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1 Introduction

Theoretical models describing the effect of tax incentives on investment go back to the neo-

classical investment theory and were initially developed by Jorgenson (1963). The rationale of

those models is that investment increases because the cost of capital decreases with a lower

tax rate. The use of subsidies to promote investments is also popular, particularly for renewal

energy (Yang et al., 2018; Huang et al., 2019), research and development (Busom, 2000; Huang

et al., 2019), and foreign direct investments (FDI) (Haufler and Wooton, 1999; Bjorvatn and

Eckel, 2006; Tian, 2018). Governments often stimulate investments relying on tax-subsidy pack-

ages, combining a subsidy to investment with taxes on profits “taking with one hand and giving

with the other” (Hansson and Stuart, 1989, p. 549). There are cases where these packages

are designed to be revenue-neutral for the government, as it is the case of the renewal energy

feed-in-tariffs support schemes (Abrell et al., 2019).

There is a vast empirical literature studying the effect of the taxation policy on investment

that is mostly consistent with the neoclassical theory (Hassett and Hubbard, 2002). For instance,

Zee et al. (2002) and Klemm (2010) show that the tax rate is among the most important factors

affecting investments, and Djankov et al. (2010) and Klemm and Van Parys (2012) conclude

that reducing the tax rate is an effective tool to stimulate FDI, although Sorbe and Johansson

(2017) find that the investments of tax planning multinational firms are less sensitive to the tax

rate. The distortionary effects of taxation could be mitigated using investment tax incentives,

for example extending investment expensing or a negative tax (a subsidy) on investment (Judd,

1997). The evidence that these incentives are capable of mitigating the effects of taxes is not

clear (Hassett and Hubbard, 2002; Dimos and Pugh, 2016). In the US, the bonus depreciation

policy has been shown to have a significant positive effect on investment (House and Shapiro,

2008), while the 2005 Domestic Production Activities Deduction, a revenue-neutral tax reform

which combined lower corporate tax rates and faster accelerated depreciation, had a modest

impact on corporate investment (Ohrn, 2018).

R&D subsidies are regularly used by governments to promote innovation. In surveys of em-

pirical evidence, David et al. (2000) and Becker (2015) show a shift to the support of positive

effects of R&D subsidies, and fewer evidence of a crowd-out effect of private R&D investment.

The relationship between R&D subsidies and private investment is not always linear, and can ex-
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hibit an inverted U-shape, changing sign after a given threshold (Guellec and Van Pottelsberghe

De La Potterie, 2003; Görg and Strobl, 2007).

In this paper, we study the simultaneous effect of taxes and subsidies on both the timing

and the size (capacity) of the investment, considering the tax and assets depreciation rates, and

fixed and variable subsides, a unique contribution within the real option theory. The use of real

options framework enables us to deal appropriately with the valuation of flexibility, considering

the investment irresistibility and uncertainty (Dixit and Pindyck, 1994). We ignore, however,

general equilibrium frameworks commonly used in macroeconomics (e.g. Fuest and Huber, 2000;

Rotemberg, 2019; Straub and Werning, 2020).

Our work intersects with two branches of literature: one that studies the optimal investment

timing and size under uncertainty neglecting taxes and subsidies1 and, another, which inves-

tigates the effect of taxes or subsidies on investment behavior under uncertainty. The former

branch of the literature shows that although uncertainty delays investments it can encourage in-

vestments of a larger scale (Bar-Ilan and Strange, 1999; Dangl, 1999). Huisman and Kort (2015)

extends this branch of literature to a duopoly and conclude that when the two firms invest se-

quentially the first-mover tends to overinvest in order to deter the entrance of the second-mover

which invests later in a smaller scale. Boonman and Hagspiel (2013) study the effect of the

use of different demand functions on the investment timing and size. Sarkar (2020) studies the

uncertainty-investment relationship when a firm chooses both timing and size of investment,

showing that it is not monotonic.

Few studies examine the simultaneous effect of taxes and subsidies on investment behavior,

being among the exceptions the works of Pennings (2000) that shows that for irreversible invest-

ments a rise in the tax credit, if financed with an increase in the corporate tax rate, enhances

investments, Agliardi (2001) that also considers the option to divest and concludes that the

investment threshold increases with the tax rate and decreases with the size of the subsidy, and

Sarkar (2012) which finds that the combination of the taxes and subsidies can be a sensible

strategy to promote investments if the government’s discount rate differs from that of the firm.

Moreover, Yu et al. (2007) compare the use of an entry subsidy with the use of a tax rate re-

duction on FDI and find that the former policy is more economical and effective than the latter,

and Tian (2018) evaluates how governments trade off these two policies, and conclude that their

1See Huberts et al. (2015) for a recent literature review.
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effectiveness in attracting FDI depends on the growth rate and market uncertainty. Pennings

(2005) and Danielova and Sarkar (2011) show that the government can maximize its revenue by

using a combination of tax reduction and investment subsidy.

The conventional wisdom on the effects of taxation is questioned by Alvarez and Koskela

(2008) who show that, under progressive taxation, if the tax exemption is higher than the sunk

cost, a rise in the tax rate does not necessarily defers investment. Gries et al. (2012) also find

an identical tax paradox and highlight various tax regimes for which the post-tax investment

threshold is not affected by the taxation policy. Overall, this literature concludes that a tax

rate reduction is not necessarily good for investment, which contradicts the theoretical works

following Jorgenson (1963).

Very few real options studies consider the effect of assets depreciation, with Adkins and

Paxson (2013) and Sureth (2002) being notable exceptions. The former study shows that it has

significant implications on investments, hastening investment, whereas the latter finds that a

higher depreciation rate can defer investment.

We develop a theoretical model that examines the effect of a tax-subsidy policy on both

the timing and the size of the investment considering various (taxes and subsidies) instruments.

We show that a lower tax rate, a higher assets depreciation rate, or a higher subsidy hasten

investments; fixed subsidies induce investments of a smaller scale; variable subsidies enhance

investments of a larger scale; and the tax and the assets depreciation rates do not affect the size

of the investment.

We also show that these conclusions may not hold when governments are financially con-

strained and changes in one of the policy instruments need to be offset by changes in another

policy instrument. Specifically, we find that the effect of some of our model parameters on the

timing and size of the investment is not always monotonic and depends on the instrument of

the tax-subsidy policy that is adjusted to keep the policy changes revenue neutral. For instance,

governments can enhance larger scale investments by increasing the tax rate as long as they

use that additional tax revenue to grant a variable subsidy, or they can hasten investment if

the additional tax revenues are used to increase the depreciation rate. Comparing our findings

with those of Pennings (2000) and Wong (2012), we conclude that the consideration of the size

of the investment and a more varied set of tax-subsidy instruments can lead to the existence

of an ambiguous effect of the tax rate on the timing of the investment and makes the effect of
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the tax rate on the investment size dependent on how the tax revenue that results from the

rise in the tax rate is used to enhance the investment. Additionally, our welfare analysis reveals

that it is possible for the government to implement a welfare-maximizing policy by choosing the

appropriate tax-subsidy package.

