Native Web Communication Protocols and Their
Effects on the Performance of Web Services and
Systems

Nitin Naik!, Paul Jenkins', Philip Davies? and David Newell?

'Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
’Department of Computing and Informatics, Bournemouth University, United Kingdom
Email: {nitin.naik100, paul.jenkins683} @mod.uk, daviesp@bournemouth.ac.uk, dnewell @bournemouth.ac.uk

Abstract—Native Web communication protocols are the piv-
otal components of Web services, applications and systems. In
particular, HTTP is a de facto protocol standard used in almost
all Web services and systems. Consequently, it is one of the crucial
protocols responsible for the performance of Web services and
systems. HTTP/1.1 has been successfully deployed in Web services
and systems for the last two decades. However, one of the most
significant issues with HTTP/1.1 is the Round Trip Time and
Web latency. To resolve this issue, two successor protocols SPDY
and HTTP/2 have been developed recently, with some studies
suggesting that SPDY improved the performance of Web services
and systems, whilst some did not find significant improvements
in the performance. HTTP/2 is a relatively new protocol and has
yet to be tested with any rigour. Therefore, it is important to
investigate the effects of these two enhanced protocols SPDY and
HTTP/2 on the performance of Web services and systems. This
paper conducts a number of practical investigations to evaluate
the performance of Web services and systems with and without
the support of SPDY and HTTP/2 protocols at the client and
server. This study investigates the impact of SPDY and HTTP/2
on the overall performance of Web services and systems from
the end-user’s perspective.

Keywords—Web Protocols, Web Services, Web Applications, Web
Systems, Web Latency, Round Trip Time, HTTF, SPDY, HTTP/2,
SOAP, REST

I. INTRODUCTION

The Web is the lifeline of modern society and Web services,
applications and systems are its integral components. A Web
service is predominantly a method of communication between
applications/machines over the Web (commonly via HTTP)
[1]. It is a collection of open standards and protocols used
to exchange data between applications/machines [2]. A Web
application is a piece of software that is designed to help
the user in achieving a function or task. A Web application
could use multiple web services to achieve its goal or result.
At a lower level, both Web applications and Web services
are similar in function. However, at a higher level, Web
applications are intended for users and Web services are
intended for applications/machines. A Web-based system or
Web system is one that employs Web services and Web
applications to carry out its operations, such as Web Portals,
Websites, Messengers and Skype. In Web services, applications
and systems, perceived latency is the most crucial performance
criterion for any Web users, which is the amount of time, a
user sees between making a page request and it being rendered.

One of the most important factors, which affect the perceived
latency, is the Web communication protocol that decides how
the client and server communicate over the wire. In particular,
HTTP is a de facto protocol standard used in almost all Web
services, applications and systems. Therefore, it is one of
the critical protocols responsible for the performance of Web
services, applications and systems.

One of HTTP’s biggest challenges as a Web communica-
tion protocol is reducing the Round Trip Time (RTT) and Web
latency to improve the performance of systems [3]. Therefore,
this paper conducts several practical investigations of native
Web communication protocols HTTP/1.1, SPDY and HTTP/2;
and their impact on the performance of Web services and
systems. Six different experiments are performed to examine
the effects of SPDY and HTTP/2 in reducing the RTT and
Web latency and improving the performance of Web services
and systems. It should be noted that these experiments have
analysed the overall performance of Web services and system,
rather than an individual protocol. The experimental results
demonstrate the wide variation and delay in the load time
for websites utilising SPDY and HTTP/2. It indicates that
the support of SPDY and HTTP/2 at the client side does not
make any significant improvement in the overall performance
of any websites. Therefore, this study suggests that the overall
performance of Web services and systems is heavily dependent
on other parameters such as contents of the website (number of
DOM elements/requests and their size), location of the server,
transmission media, data transfer rate, number of intermediate
nodes, traffic density, priority of event/request, and processing
delay. Finally, this experimental analysis shows the effects of
Web protocols SPDY and HTTP/2 on the overall performance
of Web services and systems is insignificant as compared to
the factors stated above.

The remainder of this paper is organised as follows: Sec-
tion II explains the theoretical background of Web services,
applications and systems, Round Trip Time (RTT) and Web
latency; Section III describes the evolution of native Web
communication protocols HTTP/1.1, SPDY and HTTP/2 and
their characteristics; Section IV illustrates the six practical
investigations to evaluate the performance of Web services and
systems with and without the support of SPDY and HTTP/2
protocols at the client and server; Section V presents the
performance analysis of SPDY and HTTP/2 for Web services
and systems; Finally, Section VI concludes the paper and

suggests some future areas of extension.

