
ORIGINAL RESEARCH
published: 05 August 2020

doi: 10.3389/frobt.2020.00102

Frontiers in Robotics and AI | www.frontiersin.org 1 August 2020 | Volume 7 | Article 102

Edited by:

Geoff Nitschke,

University of Cape Town, South Africa

Reviewed by:

Junaid Shuja,

COMSATS University Islamabad -

Abbottabad Campus, Pakistan

Siti Hafizah Ab Hamid,

University of Malaya, Malaysia

Yara Khaluf,

Ghent University, Belgium

*Correspondence:

Aamir Akbar

aamir.akbar87@gmail.com

Specialty section:

This article was submitted to

Evolutionary Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 18 May 2019

Accepted: 29 June 2020

Published: 05 August 2020

Citation:

Akbar A, Lewis PR and Wanner E

(2020) A Self-Aware and Scalable

Solution for Efficient Mobile-Cloud

Hybrid Robotics.

Front. Robot. AI 7:102.

doi: 10.3389/frobt.2020.00102

A Self-Aware and Scalable Solution
for Efficient Mobile-Cloud Hybrid
Robotics
Aamir Akbar*, Peter R. Lewis and Elizabeth Wanner

Aston Lab for Intelligent Collectives Engineering (ALICE), Computer Science, Aston University, Birmingham, United Kingdom

Backed by the virtually unbounded resources of the cloud, battery-powered mobile

robotics can also benefit from cloud computing, meeting the demands of even

the most computationally and resource-intensive tasks. However, many existing

mobile-cloud hybrid (MCH) robotic tasks are inefficient in terms of optimizing trade-offs

between simultaneously conflicting objectives, such as minimizing both battery power

consumption and network usage. To tackle this problem we propose a novel approach

that can be used not only to instrument an MCH robotic task but also to search for

its efficient configurations representing compromise solution between the objectives. We

introduce a general-purpose MCH framework to measure, at runtime, how well the tasks

meet these two objectives. The framework employs these efficient configurations tomake

decisions at runtime, which are based on: (1) changing of the environment (i.e., WiFi signal

level variation), and (2) itself in a changing environment (i.e., actual observed packet loss

in the network). Also, we introduce a novel search-based multi-objective optimization

(MOO) algorithm, which works in two steps to search for efficient configurations of MCH

applications. Analysis of our results shows that: (i) using self-adaptive and self-aware

decisions, an MCH foraging task performed by a battery-powered robot can achieve

better optimization in a changing environment than using static offloading or running

the task only on the robot. However, a self-adaptive decision would fall behind when

the change in the environment happens within the system. In such a case, a self-aware

system can perform well, in terms of minimizing the two objectives. (ii) The Two-Step

algorithm can search for better quality configurations for MCH robotic tasks of having a

size from small to medium scale, in terms of the total number of their offloadable modules.

Keywords: mobile-cloud hybrid (MCH) computing, robotics, evolutionary algorithms, NSGA-II, multi-objective

optimization (MOO), self-adaptive, self-aware, code offloading

1. INTRODUCTION

In recent years, there has been a growing interest to bind virtual resources to low-power
devices, such as mobile robots (Balan et al., 2002; Nakahara and Beder, 2018). To make robots
virtually limitless in terms of processing power, energy and storage space, the integration of
mobile applications with the cloud infrastructure (Armbrust et al., 2010) is often done. This
interdisciplinary domain is called Mobile-Cloud Computing (MCC) (Huang, 2011).

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://www.frontiersin.org/journals/robotics-and-AI#editorial-board
https://doi.org/10.3389/frobt.2020.00102
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2020.00102&domain=pdf&date_stamp=2020-08-05
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aamir.akbar87@gmail.com
https://doi.org/10.3389/frobt.2020.00102
https://www.frontiersin.org/articles/10.3389/frobt.2020.00102/full
http://loop.frontiersin.org/people/733866/overview
http://loop.frontiersin.org/people/971864/overview
http://loop.frontiersin.org/people/1038999/overview

Akbar et al. Self-Aware and Scalable MC Robotics

Abattery-poweredmobile robot can be connected to the cloud
infrastructure via a WiFi network. From the robot point of view:
the decision to execute a computationally-intensive task locally
can demand high battery power consumption, e.g., when an
application is doing image processing. From a connection point
of view: the decision to offload the computationally-intensive
tasks remotely to the cloud can be affected by high network
usage, e.g., when an application offloads to the cloud too often
or a large amount of data is transferred between a robot and
the cloud.

