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ORIGINAL ARTICLE

Carbon emission abatement quota allocation in Chinese manufacturing
industries: An integrated cooperative game data envelopment
analysis approach

Feng Lia , Ali Emrouznejadb , Guo-liang Yangc and Yongjun Lid

aSchool of Business Administration, Southwestern University of Finance and Economics, Chengdu, China; bAston Business School,
Aston University, Birmingham, UK; cInstitutes of Science and Development, Chinese Academy of Sciences, Beijing, China and
University of Chinese Academy of Sciences, Beijing, China; dSchool of Management, University of Science and Technology of
China, Hefei, China

ABSTRACT
The Chinese government announced to cut its carbon emissions intensity by 60%–65% from
its 2005 level. To realize the national abatement commitment, a rational allocation into its
subunits (i.e. industries, provinces) is eagerly needed. Centralized allocation models can
maximize the overall interests, but might cause implementation difficulty and fierce resist-
ance from individual subunits. Based on this observation, this article will address the carbon
emission abatement quota allocation problem from decentralized perspective, taking the
competitive and cooperative relationships simultaneously into account. To this end, this art-
icle develops an integrated cooperative game data envelopment analysis (DEA) approach.
We first investigate the relative efficiency evaluation by taking flexible carbon emission
abatement allocation plans into account, and then define a super-additive characteristic
function for developing a cooperative game among units. To calculate the nucleolus-based
allocation plan, a practical computation procedure is developed based on the constraint
generation mechanism. Further, we present a two-layer way to allocate the CO2 abatement
quota into different sub-industries and further different provinces in Chinese manufacturing
industries. The empirical results show that five sub-industries (Processing of petroleum, cok-
ing and processing of nuclear fuel; Smelting and pressing of ferrous metals; Manufacture of
non-metallic mineral products; Manufacture of raw chemical materials and chemical product;
Smelting and pressing of non-ferrous metals) and two provinces (Guangdong and
Shandong) will be allocated more than 10% of the total national carbon emission abatement
quota.
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1. Introduction

Along with the economic development in the past few
decades, the climate change has become one of the
most important international issues. The global warm-
ing would cause some disastrous consequences and
threaten the survival and development of all human
beings (Feng, Chu, Ding, Bi, & Liang, 2015; Guo
et al., 2010; Wu, Chu, & Liang, 2016). To protect and
govern the environment, the greenhouse gas emission
abatement has been put on the agenda. In fact, many
countries and international organizations have exerted
continuous efforts to reduce their greenhouse gas
emissions in reacting to global warming (Soytas &
Sari, 2009; Yu, Wei, & Wang, 2014). Furthermore, it
is widely acknowledged that the primary component
of greenhouse gases is CO2, which contributes more
than 50% to the atmospheric warming (IPCC, 2007),

thus special attention should be paid to the CO2 emis-
sions and its control strategy. As the largest energy
consumer and carbon emitter in the world, China
faces an enormous pressure to cut its carbon emission
level (Wang, Zhang, Wei, & Yu, 2013; Wei, Ni, & Du,
2012; Yu et al., 2014; Zhang, Wang, & Da, 2014). In
June 2015, at the Climate Change Summit held in
Paris, the Chinese government submitted its voluntary
carbon emissions abatement plan to United Nations,
which committed to reduce its CO2 emissions by
60%–65% per unit gross domestic product (GDP)
from the 2005 level.1 It is a great responsibility and
contribution that China has announced for the
humankind and international society. However, to
realize the reduction commitment, a reasonable alloca-
tion of the national goal to different industries and
provinces is of vital importance and necessity. For this
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reason, we would study the carbon emission abate-
ment (CEA) quota allocation problem in China.

The carbon emission abatement allocation is a
special resource allocation problem, which uses cer-
tain mechanisms to allocate the total CEA quota
across the decision making units (DMUs) (Sun, Wu,
Liang, Zhong, & Huang, 2014). It is notable that lots
of previous articles have addressed the CEA allocation
problem, while almost all studies adopt a centralized
perspective (Chiu, Lin, Su, & Liu, 2015; Gomes &
Lins, 2008; Lozano, Villa, & Br€annlund, 2009; Wu,
Du, Liang, & Zhou, 2013). The optimal allocation
mechanism from the perspective of the central deci-
sion maker will indeed maximize the overall interests,
but also ignore the interests of individuals. That is to
say, the centralized allocation plan would harm some
DMUs’ interests and cause suboptimal results for
these DMUs (Feng et al., 2015). There is no doubt
that in practice the centralized allocation plan might
cause implementation difficulty and fierce resistance
from DMUs and even a possibility of departures from
the centralized allocation plan. For instance, the
United States has announced to withdraw from the
2015 Paris Agreement saying that “the Paris accord
will undermine (the U.S.) economy” and “puts (the
U.S.) at a permanent disadvantage” (Chakraborty,
2017). Under this circumstance, the solution is to
develop decentralized approaches. Based on this
observation, we will try to address the carbon emis-
sion abatement quota allocation problem from a
decentralized perspective.

Note in addition that there exist competitive and
cooperative relationships simultaneously among
related units in determining the carbon emission abate-
ment quota allocation plan. On one hand, since the
abatement quota allocated to each DMU is regarded as
a constraint restricting its carbon emission permits
(Wu et al., 2016), the individual DMU would compete
with each other to minimize its allocated carbon emis-
sion abatement amount. On the other hand, some
DMUs may also have enough incentives to establish
alliances with others to achieve collaborative carbon
emission abatement (Zhang et al., 2014), as the cooper-
ation of carbon emission abatement is helpful to share
relevant resources and curb the costs while cutting the
carbon emission level. It is clear that considering the
competitive and cooperative relationships among all
DMUs simultaneously would provide valuable insights
and generate a carbon emission abatement quota allo-
cation plan that is more acceptable and stable.
However, few works has been done on this topic.
Motivated by this idea, a game theoretical approach
would be of vital significance, and it is possible to cause
satisfied results for each DMU through using game-
based approaches.

In this article, we will use the famous nonpara-
metric mathematical programming method, data
envelopment analysis (DEA), to address the carbon
emission abatement quota allocation problem in
Chinese manufacturing industries. The most signifi-
cant advantage of DEA methodology is that it
requires no pre-specification of production func-
tions and can also handle desirable and undesirable
outputs simultaneously, which is highly fit with the
circumstance of carbon emission abatement alloca-
tion problem. We consider that the national com-
mitment to reduce its carbon emissions intensity by
60%–65% is essentially a total amount of carbon
dioxide emission abatement quota. To address it,
we develop an integrated cooperative game DEA
approach to explore the carbon emission abatement
allocation issue in Chinese manufacturing indus-
tries. To this end, we first investigate the relative
efficiency evaluation by taking the flexible carbon
emission abatement quota allocation plans into
account. Analysis shows that any DMU can be effi-
cient and all DMUs can also be simultaneously effi-
cient with a common set of weights and allocation
plans. Further, it involves in a phenomenon called
the egoist’s dilemma (Nakabayashi & Tone, 2006)
in determining a unique carbon emission abatement
quota allocation plan, which implies also the game
space. Afterwards, we define a super-additive char-
acteristic function and develop a practical computa-
tion procedure to calculate the nucleons solution
based on the constraint generation mechanism of
Hallefjord, Helming, and Jørnsten (1995). Finally,
we apply the integrated cooperative game DEA
approach to allocate the carbon emission abatement
quota in Chinese manufacturing industries in 2012
through a two-layer way, and analysis shows that
the cooperative game DEA approach can generate a
well-defined and acceptable allocation plan upon
negotiations. In particular, five sub-industries
(Processing of petroleum, coking and processing of
nuclear fuel; Smelting and pressing of ferrous met-
als; Manufacture of non-metallic mineral products;
Manufacture of raw chemical materials and chem-
ical product; Smelting and pressing of non-ferrous
metals) and two provinces (Guangdong and
Shandong) will undertake more than ten percent of
the total national carbon emission abatement com-
mitment quota.

The major contribution of this article can be
summarized as bellows: first, we develop an inte-
grated cooperative game DEA approach, which
takes the competitive and cooperative relationships
among all DMUs into account. As a result, the gen-
erated allocation mechanism is considered as fair
enough and all DMUs have motivations to accept
the allocation scheme in the sense of compromise.
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Second, we present a two-layer allocation frame-
work, namely, it allocates the national abatement
goal to different manufacturing industries in the
first stage, and in the second stage it further allo-
cates the abatement share of each industry into dif-
ferent provinces. This article is different from
existing literature that focuses mainly on provincial
or regional allocation studies. Third, we applied the
integrated cooperative game DEA approach to the
empirical study of Chinese manufacturing indus-
tries. Hence, it presents a feasible way for Chinese
government to realize its carbon emission abate-
ment commitment that is submitted to United
Nations ahead of the Paris Climate Change
Summit, 2015. On the theoretical aspect, this article
develops a new approach to address the carbon
emission abatement quota allocation problem from
a decentralized perspective, which is different from
existing literature with mainly centralized models.
On the application aspect, it solves a real-world
problem and provides practical findings and
implications.

The remainder of this article is organized as fol-
lows. In Section 2, we survey a relevant literature
review. In Section 3, we introduce the real-world
problem and summarize mathematical notations.
Later, Section 4 proposes a cooperative game DEA
approach and also a computation procedure of
nucleolus solution based on the constraint gener-
ation mechanism. Afterwards, we present a two-
layer empirical study of allocating the carbon
emission abatement quota in Chinese manufactur-
ing industries in Section 5. Eventually, Section 6
concludes this article and provides some
perspectives.

2. Literature review

This article will address the carbon emission abate-
ment allocation problem in Chinese manufacturing
industries through integrating data envelopment
analysis and game theory. Hence, there are mainly
three relevant research streams, i.e. DEA and game
DEA approach, DEA-based resource allocation
study, and environmental performance and carbon
emission abatement research.

2.1. DEA and game DEA approach

DEA, known as a famous nonparametric method
to evaluate the relative efficiency of peer DMUs
that convert multiple inputs into multiple outputs,
was first introduced by Charnes, Cooper, and
Rhodes (1978) with constant returns to scale (CRS)
assumption and further extended by Banker,

Charnes, and Cooper (1984) with variable returns
to scale (VRS) assumption. The underlying logic of
DEA methodology is that there exists an ideal per-
formance (i.e. efficient production possibility sur-
face) that can be used to assess the relative
efficiency of individual DMUs. To this end, a con-
vex combination of a set of comparable and homo-
geneous DMUs is calculated to construct an
efficiency frontier. Then each DMU can be pro-
jected onto the frontier, and the certain DMU is
evaluated by comparing itself to its projection on
that frontier.

Since its seminal work in Charnes et al. (1978)
and Banker et al. (1984), the DEA methodology
has attracted more and more attention from schol-
ars all over the world, and the DEA methodology
and its applications have been extensively studied
in the literature (Emrouznejad, 2014; Emrouznejad
& Yang, 2018). On the application aspect, the lit-
erature has witnessed DEA-based approaches in
different areas from public sector such as univer-
sities, hospitals, sports, and disaster relief opera-
tions to private sector such as banks, supply
chains, manufacturing industries, and mergers and
acquisitions (An, Meng, Ang, & Chen, 2018; Li,
Liang, Li, & Emrouznejad, 2018a; Li, Zhu, &
Zhuang, 2018e). On the methodology aspect, many
innovative concepts and models have been pro-
posed to extend and enrich the DEA theory. For
example, Sexton, Silkman, and Hogan (1986) sug-
gested using peer appraisal to replace traditional
self-evaluation in cross-efficiency approach, and
peer DMUs’ optimal relative weights are used to
evaluate other DMUs’ efficiency. Andersen and
Petersen (1993) proposed a novel super-efficiency
approach, which excludes the evaluated DMU
while constructing the efficiency frontier. Both the
cross-efficiency approach and super-efficiency
approach are supposed to improve DEA’s discrim-
ination power among efficient DMUs. In view of
the fact that traditional DEA methods do not take
DMUs’ internal production system into account,
F€are and Grosskopf (1996) proposed a network
DEA model which opens the “black-box.” Another
two most important approaches are directional dis-
tance function (Chung, F€are, & Grosskopf, 1997)
and slacks-based measure (Tone, 2001), both of
which relax the proportional input extraction and
output expansion requirement. The former
requires the input extraction and output expansion
in a given direction, while the later immediately
estimates the input and output slacks without
explicit direction. Additionally, some integrated
approaches are also proposed. For example, Tone
and Tsutsui (2009) firstly extended the lacks-based
measure (SBM) model to network situations. Li,
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Shi, Emrouznejad, Xie, and Liang (2018g) pro-
posed a network SBM approach for evaluating the
environmental performance of Chinese industrial
systems. Arabi, Munisamy, and Emrouznejad
(2015) proposed a slacks-based distance function
approach and applied it to calculate the
Malmquist–Luenberger productivity index. Kao
and Liu (2018) studied the cross-efficiency meas-
urement and decomposition for both series and
parallel production system.

The traditional DEA methodology maximizes
the individual utility without considering the
impacts of other DMUs’ decisions, however, in cir-
cumstances associated with conflicts of interests
each DMU must pay attention to other DMUs
involved and corresponding impacts, that is, all
DMUs should make a consensus and transigent
decision. After all, there always exist direct or
indirect competitions among all DMUs (Liang,
Wu, Cook, & Zhu, 2008a). To take the competition
and cooperation into account, some game DEA
approaches and its applications have been studied.
Banker (1980) provided a two-person zero-sum
game to interpret the DEA efficiency, and that
work was further extended to a constrained version
by Banker, Charnes, Cooper, and Clarke (1989).
Liang et al. (2008a) proposed a DEA game cross
efficiency method to address the non-uniqueness
of cross efficiency scores, and proved that the opti-
mal cross-efficiency scores construct a Nash equi-
librium. Further, Wu, Liang, Yang, and Yan
(2009a) and Wu, Liang, Yang (2009b) adopted a
Nash bargaining game and a cooperative game,
respectively, to improve the traditional cross effi-
ciency methods. Liang, Cook, and Zhu (2008b)
proposed both a centralized cooperative game DEA
model and a non-cooperative game DEA model for
evaluating series-linked two-stage network proc-
esses. Omrani, Beiragh, and Kaleibari (2015) com-
bined principal component analysis technique with
conventional DEA models to reduce the number of
inputs and outputs, and further combined the bar-
gaining game with DEA model to obtain more
realistic efficiency results. Li, Zhu, Chen, and Xue
(2018b) unified the unbalanced evaluation standard
in cross-efficiency method, and further proposed a
game-like iterative procedure to obtain the optimal
balanced cross-efficiency scores. Omrani, Shafaat,
and Alizadeh (2019) integrated data envelopment
analysis and cooperative game for evaluating
energy efficiency of transportation sector in Iran.
To see more studies on game DEA approaches the
readers are encouraged to Chen, Liang, and Yang
(2006), Du, Liang, Chen, Cook, and Zhu (2011),
Wu and Liang (2012), etc.

This article will propose an integrated cooperative
game DEA approach for the carbon emission abate-
ment quota allocation problem. The proposed
approach is also based on a directional distance
function concept, and we consider both desirable
outputs and undesirable outputs simultaneously in
the game framework.

