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Abstract: This study focused on investigating the bottoming power cycles operating with CO2-based
binary mixture, taking into account exergetic, economic and exergo-environmental impact indices.
The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed
Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria
for the choice of suitable additive compound for CO2-based binary mixture is delineated and
the composition of the binary mixture is decided based on required cycle minimum temperature.
The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle
configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative
analysis among two configurations with selected working fluid are carried out. Thermodynamic
analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum
power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2

power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the
levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8

mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC.
Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions
and also shows greater exergo-environmental impact improvement and plant sustainability index.

Keywords: CO2-based binary mixture; bottoming power cycles; exergetic analysis; CO2 emissions
savings; sustainability index; exergo-environmental impact indices

1. Introduction

Efficiency in heat to power conversion systems is a global concern. Power-generating systems
possessing improved thermodynamic, economic, and environmental performances are a top priority
of researchers and manufacturers [1]. One key area for improvement is the waste heat utilization
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and the thermodynamics of such systems, which is getting more attention due to their ability to save
energy and improved power generation, resulting in reduced fuel utilization, power production cost,
and greenhouse emissions. This is the reason that the amount of power produced along with the type
and the cost of technologies used for the recovery of waste heat resources are the essential elements
deciding the feasibility of such technologies and resultant energy utilization.

In the past decade, several technologies for energy conversion are being studied, like air Brayton
power cycles and organic Rankine power cycles (ORCs) [2–5]. However, ORCs have efficiency
constraints when operating using a waste heat source at moderate (relatively higher) bottoming cycle
turbine temperatures due to the limitations related to thermal and physical properties of commonly used
organic working fluids [6]. In recent times, stringent developments and modifications in supercritical
carbon dioxide (S-CO2) Brayton power cycles are observed due to its capacity of achieving higher
thermal efficiencies when operating with low to medium range heat sources [7]. In virtue of less
corrosive behavior of CO2, it can be used with relatively higher-temperature heat source applications
like S-CO2 Brayton power cycles powered by nuclear heat source [8–10] and solar power tower [11,12].
In addition to this, CO2 provides many environmental and thermodynamic benefits, including null
ozone depletion potential (ODP = 0) and minimum global warming potential (GWP = 1). CO2 is
non-flammable, non-toxic, chemically inert, inexpensive, and shows low compressibility factor closer to
critical point (i.e., 31 ◦C and 7.4 MPa). Several studies are performed on the power production potential
of S-CO2 Brayton power cycles in low- and high-grade waste heat utilization applications [13,14].

As per Köppen Climate classification, the typically densely populated regions of the earth having
low precipitation and elevated average ambient temperatures are categorized as BWh zones [15].
Zones such as Riyadh, Dubai, Karachi, and many parts of MENA where the highest ambient
temperatures are between 40 and 50 ◦C and constitute 12% of Earth. For higher ambient temperatures,
the cycle minimum temperature increases and a clear rise in compressor work and drop in thermal
efficiency are observed, as shown in Figure 1 [16].
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Figure 1. Performance decrement of S-CO2 Brayton power cycles at higher cycle minimum temperatures.

Therefore, the performance enhancement of S-CO2 Brayton power cycles in high ambient
temperature zones can be achievable by relocating the CO2 critical point to higher temperatures by
adding the second working fluid in CO2; this can be done by designing a CO2-based binary mixture [17].
Designing a CO2-based binary mixture can be performed by adding inorganic/organic compounds to
relocate the mixture critical point to higher temperatures so that cycle minimum temperature can be
matched with higher ambient temperature climatic conditions, especially of BWh zones [18].

Invernizzi et al. [19] analyzed Brayton power cycles powered by different CO2-based binary
mixtures as operating fluids. A clear performance improvement in Brayton power cycles operating
with CO2-based binary operating mixtures in comparison with pure S-CO2 Brayton power cycles is
observed. Seungjoon et al. [20] investigated the performance of Brayton power cycles for hot ambient
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conditions operating with CO2-based binary mixtures. Authors concluded that power cycles operating
with CO2/toluene and CO2/R32 binary mixtures are more efficient as compared to simple S-CO2

power cycles.
Due to intrinsic characteristics, the research on power cycles powered by CO2-based binary

mixtures has been growing in the selection of working fluids and performance optimization of power
cycles for both low and high-temperature heat sources [21,22]. The main challenges are the attainment
of appropriate thermodynamic efficiencies, selection, and assessment of admixtures for CO2-based
binary mixtures suitable for a large span of heat sources. Moreover, recent researches has been done on
thermodynamic properties and thermal stability of pure and mixture working fluids [23–25].