The remaining sections of the paper are organized as follows. Section 2 presents our real

options models, considering the effect of assets depreciation and taxation policy with and without

subsidies on the optimal investment timing and capacity choice, under an iso-elastic demand

function. Section 3 studies the usage of neutral tax-subsidy packages. Section 4 provides a

robustness check for the case of a linear demand function. Section 5 concludes the paper.

2 The model

2.1 Without subsidy

In this section, we develop a real options model which optimizes the size and timing of the

investment. We follow Huisman and Kort (2015), although also considering the effect of taxation

and assets depreciation policy. Let us assume that there is a new monopoly market where an iso-

elastic demand function holds and the output price is given by the following constant elasticity

inverse demand function:

P (t) = X(t)Q(t)−γ (1)

where Q(t) is the total market output, γ ∈ (0, 1) is the price elasticity parameter, and X(t) is

an exogenous shock which affects the output price and follows a geometric Brownian motion

(gBm) given by:

dX(t) = αX(t)dt+ σX(t)dw(t) (2)

where X(t) > 0, α (with α < r) is the risk-neutral expected drift, r is the risk-free rate, σ is the

instantaneous volatility, dw(t) is the increment of a Wiener process.

Let us also assume that the firm enters the market with a capacity (Q) and the investment

cost comprises two components: a fixed cost (k0) and a cost per output unit (k1). The total

investment is therefore given by: k0 + k1Q. Following Huisman and Kort (2015), we assume

that after investing the firm operates at full capacity (Q(t) = Q).
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The firm’s objective function is given by:

V (X) = max
T>0,Q>0

E

[∫ ∞
t=T

(
QX(t)Q−γ(1− τ) + λ(k0 + k1Q)e−λtτ

)
e−rtdt

−(k0 + k1Q)e−rT |X(0) = X
]

(3)

where τ is the corporate tax rate, T is the optimal time to invest, Q is the optimal entry capacity

level, and λ(k0+k1Q)τ is the continuous depreciation tax shield value. For the sake of simplicity,

we assume a declining balance depreciation at the rate of λ as in Adkins and Paxson (2013).

The solution for Equation (3) is attained in two steps (see Huisman and Kort, 2015). In a

first step, we select the optimal capacity (Q∗(X)) for a given X(t), through:

max
Q>0

E

[∫ ∞
t=0

(
QX(t)Q−γ(1− τ) + λ(k0 + k1Q)e−λtτ

)
e−rtdt− (k0 + k1Q)|X(0) = X

]
(4)

which yields:

Q∗(X) =

(
(1− γ)(1− τ)X

(r − α)k1

r + λ

r + λ(1− τ)

) 1
γ

(5)

In a second step, we replace Q in equation (3) by equation (5) and obtain the optimal

investment threshold (X∗), given by:

max
X∗

[(
Q∗(X∗)X∗Q∗(X∗)−γ(1− τ)

r − α
− r + λ(1− τ)

r + λ
(k0 + k1Q(X∗))

)(
X

X∗

)β1]
(6)

Proposition 1. In a market where a constant elasticity demand function (P = XQ−γ) holds,

a firm with a monopoly position over the decision to invest in a project whose cost comprises

a fixed component (k0) and a variable component - per output unit of the entry capacity level -

(k1Q), invests at the following optimal threshold:

X∗ =

(
β1(1− γ)k0
(β1γ − 1)k1

)γ r − α
(1− γ)(1− τ)

r + λ(1− τ)

r + λ
k1 (7)

with capacity:

Q∗ ≡ Q∗(X∗) =
β1(1− γ)k0
(β1γ − 1)k1

(8)

where:

β1 =
1

2
− α

σ2
+

√(
−1

2
+

α

σ2

)2

+
2r

σ2
(9)
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with β1γ > 1, otherwise the firm would postpone investment forever (see Dixit and Pindyck,

1994) and k0 > 0, otherwise the firm would invest immediately (see Huisman and Kort, 2015).

To perform a comparative statics of the tax policy instruments and uncertainty, we differ-

entiate X∗ and Q∗ with respect to both the tax rate (τ) and the depreciation rate (λ), which

yields:

∂X∗

∂τ
=

(
β1(1− γ)k0
(β1γ − 1)k1

)γ r − α
(1− γ)(1− τ)2

r

r + λ
k1 > 0 (10)

∂Q∗

∂τ
= 0 (11)

∂X∗

∂λ
= −

(
β1(1− γ)k0
(β1γ − 1)k1

)γ r − α
(1− γ)(1− τ)

rτ

(r + λ)2
k1 < 0 (12)

∂Q∗

∂λ
= 0 (13)

In Corollary 1, we summarize our findings for the effect of a tax policy which considers both

a tax rate and an assets depreciation rate.

Corollary 1. For a firm with the monopoly over the decision to invest in a market where

an iso-elastic demand function holds, a higher tax rate and a lower depreciation rate deter

investment (∂X∗/∂τ > 0, ∂X∗/∂λ < 0) and have no effect on the investment size/capacity

(∂Q∗/∂τ = ∂Q∗/∂λ = 0).

From equations (10) and (12), it is possible to conclude that the sensitivity of the investment

threshold to both τ and λ decreases with the level of λ and in the limit as λ→∞ becomes null.

Our results show that changes in the taxation policy can hasten or delay investments but

have no effect the optimal capacity choice. The signs for the effect of the uncertainty on X∗ and

Q∗ are the same as those of Huisman and Kort (2015):

∂X∗

∂σ
=
∂X∗

∂β1

∂β1
∂σ

= −

((
β1(1− γ)k0
(β1γ − 1)k1

)γ−1 γ

(β1γ − 1)2
r − α
1− τ

r + λ(1− τ)

r + λ
k0

)
∂β1
∂σ

> 0 (14)

∂Q∗

∂σ
=
∂Q∗

∂β1

∂β1
∂σ

= −
(

(1− γ)k0
(β1γ − 1)2k1

)
∂β1
∂σ

> 0 (15)

where ∂β1/∂σ < 0 (Dixit and Pindyck, 1994).

Corollary 2. For a firm with the monopoly over the decision to invest in a market where an

iso-elastic demand function holds, a higher uncertainty deters investments (∂X∗/∂σ > 0) but
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leads to investments with a larger capacity (∂Q∗/∂σ > 0).

The magnitude of the delay in the investment that results from higher uncertainty depends

on the tax and assets depreciation rates (Equations (14) and (15)). Additionally, the delay

increases with the tax rate (∂2X∗/∂σ∂τ > 0) and decreases with the assets depreciation rate

(∂2X∗/∂σ∂λ < 0), and the effect of uncertainty on the capacity choice is independent of both

rates (∂2Q∗/∂σ∂τ = ∂2Q∗/∂σ∂λ = 0).