In MCC, an efficiency trade-off exists between the battery
power consumption and network usage (Akbar and Lewis, 2017,
2018a). Due to which, the performance of Mobile-cloud hybrid
(MCH) applications can be inefficient in terms of battery power
consumption. Also, communication between a robot and the
cloud can be inefficient in terms of data transmission cost along
with battery power consumption by the transmitter chip of a
robot. Therefore, achieving the objectives of minimum power
consumption and network usage at the same time might not be
possible. For example, minimizing network usage may prevent
the objective of minimizing power consumption because the
transceiver chip also uses power to send or receive data packets.
To attain a set of optimal solutions, while not affecting the
overall performance of an application, is considered one of the
challenging areas in mobile-cloud computing (Ahmed et al.,
2015).

We consider the effective partitioning of MCH applications
as a multi-objective optimization (MOO) problem. In multi-
objective optimization, there are several objectives to be
optimized simultaneously, and typically the objectives are
conflicting with each other. There exists a natural trade-off
between the objectives, which creates a set of Pareto-optimal
solutions (Deb, 2011), those that are not dominated by any
possible other solution in the solution space. Therefore, we
consider the following two objectives to optimize.

1. Minimize power consumption: the battery power
consumption of an application on a robot, during one
execution. We will measure it in joules (the unit of energy).

2. Minimize network usage: the data transferred between a
mobile device and the cloud endpoint, during one execution.
We will measure it in KBs.

To optimize the two objectives, we proposed a technique (Akbar
and Lewis, 2017, 2018a), for Android-based smartphones,
to find and apply the optimal configurations of an MCH
application. We define a configuration as, a valid mapping of
all distinct and offloadable modules of an MCH application to
a binary string. The optimal configurations are the ones in
which the application has minimal battery power consumption
and minimal network usage per execution. To make the
configurations for an MCH application, we first modularize the
application: a set of collaborative code units called modules (i.e.,
classes or methods in Python) are made offloadable using an
MCH application framework. The offloadable modules can be
executed both locally on a robot and remotely on the cloud
server.We then create a configuration set based on the number of
offloadable modules.

In this paper, we extended our technique to be used for aMCH
robotic environment. For evaluation, we employed a robotic task
performed by a battery-powered and Raspberry Pi controlled
robot. We highlight the three main contributions of this paper
as follow.

1. Our MCH framework for robotics optimizes the efficiency
trade-off between power consumption and network usage.
We use offline profiling to search efficient configurations for
MCH robotic tasks that are non-dominated by any other
configurations.

2. Our MCH framework for robotics avoids the network latency.
The framework is enabled with a self-adaptive and self-
aware decision mechanism to switch between the efficient
configurations at runtime. Therefore, optimizes the efficiency
trade-off and avoids latency in the network.

3. We provide a solution to find approximate Pareto-optimal
configurations for a small to a medium scale MCH
applications for robotics in terms of the number of
offloadable modules.

Analysis of our experimental results shows that: (1) using multi-
objective optimization and code-offloading, the Pareto-optimal
configurations can be searched and apply to the MCH robotic
task. (2) Based on self-adaptivity and self-awareness, a system
can achieve minimum power consumption and can also avoid
network latency caused by packet loss due to interference, which
reduces the network usage. However, the self-adaptive based
decisions struggle when the packet loss is due to other factors,
such as network congestion or link failure, in which case the
network usage is high. In such a scenario, the self-aware based
decision can achieve minimum power consumption and avoids
latency caused by either low signal level or congestion, which
minimizes the network usage. (3) A Two-Step search algorithm,
which we developed, can produce better solutions compared to
the current state-of-the-art NSGA-II algorithm (Deb et al., 2000)
for a small to medium-scale MCH applications.

The rest of this paper is organized as follow. Section 2
discusses the related work. Section 3 discusses the required
steps to modularize mobile applications and create their
configurations. Section 4 describes the MCH application
framework as well as the self-adaptive and self-aware decision
mechanisms of the MCH application framework. Section 5
explains scalability of MCH applications. Section 6 explains the
test-bed MCH application and the experimental study. Section 7
concludes the paper and the future work is discussed in section 8.

2. RELATED WORK

The popularity of battery-powered robots has increased mainly
because of their increased applications to numerous real-world
problems. For example, unmanned search and rescue operations,
automated manufacturing, self-driving vehicles and medical
robots. Also, the applications created for mobile robots are
intended to operate in extreme and high-risk conditions, e.g.,
seal a leak in a nuclear reactor or coordinate search and
rescue missions; when natural disasters, such as earthquakes

Frontiers in Robotics and AI | www.frontiersin.org 2 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

occur. Mobile robots are equipped with services like location
awareness and sensors, which unlike humans can be deployed
in dangerous sites with little risk. However, they are limited
by their onboard resources (i.e., battery life). To address this
problem, researchers have recently proposed cloud-enabled
robotics technology. Cloud-enabled robotics can take advantages
of cloud computing to minimize the battery power consumption
of a mobile robot (Lin et al., 2015). As discussed in Saha
and Dasgupta (2018), the integration of cloud computing with
robotics have several advantages. We highlight them as follow.

