general case of an arbitrarily large orbital moment ` (within the
paraxial approximation) becomes unsatisfactory for the fixed value of the CR parameter ρ0.
As a result, we predict that the radius of the CR ring is no longer exactly equal to R0 (ρ0 in
dimensionless coordinates) and increases with the growth of `, as shown in Figs. 5(a)-(c).
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Fig. 5. (a) Transverse intensity distributions of the individual CR cone for different CR
parameter ρ0 regimes, such as: ρ0<<1 (left one), where ρmax is a ring radius, for which the
intensity is maximum, and it only depends on the OAM ` of the optical vortex; ρ0>>1 (right
one), where ρmax is completely determined by CR parameter ρ0; transitional area (middle
one), where ρmax both depends on the OAM ` and CR parameter ρ0. (b) The dependence of
ρmax on CR parameter ρ0 for various fixed OAM ` value is demonstrated. (s) For better
clarity, the radial intensity distributions in the focal plane (ξ=0) for individual CR cones are
calculated using the integrals (3). Numerical simulations are performed for ρ0=5 and the
OAM values `=0 (black solid curve), `=3 (blue dotted curve), `=6 (red solid curve) and for
`=9 (green dotted curve). The figure clearly shows the shift of the intensity maximum of the
CR cone with an increase in the value of the OAM `.

We can give a simple explanation for this shift if one remembers that the maximum intensity
of the optical vortex (1) is located on the ring of radius rmax = w0

√
|` |(ρmax =

√
|` |). Therefore,

when one moves from the parameter area where ρ0 >> ρmax>>1 to ρ0 ≈ 0, there should be a
smooth change from the maximum of the CR ring at the point ρ=ρ0 to ρmax, due to which the
center of the ring begins to depend on ` as shown in Figs. 5(b) and (c). Thus, for the case of large
`, it is necessary to renormalize the parameter ρ0 in our BG model. As will be shown below,
we will need to perform this renormalization for the tilt parameter a0 and for the normalization
complex constant A0. We assume that the description in terms of generalized BG beams is valid
and the Fourier-Bessel-Hankel transform for the renormalized BG model beam will have the
form:

um(κ) = Ã0 exp(−σ0
2(κ2 + ã20)/2)J`+m(κ µ̃), (23)

where we introduce the notation µ̃ = ρ̃0 + iσ0
2ã0 with already renormalized parameters to be

found. It is worth mentioning that, we will calculate only first nonvanishing correction to the
parameters of the BG model, since the approximation ρ0 > > 1 is still valid. Thus, the rough
criterion for the applicability of our calculations is the condition ` < ρ0.

So to take into account the effects of large values of OAM `, it is necessary to use the asymptotic
expansion of the Bessel function for large complex arguments and retain component proportional
to 1/κ [15]:

J`+m(κ µ̃) ≈
1√
2πκµ̃

exp
(
−iκ µ̃ − i

`2

2κ µ̃
+ i

π

2

(
` + m +

1
2

))
. (24)
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Decomposing the function 1/κ near κ=a0 up to a linear term and choosing the renormalized
parameters so that (23) equals exactly to (14), after simple algebra, we get:

ρ̃0 = ρ0(1 + ∆/|µ|2), ã0 = a0(1 − ∆/|µ|2),

Ã0 ≈ A0 exp(ia0∆/µ + σ0
2(ã20 − a

2
0)/2),

(25)

where we introduced the notation ∆=`2/(2a0
2). From the formula (25), as a result, we can

conclude that the center of the CR cone actually shifts from the point ρ=ρ0 with the growth of `,
and the tilt parameter a0 will increases with the growth of `, not as fast as before renormalization.
Thus, the dependence of the CR ring radius R0 on the value of OAM ` can be naturally included
in our proposed BG model.

6. Conclusion

In conclusion, we demonstrate that the CR of the input elegant Laguerre–Gaussian beams can
be effectively described through generalized BG beams. This representation has an integration-
free structure and is valid in all spatial regions, including the multi-ring Lloyd’s plane, the
Poggendorff’s transitional region, and near the Raman spots. The quantitative connection between
CR of the elegant Laguerre– Gaussian beams and generalized BG beams is established in terms
of the proposed determination procedure for BG beam parameters. We performed numerical
simulations for different mode indexes of the input elegant Laguerre–Gaussian beam. It was
demonstrated a good agreement between exact solution and our proposed Bessel-Gaussian
approximation model for small indexes. For large mode indexes, our solution perfectly matches
with the exact one. Furthermore, the application of the proposed BG model elegantly explains
the transition of the classical double-ring pattern of CR in the Lloyd plane into a multi-ring one
reported earlier for simplest optical vortexes with `>0 [13]. It is noteworthy that mathematical
elegance and physical clarity of the proposed BG model have allowed us to predict new
phenomenon such as Raman spot shift and dependence of the CR ring radius on the value of
OAM.

Now we outline some implications of the above-mentioned results. The proposed BG model of
CR, in the future, can be extremely beneficial for calculating stable modes of laser resonators with
the CR crystal as the active medium [4,5,24]. Besides, it may boost new studies on the CR laser
resonators, where axicon-shape mirrors are used [25]. Also, because elegant Laguerre-Gaussian
beams are the complete set of solutions to the paraxial wave equation in free space, the proposed
BG model may be very helpful for multi-mode CR applications such as for input incoherent or
semiconductor laser sources [23,26].
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