2.2 With subsidy

Let us now study the effect of government subsidies on firms’ investment behavior, considering

a fixed subsidy (s0) and a subsidy that varies with the size of the investment (s1). Notice that

if we add a government subsidy to the modeling setting of the previous subsection, the subsidy

should be discounted from the investment cost (Is). Therefore:

Is = (k0 − s0) + (k1 − s1)Q (16)

We obtain a solution for the optimization of the investment problem by replacing in the

derivations of the previous subsection k0 and k1 by k0− s0 and k1− s1, respectively. Differenti-

ating X∗ and Q∗ with respect to s0 and s1 yields:

∂X∗

∂s0
= −

(
β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1)

)γ−1 β1γ

β1γ − 1

r − α
1− τ

r + λ(1− τ)

r + λ
< 0 (17)

∂Q∗

∂s0
= − β1(1− γ)

(β1γ − 1)(k1 − s1)
< 0 (18)

∂X∗

∂s1
= −

(
β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1)

)γ r − α
1− τ

r + λ(1− τ)

r + λ
< 0 (19)

∂Q∗

∂s1
=

β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1)2

> 0 (20)

The effect of the fixed and the variable subsidy on the optimal timing and scale of the

investment can be summarized as follows:

Corollary 3. For a firm with the monopoly over the decision to invest in a market where an

iso-elastic demand function holds:

I. An increase in the fixed subsidy (s0) leads to earlier investments with a smaller capacity

(∂X∗/∂s0 < 0, ∂Q∗/∂s0 < 0).
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II. An increase in the variable subsidy (s1) leads to earlier investments with a larger capacity

(∂X∗/∂s1 < 0 ∂Q∗/∂s1 > 0).

Table 1 shows the sign of the relationship between each of the tax-subsidy package instru-

ments and the optimal investment threshold and capacity choice, as well as the relationship

between the uncertainty and the investment timing and capacity choice.

Table 1: Summary of comparative statics

∂X∗ ∂Q∗

∂τ + 0
∂λ − 0
∂s0 − −
∂s1 − +

∂σ + +

We conclude that a lower tax rate (τ), a higher depreciation rate (λ), or a higher fixed or

variable subsidy (s0 or s1) hastens investments. An interesting result refers to the negative

effect of a fixed subsidy on the capacity choice. The mechanism that explains such an impact

is as follows: (i) s0 has no direct effect on Q∗(X), i.e., the optimal capacity, for any given X, is

independent from s0; (ii) there is a positive relation between Q∗(X) and X, which means that

a higher (lower) capacity is chosen when X is high (low); (iii) there is a negative effect of s0 on

X∗, which means that with a fixed subsidy the firm will optimally invest for a lower level of

X; (iv) finally, joining (i), (ii) and (iii) we understand that the negative effect of s0 on Q∗(X∗)

comes exclusively from the fact that the firm invests for a lower X when s0 is present.

Regarding the positive impact of s1 on the capacity choice, the mechanism is now different

because there is a positive relation between Q∗(X) and s1, i.e., a variable subsidy makes the

firm invest in more scale. As the effects (ii) and (iii) previously presented remain valid herein,

we conclude that the direct effect of s1 on Q∗(X) dominates these other effects explaining the

positive impact of s0 on Q∗(X∗).

Additionally, the tax and the assets depreciation rates have no effect on the size of the invest-

ment. We also conclude that a higher uncertainty delays the investment but promotes invest-

ments of a larger scale. The delay due to uncertainty increases with the tax rate (∂2X∗/∂σ∂τ >

0), and decreases with the assets depreciation rate and subsidies (∂2X∗/∂σ∂λ < 0, ∂2X∗/∂σ∂s0 <

0, ∂2X∗/∂σ∂s1 < 0), and the effect of uncertainty on the capacity choice depends only of subsi-
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dies, increasing with the fixed subsidy and decreasing with the variable subsidy (∂2Q∗/∂σ∂s0 >

0, ∂2Q∗/∂σ∂s1 < 0).

3 Neutral tax-subsidy packages

In the previous section, we provided a comparative statics analysis of the effect of the tax-subsidy

policy instruments on the timing and scale of the investment. We did not considered, however,

the impact of such policy on public budget. In fact, we assumed no budget constraints, and so

the the effect of a change in one of the instruments did not require a compensation in another

instrument, in order to mitigate the impact in public finances.

Governments, however, are financially constrained and they may want to stimulate private

investment through the use of a tax-subsidy policy, conditional on the fact of being revenue

neutral. For instance, the costs associated with fixed and variable subsidies would be compen-

sated by a tax rate such that the present value of the all expected tax revenues is equal to the

value of subsidies. This is a neutral tax-subsidy incentive package that can be used to promote

investment. We refer to this type of neutral incentive as zero-cost package.2

This zero-cost tax-subsidy type of incentive was previously studied by Pennings (2000) and

Wong (2012), using the real options approach. We depart, however, from their models by

also taking into account the effect of assets depreciation on the investment timing and also by

considering the effect of the incentive packages on optimal capacity choice.

The revenue obtained by a government when setting an investment incentive package is as

follows:

R(X, τ, λ, s0, s1) = E

[∫ ∞
t=T

(
Q∗P (X(t))τ − λ(k0 − s0 + (k1 − s1)Q∗)e−λtτ

)
e−rTdt|X(0) = X

]
=

((
X∗Q∗1−γ

r − α
− λ

r + λ
(k0 − s0 + (k1 − s1)Q∗)

)
τ − (s0 + s1Q

∗)

)(
X

X∗

)β1
(21)

where T is the first time the state variableX hits the thresholdX∗. Hence, a zero-cost investment

incentive package is defined as:

R(X, τ̂ , λ̂, ŝ0, ŝ1) = 0. (22)

2The rationale underlying the use of this type of tax-subsidy package, where the government has no direct net
revenue, can be related to indirect benefits such as promoting employment.
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This also means that any change in one element of the package needs to be offset by a change

of another element so that to maintain the same zero net revenue.

However, one may argue that governments only exceptionally would be available to set a

scheme where the subsidies offered for promoting investment precisely equals the corresponding

tax revenues, waiving any positive impact of the investment on the public budget. In other

words, governments would very much prefer to take use of a package that attain to the same

objective (to promote private investment) ensuring, however, a positive revenue for the public

entity. We refer to this type of neutral instrument as zero-incremental-cost package.

