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Scheduling of container-handling equipment during the loading 

process at an automated container terminal 

 

 

Abstract: 

To improve the operational efficiency of container terminals, it is important to consider the coordination 

of different types of container-handling equipment, which typically include vehicles, yard cranes and 

quay cranes. This paper addresses the integration of scheduling each constituent of handling equipment 

in an automated container terminal, in order to minimise the loading element of the ship’s berthing time. 

A mixed-integer programming (MIP) model was developed to mathematically formulate this challenge. 

Small-sized problems can be solved optimally using existing solver. In order to obtain approximately 

optimal solutions for large-sized problems, an adaptive heuristic algorithm was created that can adjust 

the parameters of a genetic algorithm (GA), according to the observed performance. Experiments were 

carried out for both small-sized and large-sized problems to analyse the impact of equipment used in 

the loading process on berthing and computation times, as well as to test the efficiency of our proposed 

adaptive GA in solving this integrated problem.  

 

Keywords: container loading, automated container terminal, container handling equipment, adaptive 

GA, mixed integer programming 
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1 Introduction 

Containers are large steel boxes of standard sizes, which were first used in the maritime transportation 

industry during the 1950s. Since then, the container terminal has become an important intermodal 

interface between marine and land transportation systems. In order to raise productivity, as well as 

reduce labour costs, many terminals across the world have started to deploy automated equipment to 

manage the ever-increasing container traffic passing through container terminals, particularly 

automated container terminals. Since the equipment in such terminals is controlled automatically, it is 

imperative to establish an efficient scheduling system for determining handling sequences, timings of 

all types of container handling equipment, and, ultimately, achieve optimal performance from the 

container terminals. 

 Among the different types of automated equipment that are used worldwide, automated guided 

vehicles (AGVs) are the most representative. An AGV is a mobile robot that follows markers or wires 

on the floor, or uses vision, magnets or lasers for navigation. In this paper, we consider a typical 

automated container terminal, in which three types of container-handling equipment are involved: quay 

cranes (QCs), automated guided vehicles (AGVs) and yard cranes (YCs). QCs are equipped at the 

quayside for handling containers from and onto a ship; YCs are used for retrieving and stacking 

containers in the storage yard; while AGVs are deployed for transporting containers between the 

quayside and storage yard.  

 Typically, container terminal operations consist of (1) unloading operations, during which containers 

are unloaded from a ship, delivered, and then stacked in storage yards; and (2) loading operations, 

during which containers are handled in the reverse direction of the unloading operations. (These 

operations are described in figure 1.) In this paper, we examine loading operations, during which 

containers are picked up by YCs from the yard, and loaded onto AGVs; AGVs then move containers 

from the yard to the quayside, where QCs pick up containers from AGVs and load them onto the ship. 

 While a significant body of research has investigated the scheduling challenges of QCs, AGVs and 

YCs separately, these problems are in fact interrelated. As stated in L. H. Lee et al. (2010), the efficiency 

of the transportation between the quayside and the yard-side plays a crucial role in determining the 

productivity of the terminal, because it might delay the QC/YC operations if vehicles do not arrive in 

time, or cause traffic congestions if vehicles arrive early; QC/YC operations can also affect vehicle 

transportation, since vehicles have to wait if QCs/YCs are not available to handle containers when 

vehicles have arrived at the quayside/yard-side. QCs are the most expensive pieces of handling 

equipment, and represent the bottleneck resources in container terminals; YCs play an important role 

in improving the productivity of the loading operations (Wenkai Li et al., 2009) and in determining the 

overall efficiency of the handling system (L. Chen et al., 2007); Kim and Kim (1999) concluded that 

the time of loading can be reduced significantly through efficiently sequencing loading operations. Our 

study therefore investigates the integrated scheduling of all the handling equipment, in order to 
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minimise the loading element of the ship’s berthing time, which is the key measurement of operational 

efficiency in container terminals. The optimal container handling sequences by QCs, AGVs and YCs 

will be determined by solving the proposed integrated scheduling problem. 

 

Figure 1: Unloading and loading processes in a container terminal 

 The objectives of our research are twofold: first, in terms of methodology, we provide an integrated 

modelling approach, by considering the scheduling of QCs, AGVs and YCs in an automated container 

terminal. Apart from this modelling technique, an efficient adaptive genetic algorithm (GA) has also 

been developed to solve the NP-hard problem in large sizes with hundreds of containers; second, from 

a practical point of view, this study would benefit terminal managers when making decisions about 

coordinating different types of handling equipment, so as to improve the operational efficiency of 

terminals.    

 Following this introduction, section 2 reviews the literature on the scheduling problems in container 

terminals. The proposed integrated problem is described and formulated as a mixed-integer 

programming (MIP) model in section 3. In section 4, an adaptive GA is developed for problem solutions. 

Experiments are illustrated in section 5 to demonstrate the performance of the proposed model and 

algorithm. Section 6 concludes this paper.  

2 Literature review 

Research on container terminal operations has received significant attention from both academics and 

practitioners. This section will review the relevant studies of the scheduling challenges of different types 

of handling equipment in container terminals (i.e. the scheduling of QCs, AGVs and YCs), in addition 
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to the associated integrated problems. The differences between our paper and related works are 

identified and discussed.  

 In the area of QC scheduling, the earliest research paper was written by Daganzo (1989), who 

analysed a situation in which ships were partitioned into bays, and where the movement of containers 

in a bay was defined as a task. The author suggested an algorithm to determine the number of cranes 

needing to be assigned to ship-bays of multiple vessels. Kim and Park (2004) assumed that there were 

unloading and loading tasks within the same ship-bay, and the QC schedule for each container was 

determined; they also developed an efficient heuristic approach based on a greedy randomised adaptive 

search procedure to overcome computational obstacles. D. H. Lee, Wang, et al. (2008) proposed a 

genetic algorithm (GA) to find the optimal handling sequence of holds for QCs assigned to a ship, while 

considering the case of interferences between different QCs. More recently, Al-Dhaheri et al. (2016) 

applied a simulation-based GA for the QC scheduling in order to minimise ship handling times. Kasm 

and Diabat (2019) incorporated both non-crossing and safety clearance constraints into the QC 

scheduling, and accordingly developed a partitioning heuristic algorithm.  

 From the perspective of AGV scheduling in automated container terminals, most studies have 

focused on its dispatching methods, which can be defined as the assignment of AGVs to deliver 

containers. Kim and Bae (2004) proposed a mixed-integer programming (MIP) model, aiming to 

minimise both the total travel time of AGVs and a delay in the completion time of QCs. Briskorn et al. 

(2007) presented an alternative formulation of the AGV assignment problem, based on a process 

analogous to inventory management, which was solved using an exact algorithm. Angeloudis and Bell 

(2010) studied an assignment algorithm for AGVs under unreliable conditions, which was suitable for 

real-time control of AGVs. The developed algorithm was applied to a simulated port environment, 

where it was found to outperform the well-known heuristics. Choe et al. (2016) proposed an online 

referencing learning algorithm for scheduling AGVs by adapting the policy dynamically, which 

recommended the best assignment. Zhong et al. (2020) designed a conflict-free path plan for AGVs, 

and solved this by a combined GA and particle swarm optimisation method. 

 In the field of deployment and scheduling of YCs, Zhang et al. (2002) formulated a YC-deployment 

problem aimed at finding the times and routes of YC movements, in order to minimise the total delayed 

workload in the yard. The problem was conceived as an MIP model, and solved by Lagrangian 

relaxation to obtain an optimal solution. Ng and Mak (2005) investigated a novel model to study the 

YC scheduling problem, with several given ready times to minimise the sum of job-waiting times. A 

branch-and-bound algorithm was proposed to solve this problem, and a set of tests based on real data 

was generated to evaluate its efficacy. He et al. (2010) developed a dynamic YC-scheduling model 

based on a rolling-horizon approach via objective programming, with the aim of minimising the total 

delayed workloads. A hybrid algorithm, which employed heuristic rules and a parallel genetic algorithm, 

was used to solve the NP-hard problem. Speer and Fischer (2016) studied the branch-and-bound (B&B) 

procedure for YC scheduling at seaport terminals in light of crane interferences. Xiaolong Han et al. 
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(2019) developed an MIP model for scheduling twin-automated YCs to serve storage and retrieval 

requests, aiming to minimise the makespan of all requests.  