1. The computationally-intensive tasks in cloud robotics, such as
object recognition, computer vision and pattern matching are
offloaded to the cloud for execution. Therefore, extending the
battery life of mobile robots (Wan et al., 2016).

2. Cloud-enabled robots have virtually available high storage
space to store data. Many applications in robotics, i.e.,
simultaneous localization and mapping (SLAM), generate a
large amount of sensor data that is difficult to store with the
limited onboard storage capacity on most robots (Hu et al.,
2012).

3. Integrating cloud computing to robotics can enable robots to
access big data, such as global maps for localization, object
models that the robots might need for manipulation tasks as
well as open-source algorithms and code (Kehoe et al., 2015).

2.1. Applications Partitioning
We are faced with a decision, when designing an MCH
application, about what parts (modules) of the application should
be executed locally and remotely. Therefore, the source code
of an application is partitioned in such a way to identify the
modules for local or remote executions. This can be achieved
by using application partitioning algorithms (APAs) (Liu et al.,
2015). When the partitioning is done during development time,
the code units (i.e., classes/methods) are annotated and then
using static analysis they are converted into offloadable modules
by a converter. When the partitioning is done during execution
time, a profile is used that decides on the fly which modules
to execute on the cloud. Either type of partitioning algorithms
aims to identify the most computationally-intensive modules for
remote processing (Li et al., 2001; Gu et al., 2004).

One of the important aspects of APAs is the partitioning
granularity attribute, which indicates the granularity level
for partitioning computationally-intensive modules (Liu et al.,
2015). Gu et al. (2003) framework for adaptive offloading
of computationally-intensive modules is based on class-level
granularity. Cuervo et al. (2010) used method-level partitioning
of applications for their mobile cloud application framework. A
thread-level (Chun et al., 2011) and object-level (Tilevich and
Smaragdakis, 2002) partitioning has also been used to offload
the computationally-intensive parts of applications to a remote
computing server.

Previously, we have shown (Akbar and Lewis, 2018a)
the partitioning of applications by modularizing the code
into different levels of granularity using annotations during
development. We highlighted the importance of granularity
for efficient partitioning of the applications. In this paper, we

will use a class-level, method-level and a hybrid-level (mix
of class and method level) partitioning of applications that
are developed using object-oriented programming paradigm in
Python language.

2.2. Mobile-Cloud Hybrid Frameworks
The computation offloading from mobile devices to the
cloud, inline with the Mobile Cloud Computing (MCC)
paradigm (Huang, 2011; Shuja et al., 2016, 2018) is normally
based on achieving one or more than one particular objective(s).
For example, speeding up computation and lowering battery
consumption in mobile devices as in CloneCloud (Chun
et al., 2011), MAUI (Cuervo et al., 2010), or ThinkAir (Kosta
et al., 2012). The increasing computing power and networking
capabilities of mobile devices led to the consideration of Mobile
Edge Clouds (MECs), which are formed by a neighborhood of
devices (Brown, 2016; Rodrigues et al., 2017). The advantages
of MECs include data locality, as data is usually produced
at the edge, and of low network latencies afforded by local
WiFi networks. Moreover, recently proposed a hybrid of MEC
and cloud architectures are also considered in simulation
frameworks like EdgeCloudSim (Suryavansh et al., 2019) or
MobEmu (Ciobanu et al., 2019).

2.2.1. Cloud-Enabled Robotic Frameworks
In the recent past, Chen et al. (2010) proposed Robot as a
Service (RaaS) that is based on Service-Oriented Architecture
(SOA) of cloud computing. RaaS facilitates the seamless
integration of robot and embedded devices into Web and
cloud computing environments. Backed by virtually unlimited
resources of cloud computing, many computationally-intensive
robotics and automation systems applications, such as robot
navigation by performing SLAM in the cloud (Riazuelo et al.,
2014) and next-view planning for object recognition (Oliveira
and Isler, 2013) can be achieved. In Liu et al. (2014), the
authors proposed a comprehensive distributed cloud-enabled
robotics framework. Apart from combining cloud and the
robot networks, they also provide additional security features
in their framework. Moreover, in other recent works (Rahman
et al., 2017; Chen et al., 2018; Hong et al., 2019) computation
offloading in robotics has been used. Therefore, improving the
performance of mobile robots as well as providing a cloud-based
energy-efficient alternative.