Accordingly, a zero-incremental-cost package can be defined as the set of adjustments needed

in its components (τ̃ , λ̃, s̃0, s̃1) such that no changes in the revenues of the government are pro-

duced. In other words, with the implementation of a zero-incremental-cost package the govern-

ment secures the initial level of revenues, while being able to subsidize investment. Therefore,

the conditions for a zero-incremental-cost package are:

R(X, τ̃ , λ̃, s̃0, s̃1)−R(X, τ, λ, s0, s1) = 0 (23)

s.t. R(X, τ, λ, s0, s1) > 0. (24)

3.1 Effects neutral packages on timing and capacity choice

Let us now extend the analysis of section 2.2 and study the effect of changes in the tax rate on the

investment dynamics (X∗ and Q∗), under the constraints of a zero-cost and a zero-incremental-

cost type of package.

The effects of a zero-cost package By examining the effect of λ, s0 and s1 on X∗ and Q∗

under a zero-cost package (where the instruments of the tax-subsidy policy are used to make

the package revenue neutral for the government, i.e. R(.) = 0) the following proposition can be

presented:

Proposition 2. If governments want to adopt a zero-cost tax-subsidy policy to promote invest-

ment and decide to increase the tax rate, they are able to increase the amount of subsidies and

the assets depreciation rate - ∂λ̂/∂τ̂ > 0 and ∂ŝ0/∂τ̂ > 0, ∂ŝ1/∂τ̂ > 0.

This finding considers the indirect effect of the change in government’s revenue on the in-
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vestment timing and capacity choice. Notice that, from the last section, we conclude that an

increase in the tax rate defers investment but has no effect on the capacity choice. Additionally,

the instrument of the tax-subsidy policy that is adjusted to neutralize the effect of the tax rate

change on the government revenue can have a different effect on the optimal investment timing

and the capacity choice. Therefore, the total effect of a tax rate change on the investment tim-

ing and capacity choice, under a neutral tax-subsidy policy, should consider both the direct and

the indirect effects through the instrument that is adjusted to make the policy change revenue

neutral.

Combining the results presented in Section 2.2 (see Table 1) with those of Proposition 2, we

see that the effects of a zero-cost package on X∗ and Q∗ are as follows:

dX̂∗

dτ̂
=
∂X̂∗

∂τ̂︸ ︷︷ ︸
>0

+
∂X̂∗

∂λ̂︸ ︷︷ ︸
<0

∂λ̂

∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

<0

+
∂X̂∗

∂ŝ0︸ ︷︷ ︸
<0

∂ŝ0
∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

<0

+
∂X̂∗

∂ŝ1︸ ︷︷ ︸
<0

∂ŝ1
∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

<0

R 0 (25)

dQ̂∗

dτ̂
=
∂Q̂∗

∂τ̂︸︷︷︸
=0

+
∂Q̂∗

∂λ̂︸︷︷︸
=0

∂λ̂

∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

=0

+
∂Q̂∗

∂ŝ0︸︷︷︸
<0

∂ŝ0
∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

<0

+
∂Q̂∗

∂ŝ1︸︷︷︸
>0

∂ŝ1
∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

>0

R 0 (26)

If any change in the tax rate is to be compensated by one of the other instruments of the

tax-subsidy package, the corresponding effects on the optimal investment timing and capacity

choice are according to the following corollary:

Corollary 4. A firm with the monopoly over the decision to invest in a market where an iso-

elastic demand function holds and facing a zero-cost tax-subsidy policy, if the tax rate increases,

there is:

I. An ambiguous effect on the investment timing and no effect on capacity size if the effect of

the tax rate on the government revenue is offset by an increase in the assets depreciation

rate.

II. An ambiguous effect on the investment timing and a smaller capacity size if the effect of

the tax rate on the government revenue is offset by an increase in the fixed subsidy.

III. An ambiguous effect on the investment timing and a greater capacity size if the effect of
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the tax rate increase on the government revenue is offset by an increase in the variable

subsidy.

In all the above ambiguities, the final sign of the impact will depend on which effect happens

to dominate, either the direct or the indirect effect, i.e. the effect of the instrument used to

compensate the change in the tax rate.

The effects of a zero-incremental-cost package Consider now the zero-incremental-cost

package where any change in one of the instruments need to be compensated by another instru-

ment in such a way that the final level of revenues for the government remain unchanged, i.e.,

∆R(.) = 0, with R(.) > 0. Analyzing the individual effect of an increase in the tax rate on the

other instruments, the following can be stated:

Proposition 3. If governments adopt a zero-incremental-cost tax-subsidy policy, in order to

promote investment while maintaining a given positive revenue, an increase in the tax rate does

not lead necessarily to an increase in the amount of subsidies and the assets depreciation rate -

∂λ̃/∂τ̃ R 0 and ∂s̃0/∂τ̃ R 0, ∂s̃1/∂τ̃ R 0.

Differently from what we saw for the zero-cost package, in a zero-incremental-cost alternative

(where a positive final revenue for the government needs to be secured) we do not find a clear

relation between the instruments. For instance, a high tax rate, τ , increases the level of revenues

for the government which, however, will occur later, due to the deterrence effect of taxation on

investment, and so suffering from a higher discount effect. Notice that this discount effect is not

relevant in the zero-cost case, since no net revenues accrue to the government.

However it worth mentioning that, although ambiguous, as presented in Proposition 3, our

simulations clearly show that, for reasonable sets of parameters, the relations presented in Propo-

sition 2 for the zero-cost package tend to occur also for the zero-incremental-cost package. Only

when the tax rate is extremely high the opposite effects occur.

Combining the results presented in Table 1 with those in Proposition 3 we see the following
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effects of a zero-incremental-cost package on the investment trigger and optimal capacity choice:

dX̃∗

dτ̃
=
∂X̃∗

∂τ̃︸ ︷︷ ︸
>0

+
∂X̃∗

∂λ̃︸ ︷︷ ︸
<0

∂λ̃

∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

R0

+
∂X̃∗

∂s̃0︸ ︷︷ ︸
<0

∂s̃0
∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

R0

+
∂X̃∗

∂s̃1︸ ︷︷ ︸
<0

∂s̃1
∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

R0

R 0 (27)

dQ̃∗

dτ̃
=
∂Q̃∗

∂τ̃︸︷︷︸
=0

+
∂Q̃∗

∂λ̃︸︷︷︸
=0

∂λ̃

∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

=0

+
∂Q̃∗

∂s̃0︸︷︷︸
<0

∂s̃0
∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

R0

+
∂Q̃∗

∂s̃1︸︷︷︸
>0

∂s̃1
∂τ̃︸︷︷︸
R0︸ ︷︷ ︸

R0

R 0 (28)

When the changes in the tax rate are neutralized by one of the other instruments of the tax-

subsidy package, the effects on the optimal investment timing and capacity choice are presented

in the following corollary:

Corollary 5. A firm with the monopoly over the decision to invest in a market where an iso-

elastic demand function holds, and facing a zero-incremental-cost tax-subsidy policy, tax rate

increases leads to:

I. An ambiguous effect on the investment timing and no effect on the capacity size if the effect

of the tax rate on the government revenue is offset by an increase in the assets depreciation

rate.