 Some studies have examined the integrated scheduling of different pieces of handling equipment. 

Lau and Zhao (2008) investigated an integrated scheduling model of different types of handling 

equipment at automated container terminals. Their model aimed to minimise the total travel time of 

YCs and AGVs, and the delays of QC operations. A multi-layer genetic algorithm was generated to 

obtain a near-optimal solution for the integrated problem. Cao et al. (2010) addressed an integrated 

problem for yard truck and YC-scheduling during loading operations, which was formulated as a MIP 

model. Two efficient solution methods, based on Benders’ decomposition, were developed for model 

implementation. Dkhil et al. (2017) developed an integrated model that took account of storage location 

and vehicle scheduling problems during the unloading process, whose objective was to minimise the 

total operation costs; a tabu search was used as the solution method. X. Chen et al. (2020) studied the 

integrated AGV and YC scheduling as a multi-robot coordination and scheduling problem. A real-time 

scheduling framework was proposed based on the rolling-horizon method.  

 This study is based on our previous research regarding the integration of vehicle scheduling and 

container storage allocation in the unloading process (Luo et al., 2016) and dual-cycle process (Luo & 

Wu, 2015). We further developed an integrated model for the loading process, during which we focused 

on the scheduling of AGVs, QCs and YCs. Unlike most of the existing literature, which has considered 

the minimisation of total travel times, waiting times or delay times as the main objectives, our model 

aims to ensure a minimum berthing time, which is commonly used to evaluate a terminal’s operational 

efficiency. To achieve the capability for solving practical sized problems with hundreds of containers, 

we developed an adaptive GA, which consists of a novel chromosome design, self-adjusted GA 

parameter, and works efficiently in all the examples for returning results in a reasonable computation 

time.  

3 Problem formulation 

During the loading process, a container that is picked up by a YC is loaded onto an AGV, which will 

deliver this container to the quayside. At the quayside, a QC picks up the container from the AGV and 

loads it, in its correct location, onto the ship (see figure 2). In this study, we adopt the pooling strategy 

for AGVs, which means that AGVs can serve any QC. Congestion among AGVs on the guide path is 

not considered, since studying the interference of vehicles involves more complex scheduling of 

detailed movements of vehicles, though this does constitute another important issue associated with the 

AGV system in automated container terminals (Evers & Koppers, 1996).  
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Figure 2: The layout of an automated container terminal being analysed 

 Each export container will be loaded onto a specified stack on the ship; the time required to load an 

export container by a QC depends on its stack location on the ship. In addition, within the vessel, ship 

bays (consisting of several stacks) are partitioned, each of which will be served by one QC (D. H. Lee, 

Cao, et al., 2008). Interferences among QCs are not considered in this study because, in reality, any two 

adjacent QCs must be set apart from each other by at least one ship bay to avoid interference. If a 

container is in a ship bay, which is in the covered area of a QC, the container will be handled by this 

QC. Accordingly, the destinations of containers (i.e. which QC will handle which container) are known. 

Usually, containers in the same ship stack will go to the same destination; these containers can thus be 

loaded in any order within the stacks. In our proposed problem, it is therefore assumed that the 

containers can be handled by QCs in any order. The same assumption has been made in the work of 

Cao et al. (2010). The detailed QC schedule will then be determined based on the information of 

container locations on the ship, as well as synchronisation with other handling equipment. 

 Export containers usually arrive at a terminal over a period of more than a week before the scheduled 

loading time, and are assigned to particular slots in the storage yard (Kang et al., 2006). Therefore, in 

this study, it is assumed that the yard locations of export containers are known. We define the container 

yard location by the YC’s handling time of this container, which is the time the YC requires to handle 

a container from its yard location to the transfer point in front of the block.  

 The problem being investigated is how to minimise the loading element of the ship’s berthing time, 

which is the time during which all export containers have been delivered and placed onto the ship. This 

loading time duration consists of (1) the retrieval time for containers by YCs at the storage yard; (2) the 

travelling time of containers from the storage yard to the ship by AGVs; and (3) the handling time 

required for all containers to be placed onto the ship by QCs. Apart from deciding QC schedules, as 

mentioned above, one of our objectives is to ascertain the sequence and time of containers handled by 

the AGVs, because the transportation between the yard-side and quayside plays a crucial role in 

determining the productivity of the terminal (L. H. Lee et al., 2010). The problem will also determine 
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the container-handling sequences of the YCs during the loading operations, which is very important in 

improving the overall efficiency of the system (L. Chen et al., 2007; W. Li et al., 2009). An integrated 

model is developed in this section to address these operational decisions at the same time.  

From the descriptions above, we summarise the assumptions considered in this study: 

(1) The yard storage locations for export containers are given. 

(2) The locations of QCs by which containers will be loaded (destinations of containers) are known. 

(3) The number of export containers, and number of QCs, YCs and AGVs are all known. 

(4) QCs, YCs and AGVs can only take one container at a time. 

(5) A pooling policy is applied to the scheduling of AGVs, which means that AGVs are shared 

among all the QCs. 

(6) The travelling times of AGVs between any two processing locations (transfer points of blocks 

and QCs) are known, e.g. the travelling time between each QC and block, and the travelling 

time among transfer points between blocks. 

(7) Traffic congestion of the AGVs on the path is not considered.  

(8) The interference among YCs and the interference among QCs are not considered. 

(9) The time needed for YCs dropping off containers onto AGVs and QCs picking up containers 

from AGVs are not considered. 

  

A mixed-integer programming (MIP) model will be employed for the integrated scheduling problem. 

As discussed, the objective is to minimise the berthing time of the ship. The main operational decisions 

seek to determine the schedules, i.e. the times and sequences to handle containers by AGVs, YCs and 

QCs. The following represent the notations related to this problem. 

 

Sets and parameters 

N set of export containers 

Q set of QCs 

W set of YCs 

K set of AGVs 

𝑘 index for AGVs 

𝑤 index for YCs 

q index for total number of QCs 

𝑖 𝑎𝑛𝑑 𝑗 index for export containers 

m and n  index for handling sequences 

ℎ𝑖 QC’s handling time of container 𝑖 
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𝑡𝑖 AGV’s travelling time for taking container i from storage yard to quayside  

𝑝𝑖 YC’s handling time of container i  

𝑠𝑖𝑗 AGV’s travelling time from the QC, which handles container i, to the block which 

stores container j 

𝑤𝑖𝑗 YC’s travelling time from the yard block, which stores container i, to the yard location 

of container j 

M a very large positive number 

𝑆 dummy starting container 

𝐹 dummy ending container 

𝑂𝑆 the container set which contains all the export containers and the dummy starting 

container 

𝑂𝑆 = 𝑁 ∪ {𝑆} 

𝑂𝐹 The container set which contains all the export containers and the dummy ending 

container 

𝑂𝐹 = 𝑁 ∪ {𝐹} 

O The container set which contains all the export containers and dummy starting and 

ending containers 

𝑂 = {𝑆, 𝐹} ∪ 𝑁. 

 

Decision variables 

𝑢𝑖 the time a QC picks up container i from an AGV 

𝑑𝑖 the time a YC releases container i onto an AGV 

 

In this study, the intention is to decide the sequences and times of containers for QCs, YCs and AGVs 

to operate. We subsequently introduced the following three variables: 

 

𝑥𝑖𝑘
𝑚 = {

1, 𝑖𝑓  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 is the 𝑚th container delivered by AGV 𝑘

 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑖 ∈ 𝑁, ∀𝑚 ∈ 𝑁+, ∀𝑘 ∈ 𝐾
 

 

𝑦𝑖𝑤
𝑛 =  {

1, 𝑖𝑓 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑖 is the 𝑛th container handled by YC 𝑤

 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑖 ∈ 𝑁, ∀𝑛 ∈ 𝑁+, ∀𝑤 ∈ 𝑊
 

 

𝑧𝑖𝑗 = {
1, 𝑖𝑓  𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑗 is handled immediately after conainer 𝑖 by same QC

 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒; ∀𝑖 ∈ 𝑂𝑆 , ∀𝑗 ∈ 𝑂𝐹
 

 

Objective: minimise the ship’s berthing time 
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𝑀𝑖𝑛: 𝑀𝑎𝑥𝑖(𝑢𝑖 + ℎ𝑖) 

The objective is to minimise the loading element of the ship’s berthing time, which is described as the 

time during which all the export containers have been loaded onto the ship. 