II. THEORETICAL BACKGROUND

This section presents the theoretical background of Web
services, applications and systems, Round Trip Time (RTT)
and Web Latency.

A. Web Services, Web Applications and Web Systems

Web services, Web applications and Web systems are
interrelated terminologies. A Web service is mainly a method
of communication between applications/machines over the
Web (commonly via HTTP) [1]. It is a collection of open
standards and protocols used to exchange data between appli-
cations/machines [2]. Web services are designed to allow appli-
cations developed using different technologies to communicate
with each other without any interoperability issues [4]. A Web
application is a piece of functional software that is designed
to help the user in achieving a task. A Web application could
use multiple Web services to achieve its goal or result. At
a lower level, both Web applications and Web services are
similar. However, at a higher level, Web applications are
intended for users and Web services are intended for appli-
cations/machines. Web applications generally present data in
HTML which is easily readable by the user and Web services
generally present data in XML/JSON, which is easy to parse by
other applications. Web services are the application/machine-
readable equivalent to the Web applications. A Web-based
system or Web system is one that employs Web services
and Web applications to perform its operations, such as Web
Portals, Websites, Messengers and Skype.

The two most popular Web services are Simple Object
Access Protocol (SOAP) and REpresentational State Transfer
(REST). These Web services use XML and JSON data formats
as most client and server frameworks are designed around
using these formats. Similarly, the native Web communication
protocol for SOAP and REST is HTTP, and both are currently
tied to HTTP; whilst, other protocols could be used. HTTP is a
request-response protocol based on the client-server model (i.e.
a Web client and a Web server in a Web System as shown in
Fig. 1). A Web client is a service consumer that sends service
requests to a Web server which provides service responses to
the Web client.

B. Round Trip Time (RTT) and Web Latency

The primary focus of this investigation is the native Web
communication protocol HTTP (i.e. HTTP/1.1) and its succes-
sor SPDY and HTTP/2. HTTP is an application-layer protocol
providing basic request-response semantics for transporting
content over the Web. Fig. 2 shows the process of communi-
cation between the HTTP client and HTTP server using TCP.
TCP is a reliable transport layer protocol supporting HTTP
for all underlying services on the Web such as guaranteed
delivery, duplicate suppression, in-order delivery, flow control
and congestion avoidance [5]. In the Web environment, RTT is
the time between a request from Web client (or Web browser)
and its complete response from the Web server. RTT depends
on a number of factors such as physical distance between
the client and server, transmission media, data transfer rate,
number of intermediate nodes and traffic density. Fig. 3 shows

Web Server
(Service Provider)

Web Client
(Service Consumer)

i
G“G ‘e

HTTP Service Request

SOAP/REST
i:_ +HTTP
I N

Fig. 1. Employment of HTTP in Web Services, Applications and Systems

HTTP Client HTTP Server

m = TCP 3-Way Handshake
——————————————————— ’
e — — = = = = o — —— — —— — — — — —]
___________________ ’

HTTP Request
HTTP Response
TCP (FIN/RST) Termination
——————————————————— ’
< ___________________
___________________ >

Fig. 2. Communication between HTTP Client and HTTP Server using TCP
Connection

the RTT concept in HTTP-based communication, where it
demonstrates three RTTs: one RTT for TCP connection setup,
one for TCP connection termination, and minimum one RTT
for the actual HTTP request and response. However, it does not
include the other RTTs such as RTT for DNS name resolution.

Web latency is the time it takes for the Web server to
receive and process a request (e.g., for a page object) from the
Web client (or Web browser). It also depends on a number of
factors, such as priority of event/request, processing delay, Web
communication protocols and Web applications. An average
page is composed of many small resources, which requires
a number of RTTs. Web performance and a page load time
can be improved in two ways: reducing the RTT and total
number of round trips, even for higher bandwidth. Both
HTTP and TCP protocols are responsible for the RTT and
Web latency; unfortunately, neither protocols were particularly
designed with latency in mind [6]. One of the most significant
issues with HTTP is that it incurs many more round trips than
necessary to retrieve the Web objects [3]. Furthermore, TCP
is not helpful in reducing the RTT and Web latency because
of its retransmission of every lost packet with the three-way
handshake needed to open a connection (and also closing it),
for every HTTP round trip. Additionally, TCP does not fully