Along with thermodynamic aspects, economic and environmental aspects of the power cycles
should be considered for comprehensive analysis. Haroon [16] in his thesis performed comparative
study and suggested that the CO2-C6F14 mixture is a better option for power generation at higher
temperature ambient conditions in comparison with CO2-C7H8 mixture because it performs well
in terms of exergy efficiency, less plant-specific cost and environmentally benign working fluid.
Manzolini et al. [17] adopted CO2-based mixtures to improve the thermal to power conversion
efficiency for solar power plants and to minimize the levelized cost of electricity. The higher conversion
efficiencies and lower cost results in a 10% reduction in the levelized cost of electricity with reference
to the traditional steam power cycle.

Haroon et al. [26] also conducted a detailed sensitivity analysis for energetic and exergetic
efficiencies comparing the simple regenerative and partial heating bottoming power cycles applied to
topping gas turbines. The partial heating cycle is suggested as a better option for power production in
warm climatic conditions due to better thermodynamic performance, less overall UA, and plant-specific
cost. Xia et al. [27] published research on exergo-economic and thermodynamic performances of
transcritical power cycles powered by CO2-based binary mixtures. In the case of the low-temperature
power cycle, the CO2/R32 mixture produces the maximum exergy efficiency of 52.85% and CO2/R161
presented the minimum levelized cost per unit of exergy product of 47.909 USD/MWh. In the case of
the high-temperature power cycle, CO2/C3H8 presented the minimum levelized cost per unit of exergy
product of 29.212 USD/MWh.

The utilization of CO2-based binary mixtures as working fluids in heat to power conversion
systems is a possible choice due to the favorable characteristics of CO2 and the enhanced efficiency
of CO2 power cycles, as mentioned earlier. It is worth noting that the CO2-based binary mixture
comprised of additive compound in an appropriate composition can potentially give benefit to the
design a mixture with desirable properties [18].

This study investigates the exergetic, economic, and exergo-environmental performance of two
different configurations of bottoming power cycles powered by carbon dioxide-based binary mixture
for warm climatic conditions. A detailed literature survey indicates that heat to power conversion
systems powered by carbon dioxide-based binary mixture is not explored extensively earlier, especially
for warm climatic conditions. Bottoming power cycles hold two challenges: firstly, the achievement of
maximum efficiency and secondly transformation to effective work. The exhaust heat of GE-LM2500
medium-scale topping gas turbine is employed as a heat source for the comparative performance
analysis of bottoming power cycles. Principal parameters considered as a selection criterion of carbon
dioxide-based binary mixture are thermodynamic characteristics, heat source compliance, and HSE
(health, safety and environment) properties at the first stage. At the second stage, the thermodynamic
properties of the binary mixture are computed, and the reliability of the thermodynamic model is
ensured. Then, the parametric analysis is conducted to recommend practical conditions (pressure
ratio) for power production. Ultimately, the comparative performance analysis is conducted for power
cycles operating with pure carbon dioxide and carbon dioxide-based binary mixture. Lastly, the best
performing bottoming power cycle is suggested based on exergetic efficiency, energetic efficiency,
exergo-environmental analysis, and CO2 emissions savings.
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2. Thermodynamic, Economic and Environmental Analysis

2.1. Selection of C7H8 Additive and Properties of CO2/C7H8 Binary Mixture

This study is the extension of a previous study [26], which explored the exergetic performance
gain by employing CO2/C7H8 binary mixture in CO2 bottoming power plants. In the present study,
for the computation of exergetic, economic, and exergo-environmental performance of bottoming
power plants powered by pure CO2 and CO2/C7H8 binary mixture, the thermodynamic properties
of CO2/C7H8 binary mixture are employed from the previous study. Thermodynamic and HSE
characteristics of pure CO2 and C7H8 are enclosed in Table 1. Detailed selection criteria for the organic
additive in CO2 are presented in the previous study. A comprehensive section namely, “Properties
of the binary mixture” including Vapor liquid equilibrium (VLE) diagrams at different temperatures,
critical points, and dew and bubble lines at different compositions was already included in the previous
study. In this section, the importance of toluene as an additive for designing binary mixture and EOS
(equation of state) employed for the computation of thermodynamic properties of CO2/C7H8 binary
mixture are discussed.

Table 1. Thermodynamic and HSE characteristics of pure CO2 and Toluene.

Fluid Molar Mass
(kg/kmol)

Pcr
(Bars) Tcr (◦C) Thermal Stability

Limit (◦C) ODP GWP Auto Ignition
Temperature (◦C) Flammability

Toluene 92.14 41.08 318.6 400 0 low 480 Yes
CO2 44.01 73.8 31.06 800 0 Very low N/A Not flammable

In recent times, the potential of toluene for power generation in ORCs is evaluated for
biomass, combustion turbine, and internal combustion engine waste heat utilization applications [28].
Some distinguished properties of toluene are highlighted below:

• The critical point temperature is greater than CO2, which is advantageous for the designing of a
binary mixture having a high critical temperature.