 

Subject to: 

Constraint set 1: AGV transport sequences 

Constraint (1) implies that container 𝑖 must be delivered once and only once by an AGV taking it from 

the storage yard to the quayside. Constraint (2) means that an AGV can only deliver one container at a 

time. Constraint (3) indicates that containers must be delivered by an AGV sequentially. 

∑ ∑ 𝑥𝑖𝑘
𝑚

𝑘∈𝐾𝑚∈𝑁+

= 1, ∀𝑖 ∈ 𝑁 (1)  

∑ 𝑥𝑖𝑘
𝑚

𝑖∈𝑁

≤ 1, ∀𝑚 ∈ 𝑁+, ∀𝑘 ∈ 𝐾 
(2)  

∑ 𝑥𝑖𝑘
𝑚

𝑖∈𝑁

≥ ∑ 𝑥𝑖𝑘
𝑚+1

𝑖∈𝑁

, ∀𝑚 ∈ 𝑁+, ∀𝑘 ∈ 𝐾 
(3)  

 

 

Constraint set 2: YC handling sequences 

Constraint (4) ensures that each container 𝑖 ∈ 𝑁 must be handled once, and only once, by a YC, taking 

it from its yard location to the transfer point of the yard block. Constraint (5) means that a YC can only 

carry one container at a time. Constraint (6) guarantees that containers must be handled by a YC 

sequentially. 

∑ ∑ 𝑦𝑖𝑤
𝑛

𝑤∈𝑊𝑛∈𝑁+

= 1, ∀𝑖 ∈ 𝑁 (4)  

∑ 𝑦𝑖𝑤
𝑛

𝑖∈𝑁

≤ 1, ∀𝑛 ∈ 𝑁+, ∀𝑤 ∈ 𝑊 
(5)  

∑ 𝑦𝑖𝑤
𝑛

𝑖∈𝑁

≥ ∑ 𝑦𝑖𝑤
𝑛+1

𝑖∈𝑁

, ∀𝑛 ∈ 𝑁+, ∀𝑤 ∈ 𝑊 (6)  

 

Constraint set 3: QC handling sequences 

Constraint (7) means that for every container ∈ 𝑁 , there is exactly one container 𝑖 ∈ 𝑂𝑠 handled before 

it and by the same QC. Constraint (8) means that for every container 𝑖 ∈ 𝑁 , there is exactly one 

container 𝑗 ∈ 𝑂𝐹  handled after it, and by the same QC. Constraints (9) and (10) guarantee that the 

number of QCs employed for handling these containers is exactly q. 

∑ 𝑧𝑖𝑗

𝑖∈𝑂𝑆

= 1, ∀𝑗 ∈ 𝑁 
(7)  

∑ 𝑧𝑖𝑗

𝑗∈𝑂𝐹

= 1, ∀𝑖 ∈ 𝑁 
(8)  
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∑ 𝑧𝑖𝐹

𝑖∈𝑁

= 𝑞 
(9)  

∑ 𝑧𝑆𝑗

𝑗∈𝑁

= 𝑞 (10)  

 

Constraint set 4: Time constraints for containers handled by the same equipment  

Constraint (11) implies that if container i and container j are assigned to the same AGV, and container 

j is delivered immediately after container i by this AGV, the time between when this AGV starts 

handling container j from the yard and completes its delivery of container i at the quayside must be set 

apart by a certain travelling time of this AGV. Constraint (12) suggests that if container i and container 

j are assigned to the same YC, and container j is handled after container i by this YC, then the time 

between when this YC starts handling container j and finishes handling container i must be set apart by 

a certain handling time and travelling time. Constraint (13) posits that if container j is handled after 

container i by the same QC, then the QC can only start handling container j after finishing handling 

container i, i.e. after container i has been loaded onto the ship. Constraint (14) states that a QC can only 

start handling container i after container i has been delivered from the yard to the quayside. 

𝑑𝑗 + 𝑀(2 − 𝑥𝑖𝑘
𝑚 − 𝑥𝑖𝑘

𝑚+1) ≥ 𝑢𝑖 + 𝑠𝑖𝑗 , ∀𝑖 ∈ 𝑂𝑆 , 𝑗 ∈ 𝑂𝐹 , ∀𝑚 ∈ 𝑁+, ∀𝑘 ∈ 𝐾   (11)  

𝑑𝑗 + 𝑀(2 − 𝑦𝑖𝑤
𝑛 − 𝑦𝑖𝑤

𝑛+1) ≥ 𝑑𝑖 + 𝑤𝑖𝑗 + 𝑝𝑗 , ∀𝑖 ∈ 𝑂𝑆, 𝑗 ∈ 𝑂𝐹 , ∀𝑛 ∈ 𝑁+, ∀𝑤 ∈ 𝑊 (12)  

𝑢𝑗 + 𝑀(1 − 𝑧𝑖𝑗) ≥ 𝑢𝑖 + ℎ𝑖 , ∀𝑖 ∈ 𝑂𝑆, ∀𝑗 ∈ 𝑂𝐹 (13)  

𝑢𝑖 ≥ 𝑑𝑖 + 𝑡𝑖 , ∀𝑖 ∈ 𝑁 (14)  

Constraint set 5: Binary and non-negative restrictions  

Constraints (15)-(16) provide the restrictions of the decision variables, which are binary and non-

negative. 

𝑥𝑖𝑘
𝑚, 𝑦𝑖𝑤

𝑛 , 𝑧𝑖𝑗 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑂, ∀𝑚, 𝑛 ∈ 𝑁+, ∀𝑘 ∈ 𝐾, ∀𝑤 ∈ 𝑊 (15)  

𝑢𝑖 , 𝑑𝑖 ≥ 0, ∀𝑖 ∈ 𝑁   (16)  

The above problem is NP-hard, so it is difficult to solve the problem with hundreds of containers within 

a few minutes. In the following section, we propose a heuristic method, i.e. an adaptive genetic 

algorithm, for solving large-sized problems within a reasonable computation time. 

4 The proposed adaptive genetic algorithm 

The proposed adaptive heuristic algorithm uses all the features of a genetic algorithm (GA), while 

adopting the self-adjustment of GA parameters to improve the diversity of the population (Prasad et al., 

2005). The GA is a well-known heuristic approach, its efficiency verified by the large number of 
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challenges in the field of container terminal operations, and employed to solve large-sized problems 

with approximately optimal solutions (Bazzazi et al. (2009); Fu et al. (2014); X. Han et al. (2010); L. 

H. Lee et al. (2010); Tavakkoli-Moghaddam et al. (2009)). Although many new advanced metaheuristic 

techniques are available, as summarised in a recent paper by Gharehgozli et al. (2016), the proposed 

adaptive GA is the most apposite for our proposed problem. This is because the decision variables in 

our study can be easily interpreted by the chromosomes, and such an algorithm is efficient in obtaining 

solutions in a relatively short computation time. The detailed algorithm design is explained in the 

following steps: 

 

Chromosome representation and initialisation: The decision variables of the mathematical model 

are usually described as ‘chromosomes’ when designing a GA. In this paper, the chromosomes represent 

the three main decision variables, 𝑥𝑖𝑘
𝑚, 𝑦𝑖𝑤

𝑛  and 𝑧𝑖𝑗, as stated in the model, which define the container 

handling sequences by AGVs, YCs and QCs respectively. In figure 3, we provide an example of 

chromosome representation with six containers, three AGVs, three YCs and two QCs. In such a 

representation, each container, AGV, YC and QC will be assigned a number as a label for easy 

description in the algorithm.  

