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Abstract—In this paper, we experimentally demonstrate the
combined benefit of artificial neural network-based nonlinear-
ity compensation and probabilistic shaping for the first time.
We demonstrate that the scheme not only compensates for
transceiver’s nonlinearity, enabling the full benefits of shaping
to be achieved, but also the combined effects of transceiver
and fiber propagation nonlinearities. The performance of the
proposed artificial neural network is demonstrated at 28 Gbaud
for both 64-QAM and 256-QAM probabilistically shaped systems
and compared to that of uniformly distributed constellations.
Our experimental results demonstrate: the expected performance
gains for shaping alone; an additional SNR performance gain up
to 1 dB in the linear region; an additional mutual information
gain of 0.2 bits per channel use in the constellation-entropy
limited region. In the presence of coupled transceiver and
fiber-induced nonlinearities, an additional mutual information
enhancement of ~0.13 bits/symbol is experimentally observed
for a fiber link of up to 500 km with the aid of the proposed
artificial neural network.

Keywords—Transceiver nonlinearity, machine learning, ANN,
nonlinear equalizer, probabilistic shaping, fiber nonlinearity.

I. INTRODUCTION

To meet the fast-increasing demand of data traffic, high-
order quadrature amplitude modulation (QAM) formats com-
bined with probabilistic constellation shaping (PCS) have
attracted a lot of attention in recent years [1]-[5]. Capacity
demand means we need higher order QAM and every last
dB of margin to maximally utilise the installed fiber plant.
The principle behind PCS is to shape the signal constellation
as close as possible to the optimum constellation for a given
channel. For a Gaussian channel, a near-optimal signal-to-noise
ratio (SNR) gain of 1.53dB is feasible when employing PCS
technique [2]. In optical communication, PCS is employed to
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limit the occurrence of high-power symbols in order to increase
the SNR for all other symbols at the same mean power. At the
optimum SNR, the slight loss in maximum capacity (entropy)
from the reduced use of higher power symbols is more than
offset by the SNR gain enjoyed by the lower power symbols.
Although the PCS is one of the most promising candidates for
next generation transponders, its impacts on the transceiver
including fiber channel have not been explored in detail.

Generally speaking, the implementation of high-order mod-
ulation formats such as 64-QAM and beyond is often a
big challenge due to the requirements for high SNR and
high linearity of digital-to-analog converters (DACs)/analog-
to-digital converters (ADCs). It is predicted that this problem
may be more severe when PCS signals are modulated as a
result of the enhancement of transceiver nonlinearity. This
nonlinear enhancement comes from the fact that PCS signals
generally have higher peak-to-average power ratio (PAPR) than
that of uniformly distributed constellations [6]. In addition,
PCS signals may require digital signal processing (DSP) adap-
tation for data recovery because conventional unsupervised-
DSP algorithms are generally not compatible with shaping
systems [1], [7].

The transceiver nonlinearity may be compensated using
static digital filters (see [8], [9] for uniform QAM constel-
lations), although it is difficult to estimate filter parameters
due to mixing of nonlinear effects from different transceiver
components such as DACs/ADCs and optical modulators.
Under the impact of fiber nonlinearity, other nonlinear equal-
izers based on inverse Volterra series transfer functions may
also be deployed to partially invert the nonlinear distortion
induced by the transmission link. However, the Volterra-based
nonlinear compensation (NLC) has shown worse performance
than an optimized machine learning and their complexity is
also high [10], [11]. Recently, a supervised machine-learning-
based technique, namely artificial neural network (ANN), has
been proposed and studied for uniform 64-QAM as a pre-
distortion compensator for impairments induced by a low
resolution DAC, but ignoring other nonlinear effects [12].

This same increase in PAPR also increases the susceptibility
of PCS systems to fibre nonlinearity. Coupling of transceiver
and fibre nonlinearity further complicates analytical descrip-
tions due to the interplay of the various nonlinear terms,
component bandwidths, and system memory (dispersion) of
the multiple components of the link, which not only vary
from link to link, but which may also vary with time. This
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has drawn a great attention to applications of machine learn-
ing for fiber communications. Several common applications
of machine learning in optical systems include performance
monitoring and fiber-induced nonlinearity compensation [13]—
[19]. Among them, the ANN is probably the most well-known
algorithm that has been widely investigated in uniform QAM
fiber communication systems. This is because the ANN is
an effective solution for compensating both stochastic and
deterministic distortion [15]. Moreover, it can be easily config-
ured to operate as either nonlinear regression or classification.
Machine learning-based algorithms, such as ANN and deep-
learning algorithms, have also been implemented for the pur-
pose of constellation design, also known as geometric shaping
to improve tolerance to fiber impairments [20], [21]. The
geometric shaping generally changes location of constellation
points, whilst PCS assumes a fixed position for each constel-
lation point but varies the probability of use. For practical
implementation, conventional QAM grids such as 16-QAM
and 32-QAM constellations are desirable due to their backward
compatibility to matured DSP algorithms which have been
developed for conventional optical systems. The geometric
shaping is out of the scope of this work.