HTTP Client HTTP Server

Round | || T T TTTmem=—e____
Trip TCP Connection g -
Time | || = __-===--"7
e ———~
HTTP Request
Round Actual
Trip onse _— Time To
P Resp!
Time HT‘//// Transmit
?// Data
Round | [| = T TTmem=e—e— >
Trip TCP Termination - =7
Time | || _oec==—"7
e — =
Fig. 3. HTTP Round Trip Time

utilize the available network bandwidth for the first few round
trips of a connection because of its “slow start technique”,
which is used to avoid network congestion. Consequently, the
current and successful combination of Web protocols HTTP
and TCP is a major bottleneck of the RTT and Web latency.
This problem may be one the largest impediments leading to
further improvements in HTTP (i.e. HTTP/1.1).

III. EvVOLUTION OF NATIVE WEB COMMUNICATION
PROTOCOLS AND THEIR CHARACTERISTICS

As mentioned earlier, native Web communication protocols
are the crucial component of Web services, applications and
systems, which affects their performance. Therefore, this sub-
section will discuss the native Web communication protocol
HTTP/1.1 and the emergence of two new alternative protocols
SPDY and HTTP/2 to improve the performance of Web
services, applications and systems. The development stages of
these Web protocols are shown in Fig. 4.

02 oS o ot
‘\.((?\ \'\‘(‘? ‘\,((?\ \\‘(‘?\ 5?0*

P ((?\1 ’ . .

1991 1996 1997 1999 2009 2015
Standard Version

Fig. 4. Development of native Web communication protocols

A. HTTP or HTTP/1.1 Protocol

HTTP/1.1 was first published by the IETF in 1997 and later
standardised in 1999. Since its inception in 1999, it has worked
successfully for around two decades. The HTTP 1.1 Working
Group has improved the performance and reduced the RTT and
Web latency of HTTP/1.1 with the introduction of persistent
connections, request pipelining, and chunked transfer encoding
[7]. However, these features of HTTP/1.1 such as request
pipelining have effectively failed due to the lack of support and
deployment challenges; while some browsers today support
pipelining as an optional feature, which forces strict request
queuing on the client [7]. Figs. 5 and 6 show these two

HTTP Client HTTP Server

HnuYte Res‘)onw

HTTP Request 2

Fig. 5. HTTP/1.1 persistent connection for improving its performance

HTTP Client

HTTP Request 2
HTTP Request 3

WP Respon=2 k=
/L/)WM

Fig. 6. HTTP/1.1 pipelined connection for improving its performance

provisions of persistent connections and pipelined connections
to improve the performance of HTTP/1.1.

B. SPDY Protocol

SPDY is an application-layer protocol for transporting
content over the Web. It is an experimental protocol developed
by Google in 2009. The main aim of designing SPDY was to
minimise Web latency by up to 50% [5]. It does not replace
HTTP protocol instead it augments it by adding a number
of features that increase the speed of Web transactions. Akin
to HTTP, SPDY also uses TCP as the underlying transport
layer, therefore it does not demand any change in the existing
networking infrastructure. The practical requirement of SPDY
is the use of TLS/SSL, but it is not compulsory. Therefore,
the end-to-end encrypted TLS/SSL tunnel allows the client
and the server to exchange SPDY frames without intervention
of intermediate nodes. Consequently, how does the client and
server know to use SPDY once the TLS/SSL tunnel is opened?
For this, a new protocol Next Protocol Negotiation (NPN) is

used. NPN is a TLS/SSL extension, which allows the client
and the server to negotiate the application protocol as part of
the TLS/SSL handshake. Moreover, it eliminates the additional
round trip to negotiate the application protocol. This is one of
its main advantages as compared to the current WebSocket
handshake, which imposes another round trip of latency in
addition to the SSL negotiation. The development of SPDY
has continued up to the version SPDY3.x with SPDY4 not
being released as a separate specification rather becoming an
alias for the new HTTP/2 standard. In HTTP/2, NPN has now
been deprecated. SPDY’s design requirement of TLS/SSL has
limited its actual adoption.

