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Abstract: We use a machine-learning based paradigm to solve the direct and inverse
problems relating to the shaping of optical pulses that occurs upon nonlinear propagation
in optical fibres with a neural network. © 2020 The Author(s)

1. Introduction
The past decade has seen significant impact of machine learning on basic research, with the use of advanced algo-
rithms tools in data analysis resulting in new insights into many areas of science. In the field of photonics, machine
learning methods have been applied in various ways to optimise and analyse the output of an optical fibre system
– see, e.g., [1–4]. Pulse shaping based on nonlinear phenomena in optical fibres has become a remarkable tool to
tailor the spectral and temporal content of light signals [5], leading to the generation of a large variety of optical
waveforms such as ultra-short compressed pulses, parabolic-, triangular- and rectangular-profiled pulses. Yet, due
to the typically wide range of degrees of freedom involved, predicting the behaviour of nonlinear pulse shaping can
be computationally demanding, especially when dealing with inverse problems. This potentially creates a severe
bottleneck in using numerical techniques to design and optimise experiments in real time.

Here, we present a solution to this problem using machine learning to solve both the direct and inverse problems
relating to pulse shaping with a neural network (NN), bypassing the need for numerical solution of the governing
propagation model. Specifically, we show how the network accurately predicts the temporal and spectral intensity
profiles of the pulses that form upon nonlinear propagation in fibres with both normal and anomalous dispersion.
We also demonstrate the ability of the NN to determine the nonlinear propagation properties from the pulses
observed at the fibre output and to classify the output pulses according to the initial pulse shape. Furthermore, we
show how our model can handle the nonlinear shaping of initially chirped pulses.

2. Model-free direct and inverse problems
The data from numerical simulations of the nonlinear Schrödinger equation (NLSE) is used to train a NN and
validate its predictions. We employ a feed-forward NN relying on the Bayesian regularisation back propagation
algorithm and including three hidden layers with fourteen neurons each. The NN learns the NLSE model from an
ensemble of several thousand simulation data (both temporal and spectral) corresponding to a mix of initial pulse
shapes and randomly chosen combinations of input parameters: normalised propagation length ξ and soliton-order
number N. After training, the NN is tested on a distinct ensemble of data that is not used in the training phase.

Figure 1(a–b) shows examples of the temporal and spectral profiles of an initially Gaussian pulse obtained
from the network for selected input parameters. The predictions from the algorithm show excellent agreement
with the results of the NLSE propagation model over most part of the pulse shape and spectrum. The network is
able to reproduce the large temporal and spectral broadening experienced by the pulse upon propagation in the
normal dispersion regime. With anamorphic sampling of its output, the network is also able to resolve the details
of the temporally compressed pulse and the concomitant more complex structure of the spectrum that are observed
after propagation at anomalous dispersion. Nevertheless, some discrepancies with the expected results are visible,
and are more pronounced in the anomalous regime in which the propagation dynamics are more complex and
involve compression and/or splitting stages over short propagation distances. The distributions of values of the
(normalised) mean squared deviations of the NN predictions from the NLSE simulation results for the output
pulse shape and spectrum over the sample space (not shown here) indicate that, remarkably, more than 90% of the
error realisations are well confined to values below 0.02, but some error values are spread out over a wider range.
This deviation mostly occurs in the anomalous dispersion regime.

For the inverse problem at hand, we ask the trained network to categorise new unlabelled simulated output
pulses according to the initial waveform and to retrieve the associated propagation parameters ξ and N as well
as the dispersion regime of the fibre. The results are summarised in Fig. 1(c–d). The estimation errors on the
propagation length [Fig. 1(c)] and soliton-order number (defined as the difference between the predicted parameter
value and the target value extracted from the NLSE simulation data) are close to zero for all test realisations except
those corresponding to short propagation lengths or low input powers, for which the changes in the temporal and



spectral shapes of the propagating pulse are negligibly small, thus leading to similar shapes for different ξ or
N. After exclusion of the data points falling into the critical parameter region, we can expect errors on ξ and N
with root mean squared deviations of 0.085 and 0.076, respectively [Fig. 1(d)]. The network is able to work out
the sign of the fibre dispersion perfectly. The classification accuracy of the NN algorithm is remarkably high,
with a number of classification errors representing less than 0.01% of the total number of input samples. Initial
Gaussian, hyperbolic secant and parabolic pulses are detected correctly by the model. Moreover, the errors in
the identification of super-Gaussian pulses occur in regions of the parameter space where we know that the NN
algorithm has difficulty making correct predictions, that is, for short propagation lengths and in the anomalous
dispersion regime of the fibre.

Fig. 1. (a–b) Direct shaping problem. Temporal (panels 1) and spectral (panels 2) intensity profiles of an initial
Gaussian pulse in (a) a normally dispersive fibre with ξ = 2 and N = 4, and (b) an anomalously dispersive
fibre with ξ = 1.8 and N = 2.5. The predictions from the NN (blue circles) are compared with the results of
NLSE numerical simulations (black curves). Also shown are the input intensity profiles (red dotted curves).
(c–d) Inverse shaping problem. (c) Map of estimation error values on the normalised propagation length ξ

in the two-dimensional space (N,ξ ) for both normal and anomalous dispersion, when the NN is interrogated
with randomly chosen new simulated output pulses from the fibre corresponding to an unlabelled mix of input
Gaussian, hyperbolic secant, parabolic and super-Gaussian pulses. The red dashed lines delimit the data domain
that is used for the statistical error analysis. (d) Distribution densities of the estimation errors on N (subplot d1)
and ξ (subplot d2).

We also investigate the nonlinear shaping of initially chirped pulses, for which the chirp coefficient is accounted
for as an additional input parameter. We find that the direct problem NN performs impressively in reproducing the
output pulse shapes. The values of the input parameters obtained from the inverse problem network algorithm are
in good agreement with the known values from the simulation data, but the estimation errors are higher than those
made in the case of initially transform-limited pulses.

3. Conclusion
We have successfully used a supervised machine-learning model based on a NN to solve both the direct and
inverse problems relating to the nonlinear pulse shaping in optical fibres. Details of this work can be found in [6].
Our results show that a properly trained network can greatly help the design and analysis of fibre-based shaping
systems by providing immediate and sufficiently accurate solutions. Although demonstrated here in a fibre optics
context, the principle of using NN architectures to solve wave equation-based inverse problems is expected to
apply to many physical systems.
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