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Coupled Transceiver-Fiber Nonlinearity
Compensation Based on Machine Learning for

Probabilistic Shaping System
Tu T. Nguyen , Tingting Zhang, Elias Giacoumidis, Abdallah A.I. Ali , Mingming Tan , Paul Harper,
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Abstract—In this article, we experimentally demonstrate the
combined benefit of artificial neural network-based nonlinearity
compensation and probabilistic shaping for the first time. We
demonstrate that the scheme not only compensates for transceiver’s
nonlinearity, enabling the full benefits of shaping to be achieved,
but also the combined effects of transceiver and fiber propagation
nonlinearities. The performance of the proposed artificial neural
network is demonstrated at 28 Gbaud for both 64-QAM and
256-QAM probabilistically shaped systems and compared to that
of uniformly distributed constellations. Our experimental results
demonstrate: the expected performance gains for shaping alone; an
additional SNR performance gain up to 1 dB in the linear region;
an additional mutual information gain of 0.2 bits per channel use in
the constellation-entropy limited region. In the presence of coupled
transceiver and fiber-induced nonlinearities, an additional mutual
information enhancement of ∼0.13 bits/symbol is experimentally
observed for a fiber link of up to 500 km with the aid of the proposed
artificial neural network.

Index Terms—ANN, transceiver nonlinearity, fiber nonlinearity,
machine learning, nonlinear equalizer, probabilistic shaping.

I. INTRODUCTION

TO MEET the fast-increasing demand of data traffic, high-
order quadrature amplitude modulation (QAM) formats

combined with probabilistic constellation shaping (PCS) have
attracted a lot of attention in recent years [1]–[5]. Capacity
demand means we need higher order QAM and every last dB
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of margin to maximally utilise the installed fiber plant. The
principle behind PCS is to shape the signal constellation as close
as possible to the optimum constellation for a given channel. For
a Gaussian channel, a near-optimal signal-to-noise ratio (SNR)
gain of 1.53 dB is feasible when employing PCS technique [2]. In
optical communication, PCS is employed to limit the occurrence
of high-power symbols in order to increase the SNR for all other
symbols at the same mean power. At the optimum SNR, the
slight loss in maximum capacity (entropy) from the reduced use
of higher power symbols is more than offset by the SNR gain
enjoyed by the lower power symbols. Although the PCS is one of
the most promising candidates for next generation transponders,
its impacts on the transceiver including fiber channel have not
been explored in detail.

Generally speaking, the implementation of high-order modu-
lation formats such as 64-QAM and beyond is often a big chal-
lenge due to the requirements for high SNR and high linearity
of digital-to-analog converter (DAC)/analog-to-digital converter
(ADC). It is predicted that this problem may be more severe
when PCS signals are modulated as a result of the enhancement
of transceiver nonlinearity. This nonlinear enhancement comes
from the fact that PCS signals generally have higher peak-to-
average power ratio (PAPR) than that of uniformly distributed
constellations [6]. In addition, PCS signals may require digital
signal processing (DSP) adaptation for data recovery because
conventional unsupervised-DSP algorithms are generally not
compatible with shaping systems [1], [7].

The transceiver nonlinearity may be compensated using static
digital filters (see [8], [9] for uniform QAM constellations),
although it is difficult to estimate filter parameters due to mixing
of nonlinear effects from different transceiver components such
as DACs/ADCs and optical modulators. Under the impact of
fiber nonlinearity, other nonlinear equalizers based on inverse
Volterra series transfer functions may also be deployed to par-
tially invert the nonlinear distortion induced by the transmis-
sion link. However, the Volterra-based nonlinear compensation
(NLC) has shown worse performance than an optimized machine
learning and their complexity is also high [10], [11]. Recently, a
supervised machine-learning-based technique, namely artificial
neural network (ANN), has been proposed and studied for uni-
form 64-QAM as a pre-distortion compensator for impairments
induced by a low resolution DAC, but ignoring other nonlinear
effects [12].
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This same increase in PAPR also increases the susceptibility
of PCS systems to fibre nonlinearity. Coupling of transceiver
and fibre nonlinearity further complicates analytical descriptions
due to the interplay of the various nonlinear terms, component
bandwidths, and system memory (dispersion) of the multiple
components of the link, which not only vary from link to link, but
which may also vary with time. This has drawn a great attention
to applications of machine learning for fiber communications.
Several common applications of machine learning in optical
systems include performance monitoring and fiber-induced non-
linearity compensation [13]–[19]. Among them, the ANN is
probably the most well-known algorithm that has been widely in-
vestigated in uniform QAM fiber communication systems. This
is because the ANN is an effective solution for compensating
both stochastic and deterministic distortion [15]. Moreover, it
can be easily configured to operate as either nonlinear regression
or classification. Machine learning-based algorithms, such as
ANN and deep-learning algorithms, have also been implemented
for the purpose of constellation design, also known as geometric
shaping to improve tolerance to fiber impairments [20], [21].
The geometric shaping generally changes location of constel-
lation points, whilst PCS assumes a fixed position for each
constellation point but varies the probability of use. For practical
implementation, conventional QAM grids such as 16-QAM and
32-QAM constellations are desirable due to their backward com-
patibility to matured DSP algorithms which have been developed
for conventional optical systems. The geometric shaping is out
of the scope of this work.