In this paper, we investigate for the first time the use
of ANN to reduce implementation penalties due to coupled
transceiver-fiber nonlinearity to enable the gains of high-order
QAM and PCS to be more fully achieved. This work is
extended from [22]. In [22], only transceiver’s nonlinearity
was taken into account while studying the effectiveness of
an ANN-based NLC for PCS systems. The proposed ANN-
based compensator is experimentally demonstrated for the PCS
dual-polarization (DP) 28 GBaud 64/256-QAM system with
different shaping factors (unshaped, moderate and high). Its
performance is experimentally assessed for coupled transceiver
nonlinearity, and coupled transceiver-fibre nonlinearity over
300 km and 500 km standard single mode fiber (SSMF) links
employing inline Erbium-doped fiber amplifier with 100 km
spacing. While there is no significant improvement observed
in PCS 64-QAM, a SNR gain of 1dB is experimentally
demonstrated for mitigating transceiver nonlinearity for 256-
QAM using the proposed ANN-based NLC scheme at a
spectral efficiency (SE) threshold of 6 bits/symbol. For high
regime of SNRs, the SE gain in terms of bits/symbol saturates
at 0.2. For fiber transmission, by using the proposed NLC
for compensating transceiver nonlinearity alone, the SE gain
is retained for uniform 256-QAM with the distance of up
to 500km. However, considerable degradation of expected
SE gain is observed for the shaping 256-QAM signals as
the result of the enhancement of coupled transceiver-fiber
nonlinearities. The ANN-based NLC thus requires to be re-
trained for shaping systems to cope with this nonlinearity
enhancement. An additional mutual information (MI) gain of
~0.1 bits/symbol (total gain of 0.13 bits/symbol) is observed
for the PCS 256-QAM system over a transmission distance of
500 km SSMF when the proposed ANN-based NLC is used
to compensate for the coupled nonlinearity between the two
transceivers and the fiber.

II. PROBABILISTIC CONSTELLATION SHAPING AND
PRINCIPLE OF ANN-BASED NONLINEAR EQUALIZER

A. Probabilistic constellation shaping: a brief introduction

Constellation Shaping improves the performance of a linear
transmission system by increasing the proportion of low energy
symbols to reduce the mean power, whilst retaining a pro-
portion of high energy symbols to minimise loss of capacity.
In this work, this shaping is performed according to the the
well known Maxwell-Boltzmann (MB) probability distribution
(hence PCS), which is known to be the optimum for a linear
additive white Gaussian noise channel, for generating a set of
probability mass functions (PMFs). For uniformly distributed
constellation points, the PMF Px (x;) is given by [2]:
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where x; is one point of the input alphabet, M is the number of
constellation points and & is the shaping factor. For maximum
transmission capacity, the shaping factor needs to be optimized
as a function of signal power, modulation format and SNR
[2]. We deployed square-QAM to simplify this optimisation
to a one-dimensional (1D) optimization. Specifically we focus
on 64-QAM and 256-QAM, corresponding to 8-pulse ampli-
tude modulation (PAM) and 16-PAM, respectively. We also
assumed that the location of shaped symbols are unchanged
under the shaping, i.e. their real and imaginary amplitudes are
integers of +(2k+1), k =0,1,...,/M /2 — 1, for calculating
PMFs from Eq. 1 for PCS systems.

Fig. 1 shows the comparison in terms of MI in bit/symbol
(representing the maximum amount of information bit in a
symbol that can be transmitted with a vanishing probability
of error, also known as symbol-wise achievable information
rate [23]), between 64-QAM and 256-QAM under different
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Fig. 1: Comparison of mutual information for 64-QAM (solid lines) and 256-
QAM (dashed lines) with uniform (x = 0, red lines), moderate shaping (purple
lines), strong shaping (blue lines), and shaping optimised at each SNR for each
format (black lines). Shaping factors for each format and strength shown in
legend. Dashed line represents the Shannon limit.
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shaping factors. Note that k = 0 corresponds to the uniform
constellation (no shaping). In this paper, MI is estimated
by a Monte-Carlo simulation from N input-output symbol
pairs (x,yx). The input symbols are generated randomly
according to the the PMF shown in Eq. 1. The output signals
are the sum of the input signals and additive white Gaus-
sian noise, such that the joint pQrObability density function
is qy|x(ylz) = ﬁexp(—ly;ﬂ ) with o2 being the noise
variance. The MI is then calculated using the following equa-

tion [24]:
M= L ilog qy|x (Yrlrr)
_ 1 S
N &SN avix (ukley) Px (25)

In Fig. 1, the Shannon capacity limit in Gaussian channel is
also given as log, (1+SNR) for reference (labeled as “Shannon
limit”). In addition to the unshaped case (x = 0), four shaping
rates are considered in this paper: k1 = 0.07 and ko = 0.03
for PCS 64-QAM; and k3 = 0.019 and k4 = 0.009 for
PCS 256-QAM. Fig. 1 shows numerically the MI evolution of
64/256-QAM under these shaping rates with respect to SNR.
For a single modulation format, the MI curves associated with
uniform constellation (no shaping) and optimal constellation
(shaping rate optimized at each SNR for a full shaping gain)
are also provided. The chosen shaping rates are adopted from
[25] in which only two fixed PMFs for each modulation format
are sufficient for a wide SNR range with a negligible penalty
(at about 0.1 dB of SNR) to the optimum shaping. The entropy,
which indicates the maximum information rate at infinite SNR,
of the investigated PCS systems with shaping rates of x1, ko,
ks and k4 1s 4.91, 5.66, 6.79 and 7.57, respectively. Fig. 1 also
confirms numerically the maximum entropy and the SNR gain
where the observed shaped performance is within 0.1 dB SNR
of the maximum possible shaped performance. These results
are summarised in Table 1.