Figure 3(a) can be explained as follows: 

(1) Take AGV 2 as an example: in this figure, AGV 2 will deliver container 1 first, then deliver 

container 3; mathematically, this means 𝑥12
1 = 1 (container 1 is the first container delivered by 

AGV 2) and 𝑥32
2 = 1 (container 3 is the second container delivered by AGV 2). 

(2) Now look at YC 3: YC 3 will handle container 4 first then handle container 5; mathematically, 

this means 𝑦43
1 = 1 (container 4 is the first container handled by YC 3) and 𝑦53

2 = 1 (container 

5 is the second container handled by YC3). 

(3) Explanations for other AGVs and YCs follow the above steps. Assigning AGVs and YCs in 

this manner will ensure that all the containers will be handled by an AGV and a YC once.  

Assuming that containers 1, 3 and 4 will be handled by QC 1, and that containers 2, 5 and 6 will be 

handled by QC 2, figure 3(b) shows one possible solution for the QCs’ handling sequences: 

(1) QC 1 will handle container 4 first, then container 1 and then container 3, in that sequence; 

mathematically, this means 𝑧41 = 1 and 𝑧13 = 1. 

(2) QC 2 will handle container 2 first, then container 6 and then container 5, in that sequence; 

mathematically, this means 𝑧26 = 1 and 𝑧65 = 1.    

Container AGV YC 

1 2 2 
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2 3 1 

3 2 2 

4 1 3 

5 1 3 

6 2 1 

(a)  

 

QC 1 QC 2 

4 2 

1 6 

3 5 

(b) 

Figure 3: (a) An illustration of chromosome representation for the AGV and YC handling sequences; (b) 

An illustration of chromosome representation for the QC handling sequences 

Parents’ selection strategy: Parents’ selection strategy decides how to choose chromosomes in the 

current population as parents, creating offspring for the next generation. Here, we adopted the most 

common method, which is the ‘roulette wheel’ sampling, to select parents for the next generation.  

Genetic operators’ design: A genetic operator helps to improve the solution gradually in the evolving 

process, while maintaining the feasibility of the newly generated offspring for the problem. We used 

the uniform crossover and swap mutation, which are described as follows: 

(1) Uniform crossover: this type of crossover operator generates a template binary string of uniformly 

distributed “1”s and “0”s with the same length as that of the parents. The template string is then mapped 

to one of the parents, in which the genes that have the same positions with “1”s in the template string 

given to a child; the remaining empty genes of this child are filled from another parent. This crossover 

can be directly used for the chromosome of AGV and YC sequences, as illustrated in figure 4. For the 

QC sequences part, it was necessary to delete the duplicate genes from another parent and then fill the 

remaining genes to generate a feasible child, which is called the ‘uniform order-based crossover’.  
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Figure 4: An illustration of uniform crossover for an example of six containers, three AGVs and three YCs 

(2) Swap mutation: according to the mutation rate 𝑃𝑚, swap mutation is carried out by choosing two 

positions of the chromosomes randomly, and then swapping the genes on these positions. Since the 

selection of values for the mutation rate can vary a great deal and does not always yield the best GA 

performance (Reardon, 1998), we designed an adaptive process for selecting this value. The mutation 

rate here is self-adjusted according to the performance of the current generation, in order to help secure 

a diverse population. The value 𝑃𝑚  therefore changes with respect to the standard deviation of the 

fitness values of all the chromosomes (𝜎𝑇) after crossover. In particular, if 𝜎𝑇 is small, which indicates 

a lower diversity in the population, the value of 𝑃𝑚 increases with an increment of a certain value – for 

example, 0.01 – to ensure that mutation is performed on more individuals. On the other hand, if 𝜎𝑇 is 

large, we keep the value of 𝑃𝑚 at the initial setting.  

Offspring acceptance strategy: We used a semi-greedy strategy to accept the offspring created by the 

GA operators. In this strategy, an offspring is accepted as the new generation only if its objective 

function value (OFV) is less than the average of the OFVs of its parent(s), because we are aiming to 

minimise the OFV.  

Stopping criterion: We used two criteria as stopping rules: (1) the maximum number of evolving 

generations 𝑀𝑔 allowed for the adaptive GA, which is a common criterion adopted by many GA-based 

optimisation problems (Bazzazi et al., 2009; Huang et al., 2009; Kozan & Preston, 1999); and (2) the 
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standard deviation of the fitness values of chromosomes (𝜎𝑇) in the current generation T is below a 

small value (Tavakkoli-Moghaddam & Safaei, 2006).  

5 Experimental results 

The following sets of experiments were carried out to investigate the efficiency of the model and the 

algorithm developed: (1) cases with a small number of containers; (2) cases with a large number of 

containers; (3) efficiency analysis; (4) a comparison of computational times.  

    For small-sized problems, results obtained by the B&B algorithm (implemented by CPLEX in 

AIMMS 3.11) and the adaptive GA were compared in terms of objective function value (OFV) and the 

computation time of the model. Due to the exponential increase in the computation time of the B&B 

algorithm as the problem size grows larger, it is impossible to solve the problem with the B&B 

algorithm in order to obtain the exact solution for large sizes. Therefore, the adaptive GA is adopted for 

solving large-sized problems by providing approximately optimal solutions in a reasonable time. The 

adaptive GA is implemented in MATLAB 7.11. All the experiments were performed on a computer 

with Intel® Core™ i3 CPU M370@2.40GHz and 4GB RAM under the Windows 7 operating system. 

For each problem, we used the same initial setting of parameters in order to compare and test the results. 

Each model was run 20 times by the proposed adaptive GA, and the means of objective function values 

and computation times are reported.  

Model parameter settings 

(1) The number of containers varies from 5 to 250, where 5-20 are considered small-sized problems 

and 20-250 are considered large-sized problems. We also considered that the number of AGVs 

varies from 2 to 15, the number of YCs varies from 2 to 8, and the number of QCs varies from 

2 to 3. 

(2) The uniform distribution was assumed for all the operation times. The processing times  

ℎ𝑖  of each QC on these containers follows uniform distribution U(30, 180)s, and the handling 

times 𝑝𝑖 of each YC from each container’s available location to the transfer point of the block, 

in which this container is located, follows uniform distribution U(60,140)s. 

(3) The values of 𝑡𝑖,  i.e. AGV’s travelling time for taking container i from the storage yard to 

quayside, can be calculated by the AGV’s travelling time from the yard block where container 

i locates to the quay crane that handles this container; similarly, the values of  

𝑠𝑖𝑗  ( AGV’s travelling time from the destination QC of container i to the origin block of 

container j, i.e. the block which stores container j,) and the values of  

𝑤𝑖𝑗 (YC’s travelling time from the transfer point of the block which stores container i to the 

yard location of container j ) can also be calculated. An example of these calculations is shown 

in Appendix 1.  
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The adaptive GA parameters’ settings 

GA parameters take the following initial settings based on our preliminary tests: crossover rate 𝑃𝑐 is 0.7; 

the self-adaptive mutation rate 𝑃𝑚 starts with 0.01 and the increment value of 0.01; population size Pop 

is 100; and maximum generations  𝑀𝑔 is 40.  

5.1 Results for small-sized problems  

This set of experiments is for small-sized cases, with the number of containers ranging from 5 to 20. 

An illustrative example is presented in Appendix 1, demonstrating how the model works. These 

experiments aim to test the efficiency of our model and to compare the results obtained from the B&B 

by existing software and from our proposed adaptive GA. Table 1 compares results of the B&B 

algorithm and our proposed GA for small-sized problems. As expected, when the number of containers 

is increased, i.e. the problem size becomes larger, the objective function value (OFV) increases 

accordingly. The OFV represents the berthing time as described in the model. The results from the B&B 

are the optimal solutions; it can be observed that there is little difference between the OFVs obtained 

by these two algorithms. Compared with the optimal results, the average OFV difference between the 

B&B and the GA is only 1.5%, which is a very promising result. Regarding the computation time, the 

proposed GA can obtain approximately optimal solutions in a faster computation speed: the 

computation time of the GA for small-sized problems ranges from 1.97 seconds to 3.98 seconds, while 

the computation time of the B&B ranges from 2.82 seconds to 16044.91 seconds for solving the cases 

up to 10 containers. It should also be noted that, in order to obtain the optimal solutions, more 

computation time is required alongside the increase in the number of containers. The computation time 

of the B&B increases exponentially, and is unable to provide solutions with more than 10 containers. 