In this paper, we investigate for the first time the use of ANN
to reduce implementation penalties due to coupled transceiver-
fiber nonlinearity to enable the gains of high-order QAM and
PCS to be more fully achieved. This work is extended from [22].
In [22], only transceiver’s nonlinearity was taken into account
while studying the effectiveness of an ANN-based NLC for PCS
systems. The proposed ANN-based compensator is experimen-
tally demonstrated for the PCS dual-polarization (DP) 28 GBaud
64/256-QAM system with different shaping factors (unshaped,
moderate and high). Its performance is experimentally assessed
for coupled transceiver nonlinearity, and coupled transceiver-
fibre nonlinearity over 300 km and 500 km standard single
mode fiber (SSMF) links employing inline Erbium-doped fiber
amplifier with 100 km spacing. While there is no significant
improvement observed in PCS 64-QAM, a SNR gain of 1 dB
is experimentally demonstrated for mitigating transceiver non-
linearity for 256-QAM using the proposed ANN-based NLC
scheme at a spectral efficiency (SE) threshold of 6 bits/symbol.
For high regime of SNRs, the SE gain in terms of bits/symbol
saturates at 0.2. For fiber transmission, by using the proposed
NLC for compensating transceiver nonlinearity alone, the SE
gain is retained for uniform 256-QAM with the distance of up
to 500 km. However, considerable degradation of expected SE
gain is observed for the shaping 256-QAM signals as the result
of the enhancement of coupled transceiver-fiber nonlinearities.
The ANN-based NLC thus requires to be re-trained for shaping
systems to cope with this nonlinearity enhancement. An addi-
tional mutual information (MI) gain of ∼0.1 bits/symbol (total
gain of 0.13 bits/symbol) is observed for the PCS 256-QAM

system over a transmission distance of 500 km SSMF when
the proposed ANN-based NLC is used to compensate for the
coupled nonlinearity between the two transceivers and the fiber.

II. PROBABILISTIC CONSTELLATION SHAPING AND PRINCIPLE

OF ANN-BASED NONLINEAR EQUALIZER

A. Probabilistic Constellation Shaping: A Brief Introduction

Constellation Shaping improves the performance of a lin-
ear transmission system by increasing the proportion of low
energy symbols to reduce the mean power, whilst retaining a
proportion of high energy symbols to minimise loss of capacity.
In this work, this shaping is performed according to the the
well known Maxwell-Boltzmann (MB) probability distribution
(hence PCS), which is known to be the optimum for a linear ad-
ditive white Gaussian noise channel, for generating a set of prob-
ability mass functions (PMFs). For uniformly distributed con-
stellation points, the probability mass function (PMF) PX(xj)
is given by [2]:

PX(xj) =
e−κ|xj |2

∑M
k=1 e

−κ|xk |2
, j = 1, 2, . . .,M, (1)

where xj is one point of the input alphabet, M is the number of
constellation points and κ is the shaping factor. For maximum
transmission capacity, the shaping factor needs to be optimized
as a function of signal power, modulation format and SNR [2].
We deployed square-QAM to simplify this optimisation to a
one-dimensional (1D) optimization. Specifically we focus on
64-QAM and 256-QAM, corresponding to 8-pulse amplitude
modulation (PAM) and 16-PAM, respectively. We also assumed
that the location of shaped symbols are unchanged under the
shaping, i.e. their real and imaginary amplitudes are integers
of ±(2k + 1), k = 0, 1, . . .,

√
M/2− 1, for calculating PMFs

from Eq. 1 for PCS systems.
Fig. 1 shows the comparison in terms of MI in bit/symbol

(representing the maximum amount of information bit in a sym-
bol that can be transmitted with a vanishing probability of error,
also known as symbol-wise achievable information rate [23]),
between 64-QAM and 256-QAM under different shaping fac-
tors. Note that κ = 0 corresponds to the uniform constellation
(no shaping). In this paper, MI is estimated by a Monte-Carlo
simulation from N input-output symbol pairs (xk, yk). The
input symbols are generated randomly according to the the PMF
shown in Eq. 1. The output signals are the sum of the input signals
and additive white Gaussian noise, such that the joint probability
density function is qY |X(y|x) = 1√

2πσ2
exp(−|y−x|2

2σ2 ) with σ2

being the noise variance. The MI is then calculated using the
following equation [24]:

MI =
1

N

N∑

k=1

log2

qY |X(yk|xk)∑M
xj=1 qY |X(yk|xj)PX(xj)

. (2)

In Fig. 1, the Shannon capacity limit in Gaussian channel is
also given as log2(1 + SNR) for reference (labeled as “Shannon
limit”). In addition to the unshaped case (κ = 0), four shaping
rates are considered in this paper: κ1 = 0.07 and κ2 = 0.03
for PCS 64-QAM; and κ3 = 0.019 and κ4 = 0.009 for PCS
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Fig. 1. Comparison of mutual information for 64-QAM (solid lines) and 256-
QAM (dashed lines) with uniform (κ = 0, red lines), moderate shaping (purple
lines), strong shaping (blue lines), and shaping optimised at each SNR for each
format (black lines). Shaping factors for each format and strength shown in
legend. Dashed line represents the Shannon limit.

TABLE I
PARAMETERS OF THE PCS SYSTEMS STUDIED IN THIS PAPER

256-QAM. Fig. 1 shows numerically the MI evolution of 64/256-
QAM under these shaping rates with respect to SNR. For a
single modulation format, the MI curves associated with uniform
constellation (no shaping) and optimal constellation (shaping
rate optimized at each SNR for a full shaping gain) are also
provided. The chosen shaping rates are adopted from [25] in
which only two fixed PMFs for each modulation format are
sufficient for a wide SNR range with a negligible penalty (at
about 0.1 dB of SNR) to the optimum shaping. The entropy,
which indicates the maximum information rate at infinite SNR,
of the investigated PCS systems with shaping rates of κ1, κ2,
κ3 and κ4 is 4.91, 5.66, 6.79 and 7.57, respectively. Fig. 1 also
confirms numerically the maximum entropy and the SNR gain
where the observed shaped performance is within 0.1 dB SNR
of the maximum possible shaped performance. These results are
summarised in Table I.