)

B. Impact of PCS signals on transceiver

It is clear that PCS changes the statistical properties of
the transmitted signal. In this section, the PAPR metric is
investigated for PCS signals with different shaping factors. The
PAPR of a given signal z(t) is the ratio of its peak power Ppeax

to its average power Pyye as PAPR (dB) = 10log,, I;‘;f‘k.

Fig. 2 shows the statistics of PAPR in terms of (g:omple-
mentary cumulative distribution function (CCDF) for different
QAM signals under the three considered shaping factors. The
vertical axis is the CCDF showing how often a certain PAPR
value in the horizontal axis is exceeded. The CCDF curves

on this figure were computed numerically from digital signal

TABLE I: Parameters of the PCS systems studied in this paper.

shaping suitable

QAM type K entropy SNR (dB)
64 strong 0.07 4.91 (-, 12]
64 moderate | 0.03 5.66 [12, 16]
64 none 0 6 21, -)
256 strong 0.019 6.79 (-, 18]
256 moderate | 0.009 7.57 [18, 22]
256 none 0 8 [22, -)
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Fig. 2: Numerically statistical quantity of PAPR in terms of complementary
cumulative distribution function for (a) 64-QAM and (b) 256-QAM. Colors
represent uniform (red), moderate shaping (purple) and strong shaping (blue).

after pulse-shape filtering (using a root-raised-cosine (RRC)
filter with 0.1 roll-off factor and up-sampling at 2 samples
per symbol). Simplicity, let z(k), & = 1,2,...N being the
signal to measure probability of a given peak power, the CCDF
of PAPR can be calculated through 4 steps: (1) computing
the mean power E{|z(k)|?} with E{.} being the expectation
operator, (2) comzputing probability density function (PDF)
of 10loglo%, (3) calculating cumulative distribution
function (CDF) f)rom the PDF, and (4) CCDF=1-CDF. Fig. 2
shows that the CCDF trends for both QAM formats are almost
identical. The shaping signals exhibit larger PAPR than the
uniform constellation cases (v = 0) and the more shaping,
the higher the PAPR. Specifically, at a probability level of
1 %, the PAPR is 0.7 (1.5) dB higher with moderate (strong)
shaping than without shaping for both 64-QAM and 256-QAM
signals. The same amount of PAPR increment is also seen for
256-QAM signals. The PAPR increments result in an increase
in the impact of transponder nonlinear distortions, unless the
linear operation ranges are increased accordingly. The higher
PAPR also imposes more Kerr-effect induced nonlinear noise
which is proportional to the instantaneous power of the signal
propagating through optical fiber.

C. Description of ANN-based NLC

Fig. 3 shows the structure of the simple feed-forward
network deployed in this paper as the NLC, and is a typical
ANN configuration. The aim of ANN algorithm is to find
a function that maps the input to the desired target through
a number of intermediate steps produced by neurons in the
network. In general an ANN would comprise 4(m + 1) real-
valued inputs and 4 real-valued outputs with j hidden-layers
of h; neurons each. m represents the memory depth of the
circuit, whereas the factor of 4 represents real and imaginary
components of dual-polarization signals.

Within each neuron (Fig. 3-b), there are three calculations:
(1) weight multiplication of inputs (subscripts 1,2, ...,n), (2)
summing the weighted inputs and a bias (the input with
subscript 0), and (3) passing the results of (2) through an
activation function. In the proposed ANN-based NLC scheme,
we selected a network with 5 memories (m = 5, i.e. current
symbol with two symbols towards the pass and two symbols
towards the future), two hidden layers (5 = 2) and 10 neurons
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Fig. 3: (a) Structure of artificial-neural-
network-based nonlinear compensation
(ANN-based NLC). (b) Input-output
relationship of a “neuron” in hidden and
output layers.

per layer (h; = 10 for all j). Thus, the input vector of the
proposed NLC has 24 components, i.e. 4 x (5+ 1) = 24. The
activation function used in each hidden layer is a nonlinear hy-
perbolic tangent sigmoid transfer function, whereas 4 neurons
of the output layer use a linear transfer function.

The ANN-based NLC was operated in two phases: the
training phase and the operational phase. As a supervised
learning scheme, the training phase needs information of
transmitted data. We used ~28 000 and at least 300 000 QAM
symbols in the training and the operational phase, respectively.
For each configuration (format, shaping factor, fibre launch
power), the training phase was carried out at initialisation. All
the performance metrics were measured on the data in the
operational phase using the same trained ANN.

The training phase is to optimize the weights and bias of the
ANN. For this we used the batch Levenberg-Marquardt back-
propagation algorithm (using gradient descent) [26]. ~28 000
QAM symbols in the training phase were divided into two
sets: ~23 000 symbols (batch size) for the training set, which
is used for computing the gradient and updating the weights
and biases, and ~5000 for the validation set, which acts as
pre-test to avoid over-fitting and under-fitting. At the very
beginning of the training (state 0), initial weights, 6y, are
generated randomly. After the k" epoch (the number of epochs
reflects the number of times that the learning algorithm will
work through the entire training data set), application of the
weights 0y to the received samples r gives an ANN output
Yo, (1), i.e. forward propagation. The difference between the
ANN output yp, (r) and the expected symbols T (targets)
is then used to calculate the loss function for that epoch
Jo = E{ys, (r) —T}>. Next, the gradients of the loss function
(partial derivatives of the loss function with respect each
weight) geﬁ, are calculated in a back-propagation manner.