• Thermochemically stable up to 400 ◦C in static testing carried out within stainless steel loop [23].
• Highly flammable having flash point temperature of 3 ◦C. Nevertheless, its flammability can be

restrained by maintaining the lower mole fraction in binary mixture design.
• Moderately toxic, however, its harmful impacts on humanity may potentially be reduced by using

efficient filtration techniques [29].
• Highly compatible with aluminum and stainless steel at low cycle temperatures.

Owing to favorable thermodynamic, health, safety and environment (HSE) properties, toluene is
a suitable additive for designing CO2-based working fluid in bottoming power plants.

The EOS employed for pure CO2 [30,31] and C7H8 [32] are present in the literature. However,
for the implementation of CO2/C7H8 binary mixture, it is vital to have adequate mixing rules as well
as experimental data of thermodynamic properties of binary mixture for the fitting of the relevant
equation of state parameters. To avoid the complication in model development, Peng-Robinson EOS is
employed in this study for the computation of CO2/C7H8 binary mixture thermodynamic properties.

Peng-Robinson EOS is extensively used to investigate the thermodynamic properties of pure
and mixed working fluids due to its enhanced predictive capability as compared to other equation of
states [33,34]. In the present study, all thermodynamic calculations by using Peng-Robinson EOS are
performed in the Aspen Plus simulation environment. Aspen Plus computes entropies and enthalpies
by calculating the integral of residual functions [35].

2.2. Energy and Exergy Model

A medium-scale gas turbine (GE LM2500) [36] is selected as a referral topping loop for bottoming
power cycles, due to thermal stability limitation (i.e., 400 ◦C) enforced by toluene. The particulars of
the topping loop and exhaust gas component mole fractions are enclosed in Table 2.
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Table 2. Specification of GE-LM2500 topping gas turbine. Adapted from [26].

Parameter Value Exhaust Gas Composition

Power Output 24.8 MW Component Mole Fractions

Efficiency 35.1% CO2 0.03
Pressure Ratio (P.R) 19 Nitrogen 0.76
Mass Flow Rate of

exhaust gases (MFR) 71 kg/sec Oxygen 0.14

Exhaust gases
Temperature (Texh,in) 798 K (525 ◦C) Water 0.07

The analysis of the topping loop is not incorporated because this study emphasizes on exergetic,
environmental, and exergo-environmental performance of bottoming power cycles powered by the
CO2-C7H8 binary mixture. Two plant architectures are studied for topping power loop exhaust heat
utilization; namely, simple regenerative cycle (SRC) and partial heating cycle (PHC). Both architectures
are presented in Figure 2. SRC is the simple architecture consists of one integrated heat exchanger
(IHX) for waste heat utilization and a recuperator. This architecture is usually employed for waste
heat recovery applications to conduct a comparative performance analysis with other complicated
architectures. PHC is a marginally complex architecture including a stream with split after compression
to enhance the heat utilization of high-temperature exhaust gases and to accomplish improved thermal
matching in the recuperator. This architecture proved to be a highly ranked layout for waste heat
recovery supercritical carbon dioxide power cycle applications [13,37,38]; therefore, this architecture is
selected in this study for bottoming power cycles powered by CO2-C7H8 binary mixture.Energies 2020, 13, x FOR PEER REVIEW 6 of 20 
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Power cycle modeling and specifications are performed by using the ASPEN plus V9 process
simulation tool [39]. The minimum temperature difference approach (MITA) is employed for the
modeling of recuperator and IHX. According to this approach, the heat exchanger is divided into
several internal zones, calculates temperature differences per zone by employing energy balance,
and converges the temperatures at design MITA value. This approach is more reliable in comparison
with traditional methods that assume the effectiveness of a heat exchanger and calculate the exit
temperatures by considering the whole heat exchanger as a black box. In addition to this, the MITA
approach provides the conditions of pinch point occurrence within the heat exchanger. Finally, the total
UA of the heat exchanger is computed by the summation of the individual UA of each zone.

The range of P.R for sensitivity analysis is set from 2 to 4.4. The parameters studied are energy
efficiency, exergy efficiency, mass flow rate of working fluid, heat recovery, net power produced,
overall UA (sum of UA of all heat exchangers including IHX1, IHX2, recuperator and cooler),
exergy destruction ratio, total components cost, plant-specific cost, levelized cost of electricity and
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CO2 emissions savings. Recommended P.R for all four cycles are decided based on maximum
exergy efficiency and power output. In addition to this, exergy destruction and cost of individual
components of power cycles are also investigated. Finally, exergy destruction (irreversibilities) in the
components of power cycles operating with 0.9CO2 + 0.1C7H8 binary mixture at the recommended P.R
is also investigated.