2.2. DEA-based resource allocation study

Resource allocation problem has traditionally
become one of the most important application areas
of DEA methodology (Fang & Zhang, 2008;
Korhonen & Syrj€anen, 2004; Li, Song, Dolgui, &
Liang, 2017b). Among the literature, most studies
are brought in a centralized environment (Asmild,
Paradi, & Pastor, 2009; Lozano & Villa, 2004). For
example, Fang and Zhang (2008) allocated variable
resources to DMUs by maximizing both the total
efficiency from centralized decision-making environ-
ment and the individual efficiency for each DMU.
Lotfi, Noora, Jahanshahloo, Gerami, and Mozaffari
(2010) and Lotfi, Nematollahi, Behzadi, Mirbolouki,
and Moghaddas (2012) addressed the centralized
resource allocation problem using enhanced Russell
models. Given a capital budget constraint, Lozano,
Villa, and Canca (2011) proposed a series of central-
ized DEA models for individual and collective out-
put target setting, input reallocation and additional
input acquisitions. Fang (2013) proposes a general-
ized DEA model that integrated the Lozano and
Villa (2004) method and the Asmild et al. (2009)
model as a special case to address the resource allo-
cation problem. Pachkova (2009) introduced transfer
costs of resources into the resource allocation prob-
lem, which is realized by a price matrix. Lozano
(2014) proposed a SBM model for fixed cost and
common revenue allocation in a centralized envir-
onment. Fang (2016) proposed a centralized
resource allocation approach based on revenue effi-
ciency, and the allocation plan was determined by
maximizing the total output revenue. Ding, Chen,
Wu, and Wei (2018) addressed the centralized fixed
cost allocation problem by considering technology
heterogeneity for different DMUs. An, Chen, Xiong,
Wu, and Liang (2017) studied the intermediate out-
put setting problem by considering fairness concern
in a two-stage system.

There are also some studies that use parametric
DEA approaches for resource allocation problems.
For these studies, the efficiency frontier is sup-
posed to have a specific hyperbolic shape. Avellar,
Milioni, and Rabello (2007) made the first attempt
to allocate a new fixed input across DMUs by con-
sidering a spherical frontier. Interestingly, Avellar
et al. (2007) obtained a straightforward formula to
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calculate the resource amount for each DMU, and
all DMUs will be finally efficient. Then Avellar,
Milioni, Rabello, and Sim~ao (2010) extended the
same approach to another case where an already
existing input resource will be reallocated across a
set of DMUs. Milioni, de Avellar, Rabello, and De
Freitas (2011b) further extended the Avellar et al.
(2007) approach from input resource allocation to
output target setting, and the authors studied both
new fixed output setting and existing output reset-
ting. Guedes, Milioni, de Avellar, and Silva (2012)
proposed a new adjusted spherical frontier DEA
model for input allocation, which has an important
feature called coherence, implying that the gener-
ated allocation plan will be relatively stable and
will not change with a small data modification.
Milioni, de Avellar, and Gomest al. (2011a) pro-
posed another parametric DEA model where the
efficiency frontier has an ellipsoidal shape. Silva,
Milioni, and Teixeira (2018) generalized the previ-
ous parametric DEA approaches for fairly allocat-
ing a new and fixed output under a centralized
environment. Their new model can not only
incorporate value judgments, but also be useful
under increasing, constant, and decreasing returns
to scale (RTS) properties. As Li, Zhu, and Liang
(2019b) commented that the parametric DEA
approaches can solve the resource allocation prob-
lem very easily, but the key focus is that whether it
is acceptable to predefine a hyperbolic frontier
or not.

Except for the above studies, some studies inte-
grated the resource allocation and target setting into
one problem. For example, Athanassopoulos (1995)
applied goal programming and DEA to integrate
target setting and resource allocation in multilevel
planning problems. They extended the traditional
efficiency-based orientation of DEA model to gener-
ate resource allocation and target setting scheme. Bi,
Ding, Luo, and Liang (2011) studied the resource
allocation and target setting for parallel production
systems, and the authors tried to maximize the effi-
ciency scores for all DMUs as well as the worst
DMU under a set of common weights. Li et al.
(2017b) addressed the resource allocation and target
setting problem on the basis of two principles of
efficiency invariance and common weights. In gen-
eral the authors would give two possible allocation
plans, with one emphasizing on efficiency invariance
and the other on common weights.

Fixed cost is also a special resource that has
attracted lots of research attention (Beasley, 2003;
Cook & Kress, 1999). The first DEA-based fixed
cost allocation research was proposed by Cook and
Kress (1999), where two basic principles, effi-
ciency-invariance and input Pareto optimality,

were suggested. The efficiency-invariance principle
is significant since the fixed allocation should not
be utilized by any DMU to improve its perform-
ance. On the contrary, Beasley (2003) claimed that
all DMUs will find the allocation plan be accept-
able as it can realize an efficiency of one as com-
pared with peer DMUs. Further, Beasley (2003)
proposed a nonlinear problem to maximize the aver-
age efficiency score across all DMUs. Li et al. (2013)
and Si et al. (2013) proved that all DMUs can be sim-
ultaneously efficient by considering the allocated cost
as a new independent input and maximize the effi-
ciency score as possible. Li et al. (2019b) proposed a
novel non-egoistic principle for allocating a total fixed
cost in a decentralized environment, which suggests
that each DMU should propose its non-egoistic allo-
cation proposal by allocating the maximal cost to
itself. Li, Zhu, and Chen (2019) studied the fixed cost
allocation problem by taking the internal two-stage
network into account, and all DMUs’ operation sizes
are used to generated the final allocation plan such
that it is consistent with the current input consump-
tions and output productions from a size point
of view.

Note in particular that some game-DEA approaches
were also proposed for the resource allocation prob-
lem. Nakabayashi and Tone (2006) studied a phenom-
enon called the “egoist’s dilemma,” and proposed a
series of games to allocate cost and benefit. Du, Cook,
Liang, and Zhu (2014) considered all DMUs as play-
ers, and suggested a game cross-efficiency iterative
procedure to allocate fixed cost and input resource.
The allocation plan will be obtained until all DMUs
have the maximal cross-efficiency score (as the authors
themselves indicated that the score will be one). Li,
Zhu, and Liang (2018d) developed a game-DEA cross
efficiency approach for allocating a total fixed cost
across a set of competing DMUs, in which the final
allocation plan is derived from the fair Shapley values
and associated common weights. Li, Li, Emrouznejad,
Liang, and Xie (2019c) also integrated DEA and
cooperative game theory to allocate a total fixed cost.
Both Li et al. (2018d, 2019c) provide us good lesson
and reference, while this article will consider a reduc-
tion allocation problem and integrate undesirable out-
puts with desirable outputs in the cooperative game
DEA allocation approach.

This article will also address a kind of resource
allocation problem, but the target is on the carbon
emission abatement quota. Such a problem not only
involves undesirable outputs, but also is an output
reduction allocation problem. In addition, this art-
icle will use an integrated cooperative game DEA
approach to generate the carbon emission abatement
quota allocation scheme. More importantly, this art-
icle adopts a decentralized perspective for the
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carbon emission abatement quota allocation prob-
lem, which is different from existing literature with
mainly centralized perspectives.

2.3. Environmental performance and carbon
emission abatement research

The last research stream focuses on the study of
environmental performance and carbon emission
abatement, which has received substantial research
attention recently (Feng et al., 2015; Yu et al.,
2014; Zhou & Ang, 2008; Zhou, Ang, & Poh,
2008). Herein we focus only on DEA-based studies
for reference. The traditional DEA methodology
assumes that outputs have to be maximized and
inputs have to be minimized (Scheel, 2001),
whereas when we address the environmental per-
formance there always exist undesirable outputs
(Chung et al., 1997), which is desired to be mini-
mized. Through modelling undesirable outputs,
lots of articles have addressed the environmental
performance. Reinhard, Lovell, and Thijssen (2000)
used both stochastic frontier approach and DEA
approaches to estimate the environmental effi-
ciency scores for Dutch dairy farms. Korhonen and
Luptacik (2004) measured technical efficiency (the
relation of desirable outputs to inputs) and eco-
logical efficiency (the relation of desirable outputs
to undesirable outputs), and then combined the
two efficiencies to assess the eco-efficiency analysis
of 24 power plants in a European country. Bian
and Yang (2010) extended the Shannon-DEA pro-
cedure to obtain a comprehensive efficiency meas-
ure that simultaneously appraises DMUs’ resource
and environment performance. Further, the
authors applied their approach to address the
resource and environment efficiency evaluation
problem of 30 Chinese provinces. Zhou, Ang, and
Poh (2006), Zhou, Poh, and Ang (2007), and Zhou
et al. (2008) proposed a series of environmental
DEA technologies to measure environmental per-
formance. For example, Zhou et al. (2006) proposed
two slacks-based efficiency measures for environmen-
tal performance, with one being a composite index
with a higher discriminating power, and the other
being used to estimate the impacts of environmental
regulations. Zhou et al. (2008) proposed a non-radial
DEA approach for environmental performance evalu-
ation, which involves a non-radial DEA-based model
for multilateral environmental performance compari-
sons and a non-radial Malmquist environmental per-
formance index for modeling the change of
environmental performance over time. Song, Fisher,
Wang, and Cui (2018) addressed the environmental
performance evaluation in big data context. Sueyoshi
and Yuan (2015) evaluated the regional environmental

performance by incorporating PM2.5 and PM10 as
undesirable outputs, and results show that the
Chinese government should distribute more resources
to northwestern cities. Wu, Zhu, Yin, and Song
(2017) used an improved DEA approach for evaluat-
ing the Chinese regional total-factor energy and envir-
onmental efficiency, in which the authors considered
the total-factor energy and environmental efficiency as
a joint production framework involving both non-
energy inputs and energy inputs, as well as desirable
outputs and undesirable outputs.

To improve environmental performance and
relieve the impacts of global warming, many coun-
tries and international organizations have con-
ducted efforts to reduce its carbon emission levels,
and the studies in the literature are also abundant.
Sun et al. (2014) proposed two DEA models to
allocate the carbon emissions among several paper
mills, with one from the centralized perspective
and another from the individual perspective. Feng
et al. (2015) proposed a two-step procedure to
obtain a comprehensive CEA allocation. For the
first step, the author proposed improved DEA-
based centralized allocation models under VRS and
CRS assumptions, and then they used two com-
pensation schemes to generate the centralized allo-
cation schemes within the second step. Wu et al.
(2016) proposed a DEA-based closest target tech-
nique to set target and allocate the CEA amount
among 20 APEC economies. In 2009, the Chinese
government announced to cut its carbon emission
intensity by 40%–45% from the 2005 level, Yi,
Zou, Guo, Wang, and Wei (2011), Wei et al.
(2012), Wang et al. (2013), Yu et al. (2014), and
Zhang and Hao (2015) proposed a series of pro-
vincial allocation mechanism to realize the reduc-
tion commitment. Yi et al. (2011) considered the
per capita GDP, accumulated fossil fuel related
CO2 emissions and energy consumption per unit
of industrial added value as indicators of emission
reduction capacity, responsibility and potential,
respectively, and further allocated the national CO2

intensity reduction target to different provinces
according to its different indicator values. Wei
et al. (2012) applied an extended SBM model to
estimate the CO2 reduction potential and marginal
abatement costs for Chinese 29 provinces, and fur-
ther proposed an abatement capacity index using
weighted equity and efficiency indexes to realize
the regional allocation of carbon dioxide abatement
in China. Wang et al. (2013) used an improved
zero sum gains DEA optimization model to gener-
ate an efficient emission allowance allocation
scheme on provincial level for China by 2020. Yu
et al. (2014) addressed the provincial allocation of
carbon emission reduction targets in China based on
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particle swarm optimization algorithm, fuzzy c-means
clustering algorithm, and Shapley decomposition
approach. Then Yu et al. (2014) clustered all provinces
into four classes based on relevant carbon emission
factors and concluded that more carbon emission
reduction amount would be allocated to provinces
with large total emissions and high emission intensity.
Emrouznejad, Yang, and Amin (2019) studied the
same problem of this article, while they used an
inverse DEA approach and neglected the competitive
and cooperative relationships among different sub-level
industries and provinces.

If the total reduction amount is set to zero, the
CEA allocation problem would be reduced to a
carbon emission reallocation problem. Lozano
et al. (2009) proposed a three-phase approach to
allocate the emission permit, namely, maximizing
aggregated desirable outputs, minimizing undesir-
able total emissions and minimizing the consump-
tion of input resources. Gomes and Lins (2008)
reformulated a zero sum gains (ZSG) DEA model to
reallocate CO2 emissions. Further, Wang et al. (2013)
and Chiu et al. (2015) used ZSG-DEA models to allo-
cate CO2 emissions permits in some regions. Miao,
Geng, and Sheng (2016) used a non-radial ZSG-DEA
model to allocate CO2 emissions into different provin-
ces in China. Readers can refer to Zhou and Wang
(2016) for an overview of carbon dioxide emission
allocation studies.

Additionally, some game DEA approaches are
proposed to address the CEA allocation problem.
Wu et al. (2013) proposed a bargaining DEA
approach to generate the reduction scheme. In
their article, all DMUs compete with each other to
minimize its reduction in carbon emission permits,
while the central authority maximizes the overall
efficiency. In addition, the undesirable output (i.e.
carbon emissions) in that article was considered as
an input. Filar and Gaertner (1997) used the
Shapley value solution of cooperative game theory
to allocate carbon quotas among four regions. Yu
et al. (2014) and Zhang et al. (2014) applied also
the Shapley value concept when they addressed

regional allocation of carbon emissions quota in
China, but these studies took the Shapley value as
a supplementary tool rather than the main
method, and didn’t base on the cooperative
game theory.

This article bases itself upon a realistic and real
problem of industrial and provincial allocation of
national carbon emission abatement quota in China.
We will study the industrial allocation scheme as
well as regional allocation scheme, which is different
from existing literature with only provincial alloca-
tion. We will propose an integrated cooperative
game DEA approach by taking the game relation-
ship among sub-level industries and provinces into
account and is supposed to obtain fair and stable
allocation results.

3. Problem description and
mathematical notation

3.1. Problem background

In June 2015, in the climate conference in France,
Chinese Premier Li Keqiang announced China’s
latest voluntary reduction commitment: the CO2 emis-
sions will reach the peak at about 2030 and seek to
reach it as early as possible. China aims to cut its
greenhouse gas emission intensity by 60%–65% (per
unit of gross domestic product (GDP)) from the 2005
level. In manufacturing industries, the Gross
Industrial Output Value (GIOV) plays the same role
as GDP for the country. Thus we can propose CO2

reduction goal as CO2 emission/GIOV decreases 60%
to 65% based on the level of 2005. The indicators of
CO2 emission/GIOV in China from 2004 to 2012 are
listed in the following Table 1 (CO2 emission is in
the unit of thousand tons, Gross industrial output
value is in the unit of billion Yuan).