01 = 0 — %. This cycle repeats on the same 23 000
symbols until the minima of the loss function (if validation
performance increases more than 6 times since the last time it
decrease) or the maximum number of epochs (100) is reached.
Fig. 4 shows an example of the mean squared error (MSE)
between the transmitted and received data as a function of
number of epochs for uniform 256-QAM during the training
and validation of the ANN. As clearly shown in this figure, the
MSE:s for both training set and validation set decrease when
the number of epochs increases. The MSEs saturate at around
0.2 % after 20 epochs and that both MSEs are close to each
other means no over/under-fitting issue with the training. After
the training, the resultant optimum parameters and the fiber,
are used with the ANN as the nonlinear compensator.

In the operational phase, the received signals are simply
compensated by passing the received signals through the
trained ANN without any further adaptation. It is reasonable
to assume that the two nonlinearities are slowly varying in
time (fiber nonlinearity due to amplifier output power drift
and polarization mode dispersion evolution, and transmitter
nonlinearity due to RF component aging). Thus, the training
phase was only performed once at the optimum conditions, i.e.
at the highest optical signal to noise ratio (OSNR) in back-to-
back or at the optimum launched power in fiber transmissions.
Whether or not the trained ANN in back-to-back can be
deployed in the operational phase for fiber transmissions will
be discussed more in detail in Section IV.

Regarding the complexity of the proposed scheme, this
is a typical configuration of an ANN in which the detail
analysis of the complexity of both training and operational
phases could be found in [17]. In practice, the training
process is typically taken place once and off-line. Due to
that reason, the training process is normally not counted
toward the implementation complexity for a practical system
[16]. The number of real multiplications per symbol of the
proposed ANN-based NLC operating in a forward manner
is easily calculated as 380 real multiplications per symbol,
ie.4x (5+1) x 10410 x 10+ 10 x 4 = 380. Note that the
activation function in each node can be implemented efficiently
by using a look-up-table [15]. As the number of transmission
configurations, i.e. the combination of modulation formats
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(64/256-QAM), different channel conditions (back-to-back,
300km and 500km links) and different shaping factors, is
large, the optimizations for each transmission configuration in
terms of number of hidden layers, the number of neurons in
each layer and the number of memories were not carried out in
this work. We tested the ANN under some ANN’s parameter
sets for the uniform 256-QAM after 500 km fiber transmission
and fixed at the nearly-optimum parameter set, i.e. 5 memories
with 2 hidden layers and 10 nodes each layer, for all other
configurations studied in this paper.

III. EXPERIMENTAL SETUP

The experimental setup of the 28 GBaud PCS DP 64/256-
QAM system is shown in Fig. 5. At the transmitter, four
streams of 8/16-PAM data, each of ~60000 symbols, with
desired PMFs according to the aforementioned shaping rates,
were generated from four sequences of uniformly distributed
pseudo-random bit sequences (part of the Gold sequence
231 — 1 with four different seeds: 5, 10, 15 and 20) using
constant composition distribution matching [27]. Then, PCS
64/256-QAM signals on each polarization were formed by
combining two independently shaped 8/16-PAM sequences
which represent their real and imaginary components. The
shaped symbols were normalized for a unit average power and
multiplexed with 5% of 4-QAM known pilot symbols (i.e. 1
pilot in every 20 symbols, equivalently 5 % pilot overhead) to
aid the DSP algorithms at the receiver for channel equalization
and phase noise compensation. The power of 4-QAM pilot
symbols was also normalized to 1 before the multiplexing.
There was no DSP adaptation for the implemented PCS in
this paper because most of deployed DSP algorithms relied
on pilot-aided symbols. The data was then up-sampled at 2
samples-per-symbol and pulse-shaped by a RRC filter with

a roll-off factor of 0.1. A special preamble of 9ns (equiv-
alently 256 symbols long), which consists of two repeated
parts following [28], was inserted at the beginning of the
payload to aid frame synchronization at the receiver. The signal
was finally decomposed back to real and imaginary parts,
scaled by its maximum amplitude and converted to integer
form within the range of [—127,127] (8-bit DAC resolution).
After this off-line processing, the signal was loaded into an
Keysight arbitrary waveform generator (4-channel 8-bit DAC
sampling at 56 GSa/s) and subsequently converted into the
optical domain by applying the 600 mV pp signals to the inputs
of a a commercial multi-format DP optical transmitter (laser
linewidth ~100kHz on 192.4THz). An Erbium-doped fiber
amplifier (EDFA) followed by a variable optical attenuator
(VOA) was used to control the launched power. The inset of
Fig. 5 shows an example of the spectrum of 28 GBaud DP 64-
QAM signal after the optical modulator from which the drive
amplitudes were estimated in the region of 55 % of Vpi.

Two configurations were set up: optical back-to-back and
inline-EDFA transmission. For the optical back-to-back con-
figuration, the VOA at the transmitter together with an EDFA
before the coherent reception were used to vary OSNR. With
the fiber transmission, two distances were considered: 300 km
and 500 km SSMF which consist of 3 and 5 in-line EDFAs
(6dB noise figure) - each after 100km of SSMF (Sterlite
G.652.D) for compensation of the fiber loss, respectively.

After the transmission, the optical signal was first converted
into the electrical domain using an intradyne coherent receiver
which includes a local oscillator (LO) (linewidth ~100kHz),
a 90° hybrid and four pairs of balanced photo-detectors.
Electrical signals were captured and digitized by a real-time
oscilloscope ( 8-bit ADCs) with sampling rate of 100 GSa/s
before off-line processing, ten oscilloscope captures were col-
lected for each OSNR in the optical back-to-back configuration
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or for each transmission distance and each launch powers,
giving frames of 60000 symbols each oscilloscope capture.