C. HTTP/2 Protocol

HTTP/2 was recently introduced in 2015, nearly two
decades after its predecessor HTTP/1.1. Developed by the
IETF HTTP Working Group, mainly based on Google’s ex-
perimental SPDY protocol. It enables a more efficient use of
network and server resources, and a reduced perception of
latency by introducing header field compression and allowing
multiple concurrent exchanges on the single connection from
a browser to a website [8], [9]. HTTP/2 also introduces
unsolicited push of representations from servers to clients [10].
HTTP/2 replaces HTTP/1.1 on the wire only but maintains
the HTTP/1.1 message syntax. Therefore, all HTTP methods,
status codes and semantics are the same, and it is possible
to use the same APIs as HTTP/1.1 with some alterations to
represent the new version [11], [12]. Similar to SPDY NPN
protocol, HTTP/2 employs the TLS/SSL extension protocol,
called Application-Layer Protocol Negotiation (ALPN) within
the TLS/SSL handshake. In this case multiple application
protocols are supported on the same TCP or UDP port. It
also allows the application layer to negotiate which application
protocol will be used within the TLS/SSL connection.

HTTP/2 communication is based on the two new concepts
frames and streams as shown in Fig. 7. Frames are the
basic unit of communication in HTTP/2, which replace the
well-known header and body format of HTTP/1.1 requests-
responses. Each fragment of communication between the client
and server is packed up into a binary frame before it is sent
over the connection [13]. HTTP/2 supports several types of
frames such as header frames and data frames. Streams can
be considered as one logical request-response communication
containing several frames. It is a bi-directional sequence of
frames with a common frame identifier. Streams enable the
multiplexing of frames from multiple streams together, which
allows for true multiplexed communication over a single
connection as shown in Fig. 7.

IV. PRACTICAL INVESTIGATIONS OF THE PERFORMANCE
OF NATIVE WEB COMMUNICATION PROTOCOLS HTTP/1.1,
SPDY AND HTTP/2

RTT and Web latency can be improved at the applica-
tion and transport layers. However, this investigation is only
focused on the application layer protocols HTTP/1.1, SPDY
and HTTP/2. Various research studies have been conducted
on the performance of SPDY (as HTTP/2 has been introduced
recently), some of them have claimed that SPDY has reduced
the Web latency [14], [15], however, some of them have even
presented the adverse effect [16]. These past studies are crucial

Web Client

Stream1
Header Data
Frame Frame

Stream2
Header Data
Frame Frame

Stream3

Web Server

Streaml

Header Data
HTTP/2 Service Request Frame Frame
Stream2

fame fame Frame Frame
HTTP/2 Service Response

Stream3

Header Data Header Data
Frame Frame Frame Frame
Fig. 7. Streams are multiplexed by splitting communication into frames in

HTTP/2

as SPDY forms the basis of the new HTTP/2 protocol. This
practical investigation incorporates both SPDY and HTTP/2
protocols including the existing HTTP/1.1. Here, six different
experiments are conducted to investigate the performance of
SPDY and HTTP/2 over on HTTP/1.1. The investigation
includes all the possible situations: when client and server both
support SPDY and HTTP/2 protocols, when only one supports
and when both do not support these protocols. The two client
browsers chosen are Google Chrome (a version that supports
SPDY and HTTP/2) and Mozilla Firefox (a version that does
not support SPDY and HTTP/2). Similarly, to access the server
resources, two types of websites are chosen one that supports
SPDY and HTTP/2 and the other which does not support SPDY
and HTTP/2. It should be noted that this was the status of these
browsers and websites at the time of experiment; however, the
whole process is in perpetual change and the current status
may be completely different. The other investigation tools
used in these experiments are HAR (HTTP Archive) Analyser,
Wireshark and several other websites to identify the current
status of browsers and websites. This investigation has focused
on the three parameters: average load time, number of requests
and amount of bytes in for the first document view and repeat
document view to gain insight from the user’s point of view
only. HTTP performance logs including these parameters are
recorded in the HAR files. HAR (HTTP Archive) is a file
format used by several HTTP session tools to track all the
interactions of the Web browser with a website.