B. Impact of PCS Signals on Transceiver

It is clear that PCS changes the statistical properties of the
transmitted signal. In this section, the PAPR metric is investi-
gated for PCS signals with different shaping factors. The PAPR
of a given signal x(t) is the ratio of its peak power Ppeak to its

average power Pavg as PAPR (dB) = 10log10
Ppeak

Pavg
.

Fig. 2. Numerically statistical quantity of PAPR in terms of complementary
cumulative distribution function for (a) 64-QAM and (b) 256-QAM. Colors
represent uniform (red), moderate shaping (purple) and strong shaping (blue).

Fig. 2 shows the statistics of PAPR in terms of complementary
cumulative distribution function (CCDF) for different QAM
signals under the three considered shaping factors. The vertical
axis is the CCDF showing how often a certain PAPR value in
the horizontal axis is exceeded. The CCDF curves on this figure
were computed numerically from digital signal after pulse-shape
filtering (using a root-raised-cosine (RRC) filter with 0.1 roll-off
factor and up-sampling at 2 samples per symbol). Simplicity,
let x(k), k = 1, 2, . . .N being the signal to measure probability
of a given peak power, the CCDF of PAPR can be calculated
through 4 steps: (1) computing the mean power E{|x(k)|2}with
E{.} being the expectation operator, (2) computing probability

density function (PDF) of 10log10
|x(k)|2

E{|x(k)|2} , (3) calculating
cumulative distribution function (CDF) from the PDF, and (4)
CCDF=1-CDF. Fig. 2 shows that the CCDF trends for both
QAM formats are almost identical. The shaping signals exhibit
larger PAPR than the uniform constellation cases (κ = 0) and the
more shaping, the higher the PAPR. Specifically, at a probability
level of 1%, the PAPR is 0.7 (1.5) dB higher with moderate
(strong) shaping than without shaping for both 64-QAM and
256-QAM signals. The same amount of PAPR increment is
also seen for 256-QAM signals. The PAPR increments result in
an increase in the impact of transponder nonlinear distortions,
unless the linear operation ranges are increased accordingly. The
higher PAPR also imposes more Kerr-effect induced nonlinear
noise which is proportional to the instantaneous power of the
signal propagating through optical fiber.

C. Description of ANN-Based NLC

Fig. 3 shows the structure of the simple feed-forward network
deployed in this paper as the NLC, and is a typical ANN
configuration. The aim of ANN algorithm is to find a function
that maps the input to the desired target through a number
of intermediate steps produced by neurons in the network. In
general an ANN would comprise 4(m+ 1) real-valued inputs
and 4 real-valued outputs with j hidden-layers of hj neurons
each. m represents the memory depth of the circuit, whereas
the factor of 4 represents real and imaginary components of
dual-polarization signals.

Within each neuron (Fig. 3-b), there are three calculations:
(1) weight multiplication of inputs (subscripts 1, 2, . . ., n), (2)
summing the weighted inputs and a bias (the input with subscript
0), and (3) passing the results of (2) through an activation
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Fig. 3. (a) Structure of artificial-neural-network-based nonlinear compensa-
tion (ANN-based NLC). (b) Input-output relationship of a “neuron” in hidden
and output layers.

function. In the proposed ANN-based NLC scheme, we selected
a network with 5 memories (m = 5, i.e. current symbol with two
symbols towards the pass and two symbols towards the future),
two hidden layers (j = 2) and 10 neurons per layer (hj = 10
for all j). Thus, the input vector of the proposed NLC has 24
components, i.e. 4× (5 + 1) = 24. The activation function used
in each hidden layer is a nonlinear hyperbolic tangent sigmoid
transfer function, whereas 4 neurons of the output layer use a
linear transfer function.

The ANN-based NLC was operated in two phases: the train-
ing phase and the operational phase. As a supervised learning
scheme, the training phase needs information of transmitted
data. We used ∼28000 and at least 300000 QAM symbols in
the training and the operational phase, respectively. For each
configuration (format, shaping factor, fibre launch power), the
training phase was carried out at initialisation. All the perfor-
mance metrics were measured on the data in the operational
phase using the same trained ANN.

The training phase is to optimize the weights and bias of the
ANN. For this we used the batch Levenberg-Marquardt back-
propagation algorithm (using gradient descent) [26]. ∼28000
QAM symbols in the training phase were divided into two
sets: ∼23000 symbols (batch size) for the training set, which
is used for computing the gradient and updating the weights and
biases, and∼5000 for the validation set, which acts as pre-test to
avoid over-fitting and under-fitting. At the very beginning of the
training (state 0), initial weights, θ0, are generated randomly.
After the kth epoch (the number of epochs reflects the number
of times that the learning algorithm will work through the
entire training data set), application of the weights θk to the

Fig. 4. ANN performance in terms of mean squared error versus number of
epochs for training and validation sets for uniform 256-QAM.

received samples r gives an ANN output yθk(r), i.e. forward
propagation. The difference between the ANN output yθk(r)
and the expected symbols T (targets) is then used to calculate
the loss function for that epoch Jθ = E{yθk(r)− T }2. Next,
the gradients of the loss function (partial derivatives of the loss
function with respect each weight) ∂Jθ

∂θpq
are calculated in a

back-propagation manner. The weight parameters are updated
for the next epoch using θk+1 = θk − ∂Jθ

∂θ . This cycle repeats
on the same 23000 symbols until the minima of the loss function
(if validation performance increases more than 6 times since the
last time it decrease) or the maximum number of epochs (100)
is reached. Fig. 4 shows an example of the mean squared error
(MSE) between the transmitted and received data as a function
of number of epochs for uniform 256-QAM during the training
and validation of the ANN. As clearly shown in this figure, the
MSEs for both training set and validation set decrease when the
number of epochs increases. The MSEs saturate at around 0.2%
after 20 epochs and that both MSEs are close to each other means
no over/under-fitting issue with the training. After the training,
the resultant optimum parameters and the fiber, are used with
the ANN as the nonlinear compensator.