2.2.2. Self-Adaptive and Self-Aware Mobile-Cloud

Hybrid Frameworks
Based on self-adaptation, Naqvi et al. (2016) proposed a multi-
objective optimization framework called (MAsCOT), which
employs Probabilistic Graphic Models (PGM) for a self-
adaptive decision support for code offloading. Nakahara and
Beder (2018) bi-objective optimization framework (CoSMOS)
analyse each optimization parameters (energy consumption and
execution time) separately using cost function and self-adaptive
reinforcement. Furthermore, MCH applications can benefit from
self-awareness (Preden et al., 2015). Dutt et al. (2016) applied
self-aware decision mechanism to IoT hardware chips.

Frontiers in Robotics and AI | www.frontiersin.org 3 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

2.3. Insufficiencies in Available Approaches
To best of the author’s knowledge, the previous works (Cuervo
et al., 2010; Chun et al., 2011; Huang, 2011; Kosta et al.,
2012; Shuja et al., 2016, 2018; Rahman et al., 2017; Chen
et al., 2018; Hong et al., 2019), particularly in MCC, did
not consider the multi-objective optimization approach to find
an optimum balance between achieving the two objectives.
Moreover, our framework allows for both offline profiling
and online profiling. Offline profiling is to search for efficient
configurations that optimize the trade-off between battery power
consumption and network usage. Furthermore, we are the first to
employ a self-adaptive (based on a change in the environment)
and self-aware (based on a change within the system itself)
decision mechanisms in our MCH framework for dynamic code-
offloading to avoid network latency. By using online profiling,
the framework switches between the efficient configurations
to minimize battery power consumption, network usage and
improve the performance of applications by avoiding network
latency. Finally, unlike previous works, our approach is based
on finding efficient configurations for MCH applications, which
are then used by the applications during run-time. Therefore,
reducing the computation overhead at run-time (i.e., running an
optimizer on the mobile device). Doing so, we provide a scalable
solution to finds approximate Pareto-optimal configurations for
a small to medium scale MCH applications for in terms of the
number of offloadable modules.

3. EFFICIENT MODULARIZATION OF
MOBILE APPLICATIONS

The computationally-intensive tasks of mobile applications
consumed battery power when executed. Such tasks of
applications can be identified either during the development
stage or after the developmental process is completed. We
identify the code units (i.e., classes or methods) of MCH
applications that have the computationally-intensive tasks at
the code-level, using an MCH application framework. These
code units are converted into offloadable modules using a
technique called modularization. The offloadable modules
can be executed both locally and remotely (i.e., on the cloud
server endpoint). The remote execution of the modules can
reduce the battery power consumption of an application with
a trade-off of using the available network. We achieve this by
executing MCH applications using a framework that works with
a “configuration.” A range of different configurations for an
application can be created, which is based on (1) the number
of offloadable modules, (2) executing the modules across the
two endpoints (i.e., a mobile device and the cloud), and (3)
granularity-level of a module.

3.1. Granularity of Configurations
Granularity is the extent to which MCH applications can be
partitioned into different modules. The partitioning can be done
at different levels of granularity: class-level, method-level, object-
level, thread-level, task-level, component-level. Since we will

be using mobile applications that are developed using Object-
Oriented programming (as we will discuss in the experimental
study), therefore, we will consider method-level and class-level
partitioning of applications. The computationally-intensive parts
of an application are, therefore, divided into the resultant
partitioned components; we called them modules. The modules
are composed of code units or machine instructions. They might
be fine-grained (i.e., methods of classes) or coarse-grained (i.e.,
classes of an application). The fine-grained modules comprise
of a chunk of code that might be computationally-intensive or
execute often during runtime of the application. In both cases,
making the fine-grained modules offloadable and executing them
remotely on the cloud can reduce power consumption. The
coarse-grained modules are comprised of one or more fine-
grained modules (methods).

3.2. Modular Configurations and Their
Representation
A modular configuration (or simply a configuration) maps the
offloadable modules to their execution points. It is created for
executing an MCH application. To map the offloadable modules
of an MCH application to a configuration, the number at which
a module execute during the application runtime is assigned
its position (or index) in the configuration. A module may
execute multiple times during runtime, but its position in the
configuration is determined by the number at which it executes
for the first time.