A. Experiment-1: HTTP/1.1-Enabled Website using HTTP/1.1-
Enabled Browser

In the first experiment, six random websites are chosen
that do not support either SPDY or HTTP/2 protocols at the
time of experiment. They are probed through a version of
Mozilla Firefox browser that does not support either SPDY
or HTTP/2. Therefore, this experiment is based on only the
existing HTTP/1.1 protocol and to check its performance and
Web latency. To avoid errors and other side effects in the final
result, this experiment is repeated 50 times and, finally, the
average value of each parameter is calculated as shown in Table
L

B. Experiment-2: HTTP/I.1-Enabled Website using SPDY-
HTTP/2-Enabled Browser

In the second experiment, the same six websites are chosen
that do not support either SPDY or HTTP/2 protocols at the
time of experiment. However, they are probed through the

TABLE 1. PROBING HTTP/1.1-ENABLED WEBSITE USING
HTTP/1.1-ENABLED BROWSER (MOZILLA FIREFOX VERSION THAT DOES
NOT SUPPORT SPDY AND HTTP/2)

TABLE III. PROBING SPDY-ENABLED WEBSITE USING
HTTP/1.1-ENABLED BROWSER (MOZILLA FIREFOX VERSION THAT DOES
NOT SUPPORT SPDY AND HTTP/2)

HTTP/1.1-Enabled First View Repeat View SPDY-Enabled First View Repeat View

Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB) Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB)
ieee.org 7.022 204 2028 5.023 66 367 reelseo.com 7.621 139 1725 6.877 31 158
one.com 5.646 57 1110 3.548 20 198 yelp.com 6.272 74 1205 4.571 13 47
godaddy.com 2.246 13 361 1.573 2 96 shareasale.com 2.703 37 1045 1.702 1 7
names.co.uk 5.219 69 1468 4.051 31 104 people.com.cn 11.484 237 3012 7.307 223 252
bbc.co.uk 7.795 113 1328 5.44 19 148 addthis.com 5.337 47 580 2.776 33 36
skynews.com 5.326 72 1121 4.58 15 41 taobao.com 12.739 116 1367 8.046 13 84

Google Chrome browser that supports SPDY and HTTP/2
protocols at the time of experiment. Therefore, this experiment
is based on the partial support of SPDY and HTTP/2 and to
check its performance and Web latency. Similar to the first
experiment, for avoiding errors and other side effects in the
final result, this experiment is repeated 50 times and, finally,
the average value of each parameter is calculated as shown in
Table II.

TABLE II. PROBING HTTP/1.1-ENABLED WEBSITE USING
SPDY-HTTP/2-ENABLED BROWSER (GOOGLE CHROME VERSION THAT
SUPPORTS SPDY AND HTTP/2)

HTTP/1.1-Enabled

First View Repeat View

Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB)
ieee.org 8.319 204 2030 6.598 75 381
one.com 4.126 55 1114 3.245 20 195
godaddy.com 2.821 13 360 1.881 2 96
names.co.uk 4.697 69 1468 3.182 31 105
bbc.co.uk 8.191 111 1319 5.173 17 142
skynews.com 5.873 71 1128 5.241 18 58

The first and second experiments are carried out on the
same websites that do not support either SPDY or HTTP/2,
however, one browser supports and other does not support
SPDY and HTTP/2. One of the interesting findings of the
comparative analysis of the results is that the client browser
support of SPDY and HTTP/2 does not affect the overall
performance and Web latency significantly. This is confirmed
by the results where the HTTP/1.1 supported browser has
performed better than SPDY and HTTP/2 supported browser.
Perhaps, this indicates the effects of other factors on the
performance of Web services and systems. However, Web
protocols are one of the major factors responsible for reducing
the Web latency, the variation and delay in the load time
for similar types of websites suggests that the Web latency
is heavily dependent on the contents of the website (number
of DOM elements/requests and their size) and location of the
server.

C. Experiment-3: SPDY-Enabled Website using HTTP/I.I-
Enabled Browser

In the third experiment, six random websites are chosen
that support SPDY but not HTTP/2 protocol at the time of
experiment. However, they are probed through a version of
Mozilla Firefox browser that does not support either SPDY
or HTTP/2. Therefore, this experiment is based on the partial
support of SPDY and HTTP/2 and to check their performance
and Web latency. Similar to the previous experiments, for
avoiding errors and other side effects in the final result, this
experiment is also repeated 50 times and, finally, the average
value of each parameter is calculated as shown in Table III.

D. Experiment-4: SPDY-Enabled Website
HTTP/2-Enabled Browser

using SPDY-

In the fourth experiment, the same six websites are chosen
that support SPDY but not HTTP/2 protocol at the time of
experiment. They are probed through Google Chrome browser
that supports SPDY and HTTP/2 protocols. Therefore, this
experiment is based on the full support for SPDY and for
checking its performance and Web latency. Similar to the
previous experiments, for avoiding errors and other side effects
in the final result, this experiment is also repeated 50 times
and, finally, the average value of each parameter is calculated
as shown in Table IV.