In the operational phase, the received signals are simply
compensated by passing the received signals through the trained
ANN without any further adaptation. It is reasonable to assume
that the two nonlinearities are slowly varying in time (fiber
nonlinearity due to amplifier output power drift and polarization
mode dispersion evolution, and transmitter nonlinearity due
to RF component aging). Thus, the training phase was only
performed once at the optimum conditions, i.e. at the highest
optical signal to noise ratio (OSNR) in back-to-back or at the
optimum launched power in fiber transmissions. Whether or
not the trained ANN in back-to-back can be deployed in the
operational phase for fiber transmissions will be discussed more
in detail in Section IV.

Regarding the complexity of the proposed scheme, this is a
typical configuration of an ANN in which the detail analysis of
the complexity of both training and operational phases could be
found in [17]. In practice, the training process is typically taken
place once and off-line. Due to that reason, the training process
is normally not counted toward the implementation complexity
for a practical system [16]. The number of real multiplications
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Fig. 5. Experimental setup for a dual polarization probabilistically-shaped 28 GBaud 64/256-QAM system. Inset: spectrum of uniform 64-QAM after the
optical modulation. ECL: external cavity laser, EDFA: Erbium-doped fiber amplifier, VOA: variable optical attenuator, OBPF: optical bandpass filter, LO: local
oscillator, PDs: photodetectors, GSOP: Gram–Schmidt orthogonalization procedure, CD: chromatic dispersion, DSP: digital signal processing, ANN-based NLC:
artificial-neural-network based nonlinearity compensation, trans.: transmission.

per symbol of the proposed ANN-based NLC operating in a for-
ward manner is easily calculated as 380 real multiplications per
symbol, i.e.4× (5 + 1)× 10 + 10× 10 + 10× 4 = 380. Note
that the activation function in each node can be implemented
efficiently by using a look-up-table [15]. As the number of
transmission configurations, i.e. the combination of modulation
formats (64/256-QAM), different channel conditions (back-to-
back, 300 km and 500 km links) and different shaping factors,
is large, the optimizations for each transmission configuration
in terms of number of hidden layers, the number of neurons in
each layer and the number of memories were not carried out in
this work. We tested the ANN under some ANN’s parameter
sets for the uniform 256-QAM after 500 km fiber transmission
and fixed at the nearly-optimum parameter set, i.e. 5 memories
with 2 hidden layers and 10 nodes each layer, for all other
configurations studied in this paper.

III. EXPERIMENTAL SETUP

The experimental setup of the 28 GBaud PCS DP 64/256-
QAM system is shown in Fig. 5. At the transmitter, four streams
of 8/16-PAM data, each of∼ 60000 symbols, with desired PMFs
according to the aforementioned shaping rates, were generated
from four sequences of uniformly distributed pseudo-random
bit sequences (part of the Gold sequence 231 − 1 with four
different seeds: 5, 10, 15 and 20) using constant composition
distribution matching [27]. Then, PCS 64/256-QAM signals on
each polarization were formed by combining two independently
shaped 8/16-PAM sequences which represent their real and
imaginary components. The shaped symbols were normalized
for a unit average power and multiplexed with 5% of 4-QAM
known pilot symbols (i.e. 1 pilot in every 20 symbols, equiv-
alently 5% pilot overhead) to aid the DSP algorithms at the
receiver for channel equalization and phase noise compensation.

The power of 4-QAM pilot symbols was also normalized to
1 before the multiplexing. There was no DSP adaptation for
the implemented PCS in this paper because most of deployed
DSP algorithms relied on pilot-aided symbols. The data was
then up-sampled at 2 samples-per-symbol and pulse-shaped by
a RRC filter with a roll-off factor of 0.1. A special preamble
of 9 ns (equivalently 256 symbols long), which consists of two
repeated parts following [28], was inserted at the beginning of
the payload to aid frame synchronization at the receiver. The
signal was finally decomposed back to real and imaginary parts,
scaled by its maximum amplitude and converted to integer form
within the range of [−127, 127] (8-bit DAC resolution). After
this off-line processing, the signal was loaded into an Keysight
arbitrary waveform generator (4-channel 8-bit DAC sampling at
56GSa/s) and subsequently converted into the optical domain by
applying the 600 mV pp signals to the inputs of a a commercial
multi-format DP optical transmitter (laser linewidth ∼100 KHz
on 192.4 THz). An Erbium-doped fiber amplifier (EDFA) fol-
lowed by a variable optical attenuator (VOA) was used to control
the launched power. The inset of Fig. 5 shows an example of
the spectrum of 28 GBaud DP 64-QAM signal after the optical
modulator from which the drive amplitudes were estimated in
the region of 55% of Vpi.