Thus, our adaptive GA is adopted for solving large-sized problems in the next section.  

Table 1: Results of computational experiments in small sizes 

No Containers AGVs/QCs/ 

YCs 

B&B 

(MIP) 

 

 

Adaptive GA 

 

 

 

OFV 

Gap 

rate 

(%) 
Computation  

time (s) 

OFV 

(s) 

Computation  

time (s) 

OFV 

(s) 

1 5 2/2/2 2.82 407 1.97 407 0% 

2 6 2/2/2 24.37 541 2.88 543 0.3% 

3 7 2/2/2 172.02 604 3.06 612 1.3% 

4 8 2/2/2 183.69 640 3.44 654 2.2% 

5 9 2/2/2 667.09 750 4.03 767 2.3% 

6 10 2/2/2 16044.91 1867 3.98 1898 1.7% 

7 10 3/2/2 / / 3.25 1715 / 

8 15 3/3/3 / / 4.11 2108 / 

9 15 2/3/3 / / 4.32 2342 / 

10 20 2/3/2 / / 4.61 2985 / 
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5.2 Results of large-sized problems 

As discussed in the earlier section, due to the complexity of the proposed problem, it is difficult to 

obtain optimal solutions for the problem in large sizes from the B&B algorithm using AIMMS 3.11; 

thus, we employed our proposed GA, which is able to obtain near-optimal solutions in reasonable 

computation times for large-sized problems. We ran a series of large-sized problems, the number of 

containers varying from 30 to 250, with different combinations in the numbers of AGVs, QCs and YCs. 

Table 2 shows the computation results from the GA in large-sized cases. After analysing the results 

obtained from the computational experiments, it can be observed that:  

a) Generally, there has been a trend of increasing berthing times. 

As the problem size becomes larger, i.e. more containers, it takes more time to deliver all these 

containers from the yard and load them onto the ship.  

b) The impacts of YCs and AGVs on the OFVs are different. 

As containers are handled by a series of different types of equipment, it is necessary to 

investigate the effects of the number of different types of handling equipment on the OFV. 

Comparing case 14 with case 15, the OFV has improved by 15.24% when the number of YCs 

changes from 2 to 3, with all other variables the same; comparing case 11 with case 12, the 

OFV has improved by 8.37% when the number of AGVs changes from 3 to 4, with all other 

variables the same. It can be concluded that YCs are more likely to be the bottleneck resources 

in container terminal operations, which has a significant impact on the efficiency of the terminal.  

c) Our adaptive GA shows convergence behaviour. 

We applied our proposed GA to the problem with 50 containers, five AGVs, three QCs and five 

YCs with the optimal GA parameter settings identified in previous experiments; the algorithm 

was run 10 times. The results are illustrated following the pattern shown by the box plot in 

figure 5. Each box represents the OFVs of the 10 runs in one generation. The central mark is 

the median of OFVs, the edges of the box are the 25th and 75th percentiles and the whiskers are 

the most extreme data points. The data revealed that our proposed GA performs in a stable 

manner in all the experiments, and the OFVs of the best solutions at 40 generations were getting 

closer to each other. 
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Figure 5: GA performance in 10 runs with  𝑷𝒄 = 𝟎. 𝟕,  𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝑷𝒎 = 𝟎. 𝟎𝟏 and 𝑷𝒐𝒑 = 𝟏𝟎𝟎 for the case with 

50 containers, five AGVs, three QCs and five YCs 

Table 2: Results of computational experiments in large sizes by the adaptive GA 

No Containers AGVs/QCs/ 

YCs 

Computation 

time (s) 

OFV 

(s) 

11 30 3/3/2 5.95 4773 

12 30 4/3/2 7.72 4377 

13 30 5/3/2 12.17 4444 

14 40 4/3/2 8.28 5327 

15 40 4/3/3 10.19 4515 

16 40 4/3/4 15.14 3573 

17 50 4/2/4 14.71 4089 

18 50 5/2/4 7.91 4136 

19 50 5/2/5 19.38 3423 

20 60 6/3/5 14.70 3938 

21 70 6/3/5 23.47 4379 

22 80 6/3/5 26.35 4518 

23 90 6/3/5 21.51 4863 

24 100 6/3/6 27.33 6352 

25 100 8/3/6 41.06 6099 

26 100 10/3/6 45.05 6128 

27 150 10/3/5 74.92 9794 

28 150 10/3/6 54.05 8822 

29 150 10/3/7 48.17 8338 

30 200 10/3/6 89.81 11768 

31 200 15/3/6 66.23 10196 

32 200 10/3/8 60.73 9716 

33 250 10/3/4 134.06 21402 

34 250 10/3/6 107.56 15508 

35 250 10/3/8 109.05 12284 

36 250 15/3/8 131.31 11553 

 

d) The adaptive GA is able to return results for large-sized problems in a very short time.  

In most of the experiments shown in table 2, the GA is able to achieve solutions within one 

minute. Even in the case of 250 containers, 15 AGVs, three QCs and eight YCs, it only takes 

about two minutes to solve. This indicates that the proposed GA is reliable for different-sized 

experiments. 

5.3 Efficiency analysis for large-sized cases 

Efficiency is defined as the ratio between output and input. In our considered cases, the inputs are QCs, 

AGVs and YCs given the same available space, labour level and relating costs level. The outputs are 
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represented by the number of containers handled per minute, which are obtained based on the 

calculations from results in table 2. For example, in case 18 of table 2, it takes 4136 seconds (i.e. 68.93 

minutes) to handle 50 containers; output is thus calculated as 50/68.93=0.725. It means that in any one 

minute, there will be 0.725 containers handled for this case. Since we have multiple inputs and one 

output in each case, the efficiency is calculated by using weights:  

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡𝑠
 

 Therefore, efficiency is a value between 0 and 1. For example, the above equation becomes 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒∗𝑢

 𝑄𝐶∗𝑣1+𝐴𝐺𝑉∗𝑣2+𝑌𝐶∗𝑣3
, where v1, v2 and v3 are input weights and u is the output weight; 

QC, AGV and YC represent the number of QCs, AGVs and YCs. A base case is randomly chosen as 

highlighted in table 3, with 250 containers, 3 QCs, 10 AGVs and 6 YCs. We aimed to discover the set 

of weights that maximises the efficiency of this case and therefore compare its efficiencies relative to 

all other cases. The corresponding linear programming model is presented in Appendix 2. By solving 

the model, the optimal efficiency of this base case is 81.1%, and the weights are 𝑢 = 0.839, 𝑣1 =

0.196, 𝑣2 = 0, 𝑣3 = 0.069. The weight value (v1) is higher than the weight value (v3), which means 

that QCs are more critical resources in comparison with YCs. The value of v2 is 0, which means that 

the AGVs are less critical compared with QCs and YCs. By substituting the same weights to the above 

formula, we obtained the efficiency scores in each case relative to others. For example, the case before 

the base case has an efficiency of 68.1%, which means that it is less efficient in relation to the considered 

base case, which has an efficiency of 81.1%.  

Table 3: Efficiency scores for large-sized examples 

# of QCs # of AGVs # of YCs Containers/Minute # of Containers Efficiency Score 

3 3 2 0.377 30 0.436 

3 4 2 0.411 30 0.475 

3 5 2 0.405 30 0.468 

3 4 2 0.451 40 0.521 

3 4 3 0.532 40 0.561 

3 4 4 0.672 40 0.653 

2 4 4 0.734 50 0.923 

2 5 4 0.725 50 0.913 

2 5 5 0.876 50 1 

3 6 5 0.914 60 0.823 

3 6 5 0.959 70 0.864 

3 6 5 1.062 80 0.957 

3 6 5 1.110 90 1 

3 6 6 0.945 100 0.792 

3 8 6 0.984 100 0.825 

3 10 6 0.979 100 0.821 

3 10 5 0.919 150 0.828 
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3 10 6 1.020 150 0.856 

3 10 7 1.079 150 0.847 

3 10 6 1.020 200 0.855 

3 15 6 1.177 200 0.987 

3 10 8 1.235 200 1 

3 10 4 0.701 250 0.681 

3 10 6 0.967 250 0.811 

3 10 8 1.221 250 0.901 

3 15 8 1.298 250 0.958 

 

Looking at the relationship between the number of containers handled per minute and the relative 

efficiency scores, as shown in figure 6, it can be observed that these two factors correlate strongly with 

the correlation coefficient of 0.87. This demonstrates that the more containers that can be handled per 

unit of time, the more efficient the system becomes.   