TABLE IV. PROBING SPDY-ENABLED WEBSITE USING
SPDY-HTTP/2-ENABLED BROWSER (GOOGLE CHROME VERSION THAT
SUPPORTS SPDY AND HTTP/2)

SPDY-Enabled First View Repeat View

‘Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB)
reelseo.com 6.432 140 1732 4.786 16 144
yelp.com 8.322 74 1201 5.798 13 46
shareasale.com 2.835 37 1096 2.071 2 39
people.com.cn 12.567 234 2945 8.132 75 137
addthis.com 3.782 48 581 2.757 29 33
taobao.com 11.219 116 1336 6.55 14 84

The third and fourth experiments are carried out on the
same websites that support SPDY but not HTTP/2, however,
one browser supports and other does not support SPDY and
HTTP/2. The comparative analysis of the results of the two dif-
ferent client browsers shows very minor changes in the overall
performance and similar patterns as the first two experiments.
Therefore, they do not affect the overall performance and Web
latency significantly. This is confirmed by the results where the
HTTP/1.1 supported browser has performed better than SPDY
and HTTP/2 supported browser. Some of the results are most
surprising, where the average load time is much higher than
the first two HTTP/1.1 results. Again, this indicates the effects
of other parameters on the performance and Web latency such
as contents of the website (number of DOM elements/requests
and their size) and location of the server. The support of SPDY
and HTTP/2 at the webserver (website) may be crucial for the
success of SPDY and HTTP/2 and can perhaps reduce the
overall latency but requires further in-depth analysis. Overall,
these two experimental results reveal that the support of SPDY
and HTTP/2 may not be sufficient to improve the overall
performance and reduce the overall web latency.

E. Experiment-5: HTTP/2-Enabled Website using HTTP/I.1-
Enabled Browser

In the fifth experiment, six random websites are chosen
that support HTTP/2 but not SPDY protocol at the time of

experiment. However, they are probed through a version of
Mozilla Firefox browser that does not support either SPDY
or HTTP/2. Therefore, this experiment is based on the partial
support of SPDY and HTTP/2 and to check their performance
and Web latency. Similar to the previous experiments, for
avoiding errors and other side effects in the final result, this
experiment is also repeated 50 times and, finally, the average
value of each parameter is calculated as shown in Table V.

TABLE V. PROBING HTTP/2-ENABLED WEBSITE USING
HTTP/1.1-ENABLED BROWSER (MOZILLA FIREFOX VERSION THAT DOES
NOT SUPPORT SPDY AND HTTP/2)

HTTP/2-Enabled First View Repeat View

‘Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB)
wordpress.com 2.202 11 202 1.025 2 24
emarketdesign.com 2.490 30 411 1.799 3 17
wix.com 8.124 81 3679 4.296 24 56
sohu.com 16.4461 397 1860 12.906 294 659
indiewebcamp.com 3.265 63 779 1.694 2 58
detik.com 24.629 257 2868 22.053 94 428

F. Experiment-6: HTTP/2-Enabled Website using SPDY-
HTTP/2-Enabled Browser

In the sixth experiment, the same six websites are chosen
that support HTTP/2 but not SPDY protocol at the time of
experiment. They are probed through Google Chrome browser
that also supports SPDY and HTTP/2 protocols. Therefore,
this experiment is based on the full support for HTTP/2 and
for checking their performance and Web latency. Similar to the
previous experiments, for avoiding errors and other side effects
in the final result, this experiment is also repeated 50 times
and, finally, the average value of each parameter is calculated
as shown in Table VI.

TABLE VI PROBING HTTP/2-ENABLED WEBSITE USING
SPDY-HTTP/2-ENABLED BROWSER (GOOGLE CHROME VERSION THAT
SUPPORTS SPDY AND HTTP/2)

HTTP/2-Enabled First View Repeat View

Website Time (S) Request Bytes (KB) Time (S) Request Bytes (KB)
wordpress.com 1911 11 208 0.739 2 53
emarketdesign.com 2.680 30 411 1.636 3 17
wix.com 6.352 80 4153 2.903 24 60
sohu.com 14.117 380 1775 11.891 283 800
indiewebcamp.com 3.599 63 799 1.819 2 58
detik.com 22.668 257 2852 20.460 89 354