The off-line DSP started with signal resampling at 2 samples
per symbol. Then, the digital signals were formatted/scaled by
a signal conditioning module. This module was also used to
correct for the nonorthogonality between in-phase and quadra-
ture components of the signal based on the Gram—Schmidt
algorithm [29]. For the fiber transmission, the impact of static
chromatic dispersion (CD) was removed simply by using an
inverse function of CD in the frequency domain. The timing
recovery and frequency offset error correction algorithms were
placed before the matched-filtering using a Gardner phase
detector and a conventional Fourier-transform-based method,
respectively [30], [31]. After the matched-filtering, the frame
synchronization was performed by using the Schmidl & Cox
algorithm with the aid of the preamble [28]. For the channel
equalization, a pilot-aided butterfly-structure adaptive equalizer
(21 taps) was used. First, the filter coefficients were adapted
at pilot locations using the well-known constant-modulus algo-
rithm. Once the filter converged, it was applied for the whole
signal to cancel linear effects and polarization demultiplexing
[32]. Phase noise was estimated and compensated using a
conventional pilot-aided (CPA) method. The CPA estimated
the phase noise in a block-wise manner in which 8 pilots in
each block was used for noise averaging [33]. After this stage,
the ANN-based NLC was deployed to compensate for the
nonlinear impairment from the transceiver and/or the optical
fiber. Finally, just before QAM de-mapping, the pilot symbols
were removed and only PCS 64/256-QAM symbols were taken
into account for MI measurements followed Eq. 2. Effective
SNR, which was measured from received constellations at the
end of DSP chain, was also reported. Its reflects all transceiver
impairment and the imperfection of the DSP chain. It was
calculated from transmitted symbols and received symbols
after the DSP chain as [34]

M
2= Px () |uy)?
M ’
Zj:l Px (xj)o—?

where 11; and o; are the mean and variance of the received
symbols y; that belong to the transmitted symbol ;. For each
oscilloscope, a frame length of ~60000 symbols per polariza-
tion was captured. Around the first half of this frame (~28 000
symbols) was used for training in the training phase whereas
the second part of this frame was used in the operational phase
to evaluate the performance of the proposed NLC scheme.
The overhead used for training was negligible for the analysis
because it took place one time at the highest OSNR condition
in back-to-back or at the optimum launched power in the fiber
transmission. Both MI and effective SNR were averaged from
9 oscilloscope captures, each of dual polarization.

SNR.jt = (3)

IV. RESULTS AND DISCUSSION
A. Optical back-to-back performance

1) Implementation penalty: First of all, the implementation
penalty was verified for both 64 and 256 PCS QAMs in the
optical back-to-back setup when no NLC was used in the DSP

chain at the receiver. Shown in Fig. 6 is the effective SNR as a
function of OSNR for all investigated PCS systems. The theory
curve in this figure is derived from OSNR in a reference optical
bandwidth of 12.5 GHz as %\%5% for dual polarization
with BW being the signal bandwidth [35].

Fig. 6 indicates relatively same implementation penalty with
<0.5dB variation in the effective SNR for the two studied
QAM formats suggesting that the impairments themselves are
not dependent on the modulation format or shaping factor. For
the low OSNR regime (<19 dB), the effective SNR increases
linearly with the OSNR with the implement penalty of less
than 2 dB. For the high regime of OSNR, however, this trend
is no longer linear due to the imperfection of the DSP chain
and the impact of the transceiver such as limited effective
number-of-bits and limited bandwidth of DACs/ADCs, as
well as nonlinear distortions. It is worth to mention that the
implementation penalty of the uniform 256QAM is ~0.5dB
more than that of the others shown in Fig. 6 due to the
vulnerability of transceiver for high-order QAMs.

2) Mutual information gain obtained by ANN-based NLC:
Fig. 7 shows the system performance with and without ANN-
based NLC in terms of MI versus SNRs (derived from OSNRs)
for DP 64-QAM (Fig. 7-a) and 256-QAM (Fig. 7-b). In this
optical back-to-back experiment, for each QAM and at each
shaping factor, the training phase was took place once at the
highest OSNR condition. Then, the trained ANN was used for
compensating the transceiver nonlinearity for all other OSNRs.

For 64-QAM without using the NLC (Fig. 7-a), around
1 dB SNR shaping gain is experimentally demonstrated for the
SNR regime of <21dB. As shown in the right-hand vertical
axis of Fig. 7-a, which shows the difference in terms of MI
between the system without NLC and the system with the aid
of ANN-based NLC, little improvement (< 0.05 bits/symbol)
is observed for all 64-QAM systems under test. However,
the improvement is not the same for all studied shaping
rates. As the SNR increases, the system performance becomes

23 ® 64QAM uniform 0.5dB
21 A 64QAM moderate shaping
® 64QAM strong shaping
19 0 256QAM uniform -
— A 256QAM moderate shaping - '
o . 1
S 17 o0 256QAM strong shaping ‘(\Q\?’r fitting : :
o« Theory 7 '
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=z 15 ] i
- L
< ;/F} 213 N
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4
D 207 E%a 0©
¢ 11 Iffg 1dB
) o1 g
]
7 19.5 &
29 31 33 35
5