It should be noted that, in order to ensure the
comparability, we transform the value of GIOV to
constant price in 2010 using the Consumer Price
Index (CPI) of China, as shown in the last col-
umn of Table 1. The CPI data is derived from
OECD statistics (2010). Therefore in this article

Table 1. The CO2 emission/GIOV in China from 2004 to 2012.
Year CO2 emission Gross industrial output value (GIOV) CO2 emission/GIOV CPI

2004 2,322,703.8950 19,396.1056 1.1975 81.8313
2005 2,535,271.3660 21,783.5740 1.1638 85.0227
2006 2,754,416.4470 27,457.1670 1.0032 86.5673
2007 2,932,353.4260 35,363.0840 0.8292 87.8369
2008 3,251,515.2580 44,135.8360 0.7367 92.0238
2009 3,411,188.4130 47,919.9720 0.7119 97.4532
2010 3,700,797.2980 60,955.8500 0.6071 96.7834
2011 3,950,889.9570 73,398.4010 0.5383 100.0000
2012 4,134,711.6380 80,925.5132 0.5109 105.4706

Source: China Statistical Yearbooks 2005–2013, China Energy Statistical Yearbook.
According to OECD statistics, we set CPI Index 2010¼ 100.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 1265



we set the goal to decrease 60% to 65% of the
level of CO2 emission/GIOV in 2012 based on
that in 2005. Thus CO2 emission/GIOV in 2012
should be in the range of [0.4073, 0.4655].
However the real ratio of CO2 emission/GIOV
reaches 0.5109. If Chinese government achieves
the goal of the CO2 emission in 2012, the CO2

emission in 2012 should be [3296467.6860,
3767391.6410] in the unit of thousand tons.
However, the real amount of CO2 emission in
manufacturing industries in China is
4134711.6380 (thousand tons). Thus the CO2

emission reduction gap should be
[367319.9970–838243.9520] in the unit of thou-
sand tons, and this is the national allocation tar-
get that will be addressed in this article.

Based on the above government goal, we use a two-
layer dataset to allocate the CO2 emission quota into
different sub-level industries and then further allocate
them into different provinces. The first layer is to allo-
cate the national reduction quota CO2total to different
sub-level manufacturing industries, say CO2h; where
h ¼ 1; :::; 31 denotes different sub-level manufacturing
industries such that

P31
h¼1 CO2h ¼ CO2total: The second

layer is to further allocate the reduction quota for each
industry CO2h into different provinces, say CO2hl;

where l ¼ 1; :::; 31 denotes different provinces. Finally,
it holds that

P31
l¼1

P31
h¼1 CO2hl ¼ CO2total:

The problem studied in this article is how to allo-
cate the total national government goal into differ-
ent sub-level industries and then further different
provinces in an equitable manner. The motivation
of this article is the decentralized perspective and
game relationship among different sub-level indus-
tries and different provinces. Therefore, we try to
propose an integrated cooperative game DEA
approach for this task.

3.2. Mathematical notations

For a better understanding of this article and subse-
quent mathematical problems, here we give a compre-
hensive summary of all mathematical notations in
Table 2.

4. Mathematical model

4.1 Preliminary

For a mathematical modelling purpose, we follow a
common framework in DEA literature to consider a set
of n homogeneous and comparable peer DMUs, with
each consumingm inputs to produce s outputs. Denote
the input and output variables for DMUj j ¼ 1; :::; nð Þ
as xij i ¼ 1; :::;mð Þ and yrj r ¼ 1; :::; sð Þ; respectively.
The production possible set (PPS) with VRS assump-
tion and free disposability of inputs and outputs can be
expressed as formula (1).

PPS ¼ xi; yrð Þ

Pn
j¼1 kjxij � xi; i ¼ 1; :::;mPn
j¼1 kjyrj � yr; r ¼ 1; :::; sPn
j¼1 kj ¼ 1; kj � 0; j ¼ 1; :::; n

�������

9>=
>;

8>><
>>:

(1)

where kj is the intensity variable used for constructing
the efficiency frontier, and the constraint

Pn
j¼1 kj ¼ 1

implies the VRS assumption. Based on the PPS in for-
mula (1), the following model proposed by Banker
et al. (1984) can be used to estimate the relative effi-
ciency score of DMUo o ¼ 1; :::; nð Þ:

Table 2. Notation summary.
Notations Description

h ¼ 1; . . . ; 31 Index of different sub-level industries
l ¼ 1; . . . ; 31 Index of different provinces
i ¼ 1; . . . ;m Index of inputs
r ¼ 1; . . . ; s Index of desirable outputs
j; o ¼ 1; . . . ; n Index of decision making units (DMU)
xij Value of inputs of DMUj
yrj Value of desirable outputs of DMUj
bj Value of undesirable output of DMUj
kj; nj Intensity variables
h Expansion proportion of outputs in BCC model
g Measure of the directional distance function
vi; ti Relative weight of input i
ur ;lr Relative weight of desirable output r
x1; x2;x Relative weight of the undesirable output
u0;l0 Free variable reflecting the RTS property
g ¼ gy ; gbð Þ Direction vector
E�o Optimal original efficiency of DMUo
e�o Optimal post-allocation efficiency of DMUo
g� Optimal directional distance function measure
w�o Optimal inefficiency measure
R Total fixed undesirable output abatement quota
Rj Undesirable output abatement amount of DMUj

�y rj;~y rj The change amount of desirable output r of DMUj

Rmax
j Maximal undesirable output reduction level of

DMUj with desirable output �y rj
T1j; T2j; Tj The variation of undesirable output reduction

amount of DMUj
~Rj=R

 
j Maximal/minimal undesirable output reduction

level of DMUj with the efficient allocation set
N ¼ 1; . . . ; nf g Large coalition of all DMU
K Coalition of DMUs
CK ¼ c1; . . . ; cnð Þ0 Vector used to construct coalition K
~RK=R

 
K Maximal/minimal quota allocated to coalition K

V Kð Þ Characteristic function
Z ¼ z1; . . . ; znð Þ Pre-nucleolus imputation
e K; Zð Þ Excess value of coalition K on imputation Z
d Zð Þ Vector of excess values
n Least maximal excess value
qK Dual variable
bj Dual variable
a Dual variable
s Dual variable
pj Dual variable
vj Dual variable
Omax The maximal unsatisfied value
dj 0–1 variable
fj Instrumental variable depending on dj
M A large enough positive value
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h�o ¼ Max h

s:t:
Pn

j¼1 kjxij � xio; i ¼ 1; :::;mPn
j¼1 kjyrj � hyro; r ¼ 1; :::; sPn
j¼1 kj ¼ 1; kj � 0; j ¼ 1; :::; n:

(2)

Model (2) estimates the maximal proportional out-
put expansion yet remaining the input consumption.
If it is impossible to proportionally increase outputs,
then the optimal objective function of model (2)
would be one (namely, h�o ¼ 1) and the evaluated
DMU would be identified as DEA-efficient. Otherwise,
DMUo o ¼ 1; :::; nð Þ is inefficient for cases where
h�o > 1: Note in particular that model (2) will reduce
to the first DEA model, known as Charnes-Banker-
Rhodes model (Charnes et al., 1978), if we withdraw
the constraint

Pn
j¼1 kj ¼ 1 and impose only non-

negative requirementss on intensity variables.
It is notable that model (2) considers only trad-

itional outputs, which means that outputs are maxi-
mized as possible (Scheel, 2001), while undesirable
outputs like waste or pollution are also generated
frequently in the production process (F€are,
Grosskopf, Lovell, & Pasurka, 1989; Seiford & Zhu,
2002). With the consideration of undesirable output
bj for DMUj j ¼ 1; :::; nð Þ; a core task is identifying
methods to handle undesirable outputs (Song et al.,
2018). The existing research can be mainly divided
into two groups in terms of disposability assump-
tions (Chen & Delmas, 2012; Li, Li, Zhao, & Zhu,
2018h; Song, An, Zhang, Wang, & Wu, 2012). The
first group considers that the undesirable outputs
are joint weakly or strongly disposable with desir-
able outputs, hence it adopts weak or strong dispos-
ability assumption (Seiford & Zhu, 2002; Zhou,
Ang, & Wang, 2012). The second category thinks
that the undesirable outputs can be reduced by
reducing output production or increasing input con-
sumption, which implies natural and managerial dis-
posability assumption (Li, Zhu, & Zhuang, 2018e;
Sueyoshi & Goto, 2012a, 2012b). With deep consid-
eration for our application in this article, we will
use the most common used weak disposability
assumption. To this end, the PPS assuming free dis-
posability of inputs and desirable outputs and weak
disposability of undesirable outputs can be written
as below (Kuosmanen, 2005; Kuosmanen &
Podinovski, 2009).

PPSun ¼ xi; yr; bð Þ

Pn
j¼1 kj þ nj

� �
xij � xi; i ¼ 1; :::;mPn

j¼1 kjyrj � yr; r ¼ 1; :::; sPn
j¼1 kjbj ¼ bPn
j¼1 kj þ nj

� � ¼ 1; kj; nj � 0; j ¼ 1; :::; n

����������

9>>>>=
>>>>;

8>>>>><
>>>>>:

(3)

As compared with the traditional PPS in formula
(1), in formula (3) both desirable outputs and

undesirable outputs of DMUj j ¼ 1; :::; nð Þ are
weighted by the non-disposed intensity variable kj;
whereas the inputs of DMUj j ¼ 1; :::; nð Þ are
weighted by the sum of the disposed intensity vari-
able nj and non-disposed intensity variable kj: In
addition, the VRS assumption is ensured by sum-
ming the total disposed intensity variable nj and
non-disposed intensity variable kj to one,
namely,

Pn
j¼1 kj þ nj

� � ¼ 1:
Based on the PPS in formula (3), we can propose

a directional distance function (DDF) model with
weak disposability assumption to calculate maximal
proportional desirable output expansion and
undesirable output reduction simultaneously. When
DMUo o ¼ 1; :::; nð Þ is under consideration, the
above idea is formulated as model (4).

g�o ¼ Max g

s:t:
Pn

j¼1 kj þ nj
� �

xij � xio; i ¼ 1; :::;mPn
j¼1 kjyrj � yro þ g � yro; r ¼ 1; :::; sPn
j¼1 kjbj ¼ bo�g � boPn
j¼1 kj þ nj

� � ¼ 1

kj; nj � 0; j ¼ 1; :::; n:

(4)

In model (4), the direction vector is set as g ¼
gy; gbð Þ ¼ yro;�boð Þ: In addition, g is a measure of
inefficiency on both desirable output expansion and
undesirable output reduction, thus an optimal effi-
ciency score can be calculated as E�o ¼ 1� g�o; where
g�o is the optimal solution of g and derived from
model (4). It is clear that g� is no more than one
and no less than zero, thus the optimal efficiency
score E�o ðo ¼ 1; :::; nÞ ranges from zero to unity.

The following model (5) is a dual of model (4).

w�o ¼ Min
Pm

i¼1 vixio�
Ps

r¼1 uryro þ x1bo�x2bo þ u0
s:t:

Pm
i¼1 vixij�

Ps
r¼1 uryrj þ x1bj�x2bj þ u0 � 0; j ¼ 1; :::; nPm

i¼1 vixij þ u0 � 0; j ¼ 1; :::; nPs
r¼1 uryro þ x1bo�x2bo � 1

vi; ur;x1;x2 � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; u0 free:

(5)

Here vi ði ¼ 1; :::;mÞ; ur ðr ¼ 1; :::; sÞ; x1; x2 and
u0 are dual variables derived from model (4), and
are also unknown decision variables in model (5).
Note in particular that this article focuses on the
carbon emission which is a kind of undesirable out-
put, thus it is required that at least x1>0 or x2>0;
otherwise the undesirable output will make no sense
if it holds x1 ¼ 0 and x2 ¼ 0 simultaneously.
Without loss of generality, we assume that x1>0
and x2 � 0; and another case (x1 � 0 and x2>0)
can be studied in a similar way. Each dual variable
measures the level of efficiency increment due to a
unit increase on according input-output bundle.
According to the dual theory, it holds g�o ¼ w�o for
all DMUo ðo ¼ 1; :::; nÞ; and the efficiency score can
also be computed as E�o ¼ 1�w�o:
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4.2. Performance evaluation with flexible CEA
allocation plan

Now consider that the central government would cut
its total carbon dioxide emissions by R. Then the
problem comes out of how to reduce the undesirable
output from peer DMUs in a fair way (Wu et al.,
2013). Suppose that each DMUj j ¼ 1; :::; nð Þ will be
reduced an amount of Rj from its current carbon
emissions level bj such hat

Xn

j¼1 Rj ¼ R;Rj � 0: (6)

The above Equation (6) guarantees that the individ-
ual reduced amounts Rj ðj ¼ 1; :::; nÞ precisely sum to
the total carbon emissions abatement quota R.

To address the performance evaluation with flex-
ible CEA allocation plan, the feasibility of CEA allo-
cation plan should be investigated in advance. To
guarantee that the reduced amounts Rj is feasible
such that the reduced operating units fall within the
PPS which is constructed by observed DMUs and
defined in Formula (3), it must hold that
ðxio; yro þ �yro; bo � RoÞ 2 PPSunfor any DMUo ðo ¼
1; :::; nÞ; namely,Pn

j¼1 kj þ nj
� �

xij � xio; i ¼ 1; :::;mPn
j¼1 kjyrj � yro þ �yro; r ¼ 1; :::; sPn
j¼1 kjbj ¼ bo�RoPn
j¼1 kj þ nj

� � ¼ 1

kj; nj � 0; j ¼ 1; :::; n:

(7)

Here �yro ðr ¼ 1; :::; sÞ and Ro are unknown values
and free. Note in particular that by inserting �yro on
desirable outputs, we are able to estimate the feas-
ible undesirable output reduction level through
changing desirable outputs within given PPS. This
idea fits with the observation in practice that reduc-
ing undesirable outputs is usually associated with
affecting the desirable outputs.

It is clear that the minimum reduction amount of
DMUo ðo ¼ 1; :::; nÞ is zero, which means that all
DMUs must reduce its carbon emission amount or
it cannot increase its carbon emission amount

anymore. Further, the maximum emission reduction
level of DMUo ðo ¼ 1; :::; nÞ; donated as Rmax

o ; can
be computed by model (8). Additionally, by setting
�yro � 0 we can estimate the feasible undesirable out-
put reduction level yet remaining unreduced desir-
able outputs. If �yro ðr ¼ 1; :::; sÞ is free we will
estimate the feasible undesirable output reduction
level by sacrificing desirable outputs.

Rmax
o ¼ MaxRo

s:t:
Pn

j¼1 kj þ nj
� �

xij � xio; i ¼ 1; :::;mPn
j¼1 kjyrj � yro þ �yro; r ¼ 1; :::; sPn
j¼1 kjbj ¼ bo�RoPn
j¼1 kj þ nj

� � ¼ 1

kj; nj � 0; j ¼ 1; :::; n:

(8)

Therefore, the feasible reduction amount Rj of
any DMUj ðj ¼ 1; :::; nÞ would be placed within the
interval ½0;Rmax

j � such that 0 � Rj � Rmax
j : Without

loss of generality, we assume that the total reduc-
tion quota R can be fully covered by the sum of
all maximum emission reductions, that is,Pn

j¼1 R
max
j � R; otherwise the carbon dioxide

emissions abatement goal R is considered as
infeasible within the current PPS and the central
government should adjust its carbon dioxide
emissions abatement goal. In addition, we have
Theorem 1.

Theorem 1. Rmax
j ¼ bj ðj ¼ 1; :::; nÞ:

Proof. See Appendix A.

The above Theorem 1 is an intuitive result. The
underlying logic behind Theorem 1 is that any
DMU can completely reduce its undesirable outputs
at the cost of removing its desirable outputs. In
other words, all DMUs have potentials to reduce its
undesirable outputs level within the PPS. Therefore,
in this article we consider all DMUs as carbon emis-
sion abatement targets.