2.2.1. Energetic Analysis

The thermodynamic model employed to examine the energetic performance of the bottoming
power cycles is reported in this section. The energy balance computations are performed by using
ASPEN and accompanied by computation of energetic efficiency (ηI) and net power (

.
Wnet) using

Equations (1) and (2).

ηI =

.
Wnet

.
Qin

(1)

where
.

Wnet =
.

Wt −
.

Wc (2)

and (
.

Qin) is the net heat recovered from the exhaust gas stream of the topping power cycle.

2.2.2. Exergetic Analysis

To evaluate the exergetic performance of the bottoming power cycles, the exergy flow rate of every
stream is computed and exergy destruction in power cycle components is determined by employing
exergy balance [40]. Table 3 enclosed the exergy balance relations of each power cycle component.

Relations for exergetic efficiency (ηII), total exergy destroyed (
.
Ed), net exergy in (

.
Enet,in) and exergy

destruction ratio (
.
Ed, ratio) are presented in Equations (3)–(6) as follows:

ηII = 1−

.
Ed

.
Enet,in

(3)

.
Ed =

.
Ed,c +

.
Ed,t +

.
Ed,rec +

.
Ed,cond +

.
Ed,IHX1 +

.
Ed,IHX2 (4)

.
Enet, in =

.
Ex,exhin −

.
Ex,exhout (5)

.
Ed, ratio =

.
Ed

.
Enet,in

(6)

Table 3. Exergy balance rate equations for components of the sCO2 bottoming power cycles.
Adapted from [26].

Component Exergy Rate Balance Equations Eq. No

Compressor
.
Ed,C =

.
WC +

.
Ex,1 −

.
Ex,2 (7)

Turbine
.
Ed,T = −

.
WT +

.
Ex,3 −

.
Ex,4 (8)

Recuperator
.
Ed,rec =

.
Ex,5 −

.
Ex,9 +

.
Ex,4 −

.
Ex,6 (9)

Condenser
.
Ed,cond =

.
Ex,6 −

.
Ex,1 +

.
Ex,Air in −

.
Ex,Air out (10)

IHX-1
.
Ed,IHX1 =

.
Ex,exhin −

.
Ex,exhout,i +

.
Ex,10 −

.
Ex,3 (11)

IHX-2
.
Ed,IHX2 =

.
Ex,exhin,i −

.
Ex,exhout +

.
Ex,7 −

.
Ex,8 (12)
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2.2.3. Air Condenser Modeling

For the modeling of bottoming power cycles air condenser, a specific value of temperature
difference is considered at the exit stream of condenser, i.e., 10 ◦C, and the minimum cycle temperature
(Tmin) or entry temperature of the compressor is computed using

Tmin = Tamb + 10 ◦C (13)

This model is advantageous to evade a highly low pinch point temperature difference (PPTD) in
air condenser for the period of changing ambient temperatures (Tamb) [4].

2.3. Economic Analysis

To assess the economic significance of different architectures analyzed, two economic indicators
are considered, namely plant-specific cost (PSC) and levelized cost of electricity (LCOE).

2.3.1. Plant-Specific Cost

The PSC is the basic indicator providing the unitary cost of the power production system in terms
of USD/kWe and can provide a qualitative concept to compare the cost of similar systems.

PSC is defined as
PSC =

Ctotal
.

wnet
(14)

In Equation (14), the numerator (Ctotal) provides the capital investment cost of the power production
system including total cost of cycle components, cost of auxiliaries, and installation costs (Equation
(15)). The models employed for computing capital investment costs of individual cycle components
are presented in Equations (16)–(20).

Ctotal =
(
Ct + Cc + CRecup + C Condenser + CIHX1 + CIHX2

)
Cinst (15)

CIHX = 17.5 (UA [W/K])0.8778 (16)

CRecup = 5.2 (UA [W/K])0.8993 (17)

CCondenser = 76.25 (UA [W/K])0.8919 (18)

Ct = 479.34
.

mt

(
1

0.93− ηt

)
ln (P.Rt) (1 + exp (0.036 TIT − 54.4)) (19)

Cc = 71.1
.

mc

(
1

0.92− ηc

)
(P.Rc) ln (P.Rc) (20)

The power plant installation cost is considered as a multiplier of investment cost equivalent to
30% [41]. This coefficient covers the cost of auxiliaries, i.e., motorized valves, refrigeration compressors
to remove the drain and electrical connections, etc.

2.3.2. Levelized Cost of Electricity

Unlike PSC, the LCOE is rather a more comprehensive economic indicator that permits to evaluate
the profitability level of investment value for a power production system. The LCOE assesses the
average price for electricity production from a power plant. This indicator can be computed by using
Equation (21) in terms of the proportion of the present Value of plant Expenses (PVE) including plant
power production over its whole operating time. Operating time includes the net power produced,
plant utilization factor (u), and the lifetime (NY). These parameter values are enclosed in Table 4 [40].