9 13 17 21 25 29 33
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Fig. 6: Effective SNR versus OSNR (0.1 nm resolution bandwidth) for all
studied constellation shaping 64/256-QAM systems.
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Open symbols: with ANN when the ANN-based NLC was used to compensate for the
Filled symbols: without ANN 0.45 coupled nonlinearities at the receiver. Without using NLC, the
7 shaped 256-QAM shows experimentally ~2 dB SNR gain over
0.4 the uniform 256-QAM at the same MI of 5.5 bits/symbol.
Taking into account of ~0.5dB SNR extra implementation
=6.5 0.35 penalty for the uniform 256-QAM, the shaping gain alone is
=3 thus ~1.5dB SNR, which is higher than that of 64-QAM. This
s 6 0.3 is what we expect for high-order PCS QAM (Fig. 1).
é = When deploying the proposed ANN-based NLC for 256-
5 025 © QAM, the performance improvement in terms of MI is signif-
Eg55 = icant — up to 0.2 bits/symbol as depicted in the right-hand
g 0.2 vertical axis of Fig. 7-b. For SNRs below 25dB, the gain
5 provided by the proposed NLC for the shaped 256-QAM is
2 5 0.15 clearly higher than that of the uniform one. The improve-
ment for the strong and moderate shaping systems equipped
% NLC gain in uniform 0.1 with the NLC saturates at around 0.13 and 0.21 bits/symbol,
4.5 X NLC gain in moderate shaping respectively, whereas we do not see the gain saturation for
+ NLC gain in strong shaping 0.05 the uniform 256-QAM, which is supposed to be higher than
4 0 that of shaped ones as demonstrated in PCS 64-QAM. This
is because we do not have high enough effective SNR for
15 17 1 11 23 25 27 29 31 33 the uniform 256-QAM to reach its entropy. Fig. 8 plots NLC
SNR (dB) gain in terms of bits/symbol against MI for this 256-QAM
(b) 256-QAM under three studied shaping factors. Interestingly, at a same

Fig. 7: Performance in terms of MI versus SNR (filled and/or open symbols,
left-hand vertical axis) and MI gain provided by ANN (right-hand vertical
axis) for probabilistic constellation shaping systems: (a) 64-QAM and (b) 256-
QAM. Red, purple and blue symbols represent uniform, moderate and strong
shaping, respectively. Open symbols and filled symbols are the MI with and
without ANN, respectively. The MI-gain due to the ANN are presented in star,
cross and plus markers for uniform, moderate and strong shaping, respectively.
All lines represent curve-fitting.

increasingly dominated by the distortion from the transceiver,
in this case, mainly the optical modulator and the DACs/DACs.
The distortion is higher for constellation points far away from
origin. Therefore, for weaker levels of shaping these higher
amplitude points are more prevalent, and so the potential
compensation gain is higher.

Fig. 7-b shows the performance of the 256-QAM under the
three studied shaping factors as well as the MI gain obtained

level of MI, the ANN-based NLC gives relatively the same
SE improvement regardless of the tested shaping factors until
the saturation point of each shaping factor. It suggests that
one may easily estimate for a potential improvement when
using the proposed NLC for any any shaping factors at a
given SE. In terms of SNR gains, the proposed transceiver
compensator gives ~1dB SNR gain for all studied 256-QAM
at the same MI threshold of 6 bits/symbol. This SNR gain even
goes as high as 2 dB at the threshold of 6.5 bits/symbol for the
moderate shaping system, as illustrated in the left-hand vertical
axis of Fig. 7-b. Whilst the trends in improvement due to the
ANN are in line with expectations for both 64-QAM and 256-
QAM, the level of improvement is low for the configuration
employed in 64-QAM, and so for the fiber transmission, we
focus on 256-QAM.

Fig. 9 visually shows an example of constellations with and
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Fig. 9: An example of constellation-diagram comparison without (a) and with

(b) ANN-based nonlinear compensation (NLC) for strong shaping 256-QAM
at 32 dB SNR. Measured mutual information of (a) and (b) are 6.48 and 6.61

bits/symbol, respectively.
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Fig. 10: Performance of uniform 256-QAM in terms of BER versus SNR with
and without ANN.

without using the nonlinear compensator for strong shaping
256-QAM at the same 25dB SNR. The NLC compensates
for the transceiver nonlinear distortion which can be seen
by comparing the constellation points with moderate-to-large
amplitudes. In these constellations, the red crosses denote the
distorted version of the transmitted constellation as the result
of transceiver nonlinearity. They were computed as the mean
values of received symbols that belong to each constellation
point in the ideal constellation. As clearly shown in this figure,
the distance on either real or imaginary part between two
consecutive red crosses are no longer even, which is supposed
to be for the transmitted constellation. For all experimental
MI measurements in this work, the ideal constellation (i.e.
transmitted alphabets) was first mapped to this distorted con-
stellation before substituting into Eq. 2. It is worth to mention
that there is no difference for effective SNR measurements
in Eq. 3 using either distorted or ideal constellation. By
comparing the received constellation with and without ANN
(Fig. 9), it can be seen that the constellation with the aid
of ANN is less “scattered”, especially at the regimes with
moderate-to-large amplitudes, leading to an improvement of
~0.13 bits/symbol. The Euclidean distances between the mean
values of the constellations are more “even” for the case with
ANN than that of the case without ANN. Another observation
from Fig. 9 is that the constellation remains Gaussian-shaped
distortion after NLC-ANN, which is not the case for some
previous ANN’s works [11], [17]. This may be explained by
the observation that the nonlinear regression is smoother for
higher order QAM targets, i.e. there are more steps existed
in the targets for higher order QAM considered in this work.
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Fig. 11: Effective SNR versus launched power for uniform 256-QAM after
300 km and 500 km of fiber links.