II. An ambiguous effect on the investment timing and the capacity size if the effect of the tax

rate on the government revenue is offset by an increase in both types of subsidies.

All the results from the previous analyses are summarized in Table 2. They show that when

government constraints are introduced and neutral packages are in place (either zero-cost or

zero-incremental-cost), the clear relation appearing in the unrestricted context no longer exists.

In fact, a tax rate increase used to compensate a higher depreciation rate or higher subsidies,

may hasten or deter the investment, depending on the tax rate that it is initially due. Although

the direct effect of an increase in the tax rate is the deterrence of the investment, we show that

it is possible to speed-up the investment if the additional tax revenues is used to increase the

depreciation rate or to concede a subsidy to the firm.
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Table 2: Summary of results: neutral tax-subsidy packages

Unrestricted Zero-cost package Zero-incremental-cost package

λ s0 s1 λ s0 s1

dX∗/dτ + ± ± ± ± ± ±
dQ∗/dτ 0 0 − + 0 ± ±

Moreover, if governments want to induce investments of a larger scale, they should use the

additional tax revenues to pay a variable subsidy, under a zero-cost package. For the zero-

incremental-cost case, this can also be possible, but only for some particular sets of parameters.

For both packages, the benefits of a higher depreciation tax rate reveals not to be an effective

instrument for promoting investment scale. Comparing our results with those of Pennings (2000)

and Wong (2012), we show the existence of an ambiguous effect of the tax rate on the investment

timing, whereas the effect on investment size is dependent on which of the instruments of the

tax-subsidy policy is used to neutralize the taxation effect.

Numerical example Using a numerical example we analyze the overall effects of the neu-

tral tax-subsidy packages (both zero-cost and zero-incremental-cost) on the investment timing

and scale. We compare the zero-cost and the zero-incremental-cost packages both with the

unrestricted tax-subsidy package and with setting without government.

Figure 1 shows the effect of the tax rate on the timing and size of the investment. The effects

of the unrestricted package correspond to those studied in the previous section. A higher tax rate

deters investment (higher X∗) and has no effect on the investment scale (Q∗). An increase in

the tax rate allows the government to use the proceeds to increase the depreciation rate (Figure

1(a)), the fixed subsidy (Figure 1(d)) or the variable subsidy (Figure 1(g)). In Proposition 2

we already reported these results for the case of zero-cost package. Notice, however, that the

positive relation we observe in this example for the zero-incremental-cost package is a result of

our set of parameters. With different parameters, namely with an extremely high initial tax

rate, a negative relation can occur. In any case, based on our simulations, we can assert that

in the majority of the cases the positive relation revealed by Figures 1(a), 1(d) and 1(g) tend

to prevail. Finally, notice that (i) decreasing the tax rate below a certain level implies negative

depreciation rates and negative subsidies to compensate that effect, and (ii) there is a limiting

tax rate above which it is no longer possible to compensate through the depreciation tax shields
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(i) s1 neutralizes τ - Q∗

X = 0.01, r = 0.04, α = 0.02, β1 = 2.5, γ = 0.5, k0 = 1, k1 = 0.1, s0 = 0, s1 = 0, τ = 0.25, λ = 0.2.

Figure 1: The effects of the tax rate (τ) on the timing and the scale of the investment.
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(in our example, we see that the continuous depreciation rate goes to infinity as τ approaches a

given threshold).

Figure 1(b) depicts a negative effect of tax rate on the trigger when compensated by the

depreciation rate, showing that, for reasonable sets of parameters, it is possible to hasten in-

vestments without modifying its scale.3 For our set of parameters, a higher tax rate allows a

higher depreciation rate that hastens investment. The direct effect of the tax rate is dominated

by the indirect effect of the depreciation rate. Figures 1(e) and 1(h) show that, for both neutral

packages, the effects of an increase of the tax rate on the investment timing is ambiguous, as

stated in Corollaries 4 and 5. However, it is worth mentioning that, for reasonable levels of

taxation, it is possible to hasten investments even when increasing the tax rate (up to a certain

tax rate), as the positive effect of the subsidies (fixed or variable) more than compensate the

direct negative effect of taxation. If the goal of the government is to speed up investment, this

shows that it can be attained at high tax rates and subsidy amounts. Additionally, two possible

effects on the capacity choice arise: (i) if the fixed subsidy is used to compensate the increase

in τ , we see a negative effect on the scale of the project (Figure 1(f)); whereas (ii) if we make

use of a variable subsidy, a positive effect on capacity can be attained, i.e. it would be possible

to invest sooner in a larger scale (Figure 1(i)).

In Section 2.1 we reported the well-known effect of uncertainty on the timing and scale of

an investment. We saw that a higher uncertainty deters the implementation of the project but

leads to investments with a larger capacity. Figure 2 extends the analysis to the case of the

zero-incremental-cost tax-subsidy package, by considering different levels of uncertainty (higher

uncertainty means a lower β1). We find the same type of relation as before: both X∗ and

Q∗ increase as β1 decreases. However, these effects are much less significant when s0 is the

instrument used to compensate high levels of τ (see Figures 2(e) and 2(f)). Also Figure 2(i)

reveal a smaller impact of uncertainty on the scale of the investment when s1 is used and τ is

low.

Furthermore, higher uncertainty (lower β1) allows, in general, higher depreciation rates and

higher subsidies (see Figures 2(a) (for τ > 0.25), 2(d) and 2(g)) for compensating a given

tax rate. The reasoning for this effect relies on the well-known positive impact of volatility

3The threshold converges to the case without government because: limλ→∞X
∗(s0 = 0, s1 = 0, λ, τ) = X∗(s0 =

0, s1 = 0, λ = 0, τ = 0).
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(f) s0 neutralizes τ - Q∗
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(i) s1 neutralizes τ - Q∗

X = 0.01, r = 0.04, α = 0.02, γ = 0.5, k0 = 1, k1 = 0.1, s0 = 0, s1 = 0, τ = 0.25, λ = 0.2.

Figure 2: Effects of the tax rate τ under different uncertainty levels for a zero-incremental-cost
package.

on the option value, which, in our case, applies both for the firm value function, as well as

for the government position, R(.). Additionally, it is possible to show that this positive effect

marginally increases for the government, and decreases for the firm, as the tax rate increases.