LCOE =
PVE

8760 u NY
.

wnet
(21)
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Table 4. Assumptions for economic comparative analysis.

Parameters Value

Plant installation cost (Cinst) 1.3
Operation and Maintenance cost (OM) (USD/kWe) 30
Operation and Maintenance Escalation rate (er) (%) 3

Plant lifetime (NY) (years) 20
Plant utilization factor (u) (%) 85

Discount rate (r) (%) 5

The formulation for PVE is stated in Equation (22), which includes the cash flow calculations of
the plant expenditures by using Equation (23). In this research, operations and maintenance cost of
one kWe power installed is taken into consideration by using parameter OM whereas the escalation
rate for this cost is taken into consideration by using coefficient er. These pieces of information are
enclosed in Table 4 including the discount rate (r).

PVE = Ctot

NY∑
k=1

CFXp,k

(1 + r)k
(22)

.
CFx,pk = wnet

(
OM (1 + er)k

)
(23)

2.4. Exergo-Environmental Analysis

In the current century, it is important to perform a detailed environmental analysis of the
power production systems under investigation to assure that they have a least or no harmful
effects on the atmosphere. This portion of the paper combines exergetic and environmental
analysis to display a modern type of research called exergo-environmental analysis. It is established
based on exergetic analysis and considers exergy efficiency and exergy destruction to measure
its impact on the environment. Exergo-environmental analysis comprises six indicators, namely,
exergo-environmental impact factor, exergo-environmental impact coefficient, exergo-environmental
impact index, exergo-environmental impact improvement, exergetic stability factor, and exergetic
sustainability index [42,43].

2.4.1. Exergo-Environmental Impact Factor

The exergo-environmental impact factor ( fei) identifies the positive impact of the system under
investigation on the atmosphere. The reason of considering this indicator is that it assists to minimize
the environmental impact of the power production system by reducing the irreversibilities in the system.

The ideal value of fei is zero, which means that the system possesses no irreversibility. It is the
ratio of total exergy rate destroyed (

.
Exdest,tot) by the system and total exergy rate provided to the system

(
∑ .

Exin) as defined in Equation (24).

fei =

.
Exdest,tot∑ .

Exin

(24)

2.4.2. Exergo-Environmental Impact Coefficient

The exergo-environmental impact coefficient (Cei) is associated with exergy efficiency (ηex) of
the system. The ideal value of this indicator must be one, demonstrating that the system under
consideration is working in ideal circumstances with zero exergy destruction. This indicator is
formulated as (Equation (25)).

Cei =
1

ηex/100
(25)
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2.4.3. Exergo-Environmental Impact Index

The exergo-environmental impact index (θei) is a significant indicator to study, since it shows
whether the system subjected to investigation harms the environment by its unproductive waste exergy
and exergy destroyed or not. Its desired value must be as minimum as possible. It is the product of
( fei) and (Cei) as defined below in Equation (26).

θei = fei ×Cei (26)

2.4.4. Exergo-Environmental Impact Improvement

The exergo-environmental impact improvement (θeii) indicator supports to find the environmental
suitability of the system under study. To enhance the environmental suitability level of the analyzed
system, its (θei) value should be reduced. A large value of (θeii) means, the system is highly beneficial
for the environment and is formulated as (Equation (27)).

θeii =
1
θei

(27)

2.4.5. Exergetic Stability Factor

The exergetic stability factor ( fes) depends on the total exergy out (
.
Extot,out), total exergy destroyed

(
.
Exdest,tot) and exergy wasted by unproductive fuel (

.
Exuu) as shown in Equation (28). The required

value of this indicator should be nearest to one.

fes =

.
Extot,out

.
Extot,out +

.
Exdest,tot +

.
Exuu

(28)

2.4.6. Exergetic Sustainability Index

The exergetic sustainability index (θest) is the product of ( fes) and (θeii) of the power production
system as enclosed in Equation (29). The required value of this indicator needs to be as higher
as possible.

θest = fes × θeii (29)

2.5. CO2 Emissions Savings

Bottoming supercritical carbon dioxide power cycles do not produce any harmful emissions
because they are closed-loop power production systems. As a consequence of waste heat utilization,
they can benefit the earth ecosystem in terms of minimizing greenhouse emissions compared to fossil
fuel power plants of the same power production. For the assessment of environmental impacts,
the bottoming supercritical carbon dioxide power cycles examined in this study are compared with the
fossil fuel plant of similar power output. The savings in CO2 emissions for a unit hour is evaluated by
employing the following relation.

MCO2 = αCO2 ×
.