With consideration of the carbon emission abate-
ment allocation plan R1; :::;Rnð Þ; model (5) is
rewritten as model (9) to calculate the possible effi-
ciency score of DMUo o ¼ 1; :::; nð Þ:

ŵ
�
o ¼ Min

Pm
i¼1 vixio�

Ps
r¼1 ur yro þ �yroð Þ þ x1 bo � Roð Þ�x2 bo � Roð Þ þ u0

s:t:
Pm

i¼1 vixio�
Ps

r¼1 ur yro þ �yroð Þ þ x1 bo � Roð Þ�x2 bo � Roð Þ þ u0 � 0Pm
i¼1 vixij�

Ps
r¼1 uryrj þ x1bj�x2bj þ u0 � 0; j ¼ 1; :::; nPm

i¼1 vixij þ u0 � 0; j ¼ 1; :::; nPs
r¼1 uryro þ x1bo�x2bo � 1

0 � Rj � bj; j ¼ 1; :::; nPn
j¼1 Rj ¼ R

vi; ur;x2 � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;x1>0;�yro and u0 free:

(9)
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However, model (9) is a nonlinear programming,
therefore we can transform it into a linear program-
ming problem as given in model (10).

Solving model (10) once for each DMUo o ¼ð
1; :::; nÞ determines an optimal efficiency score with
flexible carbon emission abatement allocation
schemes. Suppose that the optimal solution of
model (10) is ðvo�i ; uo�r ;To�

1j ;T
o�
2j ;x

o�
1 ;xo�

2 ; uo�0 ; �Yo�
ro ;

8i; r; jÞ when DMUo o ¼ 1; :::; nð Þ is evaluated, then
the possible efficiency is calculated as e�o ¼ 1�
ðPm

i¼1v
o�
i xio�

Ps
r¼1u

o�
r yro�

Ps
r¼1 �Y

o�
roþ xo�

1 bo� To�
1o�

xo�
2 boþTo�

2oþuo�0 Þ; which is associated with a
carbon emission abatement allocation scheme Ro�

j ¼
To�
1j =x

o�
1 ðj¼1;:::;nÞ:

Based on model (10), some useful and valuable
conclusions are developed.

Theorem 2. The optimal objective function of model
(10) is always zero.

Proof. See Appendix B.

Theorem 2 implies that DMUo o ¼ 1; :::; nð Þ can
be identified as DEA efficient through determining
a flexible carbon emission abatement allocation
scheme and selecting a set of optimal relative
weights. Put it differently, by incorporating the car-
bon emission abatement allocation plan into effi-
ciency evaluation it is possible for any DMU to
separately maximize its efficiency score to one and
realize the efficient status through laying itself on
the efficiency frontier of the PPS defined by the
observed DMUs. This provides also a possibility to
propose an efficient allocation scheme of the total
carbon emission abatement quota. To this end, we
first provide Theorem 3 as below.

Theorem 3. All DMUs can be simultaneously effi-
cient with a certain carbon emission abatement allo-
cation scheme under a set of common weights.

Proof. See Appendix C.

Theorem 2 suggests that a certain DMU can be
efficient through incorporating flexible carbon emis-
sion abatement allocation plans, while Theorem 3

steps further that there exist carbon emission abate-
ment allocation schemes that can make all DMUs
simultaneously efficient under a set of common
weights. Based on this observation, we can have an
efficient allocation set which contains all carbon
emission abatement allocation schemes that can
make all DMUs simultaneously efficient. The insight
behind this finding is that any DMU has enough
incentives to accept such efficient allocation schemes
as it will benefit from the allocation process to
improve its efficiency assessment result. It is also
similar with the efficiency maximization pursuance
of Beasley (2003) who argued that “each DMU can
clearly see that… it is a fair and equitable one–it
enables them to achieve maximum efficiency in
comparison to their peers using exactly the same
weights.” The efficient allocation set is given by
Corollary 1.

Corollary 1. The efficient carbon emission abatement
allocation scheme can be denoted as following System
(11) under a set of common weights:Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj�Rj�xbj þ Tj

þl0 ¼ 0; j ¼ 1; :::; nPn
j¼1 Rj ¼ RPn
j¼1 Tj ¼ xR

0 � Rj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; j ¼ 1; :::; n;
~yrj and l0 free:

(11)

Proof. See Appendix D.

It is clear that there are ðmþ sþ n � sþ nþ nþ
2Þ variables in System (11), but only ðnþ 2Þ equa-
tions. Therefore, there exist flexibilities to determine
a unique carbon emission abatement allocation

ŵ
�
o ¼ Min

Pm
i¼1 vixio�

Ps
r¼1 uryro�

Ps
r¼1 �Yro þ x1bo�T1o�x2bo þ T2o þ u0

s:t:
Pm

i¼1 vixio�
Ps

r¼1 uryro�
Ps

r¼1 �Yro þ x1bo�T1o�x2bo þ T2o þ u0 � 0Pm
i¼1 vixij�

Ps
r¼1 uryrj þ x1bj�x2bj þ u0 � 0; j ¼ 1; :::; nPm

i¼1 vixij þ u0 � 0; j ¼ 1; :::; nPs
r¼1 uryro þ x1bo�x2bo � 1

0 � T1j � x1bj; j ¼ 1; :::; n

0 � T2j � x2bj; j ¼ 1; :::; nPn
j¼1 T1j ¼ x1R;

Pn
j¼1 T2j ¼ x2R

vi; ur;x2 � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;x1>0; �Yro and u0 free:

(10)
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scheme. Based on the efficient carbon emission
abatement allocation scheme presented in System
(11), the following model (12) is developed to calcu-
late the maximal/minimal carbon emission abate-
ment level of each DMUo o ¼ 1; :::; nð Þ:
~Ro=R

 
o ¼ Max=MinRo

s:t: Rj ¼
Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj
þbj�xbj þ Tj þ l0; j ¼ 1; :::; nPn

j¼1 Rj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � Rj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(12)

Notably, we add an additional constraintPn
j¼1 ~yrj � 0; r ¼ 1; :::; s in model (12), which is

used to guarantee that the total desirable outputs
are unreduced yet reducing the undesirable outputs.
After all, a certain carbon emission abatement allo-
cation scheme is unacceptable if it sacrifices desir-
able outputs, and a real instance is the withdrawal
of United States from the 2015 Paris Agreement
(Chakraborty, 2017). It is clear that the maximal
carbon emission abatement level from DMUj ðj ¼
1; :::; nÞ is ~Rj; otherwise not all DMUs can be simul-
taneously efficient with the carbon emission abate-
ment allocation scheme. Similarly, it must ensure
that the carbon emission abatement level of
DMUj ðj ¼ 1; :::; nÞ is at least R

 
j: Model (12) not

only shows the efficient carbon emission abatement
interval of DMUs, but also shows a phenomenon
like egoist’s dilemma (Nakabayashi & Tone, 2006),
implying that

Pn
j¼1 R

 
j<R<

Pn
j¼1~Rj: Then the prob-

lem comes out of how to generate a unique carbon
emissions abatement scheme using game-theoret-
ical models.

4.3. An integrated cooperative game
DEA approach

Here in this subsection we develop an integrated
cooperative game DEA approach for the carbon
emission abatement quota allocation problem. To
this end, we first construct a coalition K � N ¼
1; :::; nf g of n DMUs. Then the input-output vector

of coalition K can be denoted as XK ¼
X1; :::;Xnð ÞCK ; YK ¼ Y1; :::;Ynð ÞCK and BK ¼
B1; :::;Bnð ÞCK ; where for DMUj j ¼ 1; :::; nð Þ it holds
Xj ¼ x1j; :::; xmjð Þ0; Yj ¼ y1j; :::; ysjð Þ0; Bj ¼ bj

� �0
; and

CK ¼ c1; :::; cnð Þ0 is a non-negative vector with each
component CKj ¼ cj j ¼ 1; :::; nð Þ being zero or one.
The coalition vector CK ¼ c1; :::; cnð Þ0 indicates the
establishment of coalitions of n DMUs. For example,
C df g ¼ 0; :::; 0|fflfflffl{zfflfflffl}

d�1

; 1; 0; :::; 0
� �0is the original DMUd;

C d;kf g ¼ 0; :::; 0|fflfflffl{zfflfflffl}
d�1

; 1; 0; :::; 0|fflfflffl{zfflfflffl} k� d � 1; 1; 0; :::; 0
� �0 re-

presents the coalition of DMUd and DMUk; and
CN ¼ 1; :::; 1ð Þ0 represents the grand coalition of
all DMUs.

For any coalition K � N ¼ 1; :::; nf g; we can for-
mulate model (13) to calculate its collective max/
min carbon emission abatement level.

~RK=R
 

K ¼ Max=Min
Pn

j¼1 CKjRj

s:t: Rj ¼
Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj
þbj�xbj þ Tj þ l0; j ¼ 1; :::; nPn

j¼1 Rj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � Rj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(13)

Based on the optimal solution and objective func-
tion of model (13), we give a characteristic function
of coalition K � N ¼ 1; :::; nf g as follows:
Definition 1. For any subset K � N ¼ 1; :::; nf g;
the characteristic function is calculated
as V Kð Þ ¼P

j�K
~Rj �~RK:

The first term
P

j�K
~Rj represents the sum of indi-

vidual maximum carbon emission abatement
amount of DMUs in coalition K, while the second
term ~RK represents the maximum collective carbon
emission abatement level of coalition K. It is clear
that the formula

P
j�K
~Rj �~RK measures the

improvement potentials by establishing the coalition
K. The characteristic function promises an assurance
level. Traditionally, we assigns zero to empty set,
V ;ð Þ ¼ 0: Further, we have V Nð Þ ¼P

j�N
~Rj �~RN ¼P

j�N
~Rj � R > 0; where the latter equation is the

result of full cover of the total carbon emission
abatement quota. Theorem 4 shows the super-addi-
tive property of the characteristic function, which
promises the potential gains from cooperation and
the feasibility to allocate the total carbon dioxide
emission abatement quota from the perspective of
cooperative game framework.

Theorem 4. The characteristic function V Kð Þ satis-
fies super-additive, that is, for any two coalitions
K; L 	 N ¼ 1; :::; nf g and K \ L ¼ ;, it
holds V Kð Þ þ V Lð Þ � V K [ Lð Þ:

Proof. See Appendix E.

The super-additive property implies that all
DMUs would like to participate into the grand
coalition and it is possible to persuade DMUs into
an agreement to generate a carbon emission abate-
ment allocation scheme. The next problem is how
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to solve the game N;Vð Þ and accordingly generate
the carbon emission abatement allocation scheme.

4.4. Nucleolus-based solution and
computation procedure

There are many solution concepts for the coopera-
tive game, such as kernel, core, nucleolus, stable set,
bargaining set, Shapley value, s-value, etc. (Lozano,
2012; Nakabayashi & Tone, 2006). The decision
maker should select the game solution depending
on the context in which the problem is located. In
this article, we take the nucleolus-based solution as
an example to show how to obtain the game-based
allocation plan. In addition, since the nucleolus does
more favor to those vulnerable DMUs/coalitions, it
implies a pessimistic attitude and corresponds to the
defining way of the characteristic function. Besides,
there is always one and only one unique nucleolus.
Therefore, in this subsection we will discuss the
nucleolus solution and its computation procedure.

For the sake of calculating the nucleolus solution
and according allocation scheme, let us consider a
pre-imputation or a carbon emission abatement
quota allocation vector Z ¼ z1; :::; znð Þ; satisfies the
following three rationalities (Nakabayashi &
Tone, 2006):

1. Individual rationality: ~Rj� zj�V jf gð Þ; j¼ 1; :::;n:

2. Coalition rationality:
P

j2K~Rj �
P

j2Kzj � V
Kð Þ; K � N ¼ j ¼ 1; :::; nf g

3. Collective rationality:
Pn

j¼1~Rj �
Pn

j¼1 zj ¼
V Nð Þ ¼ Pn

j¼1~Rj � R:

In cooperative game theory, the pre-imputation
vector Z ¼ z1; :::; znð Þ represents an allocation
scheme of the total carbon dioxide emission abate-
ment quota R. The individual rationality ensures the
non-negative improvements from the worst results
for each DMU, and the coalition rationality guaran-
tees the non-negative improvements from the worst
results for all coalitions, and the last collective
rationality promises a full cover of the total reduc-
tion quota R. As suggested by Lozano (2012) that,
the coalition rationality can also guarantee the sta-
bility of the imputation, since the aggregated gains
assigned to its members is not less than the coali-
tion minimal gains, i.e. the characteristic function.
Further, a stable imputation leaves no incentives for
any DMUs to break the grand coalition and form a
sub-coalition.

For calculating the nucleolus, an importation
concept based on the pre-imputation vector Z ¼
z1; :::; znð Þ is given as below:

Definition 2. For the cooperative game N;Vð Þ; the
excess value of coalition K � N ¼ j ¼ 1; :::; nf g on

the pre-imputation vector Z ¼ z1; :::; znð Þ is calcu-
lated as e K;Zð Þ ¼ P

j2K~RK�
P

j2Kzj
� 	

� V Kð Þ:
The excess value measures the “unsatisfactory

degree” or “unhappiness” relative to the guarantee
level, i.e. the characteristic function. The nucleolus
solution to the cooperative game is defined by
Schmeidler (1969) as the optimal imputation that
can minimize the excess value for all coalitions by
lexicographical order. By sorting all excess values of
coalitions K 	 N ¼ 1; :::; nf g in non-descending
order, a vector can be defined as

d Zð Þ ¼ #1 Zð Þ; :::; #2n�2 Zð Þ
� �

¼ e K1;Zð Þ; :::; e K2n�2;Zð Þð Þ

where e K1;Zð Þ � ::: � e K2n�2;Zð Þ:
Then, the nucleolus solution can be interpreted

as below:

H .ð Þ ¼ . 2 Zjd .ð Þ � d rð Þ; 8r 2 Z

 �

: (14)

where the pre-imputation vector Z ¼ z1; :::; znð Þ is
the set of all feasible distribution for the cooperative
game (N, V). The nucleolus . is the one that lexico-
graphically minimizes the excess values for
all coalitions.

To calculate the nucleolus of the cooperative
game (N, V), a min–max model based on the gen-
eral concept framework of Maschler, Peleg, and
Shapley (1979) is developed as below.

Min
ti;lr ;zj;x;Tj;~yrj;l0

Max
K	N

e K;Zð Þ

s:t:
Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj�xbj
þTj þ l0 ¼ zj; j ¼ 1; :::; nPn

j¼1 zj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � zj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(15)

Let n ¼ MaxK	N e K;Zð Þ; then model (15) is
transformed into a linear program in model (16).

Min n

s:t:
P

j2K~Rj �
P

j2Kzj
� 	

�V Kð Þ � n;K 	 N ¼ 1; :::; nf gPm
i¼1 tixij�

Ps
r¼1 lryrj�

Ps
r¼1 ~yrj þ bj�xbj

þTj þ l0 ¼ zj; j ¼ 1; :::; nPn
j¼1 zj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � zj � bj; j ¼ 1; :::; n

ti;lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(16)
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4.4.1. A practical computation procedure of nucleolus

Normally, the computation of the nucleolus is done
by computing the characteristic function for each
coalition and following the iterative procedure of
Fromen (1997). However, when the number of coa-
litions is big, it is impractical to compute the char-
acteristic function for each coalition and then a
constraint generation mechanism suggested by
Hallefjord et al. (1995) would be of vital signifi-
cance. Therefore, this subsection would propose a
practical computation procedure based on the work
of Hallefjord et al. (1995).