We use a binary string to represent the configuration. Each
digit (bit) of the string represents an offloadable module of the
application. The state of a digit value signals theMCH framework
to execute its representative module either on a mobile device
endpoint (0) or on the cloud server endpoint (1). Based on
the total number of modules and their granularity level, we
can obtain different types of configurations, which are discussed
as follow.

3.2.1. Class-Level Configurations
A class-level (coarse-grained) configuration executes the classes
of an application, mapped to a binary string, on either a mobile
device or on the cloud. For example, a configuration, 1010, which
maps 4 classes of an application to a binary string. We can see
that the first and third modules of this configuration will be
executed on the mobile device (0) and the second and fourth
modules will be executed to the cloud (1). For n = 4, a set
containing all possible class-level configurations, as shown in
Figure 1, can be obtained having total number of configurations
equals to: 2n = 16.

3.2.2. Method-Level Configurations
Similar to the class-level configuration, a method-level
configuration can also be created. In a method-level
configuration, the binary string represents the methods
where each digit of the string maps an offloadable method. For
example, an arbitrary method-level configuration: 10101010,
from a set shown in Figure 2. It maps eight (n = 8) modules of
an application. To make the method-level configuration set, the

Frontiers in Robotics and AI | www.frontiersin.org 4 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 1 | A class-level configuration set having all possible configurations

for four offloadable classes of an application. The cardinality of the set is:

24 = 16.

FIGURE 2 | A method-level configuration set containing all possible

combination of configurations for eight offloadable methods of an application.

cardinality of the set will be: 28 = 256. Each configuration in the
set is a valid combination of mapping the methods.

3.2.3. Hybrid-Level Configurations
A hybrid-level configuration has a mixed granularity. To create
a hybrid-level configuration, we aim to map the offloadable
modules in a mixed combination of selected methods and classes.
A binary string can also represent a hybrid-level configuration,
i.e., 1010:01011010, as shown in Figure 3. Unlike the class and
method level configurations, the binary string is composed of two
parts that are separated by a colon sign (:). The digits residing on
its left side (first part) represent the offloadable classes and on its
right (second part) is a combination of both classes and methods.

The state value of a digit in the first part signals whether the
mapped class will be executed as a coarse-grained (0) or as a
fine-grained (1). The state of a digit in the second part describes
whether the mapped offloadable module (a class or a method)

will be executed on the mobile (0) or the cloud (1). If a class is
represented as fine-grained in the first part then its offloadable
methods would be mapped. If it is represented as coarse-grained
then it will be mapped.

For example, let’s assume an arbitrary hybrid-level
configuration: 1010:01011010. The first part of the configuration
1010, map four classes. Given that the first class has three
methods and is mapped to be executed as fine-grained (1) all its
three methods are mapped in the first three digits of the second
part (010) where zero represents executing the method on the
mobile device and one is for executing on the cloud. To make
a hybrid-level configuration set, the cardinality of the set will
depend on the total number of offloadable classes and methods
of the application.

3.3. Collapsible Configurations
We define a collapsible configuration as a configuration that
can be collapsed into the same or a different granularity level
configuration. In other words, two or more configurations are
called collapsible if they are of different or same granularity
level, and they map the same modules to be executed on the
same endpoints. Collapsible configurations are identical because
during the runtime the same modules are executed on either a
mobile device of the cloud server.

As shown in Figure 4, a hybrid-level configuration,
1100:0001110, is identical to another hybrid-level configuration
(0011:0111100) a method-level configuration (0001111100)
and a class-level configuration (0110). In first configuration
(1100:0001110) the first three digits (representing three methods
of a class) on the left side of the colon are zero, which is same as
the class-level digit in the second configurations (0011:0111100).
In these collapsible configurations, we have assumed four
classes. First and third class have three offloadable methods and
second and fourth class have two offloadable methods. These
configurations will execute the same modules on the similar
endpoints no matter what the configuration level is. Even though
collapsible representations are equivalent from a configuration
perspective, they may still lead to different battery power
consumption and network usage, due to implementation details.
For example, finding the mapped modules for a hybrid-level
configuration will go through many steps of (if-else) statements.
On the other hand, for a class-level configuration, it will take
relatively less number of comparisons.

3.4. Effective Partitioning of MCH
Applications
In an MCH application, the decision to execute the modules of
the application either on a mobile device or on a cloud server is
anNP-hard problem. Therefore, an optimal partition of theMCH
application is desired based on one more objectives. Therefore,
we consider the effective partitioning of an MCH application
as a multi-objective optimization problem. In multi-objective
optimization, there are several objectives to be optimized
simultaneously, and typically the objectives are conflicting with
each other. There exists a natural trade-off between objectives
which creates a set of Pareto-optimal solutions (Deb, 2011),
those that are not dominated by any possible other solution

Frontiers in Robotics and AI | www.frontiersin.org 5 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 3 | A hybrid-level configuration set containing all possible combination of configurations of an application.