 

 

Figure 6: Correlation between efficiency scores and the number of containers handled per minute 

5.4 Comparisons of computational times 

Single-cycle operations and dual-cycle operations are both commonly used in practice. A single-

cycle operation requires an unloading and loading process, which take place separately; while a dual-

cycle operation enables simultaneous unloading and loading processes. Based on our previous studies 

of the unloading process (Luo et al., 2016), dual-cycle process (Luo & Wu, 2015) and the results 

obtained from this investigation, we were able to compare single-cycle and dual-cycle operations in 

terms of computational efficiency. Figure 7 shows that our proposed model in this study returns results 

most rapidly in all the cases for the loading process, compared with the models for the unloading process 

and dual-cycle process. For example, when handling 150 containers, the computation time for the 

loading process model is around 50 seconds, the computation time for the unloading process model is 

above 400 seconds, and the computation time for the dual-cycle process model is nearly 300 seconds.  
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Figure 7: A comparison of computation times (in seconds) for single-cycle and dual-cycle operations 

6 Conclusion 

In this paper, we have proposed a novel integrated method for scheduling all types of container handling 

equipment – i.e. QCs, AGVs and YCs – in an automated container terminal. The loading process is 

considered in this problem, during which containers are handled by YCs first, delivered by AGVs from 

the yard to quayside, and then loaded onto a container ship by QCs. The aim is to minimise the loading 

element of the berthing time of the ship. The problem is formulated as a mixed-integer programming 

(MIP) model, which is known to be NP-hard. Small-sized problems are solved optimally by existing 

optimisation software (AIMMS 3.11); we also developed an efficient adaptive genetic algorithm to 

solve the considered problem in large sizes. The main contributions of our work are that we have 

provided a new integrated modelling approach and have designed an adaptive GA using matrix 

representation of chromosomes that are well tailored to our model.  

 We have carried out a series of computational experiments and observed that our proposed integrated 

modelling approach and the designed adaptive GA are very efficient. This model optimises the 

container terminal operations by minimising the berthing time by determining the most effective 

solutions for the schedules of AGVs, YCs and QCs. The findings of this study indicate that it takes 

more time to handle a greater number of containers, and cranes tend to play a more significant role in 

the terminal operations compared with AGVs, due to the improvements achieved when increasing the 

number of YCs in handling the containers. This finding can also be observed from the experiments on 

efficiency analysis, where the weights for QCs and YCs are higher than the weight for AGVs. In order 

to test the performance of the proposed GA, we have undertaken comparative experiments in small-

sized problems, and have compared the results obtained by the adaptive GA with results obtained by 
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the B&B in terms of OFVs and computation times. It was made clear that the GA proposed in this study 

can obtain near-optimal solutions for all the cases in small sizes, with the average difference in OFV 

being just 1.5%. Therefore, the GA was adopted for solving large-sized problems and obtaining the 

near-optimal results. In all the cases we ran in our experiments, our proposed GA worked effectively in 

involving approximate optimal solutions, and always demonstrated good convergence behaviour. We 

further compared the computational efficiency of single-cycle and dual-cycle process models, and 

found out that the model for the loading process as proposed in this study works the most efficiently.   

 There are several ways to extend this study, which can be considered as future avenues for research:  

• Development in new advanced heuristics 

Despite the good performance of our proposed GA in this paper, there are novel ways to develop 

it further in order to obtain results closer to the optimal values and in a shorter time. This can 

be done by combining other techniques, such as simulated annealing, particle swarm 

optimisation, or ant colony optimisation into steps within the GA.  

• Extension into an uncertain environment 

Uncertainties always exist in the real world, and they also exist in the container terminals. For 

example, the container handling times by cranes and vehicles are hardly likely to remain at a 

constant speed, due to the interferences of equipment and traffic conditions on the road. This 

can be modelled by stochastic programming or fuzzy optimisation. Other types of uncertainties, 

such as inaccuracy of container information could also be considered in the future.  

  



22 

 

References 
Al-Dhaheri, N., Jebali, A. & Diabat, A. (2016). A simulation-based Genetic Algorithm approach for 

the quay crane scheduling under uncertainty. Simulation Modelling Practice and Theory, 66, 

122-138. 

Angeloudis, P. & Bell, M.G.H. (2010). An uncertainty-aware AGV assignment algorithm for automated 

container terminals. Transportation Research Part E: Logistics and Transportation Review, 

46(3), 354-366. 

Bazzazi, M., Safaei, N. & Javadian, N. (2009). A genetic algorithm to solve the storage space allocation 

problem in a container terminal. Computers & Industrial Engineering, 56(1), 44-52. 

Briskorn, D., Drexl, A. & Hartmann, S. (2007). Inventory-based dispatching of automated guided 

vehicles on container terminals. In: K. Kim & H.O. Guenther, Container Terminals and Cargo 

Systems (pp. 195-214): Springer Berlin Heidelberg. 

Cao, J.X., Lee, D.H., Chen, J.H. & Shi, Q. (2010). The integrated yard truck and yard crane scheduling 

problem: Benders' decomposition-based methods. Transportation Research Part E: Logistics 

and Transportation Review, 46(3), 344-353. 

Chen, L., Bostel, N., Dejax, P., Cai, J. & Xi, L. (2007). A tabu search algorithm for the integrated 

scheduling problem of container handling systems in a maritime terminal. European Journal of 

Operational Research, 181(1), 40-58. 

Chen, X., He, S., Zhang, Y., Tong, L.C., Shang, P. & Zhou, X. (2020). Yard crane and AGV scheduling 

in automated container terminal: A multi-robot task allocation framework. Transportation 

Research Part C: Emerging Technologies, 114, 241-271. 

Choe, R., Kim, J. & Ryu, K.R. (2016). Online preference learning for adaptive dispatching of AGVs in 

an automated container terminal. Applied Soft Computing, 38, 647-660. 

Daganzo, C.F. (1989). The crane scheduling problem. Transportation Research Part B: Methodological, 

23(3), 159-175. 

Dkhil, H., Yassine, A. & Chabchoub, H. (2017). Multi-objective optimization of the integrated problem 

of location assignment and straddle carrier scheduling in maritime container terminal at import. 

Journal of the Operational Research Society, 1-23. 

Evers, J.J.M. & Koppers, S.A.J. (1996). Automated guided vehicle traffic control at a container terminal. 

Transportation Research Part A: Policy and Practice, 30(1), 21-34. 

Fu, Y.-M., Diabat, A. & Tsai, I.-T. (2014). A multi-vessel quay crane assignment and scheduling 

problem: Formulation and heuristic solution approach. Expert Systems with Applications, 

41(15), 6959-6965. 

Gharehgozli, A.H., Roy, D. & de Koster, R. (2016). Sea container terminals: New technologies and OR 

models. Maritime Economics & Logistics, 18(2), 103-140. 

Han, X., Lu, Z. & Xi, L. (2010). A proactive approach for simultaneous berth and quay crane scheduling 

problem with stochastic arrival and handling time. European Journal of Operational Research, 

207(3), 1327-1340. 

Han, X., Wang, Q. & Huang, J. (2019). Scheduling cooperative twin automated stacking cranes in 

automated container terminals. Computers & Industrial Engineering, 128, 553-558. 

He, J., Chang, D., Mi, W. & Yan, W. (2010). A hybrid parallel genetic algorithm for yard crane 

scheduling. Transportation Research Part E: Logistics and Transportation Review, 46(1), 136-

155. 