Two configurations were set up: optical back-to-back and
inline-EDFA transmission. For the optical back-to-back con-
figuration, the VOA at the transmitter together with an EDFA
before the coherent reception were used to vary OSNR. With the
fiber transmission, two distances were considered: 300 km and
500 km SSMF which consist of 3 and 5 in-line EDFAs (6 dB
noise figure) - each after 100 km of SSMF (Sterlite G.652.D)
for compensation of the fiber loss, respectively.

After the transmission, the optical signal was first converted
into the electrical domain using an intradyne coherent receiver
which includes a local oscillator (LO) (linewidth∼ 100 KHz), a
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90o hybrid and four pairs of balanced photo-detectors. Electrical
signals were captured and digitized by a real-time oscilloscope
(8-bit ADCs) with sampling rate of 100GSa/s before off-line
processing, ten oscilloscope captures were collected for each
OSNR in the optical back-to-back configuration or for each
transmission distance and each launch powers, giving frames
of 60000 symbols each oscilloscope capture.

The off-line DSP started with signal resampling at 2 samples
per symbol. Then, the digital signals were formatted/scaled by
a signal conditioning module. This module was also used to
correct for the nonorthogonality between in-phase and quadra-
ture components of the signal based on the Gram–Schmidt
algorithm [29]. For the fiber transmission, the impact of static
chromatic dispersion (CD) was removed simply by using an
inverse function of CD in the frequency domain. The tim-
ing recovery and frequency offset error correction algorithms
were placed before the matched-filtering using a Gardner phase
detector and a conventional Fourier-transform-based method,
respectively [30], [31]. After the matched-filtering, the frame
synchronization was performed by using the Schmidl & Cox
algorithm with the aid of the preamble [28]. For the channel
equalization, a pilot-aided butterfly-structure adaptive equalizer
(21 taps) was used. First, the filter coefficients were adapted
at pilot locations using the well-known constant-modulus algo-
rithm. Once the filter converged, it was applied for the whole
signal to cancel linear effects and polarization demultiplex-
ing [32]. Phase noise was estimated and compensated using a
conventional pilot-aided (CPA) method. The CPA estimated the
phase noise in a block-wise manner in which 8 pilots in each
block was used for noise averaging [33]. After this stage, the
ANN-based NLC was deployed to compensate for the nonlinear
impairment from the transceiver and/or the optical fiber. Finally,
just before QAM de-mapping, the pilot symbols were removed
and only PCS 64/256-QAM symbols were taken into account
for MI measurements followed Eq. 2. Effective SNR, which
was measured from received constellations at the end of DSP
chain, was also reported. Its reflects all transceiver impairment
and the imperfection of the DSP chain. It was calculated from
transmitted symbols and received symbols after the DSP chain
as [34]

SNReff =

∑M
j=1 PX(xj)|μj |2

∑M
j=1 PX(xj)σ2

j

, (3)

where μj and σi are the mean and variance of the received
symbols yj that belong to the transmitted symbol xj . For each
oscilloscope, a frame length of∼60000 symbols per polarization
was captured. Around the first half of this frame (∼28000
symbols) was used for training in the training phase whereas
the second part of this frame was used in the operational phase
to evaluate the performance of the proposed NLC scheme.
The overhead used for training was negligible for the analysis
because it took place one time at the highest OSNR condition
in back-to-back or at the optimum launched power in the fiber
transmission. Both MI and effective SNR were averaged from 9
oscilloscope captures, each of dual polarization.

Fig. 6. Effective SNR versus OSNR (0.1 nm resolution bandwidth) for all
studied constellation shaping 64/256-QAM systems.

IV. RESULTS AND DISCUSSION

A. Optical Back-To-back Performance

1) Implementation Penalty: First of all, the implementation
penalty was verified for both 64 and 256 PCS QAMs in the
optical back-to-back setup when no NLC was used in the DSP
chain at the receiver. Shown in Fig. 6 is the effective SNR as a
function of OSNR for all investigated PCS systems. The theory
curve in this figure is derived from OSNR in a reference optical
bandwidth of 12.5 GHz as OSNR×12.5 GHz

BW for dual polarization
with BW being the signal bandwidth [35].

Fig. 6 indicates relatively same implementation penalty with
<0.5 dB variation in the effective SNR for the two studied QAM
formats suggesting that the impairments themselves are not de-
pendent on the modulation format or shaping factor. For the low
OSNR regime (<19 dB), the effective SNR increases linearly
with the OSNR with the implement penalty of less than 2 dB. For
the high regime of OSNR, however, this trend is no longer linear
due to the imperfection of the DSP chain and the impact of the
transceiver such as limited effective number-of-bits and limited
bandwidth of DACs/ADCs, as well as nonlinear distortions. It is
worth to mention that the implementation penalty of the uniform
256QAM is∼0.5 dB more than that of the others shown in Fig. 6
due to the vulnerability of transceiver for high-order QAMs.

2) Mutual Information Gain Obtained By ANN-Based NLC:
Fig. 7 shows the system performance with and without ANN-
based NLC in terms of MI versus SNRs (derived from OSNRs)
for DP 64-QAM (Fig. 7-a) and 256-QAM (Fig. 7-b). In this
optical back-to-back experiment, for each QAM and at each
shaping factor, the training phase was took place once at the
highest OSNR condition. Then, the trained ANN was used for
compensating the transceiver nonlinearity for all other OSNRs.

For 64-QAM without using the NLC (Fig. 7-a), around 1 dB
SNR shaping gain is experimentally demonstrated for the SNR
regime of <21 dB. As shown in the right-hand vertical axis of
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Fig. 7. Performance in terms of MI versus SNR (filled and/or open symbols,
left-hand vertical axis) and MI gain provided by ANN (right-hand vertical axis)
for probabilistic constellation shaping systems: (a) 64-QAM and (b) 256-QAM.
Red, purple and blue symbols represent uniform, moderate and strong shaping,
respectively. Open symbols and filled symbols are the MI with and without
ANN, respectively. The MI-gain due to the ANN are presented in star, cross and
plus markers for uniform, moderate and strong shaping, respectively. All lines
represent curve-fitting.