FIGURE 4 | A set of four collapsible configurations. Each configuration is

collapsible into another, where the execution endpoint of the offloadable

modules are retained.

in the solution space. Therefore, optimizing the following two
objectives, we might obtain Pareto-optimal configurations.

1. Minimize power consumption of an MCH application. We
measured this as the number of joules consumed by the
application during one execution.

2. Minimize network usage of an MCH application. We
measured this as the data (KBs) sent and received between a
mobile device and the cloud server, during one execution.

During the run-time of MCH applications, computationally-
intensive tasks are offloaded to cloud servers for execution.
One of the limitations of the offloading is that it often itself is

computationally-intensive. For example, the cost of energy usage
of transmitter chip and network usage are both associated with
code offloading. Therefore, there exist a trade-off between the two
objectives. To optimize the trade-off, we identify the offloadable
modules of an applications and separate them from the modules
that require mobile device hardware for execution. Each of the
offloadable modules can either be executed on the mobile or
cloudmachine.Mathematically, given an n number of offloadable
modules in a mobile application;

M = {m1,m2,m3, , , , , ,mn},

∃ α(mi) = {0, 1} ∧ β(mi) = {0, 1} | α(mi)+ β(mi) = 1, (1)

min[
∑

mi∈M

(α(mi)× Cα(mi)+ β(mi)× Cβ (mi))], (2)

∀mi ∈ M,

where a module, mi ∈ M, can be executed either on a mobile
device or on the cloud server. The binary functions α(mi) and
β(mi) in Equation (1) are to determine whether a module mi

can be executed on the mobile device or on the cloud. The
objective is to minimize the expression in Equation (2), which
is to minimize the cost (i.e., the efficiency trade-off) associated
with the module mi for both end-points. As there are two end-
points, the associated costs are of two different types. For the
mobile device, the cost is Cα(mi), and for the cloud server, it is
Cβ (mi). Since we treat each of the two objectives independent
of each other, the cost functions for a module, mi ∈ M, return
a 2-tuple, i.e., (Pi, δi). Where Pi is the power consumption and
δi is the network usage measured for a module, mi ∈ M.
Mathematically;

P(watts) = PC(watts) + PRF(watts), (3)

Frontiers in Robotics and AI | www.frontiersin.org 6 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

δ(Bytes) = BTx(Bytes) + BRx(Bytes), (4)

Where PC and PRF in Equation (3) are computation power
and communication power (RF sending and RF receiving),
respectively. The network usage δ in Equation (4) is computed
as the sum of total bytes transmitted (BTx) and received (BRx)
between a mobile device and the cloud. When a module,mi ∈ M,
executes on a mobile device, its communication power (PRFi)
and network usage (δi) are both zero, and the battery power
consumption (Pi) will be equal to the computing power (PC).
When a module, mi ∈ M, is offloaded to the cloud for execution
its computing power (PCi) is zero, and the battery power
consumption (Pi) will be equal to the communication power
(PRFi). Therefore, we can write the expression in Equation (2) as,

min[
∑

mi∈M

(α(mi)× (PCmi , 0)+ β(mi)× (PRFmi , δmi))] (5)

Therefore, the effective partition of an MCH application can
be obtained by optimizing the trade-off between the two
objectives. This could be achieved by satisfying the expression in
Equation (5).

4. MOBILE-CLOUD HYBRID APPLICATION
FRAMEWORK

A mobile-cloud application framework hybridizes the execution
of tasks on mobile and the cloud endpoints. The framework
provides the offloading API, which is used to convert themodules
of mobile apps into offloadable. We implemented a simple MCH
application framework (similar to the one used in Flores and
Srirama, 2013) in Python for robotic tasks that are executed on
a Linux-based systems. It uses a socket-based connection for
code-offloading. The framework can be used for both offline
and online profiling. In offline profiling, the framework takes
the configurations as a command-line argument. It parses the
configuration, and with a decision mechanism, it executes the
mapped modules according to their respective digit’s states in
the configuration. In the online profiling, the framework is
provided with the efficient configurations (previously found in
offline profiling) and it switches between these configurations
with a decision mechanism based on self-adaptivity and self-
awareness and executes the modules according to their mapping
in the configurations. Depending on the configuration level, a
binary digit set as 1 indicates: (1) all the offloadable methods
of the classes will be executed on the cloud (class-level), (2) the
offloadable method of the classes will be executed on the cloud
(method-level), (3) the offloadable classes and methods of other
classes will be executed on the cloud.