Wnet (30)

In Equation (30), αCO2 is the measure of CO2 emitted from fossil fuel power-generating systems
for 1 kWh production. This parameter is computed by using Equation (31). The average operating heat
rate (HRNatural gas) and emissions factor (EFNatural gas) of natural gas are extracted from the updated
data accessible on the U.S. Energy Information Administration website [44]. From the updated data,
the HRNatural gas and EFNatural gas values are 7821 Btu/kWh and 53.07 kgCO2/millions-Btu, respectively.

αCO2 = HRNatural gas × EFNatural gas (31)
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3. Results and Discussion

This section presents the 4E (Energy, Exergy, Economic and Environment) analysis of bottoming
power cycles (SRC and PHC) operating with pure CO2 and 0.9CO2 + 0.1C7H8 binary mixture as
working fluids. It is essential to study the effect of key performance indicators and their influence on
power production. For the sake of fair comparison between four types of power cycles and taking into
consideration that exhaust gases of GE LM2500 [36] topping gas turbine is used as a heat source for
power generation, the input operating (base) conditions are shown in Table 5.

Table 5. Base conditions for the parametric study [25,45].

Input Parameters in the Cycles Value Unit

Dead state temperature (T0) 313 K
Minimum temperature difference in IHX1 10 K
Minimum temperature difference in IHX2 10 K

Minimum temperature difference in Recuperator 30 K
Isentropic efficiency of turbine 85 %

Isentropic efficiency of compressor 80 %
Turbine inlet temperature (TIT) 673 K

Compressor inlet temperature (Tmin) 323 K
Compressor inlet pressure (Pmin) 9.14 MPa

Figures 3–10 demonstrate the results of the comparative study of the four bottoming power cycles.
Three types of comparative studies are performed, i.e., (1) comparative study between pure CO2

bottoming power cycles (CO2 SRC vs. CO2 PHC); (2) comparative study between SRCs operating with
pure CO2 and CO2-based binary mixture (CO2 SRC vs. 0.9CO2/0.1C7H8 SRC); (3) comparative study
between PHCs operating with pure CO2 and CO2-based binary mixture (CO2 PHC vs. 0.9CO2/0.1C7H8

PHC); cycle minimum pressure (Pmin) is the saturation pressure (bubble pressure) at the cycle
minimum temperature (Tmin) in case of power cycles operating with 0.9CO2/0.1C7H8 binary mixture.
Dead state temperature (313 K) is the average ambient temperature taken from the data of BWh climatic
zone regions.
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Figure 10. CO2 emissions savings for power cycles operating with CO2 and 0.9CO2/0.1C7H8 binary
mixture with respect to pressure ratio.

3.1. Comparison between CO2 SRC and CO2 PHC

Figure 3 illustrates the exergy efficiency and exergy destruction ratio of both SRC and PHC
operating with pure CO2 as the working fluid. In both configurations, the exergy efficiency and exergy
destruction ratios show an inverse relationship with each other. It can be observed that maximum
exergetic performance occurs at the pressure ratio of 2.8 for CO2 SRC. For CO2 PHC, maximum
exergetic performance occurs at the pressure ratio of 3.1. Therefore, these two pressure ratios are
recommended to achieve maximum cycles’ performance. The exergetic performance of SRC is higher
than PHC mainly due to the larger exergy destruction ratio in PHC components.

Figure 4 shows the performance curves of power output, plant-specific cost, and levelized cost of
electricity for both SRC and PHC operating with pure CO2 with respect to pressure ratio. Both the
plant-specific cost and the levelized cost of electricity show inverse relation with the power output of
power cycles. It can be observed that maximum power output occurs at the pressure ratio of 2.8 for
CO2 SRC. For CO2 PHC, maximum power output occurs at the pressure ratio of 3.1 as in the case of
exergy efficiency. The power output of SRC is higher than PHC with less plant-specific cost and the
levelized cost of electricity at all pressure ratios.

3.2. Comparison between CO2 SRC and 0.9CO2/0.1C7H8 SRC

Figure 5 presents the exergy efficiency and exergy destruction ratio of both SRCs operating
with pure CO2 and 0.9CO2/0.1C7H8 as working fluids. In both power cycles, exergy efficiency
and exergy destruction ratio show an inverse relationship with each other. It can be observed that
maximum exergetic performance occurs at the pressure ratio of 4.1 for 0.9CO2/0.1C7H8 SRC. Therefore,
this pressure ratio is recommended to achieve maximum cycle performance. The exergetic performance
of 0.9CO2/0.1C7H8 SRC is higher than pure CO2SRC mainly due to the larger exergy destruction ratio
in CO2SRC components.