In other words, as τ increases the government earns an increasingly larger fraction of the value

arising from additional volatility. This is why larger tax rates allows the government to share

more with the firm, namely through a higher depreciation rate or higher subsidies. However,

an opposite effect occurs when the tax rate decreases. In fact, when τ is below the initial

(pre-package) rate, the additional benefit of volatility is increasingly captured by the firm as τ

decreases. In this context, the firm is now willing to share some of the value with the government

resulting in lower depreciation rates when volatility is high (low β1).
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3.2 Welfare analysis

From a social optimizer’s perspective, the goal of the a government should be to maximize the

total surplus, i.e. the sum of the producer surplus, the consumer surplus and the government

revenue. It would be interesting to show if it is possible to maximize the welfare even under the

constraints of neutral packages.

Given that the government revenues are expenses for the firm, a social optimizer maximizes

the sum of the producer surplus and consumer surplus with the absence of taxes and subsidies.

Following Huisman and Kort (2015), the value of the producer surplus without taxes and

subsidies is

PS(X) =

(
X∗

r − α
Q∗1−γ − (k0 + k1Q

∗)

)(
X

X∗

)β1
, (29)

and the value of the consumer surplus is

CS(X) =
γ

1− γ
X∗

r − α
Q∗1−γ

(
X

X∗

)β1
, (30)

where

X∗ =

(
β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1)

)γ r − α
(1− γ)(1− τ)

r + λ(1− τ)

r + λ
(k1 − s1) (31)

Q∗ =
β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1)

(32)

are, respectively, the trigger and the optimal capacity choice in the presence of depreciation tax

shields, fixed and variable subsidies.

Computing the total surplus, TS(X) = PS(X) + CS(X), using equations (31) and (32),

leads to:

TS(X) =

((
r + λ(1− τ)

(1− γ)(1− τ)(r + λ)
− (1− γ)

k1
k1 − s1

)
β1

β1γ − 1
(k0 − s0)− k0

)(
X

X∗

)β1
(33)

Notice that it is the firm who decides upon the timing and scale of investment (relying on

equations (31) and (32)), while the government chooses the instruments of the neutral packages

in order to maximize the total surplus, TS(X).
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Figure 3 shows the effects on the welfare of the different instruments available in the neutral

packages. We see that it is possible to increase the total surplus by increasing the tax rate while

compensating it through the depreciation rate (Figure 3(a)). Interestingly, Figures 3(b) and

3(c) reveal that the zero-incremental-cost package tends be a more effective alternative than the

zero-cost package, from a social optimizer perspective. Additionally, not only it is possible to

improve social welfare, even beyond the “no-government” surplus, but also the government can

implement a welfare-maximizing policy. In fact, Figure 3(b) depicts a maximum welfare that

it is attained for reasonable levels of τ , when the fixed subsidy is the instrument used. For the

case of variable subsidy the maximum welfare only occurs for an unreasonably high tax rate.
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(c) s1 neutralizes τ

X = 0.01, r = 0.04, α = 0.02, β1 = 2.5, γ = 0.5, k0 = 1, k1 = 0.1, s0 = 0, s1 = 0, τ = 0.25, λ = 0.2.

Figure 3: The effects of the tax rate (τ) on social welfare.

In Figure 4, we show the effect of uncertainty on the total surplus of the zero-incremental-

cost package. Regardless of the instrument used to compensate τ , a higher uncertainty (lower

β1) leads to a higher welfare, because of the optionality of the investment.
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(c) s1 neutralizes τ

X = 0.01, r = 0.04, α = 0.02, γ = 0.5, k0 = 1, k1 = 0.1, s0 = 0, s1 = 0, τ = 0.25, λ = 0.2.

Figure 4: Effects of a neutral tax rate τ on welfare under different uncertainty levels
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4 Linear demand function

The robustness of our main results is checked replacing the iso-elastic demand function by a

linear demand function (also used by Huisman and Kort (2015) and Boonman and Hagspiel

(2013):

P (t) = X(t)(1− ηQ) (34)

where η > 0.

Proposition 4. A firm with a proprietary option to invest in a project facing an inverse linear

demand function P = X(1 − ηQ), that requires a net investment of (k1 − s1)Q, will optimally

invest when X reaches the following threshold:

X∗l =
β1 + 1

β1 − 1

r − α
1− τ

r + λ(1− τ)

r + λ
(k1 − s1) (35)

and choose capacity

Q∗l =
1

η(β1 + 1)
(36)

The effects of the tax-subsidy package components are neutral in terms of the amount of

investment (∂Q∗l /∂τ = ∂Q∗l /∂λ = ∂Q∗l /∂s1 = 0). The latter effect differs from that observed

in the case of a iso-elastic demand function, for which a higher subsidy reduces the size of

investment. The difference is related with the presence of a fixed investment cost.

The effects on the investment timing are obtained differentiating X∗l with respect to the

fiscal policy package components:

∂X∗l
∂τ

=
β1 + 1

β1 − 1

r − α
(1− τ)2

r

r + λ
(k1 − s1) > 0 (37)

∂X∗l
∂λ

= −β1 + 1

β1 − 1

r − α
1− τ

rτ

(r + λ)2
(k1 − s1) < 0 (38)

∂X∗l
∂s1

= −
X∗l

k1 − s1
< 0, (39)

and they have the same sign those in the iso-elastic case.
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The signs of the effects of uncertainty on investment timing and scale are also identical:

∂X∗l
∂β1

= − 2X∗

(β1 − 1)(β1 + 1)
< 0 (40)

∂Q∗l
∂β1

= − 1

η(β1 − 1)2
< 0 (41)

Table 3 summarize all the previous results and compare them with those obtained for the

iso-elastic demand function. Excluding the effects of the variable subsidy to investment (s1),

the effects of the fiscal policy instruments for the unrestricted package remain the same in both

types of demand functions.

Table 3: Summary of comparative statics for linear and iso-elastic demand functions

Linear Iso-elastic

∂X∗l ∂Q∗l ∂X∗ ∂Q∗

∂τ + 0 + 0
∂λ − 0 − 0
∂s1 − 0 − +

∂σ + + + +

Following similar steps for analyzing the effect of each available instrument on the neutral

packages (both zero-cost and zero-incremental-cost), it is possible to obtain the results presented

in Table 4. As for the unrestricted case, only the variable subsidy to investment has a different

impact when considering the linear inverse demand function. In fact, the positive and the

ambiguous effects on investment scale, respectively for the zero-cost and zero-incremental-cost,

disappear under the linear demand function, as a result of the null direct impact of s1 on Q∗l .

Table 4: Summary of results: neutral tax-subsidy package for linear and iso-elastic demand
functions

Unrestricted Neutral total cost Neutral incremental cost

λ s1 λ s1

Linear
dX∗/dτ + − ± ± ±
dQ∗/dτ 0 0 0 0 0

Iso-elastic
dX∗/dτ + − ± ± ±
dQ∗/dτ 0 0 + 0 ±
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5 Conclusion

We develop a real options model which examines the effect of subsidy and taxation policies on

the timing and size of investments. We show that a higher depreciation rate, or a higher subsidy,

or a lower tax rate, accelerates investments. We identify however a very important difference

between the use of a fixed and a variable subsidy, whilst the former subsidy induces investments

of a smaller size, the latter encourages investments of a larger size. We also conclude that both

the tax rate and the assets depreciation rate do not affect the size of investments.