4.1. Offline Profiling
In offline profiling, we instrument MCH applications to search
for efficient configurations using multi-objective optimization.
To achieve this, we have used a Python-based script, which uses
an exhaustive search algorithm to iterates through all the possible
configurations of an MCH application. As this work is targeting
MCH applications created for battery-powered and Raspberry Pi

FIGURE 5 | A battery-powered and Raspberry Pi controlled Themio-II robot.

The robot performs a foraging task. A portable Anker Power-bank powers the

Raspberry Pi. The Robot has its battery, which is charged from the Raspberry

Pi through a USB data cable. A digital multimeter placed inline between the

Power-bank and the Pi measures the power consumption of the Pi.

controlled robots, the script automates the execution of theMCH
applications on the robot. Moreover, we run the script on a PC,
and it executes an MCH application (using a configuration) on
the Raspberry Pi through SSH. Furthermore, the script records
the total battery power consumption (i.e, Equation 3), network
usage (i.e., Equation 4), and the total execution time of the
application after one execution.

4.1.1. Measuring Battery Power Consumption
Battery power is consumed when an MCH application is
executed on a battery-powered mobile device. Power is required
for different components of the system to function, i.e., CPU,
WiFi. To measure the power consumption of an application
(as in Equation 3), there are platforms specific ways to use. In
our previous work (Akbar and Lewis, 2017, 2018a), we have
shown how to measure the power consumption for Android-
based applications running on smartphones. In this work, we
have targeted Python-based applications for battery-powered
Raspberry Pi controlled robots. As the Pi models have no inbuilt
current or voltage sensors that could be used for monitoring
its current draw, or battery supply. Therefore, we have used a
purpose-built digital multimeter, modeled UM24C, that is placed
inline between a power-bank and the Pi, as shown in Figure 5.
It can measure the power consumption of the Pi (per seconds)
and is capable of sending the measurement via a Bluetooth
connection to other devices. The Python-based script, running
on a PC, receives these power measurements

4.1.2. Measuring Network Usage
Network bandwidth is used when an MCH application executes
its modules remotely on the cloud server endpoint. To
measure the total network usage (as in Equation 4), there are
platforms specific ways to use. In our previous work (Akbar
and Lewis, 2017, 2018a), we used a built-in Android Library,
android.net.TrafficStats, for recording data-sent (BTx) and data-
received (BRx), for Android-based MCH applications. In this
work, since we are targeting Python-based MCH applications for
Raspberry Pi, we are using T-shark (a command-line network
packet analyser tool) for measuring network usage. We have

Frontiers in Robotics and AI | www.frontiersin.org 7 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

employed it in the Python-based script that run on a PC. The
script captures data-sent BTx) and data-received (BRx) by an
MCH application. After each run of the MCH application, the
script records the total network bandwidth used.

4.2. Runtime Optimization of MCH
Applications
We have carried-out the offline profiling in a controlled lab
environment where a mobile device was operated in the best
coverage location of the wireless base station (i.e., WiFi router).
As there were no obstacles in the middle that could obstruct
the WiFi signals, there was no wireless interference during
the communication between the device and the cloud server.
However, in the real-life operating environment, the external
conditions change with time and can affect the application’s
execution. For example, a mobile device moves to a location
where it is: (1) subject to wireless interference, or (2) receiving
good signals but there is congestion in the network. In both
scenarios, there will be packet loss during communication
between the device and the cloud, which will result in network
latency. The performance of applications will degrade when using
code-offloading if the network has latency. By enabling the MCH
framework with self-adaptivity and self-awareness makes it able
to monitor its operative context to make run-time decisions,
which is to use the right configuration and, therefore, avoid the
network latency.

4.2.1. Self-Adaptive MCH Application Framework for

Dynamic Offloading
Self-adaptivity can enable MCH applications to modify their
behavior at run-time, in response to the changing environment
and make better decisions on how to use the available
resources (Nakahara and Beder, 2018). In the context of MCH
computing systems (i.e., smartphones and robots), as the mobile
device moves, the WiFi signal level degrades over time. This
is because of wireless interference caused by factors, such as
obstacles in the middle of the communication channel between
a mobile device and the base station. The signal degradation can
cause packet loss, which results in network latency. The packet
loss in the network (if high) can cause long socket-wait time plus
TCP re-transmission at both endpoints (mobile and cloud).