Thus, the metric of MI and effective SNR used in this paper
for performance assessment are reliable. To further validate
this statement, the performance of uniform 256-QAM in terms
of bit-error-rate (BER) versus SNR with and without NLC is
shown in Fig. 10 as an example. It is easily seen that there is
a good agreement of the SNR gain when the NLC is used for
the uniform 256-QAM at the same BER threshold in Fig. 10
or at the same MI threshold in Fig. 7-b.

B. 256-QAM with fiber transmission

1) Transmission performance without NLC: For the fiber
transmission, the performance of uniform 256-QAM without
NLC was first verified for both tested transmission distances
in terms of effective SNR versus launched power. The experi-
mental results for these transmissions are shown in Fig. 11 in
which experimentally theoretical expectation is also provided
for comparison. It was calculated as:

1 1 1
= 4
SNR fiper §SNRGN * SNRg25’ @

where SNRgy is theoretical SNR for the fiber channel based
on Gaussian-noise (GN) model [36]. SNRgz = 21.5dB
represents the maximum effective SNR in the optical back-
to-back configuration. £ coefficient accounts for the penalty
implementation. £ = 1.8 in these experiments, equivalently
~2.6dB implementation penalty. Channel parameters used for
SNRgn calculation include; fiber’s span length: 100 km, fiber’s
nonlinear coefficient: 1.3 W' km™!, fiber’s chromatic disper-
sion: 17psnm~'km™!, fiber’s loss coefficient: 0.2dBkm™,
gain of EDFA: 20dB and noise figure of EDFA: 6dB. The
results in Fig. 11 shows a good match between theory and ex-
periment in both linear and nonlinear regimes of the launched
power. The maximum effective SNR is achieved at around
1 dBm for both tested distances.

In terms of achievable MI for all PCS 256-QAM with
fiber transmissions, Fig. 12 shows the experimental comparison
between the three studied shaping rates after 300km and
500km of fiber links. It can bee seen that the optimum
launched power of ~1 dBm does not change for all tested PCS
systems. For the same distance, the results in Fig. 12 shows
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Fig. 12: Mutual information versus launched power for 256-QAM under
different shaping factors after 300 km and 500 km of fiber links. Colors
represent uniform (red), moderate shaping (purple) and strong shaping (blue).
All lines represent curve-fitting.

clearly that the shaping systems always outperform the uniform
one in terms of MI. While the moderate shaping shows a small
MI advantage over the strong shaping over 300 km link, there
is almost the same SE provided by them for the case of 500 km
fiber transmission.

2) Performance with the aid of ANN-based NLC: The per-
formance with the proposed NLC scheme was experimentally
investigated for the two aforementioned distances. We consid-
ered two strategies for ANN training in the fiber transmis-
sion: (1) training performed back-to-back; and (2) training
performed after transmission at the optimum launch power
(~1dBm). For fiber transmission, the coupled transceiver-fiber
nonlinearity may be dynamic. However, it is reasonable in
practice to consider this dynamic behavior as a time slowly-
varying (relatively stable over time) nonlinearity. Thus, we do
not need to update the neurons in a dynamic way. So, the
training here was also accomplished once for the fiber channel.

The performance difference (gain) in terms of MI for PCS
256-QAM when the proposed NLC was used with these
training approaches is shown in Fig. 13 — left-hand charts and
Fig. 13 — right-hand charts after propagating through 300 km
and 500 km of SSMF links, respectively.

For uniformly distributed 256-QAM after 300 km, the results
shown in Fig. 13 indicate clearly that there is almost no
performance difference between the two training strategies at
the optimum launched power of 4 dB. When the link increases
to 500 km, a small NLC gain difference between two training
strategies of ~0.03 bits/symbol is observed for this uniform
constellation.

In contrast, the big gaps between two different training
strategies shown in Fig. 13 at the same power of ~1dBm for
the moderate shaping and the strong shaping, imply that the
trained ANN in the back-to-back does not give the optimum
gain with fiber transmission for shaping systems. By re-
training the ANN at the optimum launched power for each
transmission distance, the NLC gains are further enhanced

3001 1 3 5 4 -2 0 2 4
Power (dBm) Power (dBm)

Fig. 13: Nonlinear compensation (NLC) gains in bits/symbol versus launched
power for probabilistically shaped DP 256-QAM system after 300 km (left-
hand charts) and 500 km (righ-hand charts) of fiber transmission. Red,
purple and blue symbols represent uniform, moderate and strong shaping,
respectively. Open symbols are the NLC gains when ANN trained in optical
back-to-back, and closed symbols are the NLC gains when ANN trained at
~1dBm in fiber transmission. All lines are curve-fitting.

by ~0.08 and ~0.1 bits/symbol in the moderate and strong
shaping transmission systems, respectively, for both studied
distances. The reason could be coming from the consider-
able distortion as the result of the interaction between Kerr-
effect fiber nonlinearities with shaping signals. The coupled
transceiver-fiber nonlinearity can be considered as a function of
the shaping rate, the transceiver’s characteristics and the fiber’s
parameters. The nonlinear distortion is no longer dominated
by the transceiver nonlinearity alone as in the uniform 256-
QAM, but significantly changed in PCS systems. The stronger
shaped signals, the larger PAPR becomes as discussed in
section II, leading more Kerr-effect induced nonlinear noise.
As a consequence, it requires the ANN to be re-trained in
order to define a better nonlinear inverse function for fiber
transmission with shaping signals. For both tested links, the
additional gain provided ANN trained at the optimum launched
power is higher for the stronger shaping QAM, indicating a
strong impact of Kerr-effect induced fiber nonlinearities on
shaping signals. This mean that the more the shaping is, the
larger improvement gains exist for systems equipped with the
proposed NLC compensator. By deploying the proposed NLC,
a SE gain of ~0.17 and ~0.13 bits/symbol was achieved
experimentally for the two tested shaping 256-QAMs over the
link of 300km and 500 km SSMF, respectively (Fig. 13).