Considering government financial constraints, we introduce two neutral packages: the zero-

cost and the zero-incremental-cost packages. Under neutral packages, the clear relation that

appears in the unrestricted case no longer exists. In fact, a tax rate increase, if used to com-

pensate a higher depreciation rate or higher subsidies, may hasten or deter the investment,

depending on the tax rate that is initially in place. Although the direct effect of an increase in

the tax rate is to deter investment, we show that it can hasten investment if the tax revenue

that is generated by the tax rate increase is used to rise the depreciation rate or to grant a

subsidy. Additionally, if governments want to promote investments of a larger scale, using a

zero-cost package, they should use the additional tax revenue to grant a variable subsidy. For

a zero-incremental-cost package, this is also possible but for some particular parameter values

only.

A welfare analysis reveals that the zero-incremental-cost package tends to be a more effective

neutral package in magnifying the investment total surplus. Moreover, governments can also

implement a welfare-maximizing policy by choosing the appropriate tax rate to be changed and

the instrument to be adjusted to neutralize the effect of the tax rate change.

Some of the above findings are new to the literature and reveal important features of in-

vestment incentive packages that combine different types of taxes and subsidies, and can have

relevant implications on the development of new public policies to encourage investment. To

our best knowledge, there are not yet available empirical studies that fully test our theoreti-

cal findings, perhaps because our theory applies to public incentives that comprise both taxes

and subsidies with each of these instruments comprising two instruments, corporate and assets

depreciation taxes, and fixed and variable subsidies, respectively, and are evaluated under a

neutral incentive package and market uncertainty.
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Among the limitations of our study, we neglect possible efficiency losses in collecting taxes

and distributing subsidies, as well as any inter-temporal preferences and government constraints.

We let the overcoming of these limitations as further research.
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A Proofs of propositions

Proof. Proof of Proposition 1

The firm profit is given by:

π(t) = QP (t)(1− τ) + λ(k0 + k1Q)e−λ(t−T )τ (42)

The expected present value at the investment moment, when X(T ) = X is:

V (X,Q) = E

[∫ ∞
t=T

(
QX(t)Q−γ(1− τ) + λ(k0 + k1Q)e−λ(t−T )τ

)
e−rtdt

−(k0 + k1Q)e−rT
]

(43)

=
XQ1−γ

r − α
(1− τ)− (k0 + k1Q)

r + λ(1− τ)

r + λ
(44)

Maximizing with respect to Q, using the first order condition:

(1− γ)XQ−γ

r − α
(1− τ)− k1

r + λ(1− τ)

r + λ
= 0 (45)

leads to:

Q∗(X) =

(
(1− γ)(1− τ)X

(r − α)k1

r + λ

r + λ(1− τ)

) 1
γ

(46)

Substituting in Equation (44) and simplifying:

V (X,Q∗(X)) =

(
γ

1− γ
k1

(
(1− γ)(1− τ)X

(r − α)k1

r + λ

r + λ(1− τ)

) 1
γ

− k0

)
r + λ(1− τ)

r + λ
(47)

Using standard real options procedures (Dixit and Pindyck, 1994), X∗ is found with the

following value-matching and smooth-pasting conditions:

AX∗β1 =

(
γ

1− γ
k1

(
(1− γ)(1− τ)X∗

(r − α)k1

r + λ

r + λ(1− τ)

) 1
γ

− k0

)
r + λ(1− τ)

r + λ
(48)

β1AX
∗β1−1 =

(
1

1− γ
k1X

∗ 1
γ
−1
(

(1− γ)(1− τ)

(r − α)k1

r + λ

r + λ(1− τ)

) 1
γ

)
r + λ(1− τ)

r + λ
(49)
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These two conditions are equivalent to Equation (6) and produce the following solution:

X∗ =

(
β1(1− γ)k0
(β1γ − 1)k1

)γ r − α
(1− γ)(1− τ)

r + λ(1− τ)

r + λ
k1 (50)

Replacing in Equation (46):

Q∗ ≡ Q∗(X∗) =
β1(1− γ)k0
(β1γ − 1)k1

(51)

Proof. Proof of Propositions 2 and 3

Noting that

X∗ =

(
β1(1− γ)(k0 − s0)
(β1γ − 1)(k1 − s1

)γ r − α
(1− γ)(1− τ)

r + λ(1− τ)

r + λ
(k1 − s1)

= Q∗γ
r − α

(1− γ)(1− τ)

r + λ(1− τ)

r + λ
(k1 − s1) (52)

Equation (21) simplifies to:

R(X, τ, λ, s0, s1) =

(((
r + λ(1− τ)

(1− γ)(1− τ)(r + λ)
− λ

r + λ

)
(k1 − s1)τ − s1

)
Q∗

− λ

r + λ
(k0 − s0)τ − s0

)(
X

X∗

)β1
(53)

= g

(
X

X∗

)β1
(54)

Differentiating Equation (54) allows us to find the partial derivative of one the package

components when another adjusts to neutralize the effect:

∂R

∂i
+
∂R

∂j

∂j

∂i
= 0, i 6= j ∈ {τ, λ, s0, s1} (55)

All derivatives are evaluated at (τ̂ , λ̂, ŝ0, ŝ1).

Noting that

∂R

∂i
=

(
∂g

∂i
− β1g

∂X∗

∂i
X∗−1

)(
X

X∗

)β1
, i ∈ {τ, λ, s0, s1} (56)
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Equation (55) can be presented as:

∂j

∂i
= −

∂R

∂i
∂R

∂j

= −

∂g

∂i
− β1g

∂X∗

∂i
X∗−1

∂g

∂j
− β1g

∂X∗

∂j
X∗−1

, i 6= j ∈ {τ, λ, s0, s1} (57)

1. Let us first analyze the case of a zero total cost package (g = 0), as in Proposition 2.

Using the proofs below it is possible to show that:

∂λ̂

∂τ̂
= −

∂R

∂τ̂
∂R

∂λ̂

> 0;
∂ŝ0
∂τ̂

= −

∂R

∂τ̂
∂R

∂ŝ0

> 0;
∂ŝ1
∂τ̂

= −

∂R

∂τ̂
∂R

∂ŝ1

> 0

i. Noting that r > 0, r − α > 0, 0 < γ < 1, λ̂ > 0, τ̂ > 0, k1 − ŝ1 > 0, k0 − ŝ0 > 0,

∂Q∗/∂τ = 0,

∂R

∂τ
=

(
r + λ̂(1− τ̂)2

(1− γ)(1− τ̂)2(r + λ̂)
− λ̂

r + λ̂

)
(k1 − ŝ1)Q̂∗ −

λ̂

r + λ̂
(k0 − ŝ0) (58)