First of all, we limit the first constraint of model
(16) to a subset K�X; where for simplification
X can be the n singleton coalitions, namely, X ¼

1f g; :::; nf g

 �

: It is clear that we can easily calculate
the characteristic function V Kð Þ; K 2 X: Then we
solve model (16) in a simplified version, which is
formulated as model (17).

Min n

s:t:
P

j2K~Rj �
P

j2Kzj
� 	

�V Kð Þ � n;K 2 XPm
i¼1 tixij�

Ps
r¼1 lryrj�

Ps
r¼1 ~yrj þ bj�xbj

þTj þ l0 ¼ zj; j ¼ 1; :::; nPn
j¼1 zj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � zj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(17)

Solving model (17) determines a series of optimal
solutions denoted as z�j ; t

�
i ; l
�
r ;T

�
j ;~y
�
rj;x

�;
�

l�0; n
�;

8j; i; rÞ: Note that the nucleolus is rather hard to com-
pute in general cases and it is easy to compute it
incorrectly due to multiple optimal solutions of model
(16) and model (17) and the absence of relevance of
duality. Following the approach of Guajardo and

J€ornsten (2015), we formulate the dual form of model
(17), which is given in model (18).

Max
P
2XqK~RK �

Pn
j¼1 bjbj þ sR�Pn

j¼1 pjbj
s:t:

Pn
j¼1 bjxij � 0; i ¼ 1; ::;mPn

j¼1 bjyrj � 0; r ¼ 1; ::; s

bj�vr � 0; r ¼ 1; :::s; j ¼ 1; :::; n

�PK2X:j2KqK þ bj�sþ pj � 0; j ¼ 1; :::; nPn
j¼1 bjbj þ aR � 0

bj þ a � 0; j ¼ 1; :::; nPn
j¼1 bj ¼ 0P
K2XqK ¼ 1

qK ;pj; vr � 0;K 2 X; j ¼ 1; :::; n; r ¼ 1; :::; s;

bj; s and a free:

(18)

Solving model (18) determines a solution

q�K ; b
�
j ; s
�; a�; p�j ; v

�
j

� 	
; which will be corresponding

with the optimal objective function of model (17),
namely, n�: According to the duality theory, a posi-
tive value of the optimal dual variable implies the
establishment of equality of inequality constraint in
the primary problem. That is to say, if q�K > 0 then

it holds exactly ~RK �
P

j2Kz
�
j ¼ n� for K�X: If there

exists q�K ¼ 0 K�Xð Þ; which implies that model (17)
might have multiple optimal solutions, then we will
continue to repeatedly solve model (17) and model
(18) to obtain a unique solution, denoted as

z�j ; t
�
i ; l
�
r ;T

�
j ;~y
�
rj;x

�;l�0; n
�; 8j; i; r

� 	
: At this time, it

holds ~RK �
P

j2Kz
�
j ¼ n� for all K belonging to X:

Acknowledging that X contains the n singleton coa-

litions, hence we have ~Rj � z�j ¼ n� j ¼ 1; :::; nð Þ:
Further, we are able to identify the most unsatisfied
coalition among all nonempty subset of N, that is,

Max K 62 X
K 6¼ ;;N

P
j2K~Rj�

P
j2Kz

�
j

� 	
�V Kð Þ�n�

h i
: By

simplification, it is Max K 62 X
K 6¼ ;;N

~RK�
P

j�Kz
�
j�n�

� 	
:

Reconsidering formula (13) which contains the basic

idea of computing ~RK ; the above problem can be
formulated as model (19) in a similar way of
Hallefjord et al. (1995).

Table 3. A simple example.
DMU x1 x2 y b

1 5 9 7 8
2 8 6 7 7
3 9 8 6 8
4 6 10 8 10
5 11 8 7 9

Table 4. Preliminary results.

DMU
Original efficiency

Model (4)
Post efficiency
Model (10)

Minimal reduction
Model (12)

Maximal reduction
Model (12)

1 1.0000 1.0000 0 8.0000
2 1.0000 1.0000 0 7.0000
3 0.8571 1.0000 0 8.0000
4 1.0000 1.0000 0 10.0000
5 0.9333 1.0000 0 9.0000
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Omax ¼ Max
Xn

j¼1 fj�
Xn

j¼1 djz
�
j �n�

s:t: zj ¼
Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj
�xbj þ Tj þ l0; j ¼ 1; :::; nPn

j¼1 zj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � zj � bj; j ¼ 1; :::; n

1 �Pn
j¼1 dj � n�1

fj � M � dj; j ¼ 1; :::; n

fj � zj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; j ¼ 1; :::; n

dj 2 0; 1f g; ~yrj and l0 free:

(19)

In above model (19), dj j ¼ 1; :::; nð Þ is the jth
component of the non-negative coalition vector
d1; :::; dnð Þ0 with dj being one if DMUj is a member
of the coalition and being zero if not a member of
that coalition. M is a large enough positive value
ensuring that fj will be zero if dj ¼ 0 and fj will be a
positive value if dj ¼ 1: The first five constraints are
used to ensure the efficient allocation scheme and
unreduced desirable outputs. The sixth constraint
guarantees that the most unsatisfied coalition is a
real nonempty subset of N. Finally, the seventh and
eighth constraints can ensures that fj will be either
zero or zj; which reflects the calculation of ~RK in
model (13). The optimal solution of model (19) can
be used to generate a new constraint which will be
added to model (17). Suppose that model (19) has
an optimal solution

�
n�; zK

�
j ; cK

�
j ; dK

�
j ;

tK
�

i ; lK
�

r ; lK
�

0 ;TK�
j ;xK� ;~yK

�
rj ; f

K�
j ;8j; i; r�; then the con-

straint ~RK� �
P

j2K�zj � n� is added to the simpli-

fied model (17), and model (19) is resolved. The
above idea is formulated as model (20).

Min
ti;lr ;zj

n

s:t:
P

j2K~Rj �
P

j2Kzj
� 	

�V Kð Þ � n;K 2 X

~RK��
P

j2K�zj � nPm
i¼1 tixij�

Ps
r¼1 lryrj�

Ps
r¼1 ~yrj þ bj�xbj

þTj þ l0 ¼ zj; j ¼ 1; :::; nPn
j¼1 zj ¼ RPn
j¼1 Tj ¼ xRPn
j¼1 ~yrj � 0; r ¼ 1; :::; s

0 � zj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s;

j ¼ 1; :::; n; ~yrj and l0 free:

(20)

Model (20) and model (19) will be solved repeat-
edly until the termination condition, Omax ¼

Pn
j¼1 f

K�
j �

Pn
j¼1 d

K�
j z�j � n� � 0; is held. Under this

circumstance, the constraint V
P

j2K~Rj�
P

j2Kzj
� 	

�
Kð Þ � n in original model (16) is satisfied for all
nonempty coalitions of DMUs, K 	 N ¼ 1; :::; nf g:
Note in particular that an additional constraintP

jjdK�j ¼0f g dj þ
P

jjdK�j ¼1f g 1�dj
� � � 1 would be

also added in the computation procedure to prevent
the coalition K� from later iteration process. In add-
ition, the constraints of model (16) are all satisfied,
and the optimal objective function of model (16)
can be calculated through a practical computation
procedure. This procedure is helpful for a lexico-
graphic optimization of model (16), and the unique
nucleolus solution corresponds to the final carbon
emission abatement quota allocation scheme.

4.5. An illustrative application

To illustrate the usefulness of the proposed coopera-
tive game DEA approach, in this subsection we pro-
vide a small case. In Table 3, there are five DMUs
with two inputs (x1 and x2), one undesirable output
(y) and one undesirable output (b).

By solving model (4) once for each DMU, we can
find three efficient DMUs (DMU1, DMU2, and
DMU4) and two inefficient DMUs (DMU3 and
DMU5), and the efficiency scores are listed in the
second column of Table 4.

The current total undesirable output is 42, and
for simplification we consider an undesirable output
reduction goal of 15 across five DMU, namely,
R¼ 15. In addition, through solving model (10) for
each individual DMU we can calculate the possible
post-abatement-allocation efficiency from each
DMU’s decentralized perspective, as given in the
third column of Table 4. It can be learned from
Table 4 that it is possible for any DMU to reach the
highest efficiency score of unity by taking the
undesirable output reduction into account. This
finding is also shown by Theorem 2. Further, all
DMUs can be simultaneously efficient by consider-
ing undesirable output reduction goal, but there
exist huge flexibilities in the undesirable output
reduction plans. For a first validation of this flexibil-
ity, we can look at each DMU’s minimal and max-
imal reduction amount (R

 
j;~Rj) derived from model

(12) and given in the last two columns of Table 4. It
is clear that each DMU can completely reduce its
undesirable output level yet ensuring all DMUs are
efficient and the total desirable outputs are unre-
duced. In addition, the total maximal reduction
amount across five DMUs are larger than the total
reduction goal as 42> 15. On the contrary, each
DMU might be reduced a relatively small undesir-
able output amount and also making all DMUs
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efficient, and the sum of minimal reduction amount
across five DMUs are smaller than the total reduc-
tion goal as 0< 15. Such a phenomenon is called as
egoist’s dilemma (Nakabayashi & Tone, 2006), and
game-based approaches are useful to generate a
unique and fair undesirable output reduction plan.

To use the integrated cooperative game DEA
approach, we first solve model (16) for n singleton
coalitions, namely model (17). Before that we cal-
culate the maximal reduction amount ~Rj (as shown
in the last column of Table 4) and the characteris-
tic function V Kð Þ for n singleton coali-
tions, V 1ð Þ ¼ V 2ð Þ ¼ V 3ð Þ ¼ V 4ð Þ ¼ V 5ð Þ ¼ 0:

As shown in Table 5, solving model (17) for the first
round determines an optimal objective function of
n� ¼ 1:2000 and an imputation z�1 ; z

�
2 ;ð z�3; z

�
4 ; z
�
5Þ ¼

2:8000; 2:3000;ð 2:8000; 3:8000; 3:3000Þ:
Note in particular that solving model (18) deter-

mines five positive dual variables (q1; q2; q3; q4;
and q5), implying that the previous optimal solution
of model (17) is unique (we omit to report the

results of dual formulas in later section for simplifi-
cation). Further, based on the optimal solution of
model (17) we solve model (19) to find the most
unsatisfied coalition {1, 2, 3, 5} with an optimal
objective function Omax ¼ 2:6000: Therefore, two
constraints ~R 1;2;3;5f g � z1 � z2 � z3 � z5 � n and
�d1 � d2 � d3 þ d4 � d5 � �3 will be generated
and added. In the second iteration, we solve model
(20) to compute the solution corresponding to the
current minimized excess value. As a result we
obtain an optimal objective function of n� ¼ 2:5000
and a solution z�1 ; z

�
2 ; z
�
3; z
�
4 ; z
�
5ð Þ ¼ 3:0000; 1:0000;ð

4:0000; 2:5000; 4:5000Þ: Making use of this objective
function and solution z�1 ; z

�
2; z
�
3 ; z
�
4 ; z
�
5ð Þ; model (19)

yields that another coalition {1, 2, 5} must be taken
into account as it reached the largest unsatisfied
value Omax ¼ 3:5000:

The above iterative process will obtain an optimal
objective function of n� ¼ 3:6667 and a solution z�1;ð
z�2; z�3; z�4; z�5Þ ¼ 2:8333;ð 2:3333; 2:8333; 3:6667;
3:3333Þ in the sixth round. At this time the most

Table 5. The constraint generation process for the minimal excess value.

Iteration no. n�
Solution

Omax Constrained coalitionz�1 z�2 z�3 z�4 z�5
1 1.2000 2.8000 2.3000 2.8000 3.8000 3.3000 2.6000 {1,2,3,5}
2 2.5000 3.0000 1.0000 4.0000 2.5000 4.5000 3.5000 {1,2,4}
3 2.5000 4.0000 3.5000 1.5000 2.5000 4.5000 3.5000 {3,4,5}
4 3.6667 4.0000 1.1667 1.6667 3.6667 1.6667 2.3333 {2,3,4}
5 3.6667 4.0000 1.1667 4.0000 3.6667 3.3333 2.3333 {2,4,5}
6 3.6667 2.8333 2.3333 2.8333 3.6667 3.3333 0.0000 {1,3,4}
7 3.6667 2.8333 2.2333 2.8333 3.6667 3.3333 0.0000 {1,4,5}
8 3.6667 2.8333 2.3333 2.8333 3.6667 3.3333 �0.1667 {1,2,5}

Table 6. Dataset for 31 sub-level manufacturing industries.
DMU x1 x2 x3 y u

DMU1 2345.4120 4042.8384 27,505.4652 5268.1562 34,957.9171
DMU2 1000.9680 2017.8770 16,213.1919 1590.2686 26,929.2787
DMU3 1117.6840 1502.0504 11,800.8564 1361.0131 15,294.9203
DMU4 708.4340 214.6285 2474.1824 791.3484 1622.8970
DMU5 2047.9980 5502.0328 63,570.0966 3225.4091 41,235.7124
DMU6 998.5240 4694.9556 8610.8837 1761.7822 4699.3819
DMU7 559.8740 2828.8480 5742.2737 1135.2394 1608.2115
DMU8 444.1300 1377.0669 11,526.3821 1051.5143 8392.0546
DMU9 354.5860 1231.7698 1994.0713 576.6864 821.7364
DMU10 1186.2730 1622.0111 38,461.4019 1284.6778 90,191.8334
DMU11 378.0740 892.9594 4000.2502 461.5240 847.3745
DMU12 508.6820 2247.8443 2804.5532 1025.8159 887.9110
DMU13 2093.8780 813.9607 181,154.4352 3948.9324 2,040,675.7347
DMU14 5338.2090 5070.4290 369,955.4389 6809.4352 499,314.0437
DMU15 1576.8510 2147.7536 16,086.3055 1769.6635 17,149.1155
DMU16 573.7440 498.1379 15,579.9525 677.0168 14,290.6147
DMU17 1615.1240 3436.6337 38,971.3981 2473.5281 16,876.7012
DMU18 3540.7840 5747.2893 294,009.2348 4523.7342 504,976.8358
DMU19 5818.3480 3339.2290 596,681.0204 6951.5540 605,161.6462
DMU20 2810.9660 2201.7215 148,290.1179 3847.8902 132,226.1401
DMU21 1941.0900 3742.9294 38,543.4384 2968.9096 8704.7872
DMU22 3149.3590 4736.7444 34,658.9286 3875.0892 6892.3558
DMU23 2640.3520 3635.8722 17,818.3895 2930.3186 9931.4776
DMU24 4039.9580 4304.9022 27,606.6976 5058.3485 14,469.2241
DMU25 1869.4570 2104.7694 11,495.3636 1644.7536 7011.1171
DMU26 4231.7440 6878.0743 23,290.7460 5549.9724 10,996.4708
DMU27 4642.7820 10,255.5320 26,667.4979 7092.0568 6346.0115
DMU28 584.4970 1155.8961 3112.6044 677.3105 723.7331
DMU29 172.0230 418.9237 16,164.7095 209.0727 10,800.6134
DMU30 141.2020 166.1615 1073.5639 294.5942 328.2493
DMU31 117.0750 149.6450 813.4804 89.8976 347.5371
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unsatisfied coalition {1, 3, 4} is identified. In add-
ition, the optimal objective function of model (19)
reaches 0.0000, implying that we have found the
minimal excess value and the constraint generation
process for the minimal excess value terminates.