Fig. 7-a, which shows the difference in terms of MI between the
system without NLC and the system with the aid of ANN-based
NLC, little improvement (< 0.05 bits/symbol) is observed for
all 64-QAM systems under test. However, the improvement is
not the same for all studied shaping rates. As the SNR increases,
the system performance becomes increasingly dominated by
the distortion from the transceiver, in this case, mainly the
optical modulator and the DACs/DACs. The distortion is higher

Fig. 8. ANN nonlinear compensation (NLC) gain in bits/symbol versus mutual
information (MI) for 256-QAM uniform (red), moderate shaping (purple) and
strong shaping (blue). All lines represent curve-fitting.

for constellation points far away from origin. Therefore, for
weaker levels of shaping these higher amplitude points are more
prevalent, and so the potential compensation gain is higher.

Fig. 7-b shows the performance of the 256-QAM under the
three studied shaping factors as well as the MI gain obtained
when the ANN-based NLC was used to compensate for the
coupled nonlinearities at the receiver. Without using NLC, the
shaped 256-QAM shows experimentally ∼2 dB SNR gain over
the uniform 256-QAM at the same MI of 5.5 bits/symbol. Taking
into account of ∼0.5 dB SNR extra implementation penalty for
the uniform 256-QAM, the shaping gain alone is thus ∼1.5 dB
SNR, which is higher than that of 64-QAM. This is what we
expect for high-order PCS QAM (Fig. 1).

When deploying the proposed ANN-based NLC for 256-
QAM, the performance improvement in terms of MI is signifi-
cant – up to 0.2 bits/symbol as depicted in the right-hand vertical
axis of Fig. 7-b. For SNRs below 25 dB, the gain provided by the
proposed NLC for the shaped 256-QAM is clearly higher than
that of the uniform one. The improvement for the strong and
moderate shaping systems equipped with the NLC saturates at
around 0.13 and 0.21 bits/symbol, respectively, whereas we do
not see the gain saturation for the uniform 256-QAM, which is
supposed to be higher than that of shaped ones as demonstrated
in PCS 64-QAM. This is because we do not have high enough
effective SNR for the uniform 256-QAM to reach its entropy.
Fig. 8 plots NLC gain in terms of bits/symbol against MI for this
256-QAM under three studied shaping factors. Interestingly, at
a same level of MI, the ANN-based NLC gives relatively the
same SE improvement regardless of the tested shaping factors
until the saturation point of each shaping factor. It suggests that
one may easily estimate for a potential improvement when using
the proposed NLC for any any shaping factors at a given SE.
In terms of SNR gains, the proposed transceiver compensator
gives ∼1 dB SNR gain for all studied 256-QAM at the same MI
threshold of 6 bits/symbol. This SNR gain even goes as high as
2 dB at the threshold of 6.5 bits/symbol for the moderate shaping
system, as illustrated in the left-hand vertical axis of Fig. 7-b.
Whilst the trends in improvement due to the ANN are in line
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Fig. 9. An example of constellation-diagram comparison without (a) and with
(b) ANN-based nonlinear compensation (NLC) for strong shaping 256-QAM
at 32 dB SNR. Measured mutual information of (a) and (b) are 6.48 and 6.61
bits/symbol, respectively.

with expectations for both 64-QAM and 256-QAM, the level of
improvement is low for the configuration employed in 64-QAM,
and so for the fiber transmission, we focus on 256-QAM.

Fig. 9 visually shows an example of constellations with and
without using the nonlinear compensator for strong shaping
256-QAM at the same 25 dB SNR. The NLC compensates for the
transceiver nonlinear distortion which can be seen by comparing
the constellation points with moderate-to-large amplitudes. In
these constellations, the red crosses denote the distorted version
of the transmitted constellation as the result of transceiver non-
linearity. They were computed as the mean values of received
symbols that belong to each constellation point in the ideal
constellation. As clearly shown in this figure, the distance on
either real or imaginary part between two consecutive red crosses
are no longer even, which is supposed to be for the transmitted
constellation. For all experimental MI measurements in this
work, the ideal constellation (i.e. transmitted alphabets) was
first mapped to this distorted constellation before substituting
into Eq. 2. It is worth to mention that there is no difference
for effective SNR measurements in Eq. 3 using either distorted
or ideal constellation. By comparing the received constellation
with and without ANN (Fig. 9), it can be seen that the con-
stellation with the aid of ANN is less “scattered”, especially at
the regimes with moderate-to-large amplitudes, leading to an
improvement of ∼0.13 bits/symbol. The Euclidean distances
between the mean values of the constellations are more “even”
for the case with ANN than that of the case without ANN.
Another observation from Fig. 9 is that the constellation remains
Gaussian-shaped distortion after NLC-ANN, which is not the
case for some previous ANN’s works [11], [17]. This may be
explained by the observation that the nonlinear regression is
smoother for higher order QAM targets, i.e. there are more
steps existed in the targets for higher order QAM considered
in this work. Thus, the metric of MI and effective SNR used in
this paper for performance assessment are reliable. To further
validate this statement, the performance of uniform 256-QAM
in terms of bit-error-rate (BER) versus SNR with and without
NLC is shown in Fig. 10 as an example. It is easily seen that
there is a good agreement of the SNR gain when the NLC is
used for the uniform 256-QAM at the same BER threshold in
Fig. 10 or at the same MI threshold in Fig. 7-b.