Please notice that for a zero-cost package (R(X, τ̂ , λ̂, ŝ0, ŝ1) = 0), from Equation (54):

− λ̂

r + λ̂
(k1 − ŝ1)Q̂∗ −

λ̂

r + λ̂
(k0 − ŝ0) = − r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
(k1 − ŝ1)Q̂∗

+
ŝ0 + ŝ1Q̂∗

τ̂
(59)

and that

r + λ̂(1− τ̂)2

(1− γ)(1− τ̂)2(r + λ̂)
>

r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
(60)

Therefore,
∂R

∂τ
> 0.

ii. Noting additionally that ∂Q∗/∂λ = 0,

∂R

∂λ
=

(
− rτ̂

(1− γ)(1− τ̂)(r + λ̂)2
− r

(r + λ̂)2

)
(k1 − ŝ1)τ̂ Q̂∗ −

r

(r + λ̂)2
(k0 − ŝ0)τ̂ < 0

(61)
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iii. Noting additionally that ∂Q∗/∂s0 < 0,

∂R

∂s0
=

((
r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
− λ̂

r + λ̂

)
(k1 − ŝ1)τ̂ − ŝ1

)
∂Q∗

∂s0
− r + λ̂(1− τ̂)

r + λ̂

(62)

Please notice that for a zero-cost package (R(X, τ̂ , λ̂, ŝ0, ŝ1) = 0), from Equation (54):

(
r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
− λ̂

r + λ̂

)
(k1− ŝ1)τ̂ − ŝ1 =

(
λ

r + λ
(k0 − s0)τ + s0

)
Q̂∗
−1

> 0

(63)

Therefore,
∂R

∂s0
< 0.

iv. Noting additionally that ∂Q∗/∂s1 > 0,

∂R

∂s1
=

((
r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
− λ̂

r + λ̂

)
(k1 − ŝ1)τ̂ − ŝ1

)
∂Q∗

∂s1

−

((
r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
− λ̂

r + λ̂

)
τ̂ + 1

)
Q̂∗ (64)

Please notice that

(
r + λ̂(1− τ̂)

(1− γ)(1− τ̂)(r + λ̂)
− λ̂

r + λ̂

)
τ̂ + 1 > 0 (65)

Therefore,
∂R

∂s1
< 0.

2. For the case of a zero incremental cost package (g > 0), as in Proposition 3, we need

to consider the effect on the discount factor through
∂X∗

∂i
. From previous proofs, this

derivative has always the same sign as
∂g

∂i
, which leads to the non-monotonic effects.

Proof. Proof of Proposition 4
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The expected present value of the profits at the investment moment, when X(T ) = X is:

Vm(X,Q) = E

[∫ ∞
t=T

(
QX(t)(1− ηQ)(1− τ) + λ(k0 − s0 + (k1 − s1)Q)e−λ(t−T )τ

)
e−rtdt

−(k0 + k1Q)e−rT
]

(66)

=
QX(1− ηQ)

r − α
(1− τ)− (k0 − s0 + (k1 − s1)Q)

r + λ(1− τ)

r + λ
(67)

Maximizing with respect to Q, using the first order condition:

X(1− 2ηQ)

r − α
(1− τ)− r + λ(1− τ)

r + λ
(k1 − s1) = 0 (68)

leads to:

Q∗l (X) =
1

2η

(
r − α

(1− τ)X

r + λ(1− τ)

r + λ
(k1 − s1)

)
(69)

Substituting in Equation (67) and using the value-matching and smooth-pasting conditions:

BX∗l
β1 = Vm(X∗l , Q

∗
l (X

∗
l )) (70)

β1BX
∗
l
β1−1 =

∂Vm(X,Q∗l (X
∗
l ))

∂X

∣∣∣∣
X=X∗l

(71)

the following solution is obtained:

X∗l =
β1 + 1

β1 − 1

r − α
1− τ

r + λ(1− τ)

r + λ
(k1 − s1) (72)

Q∗l =
1

η(β1 + 1)
(73)

B Proofs of corollaries

Proof. Proof of Corollary 1

The proof is straightforward given β1 > 1, β1γ > 1,r − α > 0, 0 < γ < 1, 0 < τ < 1, k0 > 0,

and k1 > 0.

Proof. Proof of Corollary 2

See previous proof.
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Proof. Proof of Corollary 3

Se previous proofs and note that k0 − s0 > 0 and k1 − s1 > 0.

Proof. Proof of Corollary 4

The only effect that is not straightforward from the signs of the individual components is

the following:

dX̂∗

dτ̂
=
∂X̂∗

∂τ̂︸ ︷︷ ︸
>0

+
∂X̂∗

∂λ̂︸ ︷︷ ︸
<0

∂λ̂

∂τ̂︸︷︷︸
>0︸ ︷︷ ︸

<0

< 0 (74)

Please notice that from Equations (10) and (12):

∂X̂∗

∂λ̂
=
∂X̂∗

∂τ̂

τ̂(1− τ̂)

r + λ̂
(75)

Substituting in Equation (74), the condition becomes:

∂λ̂

∂τ̂
<

r + λ̂

τ̂(1− τ̂)
(76)

Notice that for a neutral package:

∂R

∂τ̂
+
∂R

∂λ̂

∂λ̂

∂τ̂
= 0 (77)

∂λ̂

∂τ̂
= −

∂R

∂τ̂
∂R

∂λ̂

(78)

From Equations (58) and (61) it is possible to show that:

∂R

∂λ̂
= − τ̂(1− τ̂)

r + λ̂

(
∂R

∂τ̂
+ a

)
(79)

where

a =

 rτ̂ −
(
r + λ̂(1− τ̂)2

)
(1− γ)(1− τ̂)2(r + λ̂)

 (k1 − ŝ1)Q̂∗ + (k1 − ŝ1)Q̂∗ + (k0 − ŝ0) (80)
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and therefore:

∂λ̂

∂τ̂
=

∂R

∂τ̂
∂R

∂τ̂
+ a

× r + λ̂

τ̂(1− τ̂)
>

r + λ̂

τ̂(1− τ̂)
(81)

This condition is equivalent to a > 0, or:

b = rτ̂ −
(
r + λ̂(1− τ̂)2

)
> 0 (82)

In order to prove this condition to be true, noticing that for τ̂ = 0, b = −(r + λ̂) < 0, we

need only to prove that b is decreasing, i.e. db/dτ̂ < 0. For r < 1 and noting that r > 0, λ̂ > 0,

τ̂ > 0, and ∂λ̂/∂τ̂ > 0:

db

dτ̂
= r − 1−

(
(1− τ̂)2

∂λ̂

∂τ̂
+ 2(1− τ̂)λ̂

)
< 0 (83)
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