Huang, Y., Liang, C. & Yang, Y. (2009). The optimum route problem by genetic algorithm for 

loading/unloading of yard crane. Computers & Industrial Engineering, 56(3), 993-1001. 

Kang, J., Ryu, K.R. & Kim, K.H. (2006). Deriving stacking strategies for export containers with 

uncertain weight information. Journal of Intelligent Manufacturing, 17(4), 399-410. 

Kasm, O.A. & Diabat, A. (2019). The quay crane scheduling problem with non-crossing and safety 

clearance constraints: An exact solution approach. Computers & Operations Research. 

Kim, K.H. & Bae, J.W. (2004). A look-ahead dispatching method for automated guided vehicles in 

automated port container terminals. Transportation Science, 38(2), 224-234. 

Kim, K.H. & Kim, K.Y. (1999). Routing straddle carriers for the loading operation of containers using 

a beam search algorithm. Computers & Industrial Engineering, 36(1), 109-136. 



23 

 

Kim, K.H. & Park, Y.M. (2004). A crane scheduling method for port container terminals. European 

Journal of Operational Research, 156(3), 752-768. 

Kozan, E. & Preston, P. (1999). Genetic algorithms to schedule container transfers at multimodal 

terminals. International Transactions in Operational Research, 6(3), 311-329. 

Lau, H.Y.K. & Zhao, Y. (2008). Integrated scheduling of handling equipment at automated container 

terminals. International Journal of Production Economics, 112(2), 665-682. 

Lee, D.H., Cao, J.X. & Shi, Q. (2008). Integrated quay crane and yard truck schedule for inbound 

containers. In:  IEEE International Conference on Industrial Engineering and Engineering 

Management (pp. 1219-1223). Singapore: IEEE. 

Lee, D.H., Wang, H.Q. & Miao, L. (2008). Quay crane scheduling with non-interference constraints in 

port container terminals. Transportation Research Part E: Logistics and Transportation Review, 

44(1), 124-135. 

Lee, L.H., Chew, E.P., Tan, K.C. & Wang, Y. (2010). Vehicle dispatching algorithms for container 

transshipment hubs. OR Spectrum, 32(3), 663-685. 

Li, W., Wu, Y., Petering, M., Goh, M. & Souza, R. (2009). Discrete time model and algorithms for 

container yard crane scheduling. European Journal of Operational Research, 198(1), 165-172. 

Li, W., Wu, Y., Petering, M.E., Goh, M. & Souza, R.d. (2009). Discrete time model and algorithms for 

container yard crane scheduling. European Journal of Operational Research, 198(1), 165-172. 

Luo, J. & Wu, Y. (2015). Modelling of dual-cycle strategy for container storage and vehicle scheduling 

problems at automated container terminals. Transportation Research Part E: Logistics and 

Transportation Review, 79, 49-64. 

Luo, J., Wu, Y. & Mendes, A.B. (2016). Modelling of integrated vehicle scheduling and container 

storage problems in unloading process at an automated container terminal. Computers & 

Industrial Engineering, 94, 32-44. 

Ng, W. & Mak, K. (2005). Yard crane scheduling in port container terminals. Applied Mathematical 

Modelling, 29(3), 263-276. 

Prasad, K., Ranjan, R., Sahoo, N. & Chaturvedi, A. (2005). Optimal reconfiguration of radial 

distribution systems using a fuzzy mutated genetic algorithm. IEEE Transactions on Power 

Delivery, 20(2), 1211-1213. 

Reardon, B.J. (1998). Fuzzy logic versus niched Pareto multiobjective genetic algorithm optimization. 

Modelling and Simulation in Materials Science and Engineering, 6(6), 717. 

Speer, U. & Fischer, K. (2016). Scheduling of Different Automated Yard Crane Systems at Container 

Terminals. Transportation Science, 51(1), 305-324. 

Tavakkoli-Moghaddam, R., Makui, A., Salahi, S., Bazzazi, M. & Taheri, F. (2009). An efficient 

algorithm for solving a new mathematical model for a quay crane scheduling problem in 

container ports. Computers & Industrial Engineering, 56(1), 241-248. 

Tavakkoli-Moghaddam, R. & Safaei, N. (2006). An evolutionary algorithm for a single-item resource-

constrained aggregate production planning problem. In:  IEEE Conference on Evolutionary 

Computation (CEC) (pp. 2851-2858). Vancouver, B.C., Canada: IEEE. 

Zhang, C.Q., Wan, Y.W., Liu, J.Y. & Linn, R.J. (2002). Dynamic crane deployment in container storage 

yards. Transportation Research Part B-Methodological, 36(6), 537-555. 

Zhong, M., Yang, Y., Dessouky, Y. & Postolache, O. (2020). Multi-AGV scheduling for conflict-free 

path planning in automated container terminals. Computers & Industrial Engineering, 142, 

106371. 

 

  



24 

 

Appendix 1: An illustration example  

The operating environment considered is as follows: the layout of the automated container terminal is 

shown in figure 2. There are two QCs working at the quayside for loading containers onto the ship. In 

the yard, three YCs are working to handle containers within three blocks and to load them onto the 

AGVs. Between the quayside and yard-side, three AGVs are travelling for the purpose of delivering 

containers. Because the destinations of containers are known and the AGVs travel at constant speed, 

the time AGV 1 spends on delivering one container from the yard to its destination QC is the same with 

the time taken by AGV 2. We give an example of nine containers to be loaded onto the ship. The 

destination QC and the yard storage block are given in table A1; for example, as in table A1, container 

1 which is located in block 1 will be loaded by QC 1. Container 4 located in block 2 will be loaded onto 

the ship by QC 1. The AGV travel time from each block to each QC is given in table A2; for example, 

as in table A2, the AGV travel time from block 2 to QC 1 is 105 seconds, and the travel time from block 

1 to QC 2 is 53 seconds.  

Table A1: The destination QC and yard storage location information in an example of nine export 

containers 

Container Destination QC Storage block 

1 QC 1 Block 1 

2 QC 1 Block 1 

3 QC 1 Block 2 

4 QC 1 Block 2 

5 QC 1 Block 3 

6 QC 2 Block 3 

7 QC 2 Block 3 

8 QC 2 Block 3 

9 QC 2 Block 3 

Table A2: AGV travel time between each block and each QC for the case of two QCs and three blocks (in 

seconds) 

QCs Block 1 Block 2 Block 3 

QC 1 101 105 61 

QC 2 53 49 50 

 According to tables A1 and A2, the values of  𝑡𝑖 (AGV travel time for each container from the storage 

block, where it is located, to its destination QC) and 𝑠𝑖𝑗 (the empty-loaded travel time of AGVs between 

handling any two containers) can be calculated. Take container 4 as an example: 𝑡4 will be the AGV 

travel time from block 2 (where container 4 is located) to QC 1 (container 4’s destination QC), which 

is 105 seconds. If an AGV delivers container 3 and then goes to pick up container 5, then the empty 

loaded travel from the destination of container 3 (QC 1) to the yard location of container 5 (block 3) 

𝑠35 is 61 seconds. These values are calculated in the above ways and shown in table A3 and table A4. 

Table A3: The values of 𝒕𝒊-the AGV travel time for each container from storage block to QC  
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Containers 1 2 3 4 5 

𝒕𝒊 (sec) 101 101 105 105 61 

Containers 6 7 8 9  

𝒕𝒊 (sec) 50 50 50 50  

Table A4: The values of 𝒔𝒊𝒋-every combination of the empty loaded travel time of AGV between any two 

containers (in seconds) 

j 

i 

1 2 3 4 5 6 7 8 9 

1 N/A 101 105 105 61 61 61 61 61 

2 101 N/A 105 105 61 61 61 61 61 

3 101 101 N/A 105 61 61 61 61 61 

4 101 101 105 N/A 61 61 61 61 61 

5 101 101 105 105 N/A 61 61 61 61 

6 53 53 49 49 50 N/A 50 50 50 

7 53 53 49 49 50 50 N/A 50 50 

8 53 53 49 49 50 50 50 N/A 50 

9 53 53 49 49 50 50 50 50 N/A 

 

The handling time of each container by a QC is the time duration from picking up the container from 

an AGV until it is placed on its location on the ship. The handling time of each container by the YC is 

determined by the container’s location in the yard; it is the time duration between retrieving the 

container in the storage yard and placing it onto the AGV at the working points in front of the block. 