Fig. 10. Performance of uniform 256-QAM in terms of BER versus SNR with
and without ANN.

Fig. 11. Effective SNR versus launched power for uniform 256-QAM after
300 km and 500 km of fiber links.

B. 256-QAM With Fiber Transmission

1) Transmission Performance Without NLC: For the fiber
transmission, the performance of uniform 256-QAM without
NLC was first verified for both tested transmission distances
in terms of effective SNR versus launched power. The experi-
mental results for these transmissions are shown in Fig. 11 in
which experimentally theoretical expectation is also provided
for comparison. It was calculated as:

1

SNRfiber
= ξ

1

SNRGN
+

1

SNRB2B
, (4)

where SNRGN is theoretical SNR for the fiber channel based
on Gaussian-noise (GN) model [36]. SNRB2B = 21.5 dB repre-
sents the maximum effective SNR in the optical back-to-back
configuration. ξ coefficient accounts for the penalty imple-
mentation. ξ = 1.8 in these experiments, equivalently ∼2.6 dB
implementation penalty. Channel parameters used for SNRGN

calculation include; fiber’s span length: 100 km, fiber’s nonlinear
coefficient: 1.31.3 W−1km−1, fiber’s chromatic dispersion: 17
ps nm−1km−1, fiber’s loss coefficient: 0.2 dBkm−1, gain of
EDFA: 20 dB and noise figure of EDFA: 6 dB. The results in
Fig. 11 shows a good match between theory and experiment in
both linear and nonlinear regimes of the launched power. The
maximum effective SNR is achieved at around 1dBm for both
tested distances.

In terms of achievable MI for all PCS 256-QAM with fiber
transmissions, Fig. 12 shows the experimental comparison be-
tween the three studied shaping rates after 300 km and 500 km of
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Fig. 12. Mutual information versus launched power for 256-QAM under
different shaping factors after 300 km and 500 km of fiber links. Colors represent
uniform (red), moderate shaping (purple) and strong shaping (blue). All lines
represent curve-fitting.

fiber links. It can bee seen that the optimum launched power of
∼1 dBm does not change for all tested PCS systems. For the same
distance, the results in Fig. 12 shows clearly that the shaping
systems always outperform the uniform one in terms of MI.
While the moderate shaping shows a small MI advantage over
the strong shaping over 300 km link, there is almost the same
SE provided by them for the case of 500 km fiber transmission.

2) Performance With the Aid of ANN-Based NLC: The per-
formance with the proposed NLC scheme was experimentally
investigated for the two aforementioned distances. We consid-
ered two strategies for ANN training in the fiber transmission:
(1) training performed back-to-back; and (2) training performed
after transmission at the optimum launch power (∼1dBm). For
fiber transmission, the coupled transceiver-fiber nonlinearity
may be dynamic. However, it is reasonable in practice to con-
sider this dynamic behavior as a time slowly-varying (relatively
stable over time) nonlinearity. Thus, we do not need to update
the neurons in a dynamic way. So, the training here was also
accomplished once for the fiber channel.

The performance difference (gain) in terms of MI for PCS
256-QAM when the proposed NLC was used with these training
approaches is shown in Fig. 13–left-hand charts and Fig. 13–
right-hand charts after propagating through 300 km and 500 km
of SSMF links, respectively.

For uniformly distributed 256-QAM after 300 km, the re-
sults shown in Fig. 13 indicate clearly that there is almost no
performance difference between the two training strategies at
the optimum launched power of 4 dB. When the link increases
to 500 km, a small NLC gain difference between two training
strategies of ∼0.03 bits/symbol is observed for this uniform
constellation.

In contrast, the big gaps between two different training
strategies shown in Fig. 13 at the same power of ∼1dBm for
the moderate shaping and the strong shaping, imply that the
trained ANN in the back-to-back does not give the optimum

Fig. 13. Nonlinear compensation (NLC) gains in bits/symbol versus launched
power for probabilistically shaped DP 256-QAM system after 300 km (left-
hand charts) and 500 km (righ-hand charts) of fiber transmission. Red, purple
and blue symbols represent uniform, moderate and strong shaping, respectively.
Open symbols are the NLC gains when ANN trained in optical back-to-back,
and closed symbols are the NLC gains when ANN trained at ∼1 dBm in fiber
transmission. All lines are curve-fitting.

gain with fiber transmission for shaping systems. By re-training
the ANN at the optimum launched power for each transmission
distance, the NLC gains are further enhanced by∼0.08 and∼0.1
bits/symbol in the moderate and strong shaping transmission
systems, respectively, for both studied distances. The reason
could be coming from the considerable distortion as the result
of the interaction between Kerr-effect fiber nonlinearities with
shaping signals. The coupled transceiver-fiber nonlinearity can
be considered as a function of the shaping rate, the transceiver’s
characteristics and the fiber’s parameters. The nonlinear dis-
tortion is no longer dominated by the transceiver nonlinearity
alone as in the uniform 256-QAM, but significantly changed
in PCS systems. The stronger shaped signals, the larger PAPR
becomes as discussed in Section II, leading more Kerr-effect
induced nonlinear noise. As a consequence, it requires the ANN
to be re-trained in order to define a better nonlinear inverse
function for fiber transmission with shaping signals. For both
tested links, the additional gain provided ANN trained at the
optimum launched power is higher for the stronger shaping
QAM, indicating a strong impact of Kerr-effect induced fiber
nonlinearities on shaping signals. This mean that the more
the shaping is, the larger improvement gains exist for systems
equipped with the proposed NLC compensator. By deploying the
proposed NLC, a SE gain of ∼0.17 and ∼0.13 bits/symbol was
achieved experimentally for the two tested shaping 256-QAMs
over the link of 300 km and 500 km SSMF, respectively (Fig. 13).