In order to quantify how much gain coming from mitigating
Kerr-effect fiber nonlinearity for all studied 256-QAM systems,
the transceiver NLC gain obtained in the back-to-back (let it
be AN™) is deducted from the coupled transceiver-fiber NLC
gain (let it be Ay)*) for each training scheme. From results
shown in Fig. 8, the expected transceiver NLC gain alone A
for the three tested 256-QAM can be estimated at each MI
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Fig. 14: Kerr-effect fiber nonlinear compensation (NLC) gain in bits/symbol
for 256-QAM under different shaping factors after 300 km (left-hand charts)
and 500 km (righ-hand charts) of fiber links. Red, purple and blue represent
uniform, moderate shaping and strong shaping. Open symbols and filled
symbols represent respectively the ANN trained in back-to-back and the ANN
trained in fiber transmission at ~1dBm. All lines are curve-fitting.

level obtained for fiber transmission. The residual gain, i.e
ARs = AP — Alans s used to evaluate the effectiveness of
the ANN to deal with fiber nonlinearity. Fig. 14 shows these
residual NLC gains against the launched power for 256-QAM,
different shaping factors after 300 km (the left-hand charts in
Fig. 14) and 500 km (the right-hand charts in Fig. 14). Starting
with the residual gain provided by the ANN trained in the
back-to-back (all open symbols), it can be seen that these
open symbols are close to zero level for the uniform system
but move gradually to below zero for the shaping ones. The
most negative value is seen with the strong shaping system
after 500km, i.e. the largest shaping factor and the longest
tested distance. In other words, when deploying the ANN
trained in the back-to-back for the fiber transmission, the NLC
transceiver gain is maintained for the uniform constellation.
The pre-trained ANN in the back-to-back is thus can be used
to compensate for transceiver nonlinearity in fiber transmission
with uniform constellations. With the shaping signals, however,
AL < 0 indicates that the pre-trained ANN is not appropri-
ate to be used for compensating transceiver nonlinearity in
the present of Kerr-effect fiber nonlinearity. The transceiver
nonlinearity that the ANN learnt in the back-to-back has been
changed due to the interaction between the shaped signals and
the fiber channel. The ANN thus needs to be re-trained in order
to deal with this interaction.

When the ANN is re-trained in fiber transmission, AR
represents NLC the gain coming from mitigating the Kerr-
effect fiber nonlinearities. As shown in Fig. 14, generally,
AL closes to zero in the SNR limited regime (low level of
launched powers), and increases with the launched power for
all tested transmissions. This is due to the reason that the
coupled NLC gain is dominated by the transceiver nonlinearity
at the linear regime. When the launched power increase, the
Kerr-effect fiber nonlinearities becomes more important, and
thus AJj; increases. The highest NLC rate is seen around
~1dBm where the ANN is trained at and the Kerr-effect fiber
nonlinearities become more dominant. Above the optimum
launched power, the Kerr-effect NLC gradually declines, and
eventually reverses at ~4dB. It is worth to mention that in
the uniform signal, the trained ANN at ~1dBm for fiber
transmission shows worse performance than that of the ANN
trained in the back-to-back in the SNR limited regime. This is
due to the fact that the learnt transceiver-nonlinearity function
is less accurate if the ANN trained after fiber transmission,
compared to the case when ANN trained at highest OSNR
condition in back-to-back. In any case, the trends are clear
that more fiber nonlinearities due to the longer distances
and/or stronger shaping signals, more benefit from training
after transmission.

V. CONCLUSION

We have experimentally demonstrated, for the first time, the
simultaneous ANN-based transceiver and Kerr-effect induced
nonlinearity compensation for PCS DP 64/256-QAM optical
systems. The effectiveness of the proposal was investigated
for both optical back-to-back and fiber transmissions. The
experimental results confirmed the expectation that deeper
shaping imposes more nonlinear distortion from transceiver
and Kerr-effect induced fiber nonlinearities, and thus leading
to a higher NLC gain. For transceiver’s nonlinearity alone,
experimental results indicate that additional DSP may not be
needed when a uniform QAM is replaced by a certain shaped-
QAM under the same system’s infrastructure, e.g. 64 (or
below)-QAM with the devices involved in our study. However,
the proposed NLC is worth to consider for compensating
coupled transceiver-fiber nonlinear distortion when shaping
signals and/or high-order QAMs are deployed, e.g. 256-QAM
studied in this paper. For uniform 256-QAM, the ANN training
conducted during the calibration or in the optical back-to-
back was not required to be repeated when fiber transmission
of up to 500km was deployed. However, such re-training
is necessary for shaping signals to cope with the complex
interplay between fiber, transceiver and signal’s properties,
especially for medium-to-long links and/or strong shaping
signals. Compared to the case of without using a NLC, the
proposed NLC showed experimentally MI enhancement of
~0.17 and ~0.13 bits/symbol in a fiber link of 300 km and
500 km SSMF, respectively for the tested PCS DP 28 GBaud
256-QAM system. All of improvement was achieved without
changing ANN configurations or shaping family, and that
additional benefit may be possible with these modifications.
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