Assuming containers are evenly distributed both on the ship and in the yard, the handle time of QC for 

each container - ℎ𝑖  and handle time of YC for each container - 𝑝
𝑖
 are generated from uniform 

distribution U(30, 180)s and U(60, 140)s, respectively. An example of these values are shown in table 

A5. 

Table A5: The values of QC handling times 𝒉𝒊 and YC serving times 𝒑𝒊 (in seconds) 

Containers 𝒉𝒊 𝒑
𝒊
 

1 80 104 

2 73 132 

3 128 107 

4 87 84 

5 74 122 

6 133 98 

7 175 110 

8 132 138 

9 180 100 

 The handling time of each container by a YC is defined as the time from each container’s yard 

location to the transfer point in front of the block. As the YC travels at constant speed, there is no 

difference in the speed of loaded move and empty-loaded move. Let the YC travel time between the 

transfer points of any two adjacent blocks be 40 seconds. There are two conditions when calculating 
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the values of a YC’s empty-loaded travel time 𝑤𝑖𝑗 for any two successive containers handled by the 

same YC:  

 (1) Containers in the same block. For any two consecutive containers located within the same block 

and to be handled by the same YC, the empty-loaded travel time from dropping off the previous 

container onto an AGV at the transfer point to the target container, is the same as the process time of 

the target container because of the same travel distance. For example, consider that container 6 and 

container 7 will be performed by the same YC. After the YC releases container 6 onto an AGV at the 

transfer point of block 3, this YC moves to the location of container 6 without carrying containers, i.e. 

empty-loaded. Thus this empty-loaded travel time is the process time of container 7, which, as shown 

in table A5, which is 110 seconds. 

 (2) Containers in different blocks. For calculating the empty-loaded travel times between any two 

consecutive containers in different blocks and to be handled by the same YC, additional YC travel time 

between blocks should be to the process time. Let the travel time of YCs between the transfer points at 

block 1 and block 2 be 40 seconds. For example, if container 2 and container 3 are processed by the 

same YC, then after an AGV collects container 2 at the transfer point of block 1, YC will take 40 

seconds to move to the transfer point at block 2; then it goes to pick up container 3. Thus the empty 

travel time is 40+107=147 seconds, where 107 is the process time of container 3, as in table A5.  

 Therefore, the values of 𝑤𝑖𝑗 could be calculated followed by the above discussion: we list the results 

in table A6.  In the same way, the values of parameters can be calculated accordingly for different sized 

problems.  

Table A6: The empty-loaded travel time between any two successive containers by the same YC 

j 
i 

1 2 3 4 5 6 7 8 9 

1 N/A 132 147 164 202 178 290 218 180 

2 104 N/A 147 164 202 178 290 218 180 

3 144 172 N/A 124 162 138 250 178 140 

4 144 172 107 N/A 162 138 250 178 140 

5 184 212 147 164 N/A 98 110 138 100 

6 184 212 147 164 122 N/A 110 138 100 

7 184 212 147 164 122 98 N/A 138 100 

8 184 212 147 164 122 98 110 N/A 100 

9 184 212 147 164 122 98 110 138 N/A 

 

 The solver takes 1393.31 seconds to solve the model and the obtained optimal berth time is 648 

seconds. The values of decision variables with respect to the schedules of AGVs, YCs and QCs are 

given in table A7, A8 and A9 respectively. For example, from table A7, we can see that AGV1 will 

deliver container 3 first, then container 1, followed by container 5; from table A8, it can be observed 

that YC2 will handle container 2 first, then container 1, followed by container 4; from table A9, it can 

be found that QC 2 will handle container 8, container 6, container 9 and container 7 in sequence.  
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Table A7: The values of the decision variables 𝒙𝒊𝒌
𝒎  

Sequences AGV1 AGV2 AGV3 

1st  𝑥31
1 = 1 container 3 𝑥22

1 = 1 container 2 𝑥83
1 = 1 container 8 

2nd  𝑥11
2 = 1 container 1 𝑥92

2 = 1 container 9 𝑥73
2 = 1 container 7 

3rd  𝑥51
3 = 1 container 5 𝑥42

3 = 1 container 4 𝑥63
3 = 1 container 6 

Table A8: The values of the decision variables 𝒚𝒊𝒘
𝒏    

Sequences YC1 YC2 YC3 

1st  𝑦81
1 = 1 container 8 𝑦22

1 = 1 container 2 𝑦33
1 = 1 container 3 

2nd  𝑦71
2 = 1 container 7 𝑦12

2 = 1 container 1 𝑦93
2 = 1 container 9 

3rd  𝑦51
3 = 1 container 5 𝑦42

3 = 1 container 4 𝑦63
3 = 1 container 6 

Table A9: The values of the decision variables 𝒛𝒊𝒋  

Sequences QC1  QC2 

1st  Container 2  𝑧23 = 1 Container 8  𝑧86 = 1 

2nd  Container 3  𝑧31 = 1 Container 6  𝑧69 = 1 

3rd  Container 1  𝑧15 = 1 Container 9  𝑧97 = 1 

4th  Container 5  𝑧54 = 1 Container 7 

5th  Container 4  
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Appendix 2: model for calculating the efficiency score 

Objective: maximise the efficiency score for the base case highlighted in table 3 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒 ∗ 𝑢

 𝑄𝐶 ∗ 𝑣1 + 𝐴𝐺𝑉 ∗ 𝑣2 + 𝑌𝐶 ∗ 𝑣3
 

Subject to  

𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛𝑢𝑡𝑒∗𝑢

 𝑄𝐶∗𝑣1+𝐴𝐺𝑉∗𝑣2+𝑌𝐶∗𝑣3
≤ 1 for each case as listed in table 3 

Weights ≥ 0 

Applying to our cases in table 3 to the above model, we have: 

Maximise:  efficiency=
0.967∗𝑢

 3∗𝑣1+10∗𝑣2+6∗𝑣3
 

Subject to 

0.377 ∗ 𝑢

 3 ∗ 𝑣1 + 3 ∗ 𝑣2 + 2 ∗ 𝑣3
≤ 1 

0.411 ∗ 𝑢

 3 ∗ 𝑣1 + 4 ∗ 𝑣2 + 2 ∗ 𝑣3
≤ 1 

0.405 ∗ 𝑢

 3 ∗ 𝑣1 + 5 ∗ 𝑣2 + 2 ∗ 𝑣3
≤ 1 

… 

1.298 ∗ 𝑢

 3 ∗ 𝑣1 + 15 ∗ 𝑣2 + 8 ∗ 𝑣3
≤ 1 

𝑢, 𝑣1, 𝑣2, 𝑣3 ≥ 0 

Converting this model into a linear model, we have 

Maximise: 0.967*u 

Subject to  

3 ∗ 𝑣1 + 10 ∗ 𝑣2 + 6 ∗ 𝑣3 = 1 

0.377 ∗ 𝑢 − 3 ∗ 𝑣1 − 3 ∗ 𝑣2 − 2 ∗ 𝑣3 ≤ 0 

0.411 ∗ 𝑢 − 3 ∗ 𝑣1 − 4 ∗ 𝑣2 − 2 ∗ 𝑣3 ≤ 0 

0.405 ∗ 𝑢 − 3 ∗ 𝑣1 − 5 ∗ 𝑣2 − 2 ∗ 𝑣3 ≤ 0 

… 

1.298 ∗ 𝑢 −  3 ∗ 𝑣1 − 15 ∗ 𝑣2 − 8 ∗ 𝑣3 ≤ 0 

𝑢, 𝑣1, 𝑣2, 𝑣3 ≥ 0 

This model is solved by Excel Solver and the optimal efficiency for the base case is 81.1%, and the 

optimal solutions for the weights obtained are 𝑢 = 0.839, 𝑣1 = 0.196, 𝑣2 = 0, 𝑣3 = 0.069. 

 

 

 