Figure 6 shows the behavior of power output, plant-specific cost, and levelized cost of electricity
for both SRCs operating with pure CO2 and 0.9CO2/0.1C7H8 as working fluids for varying pressure
ratio. Both the plant-specific cost and the levelized cost of electricity show a decreasing trend with
the increase in pressure ratio in the case of 0.9CO2/0.1C7H8 SRC. It can be observed that maximum
power output occurs at the pressure ratio of 4.1 for 0.9CO2/0.1C7H8 SRC as in the case of exergy
efficiency. It is evident that the power output of 0.9CO2/0.1C7H8 SRC is higher than pure CO2 SRC at
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the expense of high plant-specific cost and the levelized cost of electricity at all pressure ratios. In the
case of 0.9CO2/0.1C7H8 SRC, a very high values of plant-specific cost and levelized cost of electricity
is also visible at lower pressure ratios, which is the sign of very low minimum temperature (MITA)
in the cooler, resulting in very high UA values and economic indicators. Therefore, low values of
pressure ratios are not suitable for the operation of bottoming power cycles operating with a CO2-based
binary mixture.

3.3. Comparison between CO2 PHC and 0.9CO2/0.1C7H8 PHC

Figure 7 presents the exergy efficiency and exergy destruction ratio of both PHCs operating
with pure CO2 and 0.9CO2/0.1C7H8 as working fluids. In both power cycles, exergy efficiency
and exergy destruction ratio show an inverse relationship with each other. It can be observed that
maximum exergetic performance occurs at the pressure ratio of 4.4 for 0.9CO2/0.1C7H8 PHC. Therefore,
this pressure ratio is recommended to achieve maximum cycle performance. The exergetic performance
of 0.9CO2/0.1C7H8 PHC is better than pure CO2PHC mainly due to the larger exergy destruction ratio
in CO2PHC components.

Figure 8 shows the behavior of power output, plant-specific cost, and levelized cost of electricity
for both PHCs operating with pure CO2 and 0.9CO2/0.1C7H8 as working fluids for varying pressure
ratio. Both plant-specific cost and levelized cost of electricity show a decreasing trend with the increase
in pressure ratio in the case of 0.9CO2/0.1C7H8 PHC. It can be observed that maximum power output
occurs at the pressure ratio of 4.4 for 0.9CO2/0.1C7H8 PHC as in the case of exergy efficiency. It is
evident that the power output of 0.9CO2/0.1C7H8 PHC is higher than pure CO2 PHC at the expense of
high plant-specific cost and the levelized cost of electricity at all pressure ratios.

Component wise exergy destruction in power cycles (SRC and PHC) operating with
0.9CO2/0.1C7H8 binary mixture at recommended pressure ratios is illustrated in Figure 9. In both
power cycles, maximum exergy is destroyed in cooler. The reason behind this is the large temperature
differences between hot and cold stream in the cooler at higher pressure ratios. The second highest
exergy destruction component is the turbine for both power cycles due to large turbine work at higher
pressure ratios. A greater number of components and very high exergy destruction in the cooler results
in a lower exergy efficiency of the PHC compared to SRC, as discussed earlier.

The trend of CO2 emissions savings at varying pressure ratio for both working fluids is shown in
Figure 10. SRC with CO2/C7H8 shows maximum savings owing to larger power output in a bottoming
cycle. Whereas, both cycle configurations with pure CO2 comparatively show lower CO2 emissions
savings especially at higher pressure ratios.

The summary of thermodynamic, economic and environmental results of the considered power
cycles with their corresponding recommended pressure ratios are shown in Tables 6 and 7. Power cycles
operating with the CO2-C7H8 mixture show greater power output, exergy efficiency, smaller mass
flow rates yet at the expense of larger levelized cost of electricity compared to cycles with pure CO2

working fluid. In terms of environmental impact and sustainability indices, cycles operating with
CO2-C7H8 mixture show significant improvement, as is evident from Table 7.

An exhaustive comparison with other thermodynamic power cycles like steam Rankine cycles and
organic Rankine cycles is also essential yet difficult because of different design parameters assumed by
different authors and different type of sensitivity analysis. Meanwhile, there are some recent studies
that deal with a comparative analysis of sCO2 and other traditional power cycles. Manente et al. [45]
presented a thorough thermo-economic comparison among different sCO2 cycle layouts for waste
heat recovery. There is another current work by Ayub et al. [25] which focuses on thermodynamic
comparison between sCO2 cycles and organic Rankine cycles for high temperature waste heat recovery.
The work suggests CO2-R134a binary mixture as working fluid in simple recuperative cycle layout
owing to higher thermodynamic performance, lower recuperator and turbine sizes and lower maximum
operating pressures compared to sCO2 cycle and organic Rankine cycle with R134a working fluid.
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Table 6. Thermodynamic performance indicators at recommended pressure ratios for all four bottoming
power cycles.