We then continue to identify the allocation
scheme corresponding to the nucleolus. For these
identified coalitions in Table 5 it holds equalities
~RK �

P
j�Kzj ¼ n�: Take coalition {1, 3, 4} for

example, it holds 13� z1 � z3 � z4 ¼ 3:6667: For
coalition {2, 4, 5} it holds 13� z2 � z4 � z5 ¼
3:6667: Solving those equalities simultaneously
determines a unique solution (2.8333, 2.3333,

2.8333, 3.6667, 3.3333), and that solution is the
nucleolus-based allocation scheme. Interestingly,
DMUs with less undesirable outputs will be allo-
cated with a smaller abatement amount.

5. Empirical study in Chinese
manufacturing industries

In this section, we will apply the integrated coopera-
tive game DEA approach to address a real-world
problem, that is, allocating the carbon emission
abatement quota in Chinese manufacturing indus-
tries. As discussed in previous Section 3, the CO2

Figure 1. Normalized carbon emissions and carbon emission intensity.

Figure 2. Relative efficiency of 31 sub-level manufacturing industries.

Table 7. CO2 abatement quota allocation for 31 sub-level manufacturing industries.
DMUs Allocation DMUs Allocation DMUs Allocation

DMU1 2517.0333 DMU11 0 DMU21 8704.7872
DMU2 2961.8097 DMU12 0 DMU22 0
DMU3 2961.8148 DMU13 11,3323.2930 DMU23 0
DMU4 0 DMU14 10,7622.0579 DMU24 0
DMU5 0 DMU15 2961.8123 DMU25 2137.2264
DMU6 0 DMU16 7572.5680 DMU26 0
DMU7 0 DMU17 16,876.7012 DMU27 3184.2017
DMU8 0 DMU18 107,844.4474 DMU28 723.7331
DMU9 0 DMU19 113,323.2930 DMU29 2739.4202
DMU10 2739.4254 DMU20 104,588.3497 DMU30 0

DMU31 0
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emission reduction gap should be [367319.9970,
838243.9520] in the unit of thousand tons. Since it
is difficult to allocate an interval quota, without loss
of generality we consider the average value,
ð367; 319:9970þ 838; 243:9520Þ=2 ¼ 602; 781:9745;
as the carbon emissions abatement quota in
this research.

5.1. Data and preliminary analysis

In this subsection, a sub-level industrial dataset in
2012 is considered. There are 31 sub-industries with
three inputs (total assets in billion Yuan, x1; annual
average employment personnel in thousand person,
x2; and total energy consumption in thousand tons
of standard coal equivalent, x3), one desirable output
(gross output value of industry in billion Yuan, y)
and one undesirable output (CO2 emission in thou-
sand tons, u), as given in Table 6 (The codes for
two-digit Chinese manufacturing industries can be
found in Appendix F).

First of all, we give some preliminary analysis for
31 sub-level manufacturing industries. For an over-
view of carbon emissions and intensity, we normal-
ize the carbon emissions and carbon emissions
intensity indicators. To this end, the normalized car-
bon emissions of a certain sub-level manufacturing
industry is calculated as (real carbon emissions –
B)/(A – B), where A is the maximal carbon emis-
sions and B is the minimal emissions across 31 sub-
level manufacturing industries. The normalized car-
bon emissions intensity indicators can be calculated
in a similar way and Figure 1 shows the normalized
carbon emissions and carbon emission intensity for

31 sub-level manufacturing industries. It can be
learned from Figure 1 that most carbon emissions
are mainly derived from six sub-level manufacturing
industries (DMU10, Manufacture of Paper and Paper
Products; DMU13, Processing of Petroleum, Coking
and Processing of Nuclear Fuel; DMU14,
Manufacture of Raw Chemical Materials and
Chemical Products; DMU18, Manufacture of Non-
metallic Mineral Products; DMU19, Smelting and
Pressing of Ferrous Metals; DMU20, Smelting and
Pressing of Non-ferrous Metals), of which the car-
bon emissions are relatively larger than other indus-
tries. Most seriously, DMU13 (Processing of
Petroleum, Coking and Processing of Nuclear Fuel),
which has the largest carbon emissions among 31
sub-level manufacturing industries, even accounts
for 48.5998% of the total carbon emissions in
Chinese manufacturing industries. Therefore, for the
sake of reducing the carbon emissions in China and
realizing the national carbon emissions abatement
commitment special attention should be paid to
these sub-level manufacturing industries. In add-
ition, we can learn from Figure 1 that most sub-
level manufacturing industries with large carbon
emissions are also with high carbon emissions inten-
sity. Three significant exceptions are DMU10

(Manufacture of Paper and Paper Products), DMU16

(Manufacture of Chemical Fibres) and DMU29

(Other Manufacture), which have a normalized car-
bon emissions intensity indicator much larger than
its normalized carbon emissions indicator.

Then we can use model (4) to assess the relative
efficiency of 31 sub-level manufacturing industries,
as given in Figure 2. It is clear that 14 sub-level
manufacturing industries are efficient in the sense
that they cannot proportionally expand their gross
output value of industry and shrink the carbon
emissions. Furthermore, two sub-level manufactur-
ing industries (DMU10, Manufacture of Paper and
Paper Products; DMU29, Other Manufacture) have
the least two relative efficiency scores, which is

Table 8. Relationship associated with the allocation results.
DMU Emission percentage (%) Rank Reduction percentage (%) Rank Allocation percentage (%) Rank

DMU1 0.8574 7 7.2002 15 0.4176 15
DMU2 0.6807 8 10.9985 14 0.4914 12
DMU3 0.3744 9 19.3647 11 0.4914 10
DMU10 2.0804 6 3.0373 17 0.4545 13
DMU13 48.5998 1 5.5532 16 18.8000 1
DMU14 12.9683 3 21.5540 9 17.8542 4
DMU15 0.3623 11 17.2709 13 0.4914 11
DMU16 0.3653 10 52.9898 5 1.2563 8
DMU17 0.3615 12 100.0000 1 2.7998 6
DMU18 12.8063 4 21.3563 10 17.8911 3
DMU19 14.1514 2 18.7261 12 18.8000 1
DMU20 3.1934 5 79.0981 4 17.3509 5
DMU21 0.221 14 100.0000 1 1.4441 7
DMU25 0.1681 15 30.4834 7 0.3546 16
DMU27 0.159 16 50.1764 6 0.5283 9
DMU28 0.0124 17 100.0000 1 0.1201 17
DMU29 0.2273 13 25.3636 8 0.4545 14

Table 9. Summary statistics of 31 provinces for 31
sub-industries.
Statistics x1 x2 x3 y1 u

Min 0.0000 0.0000 0.0000 0.0000 0.0000
Max 1548.8482 3376.5480 104,242.2540 2286.5395 276,300.7450
Average 60.9982 88.6511 2312.7701 81.2663 4917.0858
Std.ev 116.1812 192.9952 7365.3472 168.0707 116.1812
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consistent with the previous result that the two
manufactures have its carbon emissions intensity
indicator much larger than corresponding carbon
emissions indicator.

5.2. Sub-industrial allocation

Using the mathematical models in Section 4 and fol-
lowing a similar computation process in Section 4.5,
we can calculate the nucleolus-based allocation of
the national carbon emissions abatement quota
across 31 sub-level manufacturing industries. In par-
ticular, we impose a reduction upper in this section
by considering the reduction difficulty. The results
of CO2 abatement quota allocation for 31 sub-level
manufacturing industries are given in Table 7 (the
computation process is not presented here for its
large-scale).

For the first sight of Table 7, it can be learned
that only some sub-level manufacturing industries
will be allocated with carbon abatement responsibil-
ity, while fourteen sub-level manufacturing indus-
tries (DMU4, DMU5, DMU6, DMU7, DMU8, DMU9,
DMU11, DMU12, DMU22, DMU23, DMU24, DMU26,
DMU30, and DMU31) don’t have to reduce its car-
bon emission level. Further, DMU13 (Processing of
petroleum, coking and processing of nuclear fuel)
and DMU19 (Smelting and pressing of ferrous met-
als) were allocated with the most carbon emissions
abatement responsibility, reaching 113,323.2930
(thousand tons) and 18.8000% of the total carbon

emissions abatement quota. In addition, five DMUs
attract our attention deeply for its large shares in
the whole sample, namely, DMU13 (Processing of
petroleum, coking and processing of nuclear fuel),
DMU14 (Manufacture of raw chemical materials and
chemical product), DMU18 (Manufacture of non-
metallic mineral products), DMU19 (Smelting and
pressing of ferrous metals) and DMU20 (Smelting
and pressing of non-ferrous metals). These five sub-
industries produced only 32.2291% of the total
GIOV in 2012 but 91.4781% of the total CO2 emis-
sions, and account for 90.6964% of the total carbon
emission abatement quota. The key to control the
carbon emissions and to realize the national reduc-
tion commitment is to manage these five sub-indus-
tries, so to speak. Once the carbon emissions
abatement is well done in these five sub-industries,
the national carbon emissions abatement task will
be easily implemented.

To investigate the relationship between current
carbon emissions and allocated carbon emissions
abatement quota, Table 8 lists the CO2 emissions
percentage (CO2 emissions/total CO2 emissions),
reduction percentage (the allocated quota/CO2 emis-
sions), and abatement quota allocation percentage
(allocated quota/total abatement quota) and corre-
sponding descending rankings for 17 sub-level man-
ufacturing industries that are allocated with a
positive carbon emission abatement amount.

From Table 8, we can learn that the sub-indus-
tries with higher CO2 emission percentage are most

Table 10. Results of regional CEA allocation scheme (unit: thousand tons).
Regions I1 I2 I3 I10 I13 I14
Beijing 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Tianjin 223.7132 504.0956 0.0000 0.0000 0.0000 0.0000
Hebei 0.0000 0.0000 90.0918 0.0000 0.0000 0.0000
Shanghai 0.0000 0.0000 89.1932 0.0000 0.0000 0.0000
Jiangsu 0.0000 0.0000 230.0905 0.0000 0.0000 0.0000
Zhejiang 0.0000 0.0000 118.9122 0.0000 0.0000 11,687.1846
Fujian 0.0000 0.0000 144.6297 0.0000 0.0000 0.0000
Shandong 0.0000 0.0000 324.8134 0.0000 49,499.2709 0.0000
Guangdong 0.0000 0.0000 94.7229 0.0000 0.0000 16,604.6209
Hainan 0.0000 0.0000 61.5814 0.0000 0.0000 0.0000
Liaoning 628.6325 0.0000 107.5477 1066.2830 0.0000 0.0000
Jilin 0.0000 0.0000 112.9420 0.0000 0.0000 0.0000
Heilongjiang 0.0000 0.0000 0.0000 0.0000 10,990.8629 0.0000
Anhui 322.7990 0.0000 1.1022 0.0000 0.0000 0.0000
Jiangxi 0.0000 0.0000 196.4356 1198.3350 0.0000 0.0000
Henan 0.0000 0.0000 39.1846 0.0000 0.0000 0.0000
Hubei 0.0000 1719.4612 94.7229 474.8074 0.0000 29,510.7443
Hunan 1341.8887 438.4614 23.1890 0.0000 27,667.7339 0.0000
Shanxi 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Inner Mongolia 0.0000 0.0000 230.0905 0.0000 0.0000 0.0000
Guangxi 0.0000 0.0000 145.6301 0.0000 0.0000 0.0000
Chongqing 0.0000 0.0000 61.2714 0.0000 0.0000 0.0000
Sichuan 0.0000 0.0000 324.8134 0.0000 0.0000 35,739.9891
Guizhou 0.0000 0.0000 56.6404 0.0000 0.0000 0.0000
Yunnan 0.0000 0.0000 66.0042 0.0000 0.0000 0.0000
Tibet 0.0000 0.0000 23.0872 0.0000 0.0000 0.0000
Shaanxi 0.0000 0.0000 33.4514 0.0000 0.0000 0.0000
Gansu 0.0000 299.7915 126.0718 0.0000 0.0000 0.0000
Qinghai 0.0000 0.0000 41.7131 0.0000 0.0000 0.0000
Ningxia 0.0000 0.0000 85.7997 0.0000 25,165.4252 14,079.5184
Xinjiang 0.0000 0.0000 38.0824 0.0000 0.0000 0.0000

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 1277



likely to be allocated larger proportions of the total
CO2 emissions abatement quota. Actually, most sub-
industries are ranked at the same place or antero-
posterior position as they process the CO2 emissions
percentage (DMU3, DMU13, DMU14, DMU15,

DMU18, DMU19, DMU20, DMU25, DMU28, and
DMU29). Acknowledging that the units with larger
carbon emissions naturally show stronger carbon
reduction capacity or higher carbon reduction
potentials, it is reasonable to allocate larger shares
of the total carbon emissions abatement quota to
these units. This result is also consistent with Yu
et al. (2014) and Zhang et al. (2014).