In order to quantify how much gain coming from mitigating
Kerr-effect fiber nonlinearity for all studied 256-QAM systems,
the transceiver NLC gain obtained in the back-to-back (let it
be Δtrans

MI ) is deducted from the coupled transceiver-fiber NLC
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Fig. 14. Kerr-effect fiber nonlinear compensation (NLC) gain in bits/symbol
for 256-QAM under different shaping factors after 300 km (left-hand charts)
and 500 km (righ-hand charts) of fiber links. Red, purple and blue represent
uniform, moderate shaping and strong shaping. Open symbols and filled symbols
represent respectively the ANN trained in back-to-back and the ANN trained in
fiber transmission at ∼1 dBm. All lines are curve-fitting.

gain (let it be Δcoup
MI ) for each training scheme. From results

shown in Fig. 8, the expected transceiver NLC gain alone Δtrans
MI

for the three tested 256-QAM can be estimated at each MI
level obtained for fiber transmission. The residual gain, i.e
Δres

MI = Δcoup
MI −Δtrans

MI , is used to evaluate the effectiveness of the
ANN to deal with fiber nonlinearity. Fig. 14 shows these residual
NLC gains against the launched power for 256-QAM, different
shaping factors after 300 km (the left-hand charts in Fig. 14)
and 500 km (the right-hand charts in Fig. 14). Starting with the
residual gain provided by the ANN trained in the back-to-back
(all open symbols), it can be seen that these open symbols are
close to zero level for the uniform system but move gradually
to below zero for the shaping ones. The most negative value
is seen with the strong shaping system after 500 km, i.e. the
largest shaping factor and the longest tested distance. In other
words, when deploying the ANN trained in the back-to-back
for the fiber transmission, the NLC transceiver gain is main-
tained for the uniform constellation. The pre-trained ANN in the
back-to-back is thus can be used to compensate for transceiver
nonlinearity in fiber transmission with uniform constellations.
With the shaping signals, however, Δres

MI < 0 indicates that the
pre-trained ANN is not appropriate to be used for compensating
transceiver nonlinearity in the present of Kerr-effect fiber non-
linearity. The transceiver nonlinearity that the ANN learnt in the
back-to-back has been changed due to the interaction between

the shaped signals and the fiber channel. The ANN thus needs
to be re-trained in order to deal with this interaction.

When the ANN is re-trained in fiber transmission, Δres
MI repre-

sents NLC the gain coming from mitigating the Kerr-effect fiber
nonlinearities. As shown in Fig. 14, generally,Δres

MI closes to zero
in the SNR limited regime (low level of launched powers), and
increases with the launched power for all tested transmissions.
This is due to the reason that the coupled NLC gain is dominated
by the transceiver nonlinearity at the linear regime. When the
launched power increase, the Kerr-effect fiber nonlinearities
becomes more important, and thus Δres

MI increases. The highest
NLC rate is seen around ∼1dBm where the ANN is trained at
and the Kerr-effect fiber nonlinearities become more dominant.
Above the optimum launched power, the Kerr-effect NLC grad-
ually declines, and eventually reverses at ∼4 dB. It is worth to
mention that in the uniform signal, the trained ANN at ∼1dBm
for fiber transmission shows worse performance than that of the
ANN trained in the back-to-back in the SNR limited regime.
This is due to the fact that the learnt transceiver-nonlinearity
function is less accurate if the ANN trained after fiber trans-
mission, compared to the case when ANN trained at highest
OSNR condition in back-to-back. In any case, the trends are
clear that more fiber nonlinearities due to the longer distances
and/or stronger shaping signals, more benefit from training after
transmission.

V. CONCLUSION

We have experimentally demonstrated, for the first time, the
simultaneous ANN-based transceiver and Kerr-effect induced
nonlinearity compensation for PCS DP 64/256-QAM optical
systems. The effectiveness of the proposal was investigated for
both optical back-to-back and fiber transmissions. The experi-
mental results confirmed the expectation that deeper shaping im-
poses more nonlinear distortion from transceiver and Kerr-effect
induced fiber nonlinearities, and thus leading to a higher NLC
gain. For transceiver’s nonlinearity alone, experimental results
indicate that additional DSP may not be needed when a uniform
QAM is replaced by a certain shaped-QAM under the same sys-
tem’s infrastructure, e.g. 64 (or below)-QAM with the devices
involved in our study. However, the proposed NLC is worth to
consider for compensating coupled transceiver-fiber nonlinear
distortion when shaping signals and/or high-order QAMs are
deployed, e.g. 256-QAM studied in this paper. For uniform
256-QAM, the ANN training conducted during the calibration
or in the optical back-to-back was not required to be repeated
when fiber transmission of up to 500 km was deployed. However,
such re-training is necessary for shaping signals to cope with
the complex interplay between fiber, transceiver and signal’s
properties, especially for medium-to-long links and/or strong
shaping signals. Compared to the case of without using a NLC,
the proposed NLC showed experimentally MI enhancement of
∼0.17 and ∼0.13 bits/symbol in a fiber link of 300 km and
500 km SSMF, respectively for the tested PCS DP 28 GBaud
256-QAM system. All of improvement was achieved without
changing ANN configurations or shaping family, and that addi-
tional benefit may be possible with these modifications.
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