Power Cycles Recommended
Pressure Ratio

Energy
Efficiency

(%)

Exergy
Efficiency

(%)

Power
Output

(kW)

Heat
Recovery

(kW)

Exergy
Destruction

Ratio

Mass Flow
Rate

(kg/sec)

Mass Split
(towards
IHX-2)

CO2 SRC 2.8 19.0 28.6 4328.2 22,742.7 0.631 101.3 No split
0.9CO2/0.1C7H8 SRC 4.1 23.7 35.8 5473.3 23,053.3 0.538 80.9 No split

CO2 PHC 3.1 13.5 26.5 4020.8 29,835.9 0.713 92.1 0.73
0.9CO2/0.1C7H8 PHC 4.4 15.6 34.1 5163.8 33,165.0 0.649 75.6 0.68

Table 7. Economic and Environmental performance indicators at recommended pressure ratios for all
four bottoming power cycles.

Power Cycles Recommended
Pressure Ratio

Overall
UA

(kW/K)

Total
Component

Cost
(MUSD)

Plant-Specific
Cost

(USD/kWe)

Levelized
Cost of

Electricity
(USD/kWe)

CO2
Emissions

Savings
(kg.CO2/hr)

Exergo
Environmental

Impact
Improvement

(θii)

Exergetic
Sustainability

Index (θest)

CO2 SRC 2.8 1524.1 20.32 4695 0.035 814.9 0.453 0.129
0.9CO2/0.1C7H8 SRC 4.1 2812.4 42.15 7701 0.055 1030.4 0.667 0.239

CO2 PHC 3.1 1497.8 20.38 5069 0.037 756.9 0.372 0.0987
0.9CO2/0.1C7H8 PHC 4.4 2228.3 31.82 6161 0.045 972.2 0.525 0.178

4. Conclusions

This study analyzes the performance of bottoming power cycles with pure CO2 and CO2-C7H8

mixture as working fluid taking into account the thermodynamic, economic and environmental indices.
Thermodynamic analysis at varying cycle pressure ratios show that a cycle with CO2-C7H8 mixture
shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to
pure CO2 power cycles. However, the required mass flowrates of CO2-C7H8 mixture are smaller than
pure CO2.

Due to larger heat recovery and exergy efficiency, cycles with a CO2-C7H8 mixture saves larger CO2

emissions, also showing greater exergy-environmental impact improvement, and plant sustainability
index. On the contrary, economic analysis shows higher plant-specific cost and levelized cost of
electricity mainly due to higher operating pressure ratios and larger recuperator and cooler sizes.

In particular, PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with
LCOE 21.62% higher than pure CO2 PHC. In additions, SRC with CO2-C7H8 mixture shows 25.17%
increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC.

The key outcome of this work is the better exergy efficiency and environmental sustainability
benefit by using CO2-C7H8 binary mixture in bottoming sCO2 cycles. However, the rise in cycle-specific
and levelized costs of electricity in the case of CO2-C7H8 working fluid is demanding. Therefore,
more comprehensive research studying some new CO2 mixtures in bottoming sCO2 cycles is required.
The study on new CO2 mixtures requires experimental VLE properties to optimize the parameters of
equation of state (EOS) and information about thermal stability and transport properties of the pure
fluids and mixtures.
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Abbreviations

The following abbreviations, symbols and subscripts are used in this manuscript:

Cinst Installation cost
EF Emission factor (kgCO2/millions-Btu)
EOS Equation of state
GE General electric
GWP Global warming potential
HR Heat rate (Btu/kWh)
HSE Health safety and environment
IHX Integrated heat exchanger
LCOE Levelized cost of electricity (USD/kWe)
MITA Minimum temperature approach (K)
MUSD Mega Us dollars
ODP Ozone depletion potential
ORC Organic Rankine cycle
PSC Plant-specific cost (USD/kWe)
PHC Partial heating cycle
P.R Pressure ratio
SRC Simple regenerative cycle
TIT Turbine inlet temperature (K)
S-CO2 Supercritical carbon dioxide
To Dead state temperature (K)
PPTD Pinch point temperature difference (K)
NY Plant life (years)
OM Operation and maintenance cost (USD/kWe)
Qin Net heat recovered (kW)
ηI Energy efficiency (%)
ηII Exergy efficiency (%)
VLE Vapor liquid equilibrium
Wnet Power output (kW)
Recup Recuperator
C Cost (MUSD)
x Mass split ratio
amb Ambient
cond Condenser
PVE Present value of plant expenses (USD)
tot Total
t Turbine
c Compressor
min Minimum
er Operation and maintenance escalation rate (%)
u Plant utilization factor (%)
r Discount rate (%)
CF Cash flow
xp expenditure
T Temperature (K)
exp Exponent
cr Critical
1, 2, 3 Numbers specifying various points in the power cycles
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