However, the reduction percentage (the allocated
quota/CO2 emissions) varies from one industry to
another industry, with the maximal and minimal
reduction percentage being 100.0000% (Manufacture
of Rubber and Plastics Products, DMU17;
Manufacture of Metal Products, DMU21;
Manufacture of Measuring Instruments and

Table 11. Results of regional CEA allocation scheme (unit: thousand tons).
Regions I15 I16 I17 I18 I19 I20
Beijing 312.2816 0.0000 32.2274 0.0000 0.0000 0.0000
Tianjin 0.0000 3.6336 163.3004 0.0000 0.0000 270.4847
Hebei 0.0000 251.9519 514.2943 924.9577 0.0000 544.0242
Shanghai 0.0000 0.0000 672.0801 14,868.7929 0.0000 1253.9031
Jiangsu 0.0000 920.9691 1780.0800 0.0000 0.0000 8737.7880
Zhejiang 0.0000 966.9343 1982.1896 17,579.1939 0.0000 5521.7351
Fujian 0.0000 177.4540 393.1660 0.0000 0.0000 57.5132
Shandong 0.0000 865.8477 3866.5647 0.0000 0.0000 19,377.8286
Guangdong 0.0000 357.0427 3490.1712 74,471.5030 25,755.3523 7388.6808
Hainan 0.0000 35.8871 40.8632 0.0000 0.0000 0.0000
Liaoning 0.0000 302.5258 533.2964 0.0000 37,107.5793 865.1980
Jilin 1871.7447 574.2076 155.2591 0.0000 0.0000 344.2977
Heilongjiang 0.0000 78.7690 0.0000 0.0000 0.0000 693.9880
Anhui 0.0000 421.8767 187.5374 0.0000 0.0000 423.8788
Jiangxi 0.0000 374.3625 0.0000 0.0000 0.0000 440.9990
Henan 0.0000 354.3782 383.7191 0.0000 0.0000 14,240.5976
Hubei 777.7860 171.5063 38.1489 0.0000 0.0000 732.4983
Hunan 0.0000 67.3061 0.0000 0.0000 0.0000 2330.9355
Shanxi 0.0000 5.9966 0.0000 0.0000 24,785.0413 8069.3588
Inner Mongolia 0.0000 0.0000 148.2670 0.0000 0.0000 1262.4656
Guangxi 0.0000 0.0000 126.4290 0.0000 22,108.4996 9852.1529
Chongqing 0.0000 0.0000 266.5483 0.0000 0.0000 836.7945
Sichuan 0.0000 614.4358 717.0869 0.0000 0.0000 3037.5572
Guizhou 0.0000 0.0000 931.1748 0.0000 0.0000 3454.2565
Yunnan 0.0000 98.6850 80.8533 0.0000 0.0000 2543.6940
Tibet 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Shaanxi 0.0000 19.3078 283.3317 0.0000 3566.8206 7095.2553
Gansu 0.0000 46.3543 90.1125 0.0000 0.0000 4736.3018
Qinghai 0.0000 0.0000 0.0000 0.0000 0.0000 118.3759
Ningxia 0.0000 0.0000 0.0000 0.0000 0.0000 157.4397
Xinjiang 0.0000 863.1363 0.0000 0.0000 0.0000 200.3473

Table 12. Results of regional CEA allocation scheme (unit:
thousand tons).
Regions I21 I25 I27 I28 I29
Beijing 37.0665 11.7220 0.0000 1.7815 0.0000
Tianjin 123.1876 33.2374 135.1479 0.0000 4.7496
Hebei 826.7085 55.6882 21.2433 45.9428 11.3411
Shanghai 327.0516 62.4681 601.8260 6.1090 27.3648
Jiangsu 1635.1095 281.8791 601.8260 168.4141 129.1209
Zhejiang 817.5394 109.9419 540.6590 146.6941 224.1699
Fujian 0.0000 0.0000 0.0000 0.0000 48.6643
Shandong 1635.1095 281.8791 601.8260 162.3051 54.0832
Guangdong 1635.1095 244.3248 601.8260 168.4141 662.1570
Hainan 12.0564 0.0000 0.0000 1.0957 0.0000
Liaoning 159.2857 80.0864 0.0000 4.1874 53.7470
Jilin 16.6236 38.8625 0.0000 3.0695 85.4812
Heilongjiang 7.4108 158.6444 0.0000 1.5355 0.5222
Anhui 39.0455 8.9641 0.0000 0.0000 0.0000
Jiangxi 3.8453 8.8393 0.0000 0.0000 0.0000
Henan 181.0752 37.5543 39.9237 3.6403 10.0296
Hubei 123.5324 0.0000 0.0000 0.0000 19.5879
Hunan 133.5340 41.8797 0.0000 3.0158 18.1144
Shanxi 159.0355 13.2928 0.0000 0.0000 1308.2723
Inner Mongolia 45.4263 0.2250 0.0000 0.0000 12.1344
Guangxi 112.2681 29.9922 0.0000 1.6428 3.7036
Chongqing 289.1818 117.9709 0.0000 1.5578 0.0000
Sichuan 224.1255 387.8118 0.0000 2.4687 13.5617
Guizhou 27.7776 2.9274 0.0000 0.4084 2.7338
Yunnan 29.6217 19.5659 0.0000 0.0000 6.9867
Tibet 0.0000 0.0000 0.0000 0.0000 0.0000
Shaanxi 58.3171 89.7181 39.9237 1.4504 15.3631
Gansu 24.0946 19.7510 0.0000 0.0000 27.5315
Qinghai 0.0000 0.0000 0.0000 0.0000 0.0000
Ningxia 0.0000 0.0000 0.0000 0.0000 0.0000
Xinjiang 21.6477 0.0000 0.0000 0.0000 0.0000

Table 13. CO2 abatement quota allocated to provinces (10
thousand tons).
Provinces Allocation Provinces Allocation

Beijing 395.0790 Hubei 33,662.7956
Tianjin 1461.5499 Hunan 32,066.0585
Hebei 3286.2439 Shanxi 34,340.9973
Shanghai 17,908.7889 Inner Mongolia 1698.6088
Jiangsu 14,485.2774 Guangxi 32,380.3184
Zhejiang 39,695.1540 Chongqing 1573.3246
Fujian 821.4271 Sichuan 41,061.8507
Shandong 76,669.5284 Guizhou 4475.9190
Guangdong 131,473.9251 Yunnan 2845.4106
Hainan 151.4837 Tibet 23.0872
Liaoning 40,908.3691 Shaanxi 11,202.9392
Jilin 3202.4876 Gansu 5370.0089
Heilongjiang 11931.7327 Qinghai 160.0890
Anhui 1405.2036 Ningxia 39,488.1829
Jiangxi 2222.8166 Xinjiang 1123.2137
Henan 15,290.1027
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Machinery, DMU28) and 5.5532% (DMU13,
Processing of Petroleum, Coking and Processing of
Nuclear Fuel), respectively. Note in addition that
the reduction goal (602,781.9745) is 14.5786% of the
total CO2 emissions (4,134,711.6380) in Chinese
manufacturing industries, 13 out of 17 sub-indus-
tries have shown a CO2 reduction percentage
exceeds the national average reduction rate.
Through a correlation test we find that the reduc-
tion percentage is a little weakly negatively corre-
lated with the percentage of current CO2 emission
and correlated to the percentage of allocated carbon
abatement quota, as the correlation coefficients
(–0.3454 and –0.1590) are located in the interval
[–0.4, –0.2] and [–0.2, 0], respectively. On the con-
trary, the correlation coefficient between the current
CO2 emission percentage and the percentage of allo-
cated carbon abatement quota reaches 0.7093,
implying a relatively high relevance. Based on above
observations, it might be concluded that the game-
based carbon emissions abatement quota allocation
mechanism is implicitly similar with the propor-
tional sharing method, and we have a carbon emis-
sions abatement quota allocation plan that is highly
consistent with each unit’s carbon emis-
sions proportion.

5.3. Provincial allocation

In this subsection, we further allocate the reduction
quota for each sub-industry that is obtained in
Section 5.2 into different provinces. The summary
statistics of 31 provinces for 31 sub-industries is
given in Table 9. For the provincial allocation, we
take each province as a DMU and provinces with
the same sub-industry as a sample.

By repeatedly solving the cooperative game DEA
approaches proposed previously, we obtain the allo-
cation results listed in Tables 10–12. In such a way,
we allocate the national carbon emissions abatement
quota into a two-layer framework. For details, the
Manufacture of Non-metallic Mineral Products (I18)
in Guangdong province, Processing of Petroleum,

Coking and Processing of Nuclear Fuel (I13) in
Shandong province and Smelting and Pressing of
Ferrous Metals (I19) in Liaoning province are top
three provinces that receive the most carbon emis-
sions abatement quota across 31sub-level manufac-
turing industries in 31 provinces, reaching
74,471.5030, 49,499.2709 and 37,107.5793 (in thou-
sand tons), respectively. In addition, these three
regions of different industries are allocated more
than 5% of the total carbon emission abatement
quota. Also, the Manufacture of Raw Chemical
Materials and Chemical Products (I14) in Sichuan
province is another region that accounts for more
than 5% of the total carbon emission abatement
quota, reaching 35,739.9897. On the other hand,
Tibet has no need to reduce its CO2 emissions in
many sub-level industries. This phenomenon can be
mainly caused by the undeveloped economy, as
Tibet is a backward province where there aren’t
most sub-industries and corresponding
CO2 emissions.

To sum the allocated reduction amounts in vari-
ous sub-industries, we can also obtain the reduction
responsibility for each province, as given in Table
13. Guangdong, Shandong, Sichuan, Liaoning, and
Zhejiang rank the top five provinces that are allo-
cated the most CO2 reduction quota, and Tibet,
Hainan, Qinghai, Beijing, and Fujian rank another
least five provinces that are allocated the smallest
CO2 reduction quota among 31 provinces. The car-
bon emissions abatement quota allocated to
Guangdong is 131,473.9251 (thousand tons), which
accounts 21.8112% of the national abatement com-
mitment. Shandong is another province that is
responsible for more than ten percentage of the
national abatement commitment, with 76,669.5284
(thousand tons) for 12.7193%. In addition, the car-
bon emissions abatement quota allocated to the top
five provinces are 329,808.8273 (thousand tons),
which accounts for 54.7144% of the total national
carbon emissions abatement goal, and the percent-
age reaches 83.2386% and 91.1493% when it covers
the top 10 and top 13 provinces, respectively. This

Figure 3. Percentage of carbon emissions and abatement quota for 31 provinces.
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result shows that the corresponding provinces are
key focus to realize the national carbon emissions
abatement commitment and allocate the total car-
bon emissions abatement quota.

Additionally, we present the tendency of carbon
emissions percentage and corresponding allocated
carbon emissions abatement quota percentage
among all provinces. It can be learned from Figure
3 that although there will be some variations
between the carbon emissions percentage and corre-
sponding allocated carbon emissions abatement
quota, the main tendency is a little similar. We pre-
sent the carbon emissions percentage in descending
order in Figure 3, and the percentage of allocated
carbon emission abatement quota shows also a
downward tendency. In fact the correlation coeffi-
cient between the carbon emissions percentage and
corresponding allocated carbon emissions abatement
quota percentage is 0.5444, implying a positive asso-
ciation. This result demonstrates again that larger
shares of the total carbon emissions abatement
quota are more likely to be allocated to units with
larger carbon emissions percentages.

5.4. Discussion

In this subsection, we will discuss (1) briefly the
impact on the results of using alternative solution
concepts for the cooperative game, and (2) some
practical implications and indications of how these
allocated carbon emission abatement targets might
be used in practice.

5.4.1. Impacts of alternative game solutions

Note that this article uses only the nucleolus solu-
tion and there exists alternative solution concepts
for the cooperative game. Although it is a little diffi-
cult to calculate all kinds of solutions for the carbon
emission abatement quota allocation problem, we
can present a brief discussion on the impacts of
alternative solution concepts, for instances, Nash
bargaining solution, core (least core, weak least core,
and proportional least core) and Shapley value.

Nash bargaining solution is an imputation that
maximizes the satisfaction degree of all DMUs.
Acknowledging that the excess value in this article
is a measure of dissatisfaction degree, the Nash bar-
gaining solution based allocation plan would minim-
ize the excess values for n individual DMUs. That is
to say, the Nash bargaining solution based allocation
plan just focuses on n singleton coalitions instead of
all nonempty coalitions of n DMUs, and it might be
considered as a simplified version of nucleolus based
allocation plan (it likes model (17)). Besides, the
nucleolus based allocation plan minimizes the excess
values by lexicographical order, while the Nash

bargaining solution based allocation plan adopts a
product of individual utilities due to technical device
(Osborne & Rubinstein, 1994).

The core solution is an imputation that also min-
imizes the excess values for all nonempty coalitions
of DMUs, and the core solution can be divided into
least core, weak least core, and proportional least
core according to which parameter is added to the
characteristic function in computing the excess val-
ues. It is clear that the core based allocation plan
just focuses on the most unsatisfied coalition (i.e.
the least excess value), neglecting the second unsat-
isfied coalition, third unsatisfied coalition, and so
on. It is acknowledged that any cooperative game
will always have a unique nucleolus and the nucle-
olus must be one of least cores if the game has non-
empty cores. Put it differently, the core based
allocation plan just realizes the first least excess
value, and it would be changed into the nucleolus
based allocation plan if it minimizes the excess val-
ues to the most by lexicographical order.

The Shapley value is an imputation that repre-
sents the average contribution of DMUs to the guar-
antee level, namely, characteristic function, thus the
Shapley value based allocation plan involves fair
concern and would be much fairer given DMUs’
input-output measures. The Shapley value based
allocation plan is a good choice for carbon emission
abatement quota allocation in Chinese manufactur-
ing industries, but its computation depends on the
characteristic function for each coalition, which is
impractical when the number of coalitions is very
big (in this article the number of nonempty coali-
tions is 231–1).

All in all, using alternative solution concepts for
the cooperative game would generate very similar
allocation plans, which might be strongly positive
correlated with each other (Li, 2008). The Nash bar-
gaining solution based allocation plan is much
closer to traditional proportional sharing method,
while the nucleolus based allocation plan favors
much for vulnerable groups, and the cores based
allocation plan would waver between the Nash bar-
gaining solution based allocation plan and the
nucleolus based allocation plan.

5.4.2. Practical implications and indications

Note in particular that the previous results are
obtained based on the implicit assumption that any
inefficient DMU can move to the efficient frontier
by adjusting its GIOV and carbon emissions.
However, it is not the case in the real world as a
certain DMU cannot change its production bundle
and production structure remarkably, and rapid
change would confront huge resistance. The carbon
emission abatement may cause unemployment and
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reduction in energy consumption in the short term,
but it is no doubt that the technological change has
a solid effect on the carbon dioxide emissions in the
long run (Grimaud & Rouge, 2008; Smulders & Di
Maria, 2012). Moreover, technology change is sup-
posed as the most essential factor for reduce the
carbon dioxide emissions (Li et al., 2017a; Li & Qu,
2012), thus much attention should be paid to tech-
nology development and adoption and progress for
the sake of implementing these carbon abatement
allocation targets in practice.

Some efforts can be taken to promote the tech-
nology change and further implement these reduc-
tion targets under low-carbon technology progress
in the long run. First of all, the Chinese government
should develop and improve the mechanism of low
carbon technology progress, which will promote the
development of low carbon technology. The key
point is to continue to implement energy-saving
emission reduction technology special action plan,
and solve the key and common difficulties of low-
carbon technology. It is clear that the R&D invest-
ment should be increased. Then, the Chinese gov-
ernment should take a tendentious policy to invest
in low-carbon technology and innovation across dif-
ferent industries and regions. The western and cen-
tral areas must learn the best practice and low-
carbon technology from eastern area, and speed up
its technological progress. At the same time, indus-
tries with high carbon intensity must learn the best
practice and low-carbon technology from peers.
Last, the Chinese government can promote the opti-
mization and upgrading of industrial structure,
which means to decrease and even limit the heavy
polluting industries. In the long run, the Chinese
government is supposed to develop a new industri-
alization pattern with minimal energy consumption
and pollution emission, which can support both the
economy and public through achievable and sustain-
able development goals.

Some direct measures can be also useful for
implementing these carbon abatement allocation tar-
gets in the short term. For instance, all levels of the
Chinese government can actively optimize its energy
consumption structure across regions and industries,
accelerate the speed in closing down backward pro-
duction facilities (Wu, Lv, Sun, & Ji, 2015). It is also
very useful to pay much attention to labor effi-
ciency, as the labor efficiency is significantly con-
nected with the substitution of labor for energy and
improving the labor efficiency will accelerate the
substitution of labor for energy, which will further
enhance industrial production efficiency and reduce
environment pollution. In addition, the carbon trade
market can be of strategic importance. The carbon
trade market makes it possible for these determined

carbon abatement allocation targets be re-adjusted
considering certain local situations.

6. Conclusions and perspectives

This article focuses on a real problem on how to
allocate the national carbon emission abatement
quota in Chinese manufacturing industries. It adopts
a decentralized perspective to address the carbon
emission abatement quota allocation problem, which
is different from most studies in the literature that
solve the studied problem from a centralized view
and seek after the collective objective. To this end,
this article integrates data envelopment analysis and
game theory to propose a cooperative game DEA
approach, considering the cooperation and competi-
tion relationship among units simultaneously. In
addition, a practical computation procedure based
on constraint generation mechanism is developed to
calculate the nucleolus solution and the nucleolus-
based solution is taken as the final carbon emission
abatement quota allocation scheme. In the empirical
study, we present a two-layer way to decompose the
national carbon emission abatement quota into dif-
ferent sub-industries and further into different prov-
inces. The results show that five sub-industries
(Processing of petroleum, coking and processing of
nuclear fuel; Smelting and pressing of ferrous met-
als; Manufacture of non-metallic mineral products;
Manufacture of raw chemical materials and chem-
ical product; Smelting and pressing of non-ferrous
metals) and two provinces (Guangdong and
Shandong) will be allocated more than 10% of the
total national carbon emissions abatement goal.