The fifth and sixth experiments are carried out on the
same websites that support HTTP/2 but not SPDY, however,
one browser supports and other does not support SPDY and
HTTP/2. Similar to the comparative results of the third and
fourth experiments, this comparative analysis of the results of
the two different client browsers show very minor changes in
the performance and similar patterns as the previous experi-
ments. Therefore, they do not affect the overall performance
and Web latency greatly. This is confirmed by the results where
the HTTP/1.1 supported browser has performed better than
SPDY and HTTP/2 supported browser. Again, some of the
results are most surprising, where the average load time is
much higher than the previous results. As explained earlier, this
indicates the effects of other parameters on the performance
and web latency such as contents of the website (number
of DOM elements/requests and their size) and location of
the server. Similar to the third and fourth experiments, the

support of SPDY and HTTP/2 at the webserver (website) may
be crucial for the success of SPDY and HTTP/2 and can
perhaps reduce the overall latency but requires further in-depth
analysis. Again, these two experimental results reveal that the
support of SPDY and HTTP/2 may not be sufficient to improve
the overall performance and reduce the overall Web latency.

V. PERFORMANCE ANALYSIS OF SPDY AND HTTP/2
FOR WEB SERVICES AND SYSTEMS

In modern Web systems and enterprise Web applications,
the page load time and response time are crucial for the pro-
ductivity and success of an enterprise. All real-time and safety-
critical systems require real-time responses on the Web. Even
for those Web applications that do not require instantaneous
responsivity, they still must respond in close to real-time for
providing a better user experience and service [17]. In real-
time and safety-critical systems, data must be collected and
processed continuously with controlled latency for safety and
security. It emphasises the requirement for real-time operations
in all real-time and safety-critical Web systems with no place
for batch processing models. Based on the experimental results
obtained in the previous section, the minimum response time is
around 2 seconds even when using the enhanced Web protocols
SPDY and HTTP/2. This is a much higher response time for
many enterprise Web systems and certainly not suitable for
the real-time and safety-critical systems. However, the results
also suggest that the effect of the Web protocol HTTP on
the performance of Web services and systems is trivial as
compare to other factors. For example, if the client is further
away from the Web server or an average page is composed
of many large size resources, the longer it takes to get a
response back from the Web server [18]. However, distance-
related network latency can be reduced by pushing data and
processing closer to the Web server where possible, but Web
services and systems will remain susceptible to poor routing
decisions and network congestion [17]. Similarly, compressed
and smaller size resources can be used to improve the size-
related latency. In essence, HTTP has less impact on the overall
performance of Web services and systems from the end-user’s
perspective.

The main concern of SPDY and HTTP/2 web protocols is
the pace of acceptance in the Web community itself. According
to the W3techs.com website [19], [20], the recent usage
statistics of SPDY and HTTP/2 on the Web are 7.0% and 7.4%
in May 2016 as shown in Figs. 8 and 9. Both graphs show
the historical trend of the percentage of websites using SPDY
and HTTP/2 up to May 2016. Perhaps, one of the biggest
obstacles in the adoption of SPDY and HTTP/2 is the practical
compulsion of TLS/SSL. However, SPDY is submerged into
HTTP/2 and HTTP/2 was only launched recently, therefore,
it will take time for these protocols to be adopted by the
majority of the Web community. Simultaneously, it is crucial to
investigate the accepted latency for real-time and safety-critical
Web systems. Finally, based on the experiments conducted
here and current recognition of HTTP/2 indicates that HTTP/2
requires additional review in the near future, or could be
replaced with extra lightweight protocols such as XMPP,
MQTT, CoAP and AMQP in some particular types of Web
services and systems.

0
TMay15 1Jun

1Ju 1Aug 1Sep 10ct 1Nov 1Dec 1Jan16 1Feb 1Mar 1Apr 1May

Fig. 8. Usage of SPDY for Websites [19]
8
74
6
5
a4
34
2+
14
0

1JuMs 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan"16 1 Feb 1 Mar 1 Apr 1 May

Fig. 9. Usage of HTTP/2 for Websites [20]

VI. CONCLUSION

This paper has presented a practical investigation to evalu-
ate the performance of Web services and systems with and
without the support of Web protocols SPDY and HTTP/2
at the client and server. Web communication protocols are
key protocols, which are responsible for the performance
of Web services and systems and affect the RTT and Web
latency. Without an effective Web communication protocol,
improvement in performance of Web services and systems
would not be possible. However, RTT and Web latency are one
of the main issues in using the Web communication protocol
HTTP. Consequently, this paper conducted several experiments
to determine whether the successor of HTTP/1.1 (i.e., web
communication protocols SPDY and HTTP/2) can improve the
performance of Web services and systems as compared to the
existing HTTP/1.1. The experimental results have suggested
that Web communication protocols SPDY and HTTP/2 have
minimal effects on the overall performance of Web services
and systems as compared to other crucial factors such as
contents of the website (number of DOM elements/requests
and their size), location of the server, transmission media, data
transfer rate, number of intermediate nodes, traffic density,
priority of event/request and processing delay. However, the
implementation of these communication protocols at the server
side may perhaps improve the performance moderately and
reduce the RTT and Web latency, but this requires further in-

depth analysis. Finally, the experimental results and current
acceptance level of Web communication protocols SPDY and
HTTP/2 suggest that in the near future HTTP/2 requires
another improvement or perhaps replacement with equivalent
lightweight and low latency communication protocols such as
XMPP, MQTT, CoAP and AMQP in some particular types of
Web services and systems. In the future, it may be interest-
ing to investigate the implementation of HTTP/2 protocol in
different kinds of Web services and systems.

REFERENCES

[1] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. big’web services: making the right architectural decision,” in Pro-
ceedings of the 17th international conference on World Wide Web.
ACM, 2008, pp. 805-814.

[2] L. Richardson and S. Ruby, RESTful web services.
Inc., 2008.

[3] Z. Shelby, “Embedded web services,” Wireless Communications, IEEE,
vol. 17, no. 6, pp. 52-57, 2010.

[4] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on the
world wide web,” in Proceedings of the 17th international conference
on World Wide Web. ACM, 2008, pp. 795-804.

[5] G. Baker and E. Arvidsson, “Let’s make the web faster,” 2010.

[6] N. Naik and P. Jenkins, “Web protocols and challenges of web latency
in the web of things,” in Eight International Conference on Ubiquitous
and Future Networks (ICUFN), 2016.

[7]1 I Grigorik, “Making the web faster with http 2.0,” Communications of
the ACM, vol. 56, no. 12, pp. 4249, 2013.

[8] R. Peon and H. Ruellan, “HPACK: Header compres-
sion for HTTP/2,” Tech. Rep., 2015. [Online]. Avail-
able: chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/https:
/Iwww.rfc-editor.org/rfc/pdfrfc/rfc7541.txt.pdf

[9] Akamai.com. (2015) Turn-on HTTP/2 today! [Online]. Available:
https://http2.akamai.com/

[10] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori, “Dash fast
start using HTTP/2,” in Proceedings of the 25th ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video.
ACM, 2015, pp. 25-30.

[11] M. Belshe, R. Peon, and M. Thomson. (2015, May) Hypertext
Transfer Protocol Version 2 (HTTP/2). [Online]. Available: https:
/Itools.ietf.org/html/rfc7540

[12] Github.io. (2015) What is HTTP/2? [Online]. Available: https:
//http2.github.io/

[13] W. Reilly. (2014, November 7) HTTP/2: A quick look. [Online]. Avail-
able: http://blog.scottlogic.com/2014/11/07/http-2-a-quick-look.html

[14] Chromium.org. (2010) Spdy: An experimental protocol for a faster web.
[Online]. Available: https://www.chromium.org/spdy/spdy-whitepaper

[15] B. Thomas, R. Jurdak, and 1. Atkinson, “Spdying up the web,” Com-
munications of the ACM, vol. 55, no. 12, pp. 64-73, 2012.

[16] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,
“Towards a spdyier mobile web?” Networking, IEEE/ACM Transactions
on, vol. 23, no. 6, pp. 2010-2023, 2015.

[17] F Toomey. (2015, April 15) Why latency management will decide the
future of the IoT. [Online]. Available: http://www.wirelessweek.com/
article/2015/04/why-latency-management-will-decide-future-iot

[18] J. Parkinson. (2015, April 8) Forecasting the future of the Internet
of Things. [Online]. Available: http://ww2.cfo.com/forecasting/2015/
04/forecasting-future-internet- of-things/

[19] W3techs.com. (2016) Usage of SPDY for websites. [Online]. Available:
http://w3techs.com/technologies/details/ce-spdy/all/all

[20] ——. (2016) Usage of HTTP/2 for websites. [Online]. Available:
http://w3techs.com/technologies/details/ce- http2/all/all

O’Reilly Media,