The carbon dioxide emission abatement quota
allocation is supposed to be the key issue for China
to respond to global warming. This article has sug-
gested a feasible and rational method to allocate the
carbon emission abatement quota into different
industries and provinces. However, the carbon emis-
sion abatement allocation still needs much more
work in the future. On one hand, the difference
among the industries and provinces is not well con-
sidered. The Chinese government has made a lot of
policies to guide the industrial development and
regional development, which is supposed to separate
these industries and provinces apart. On the other
hand, a significant feature of this current article is
that it presents a two-layer allocation framework,
where the total carbon emission abatement quota is
first allocated to different sub-industries and further
to different provinces within sub-industries. This
practice is similar with a network perspective. It is
acknowledged that a network DEA approach would
provide new insights in allocation results (Li et al.,
2019; Yu, Chen, & Hsiao, 2016), and accordingly
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making the allocation mechanism more reasonable
and the allocation results more acceptable. However,
the game would be more complex under network
DEA environment and the computation would be
also much more complex, so future work can try to
extend the proposed approach to situations consid-
ering internal network structures. Besides, the polit-
ical implications for this game DEA approach are
not so explicit, future research can also work on this
aspect deeply.

Endnotes

1. http://www.theguardian.com/environment/2015/jun/
30/china-carbon-emissions-2030-premier-li-keqiang-
un-paris-climate-change-summit.
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Appendix

Appendix A

Theorem 1. Rmax
j ¼ bj ðj ¼ 1; :::; nÞ:

Proof. It is easy to know that Rmax
j � bj ðj ¼ 1; :::; nÞ; thus

we just need to show that Rmax
j can reach bj: Consider a

solution ðk̂jo; n̂jo; �̂yro; R̂oÞ when DMUo ðo ¼ 1; :::; nÞ is

under consideration in model (8), n̂oo ¼ 1; n̂jo ¼ 0 ðj 6¼ oÞ;
k̂jo ¼ 0 ðj ¼ 1; :::; nÞ; �̂yro ¼ �yro ðr ¼ 1; :::; sÞ and R̂o ¼ bo:

It is clear that ðk̂jo; n̂jo; �̂yro; R̂oÞ is a feasible solution of
model (8), as it can satisfy all constraints such thatXn

j¼1 k̂jo þ n̂jo
� 	

xij ¼ xio � xio; i ¼ 1; :::;m; (A1)Xn

j¼1 k̂joyrj ¼ 0 � yro�yro ¼ yro þ �yro; r ¼ 1; :::; s; (A2)Xn

j¼1 k̂jobj ¼ 0 ¼ bo�bo ¼ bo�R̂o; (A3)
Xn

j¼1 k̂jo þ n̂jo
� 	

¼ 1: (A4)

Therefore, the optimal objective function of model (8)

is no less than that with the solution ðk̂jo; n̂jo; �̂xio; �̂yro; R̂oÞ;
namely, Rmax

o � Rmax
o ðk̂jo; n̂jo; �̂xio; �̂yro; R̂oÞ ¼ bo; implying

that when DMUo ðo ¼ 1; :::; nÞ is under consideration the
objective function model (8) has reached bo:

Note in addition that the considered DMUo is chosen
randomly, therefore, it can be concluded that for any
DMUj ðj ¼ 1; :::; nÞ; it holds Rmax

j ¼ bj: This completes
the proof of Theorem 1.

Appendix B

Theorem 2. The optimal objective function of model (10)
is always zero.

Proof. First, acknowledging that the objective function of
model (10) is no less than zero, which is demonstrated
by the fact that the first constraint

Pm
i¼1 vixio�Ps

r¼1 uryro�
Ps

r¼1 �Yro þ x1bo�T1o�x2bo þ T2o þ u0 � 0
is held.

Then we show that the objective function of model
(10) can reach zero. To this end, let bmin ¼ minj¼1;:::;nfbjg
and ymax ¼ maxj¼1;:::;nfysjg: Then we consider a solution

n0 ¼ ðv0i; u0r;T01j;T02j;x01;x02; u00; �Y 0ro; 8i; r; jÞ; where v0i ¼
0 ði ¼ 1; :::;mÞ; u0s ¼ 1=ymax; u0r ¼ 0 ðr 6¼ sÞ; x01 ¼ 1=bmin;
x02 ¼ 0; u00 ¼ 0; T02j ¼ 0 ðj ¼ 1; :::; nÞ; T01j ¼ Rbj=bminPn

j¼1 bj; �Y 0so ¼ �yso=ymax þ bo=bmin�Rbo=bmin
Pn

j¼1 bj
and �Y 0rj ¼ 0ðr 6¼ sÞ: Then n0 is a feasible solution to
model (10), as it satisfies all conditions of model (10)
such that
Xm

i¼1 v
0
ixio�

Xs

r¼1 u
0
ryro�

Xs

r¼1
�Y 0ro þ x01bo�T01o�x02bo þ T02o þ u00

¼ �u0syso��Y 0so þ x01bo�T01o
¼ �yso=ymax� �yso=ymax þ bo=bmin � Rbo=bmin

Xn

j¼1 bj
� 	

þ bo=bmin�Rbo=bmin

Xn

j¼1 bj ¼ 0

(B1)

Xm

i¼1 v
0
ixij�

Xs

r¼1 u
0
ryrj þ x01bj�x02bj þ u00 ¼ �u0sysj þ x01bj

¼ �ysj=ymax þ bj=bmin � 0; j ¼ 1; :::; n

(B2)Xm

i¼1 v
0
ixij þ u00 ¼ 0 � 0; j ¼ 1; :::; n (B3)

Xs

r¼1 u
0
ryro þ x01bo�x02bo ¼ yso=ymax þ bo=bmin � bo=bmin � 1

(B4)

0 � T01j ¼ Rbj=bmin

Xn

j¼1 bj � bj=bmin ¼ x01bj; j ¼ 1; :::; n

(B5)

0 � T02j ¼ 0 � x02bj; j ¼ 1; :::; n (B6)

Xn

j¼1 T
0
1j ¼

Xn

j¼1 Rbj=bmin

Xn

j¼1 bj
� 	

¼ R=bmin ¼ x01R

(B7)

Xn

j¼1 T
0
2j ¼ 0 ¼ x02R: (B8)

Additionally, it is easy to verify that v0i; u
0
r;x

0
2 �

0 ð8i; rÞ and x01>0: Therefore, the optimal objective func-
tion of model (10) is no less than the objective function
with solution n0; namely, ŵ

�
o ¼ ŵ

�
oðn0Þ ¼ 0: So, it demon-

strates that the objective function of model (10) can
reach zero.

Based on above discussion, it is clear that the objective
function of model (10) would be zero. Note in addition
that the subscript s is labeled randomly among all desir-
able outputs, so we can conclude that the optimal object-
ive function of model (10) is always zero. This completes
the proof of Theorem 2.

Appendix C

Theorem 3. All DMUs can be simultaneously efficient
with a certain carbon emission abatement allocation
scheme under a set of common weights.

Proof. Return to the proof process of Theorem 2 and the
considered solution n0; it is demonstrated by Theorem 2
that the efficiency score of DMUo is unity, as
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eo ¼1�
�Pm

i¼1 v
0
ixio�

Ps
r¼1 u

0
ryro�

Ps
r¼1 �Y

0
ro þ x01bo

� T01o � x02bo þ T02o þ u00
� ¼ 1:

(B1)

Also, using n0 and �Y 0sj ¼ �ysj=ymax þ bj=bmin�
Rbj=bmin

Pn
j¼1 bj ðj ¼ 1; :::; nÞ; the constraints of model

(10) can be satisfied for any DMUj j ¼ 1; :::; nð Þ under
consideration. In addition, it is also possible to determine
the efficiency score of other DMUj j ¼ 1; :::; nð Þ to be
one, as

ej ¼ 1�ðPm
i¼1 v

0
ixij�

Ps
r¼1 u

0
ryrj�

Ps
r¼1 �Y

0
rj þ x01bj

� T01j � x02bj þ T02j þ u00Þ
¼ 1þ u0sysj þ �Y 0sj�x01bj þ T01j

¼ 1þ ysj=ymax

þ �ysj=ymax þ bj=bmin � Rbj=bmin

Xn

j¼1 bj
� 	

�bj=bmin þ Rbj=bmin

Xn

j¼1 bj ¼ 1:

(B2)
To sum up, it is concluded that the solution

ðv0i; u0r;T01j;T02j;x01;x02; u00; �Y 0rj;8i; r; jÞ can make all DMUs
simultaneously efficient. This completes the proof that all
DMUs can be simultaneously efficient with a certain car-
bon emission abatement allocation scheme under a set of
common weights.

Appendix D
Corollary 1. The efficient carbon emission abatement
allocation scheme can be denoted as following System (11)
under a set of common weights:
Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj�Rj�xbj þ Tj þ l0 ¼ 0 ; j ¼ 1; :::; nPn
j¼1 Rj ¼ RPn
j¼1 Tj ¼ xR

0 � Rj � bj; j ¼ 1; :::; n

ti; lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; j ¼ 1; :::; n; ~yrj and l0 free:

(11)

Proof. According to Theorem 2 and Theorem 3 we can
learn that all DMUs can be simultaneously efficient with
a certain carbon emissions abatement allocation scheme
under a set of common weights, implying

ej ¼ 1� Pm
i¼1 vixij�

Ps
r¼1 uryrj�

Ps
r¼1 �Yrj þ x1bj

�

�T1j � x2bj þ T2j þ u0
	
¼ 1; (D1)

Therefore, it must bePm
i¼1 vixij�

Ps
r¼1 uryrj�

Ps
r¼1 �Yrj þ x1bj�T1j

�x2bj þ T2j þ u0 ¼ 0: (D2)

Note in particular that T1j ¼ x1Rj ðj ¼ 1; :::; nÞ and
T2j ¼ x2Rj ðj ¼ 1; :::; nÞ; then by substituting vi ¼
x1ti ð8iÞ; ur ¼ x1lr ð8rÞ;�Yrj ¼ x1~yrj ð8r; jÞ; T2j ¼
x1ðx2=x1ÞRj ð8jÞ and u0 ¼ x1l0 into (D2), we have

Pm
i¼1 x1tixij�

Ps
r¼1 x1lryrj�

Ps
r¼1 x1~yrj þ x1bj�x1Rj

�x1 x2=x1

� �
bj þ x1 x2=x1

� �
Rj þ x1l0 ¼ 0

:

(D3)

Then divide Equation (D3) by x1>0; we have

Pm
i¼1 tixij�

Ps
r¼1 lryrj�

Ps
r¼1 ~yrj þ bj�Rj�xbj þ xRj þ l0 ¼ 0 ;

where x ¼ x2=x1:
Together with the full allocation requirementPn
j¼1 Rj ¼ R; non-negative weight requirement ti �

0 i ¼ 1; :::;mð Þ and lr � 0 r ¼ 1; :::; sð Þ; and feasible
reduction requirement 0 � Rj � bj ðj ¼ 1; :::; nÞ; we have
the following formula (D4).Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj�Rj�xbj þ xRj

þl0 ¼ 0; j ¼ 1; :::; nPn
j¼1 Rj ¼ R

0 � Rj � bj; j ¼ 1; :::; n

ti; lr;x � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; ~yrj and l0 free:

(D4)

(D4) can be changed into a linear formula as given in
the following (D5).Pm

i¼1 tixij�
Ps

r¼1 lryrj�
Ps

r¼1 ~yrj þ bj�Rj�xbj þ Tj

þl0 ¼ 0; j ¼ 1; :::; nPn
j¼1 Rj ¼ RPn
j¼1 Tj ¼ xR

0 � Rj � bj; j ¼ 1; :::; n

ti;lr;x;Tj � 0; i ¼ 1; :::;m; r ¼ 1; :::; s; j ¼ 1; :::; n;

~yrj and l0 free: (D5)

(D5) is the same as System (11), where a carbon emission
abatement allocation scheme R1; :::;Rnð Þ can make all
DMUs simultaneously efficient under a set of common
weights
ti; i ¼ 1; :::m; lr; r ¼ 1; :::; s;Tj; j ¼ 1; :::; n;l0;x
� �

:
Therefore, this completes the proof of Corollary 1.

Appendix E

Theorem 4. The characteristic function V Kð Þ satisfies
super-additive, that is, for any two coalitions K; L 	 N ¼
1; :::; nf g and K \ L ¼ ;, it holds V Kð Þ þ V Lð Þ �

V K[ð LÞ:
Proof. V Kð Þ þ V Lð Þ ¼ P

j�K
~Rj � ~RK þ

P
j�L
~Rj � ~RL ¼P

j�K
~Rjþ

P
j�L
~Rj

� 	
� ~RKþ~RL

� 	
¼P

j�K[L~Rj� ~RKþ~RL

� 	
:

Reconsider model (13) we can easily verify that ~RK þ
~RL � ~RK[L:

Therefore, we have V Kð Þ þ V Lð Þ �P
j�K[L~Rj �

~RK[L ¼ V K [ Lð Þ:
It completes the proof of super-additive property. w
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Table F1. The codes for two-digit Chinese manufacturing industries
DMUs Sub-level manufacturing industries

DMU1 Processing of Food from Agricultural Products
DMU2 Manufacture of Foods
DMU3 Manufacture of Liquor, Beverages and Refined Tea
DMU4 Manufacture of Tobacco
DMU5 Manufacture of Textile
DMU6 Manufacture of Textile, Wearing Apparel and Accessories
DMU7 Manufacture of Leather, Fur, Feather and Related Products and Footwear
DMU8 Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm and Straw Products
DMU9 Manufacture of Furniture
DMU10 Manufacture of Paper and Paper Products
DMU11 Printing and Reproduction of Recording Media
DMU12 Manufacture of Articles for Culture, Education, Arts and Crafts, Sport and Entertainment Activities
DMU13 Processing of Petroleum, Coking and Processing of Nuclear Fuel
DMU14 Manufacture of Raw Chemical Materials and Chemical Products
DMU15 Manufacture of Medicines
DMU16 Manufacture of Chemical Fibres
DMU17 Manufacture of Rubber and Plastics Products
DMU18 Manufacture of Non-metallic Mineral Products
DMU19 Smelting and Pressing of Ferrous Metals
DMU20 Smelting and Pressing of Non-ferrous Metals
DMU21 Manufacture of Metal Products
DMU22 Manufacture of General Purpose Machinery
DMU23 Manufacture of Special Purpose Machinery
DMU24 Manufacture of Automobiles
DMU25 Manufacture of Railway, Ship, Aerospace and Other Transport Equipment
DMU26 Manufacture of Electrical Machinery and Apparatus
DMU27 Manufacture of Computers, Communication and Other Electronic Equipment
DMU28 Manufacture of Measuring Instruments and Machinery
DMU29 Other Manufacture
DMU30 Utilization of Waste Resources
DMU31 Repair Service of Metal Products, Machinery and Equipment
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