In this work, we consider the WiFi signals as the changing
environment, which changes across the network coverage area.
To avoid network latency due to the low signal level, the MCH
framework will monitor the signal levels continuously and based
on which makes self-adaptive decisions at runtime. If the signals
are good, the framework will switch to a configuration that is
using code-offloading. If the mobile device moves to an area
where the receiving signal level is bad, then by using the self-
adaptive decision mechanism the framework will switch to the
all-zero configuration keeping the computation on the device.
For example, if the signal level is degraded (low) enough to cause
latency due to packet loss, the framework will switch to run on
such a configuration that does not use the code-offloading.

4.2.2. Self-Aware MCH Application Framework for

Dynamic Offloading
In line with the definitions from Lewis et al. (2011, 2016)
and Kounev et al. (2017), we consider an MCH computing
system to be self-aware when it gathers knowledge, not just
about the environment, but about itself in that environment,
on an ongoing basis. It is then able to use this knowledge to
drive its decision making at runtime. In an MCH scenario, the
availability of a high-quality network connection is one of the key
requirements for the mobile device to make effective use of code
offloading (Khan et al., 2015).

While a self-adaptive system observing the environment may
base decisions on environmental factors, such as signal strength
(as discussed above), self-awareness instead allows offloading
decisions to be based on monitoring the device’s behavior
within that environment, specifically in this case, its success
in communicating over the network. We operationalize this
here by enabling the device to monitor the level of packet loss
while running the code-offloading. When this is low, the self-
aware MCH framework offloads code. When the packet loss is
sufficiently high, then the code is run on the device. By observing
the actual runtime impact of attempting to run the offloaded
code, the device is no longer required to use estimates, based on
externally observable proxy features (i.e., signal strength).

4.3. Online Profiling
We use online profiling to measure the battery power
consumption, network usage and execution time of MCH
applications, while the external environment is changing with
time. The difference between offline and online profiling is
that in offline profiling, we instrument the MCH applications
to find efficient configurations. In the online profiling, the
environmental keeps changes during the runtime and factors,
such as network delay and congestion add latency and effect the
code-offloading of MCH applications. Online profiling aims to
validate the self-adaptive and self-aware decision mechanism of
our framework.

For online profiling, we have created a controlled lab
environment which can be used to instrument applications and
keep changing the external operating environment. We will
discuss the lab environment in section 6.

5. SCALABLE MOBILE-CLOUD HYBRID
APPLICATIONS

In this section, we will discuss search algorithms that could be
used to find approximate to Pareto-optimal solutions and provide
scalable options for MCH applications in terms of their size
proportion to their offloadable modules. For a large number
of offloadable modules, using the exhaustive search algorithm
in offline profiling (to find Pareto-optimal configurations) is
not a feasible option, regarding the time it takes to search the
configuration sets. Therefore, depending on the time constraint,
it may be suitable to get an approximation to the Pareto-optimal
configurations in a reasonable amount of time. Multi-objective

Frontiers in Robotics and AI | www.frontiersin.org 8 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

TABLE 1 | The number of configurations increases exponentially when the

offloadable modules increases.

Modules Configurations

8 256

14 16,384

20 1,048,576 million

optimization (MOO) algorithms represent a viable alternative to
potentially find this Pareto-optimal approximation set in one run.

5.1. Challenges in Scaling Up
To find the Pareto-optimal configurations, our approach is
based on exhaustive search algorithm using the offline profiling,
discussed in section 4.1. The exhaustive search enumerate all
configurations to determine the energy-efficient configuration(s).
While the exhaustive search is efficient in terms of time it takes
for a small configuration set, it takes a large amount of time
when the configuration set is large. As stated in Table 1, it would
take too much time to search efficient configurations for an
MCH application that have 20 offloadable modules. The total
number of possible configurations increases exponentially (2n)
when the number of offloadable modules, n, are increased for an
MCH application. Such problems for which no known algorithm
can find a solution to exact optimum in feasible amount of
time are called NP-hard (Garey and Johnson, 1979). Therefore,
to find Pareto-optimal configurations for MCH applications,
exhaustive search algorithms are best to use for only a small
configuration sets.

5.2. Approaches to Scale Up
5.2.1. NSGA-II
NSGA-II, the Non-dominated Sorting Genetic Algorithm II,
is a fast elitist population-based algorithm for Multi-objective
Optimization (Deb et al., 2000). It has the following features:

1. It uses an elitist principle, i.e., the elites of a population are
allowed to be carried to the next generation.

2. It uses an explicit diversity preserving mechanism (Crowding
distance).

3. It emphasizes the non-dominated solutions.

For a comprehensive revision of the algorithm features, refer
to Deb et al. (2000). Using the offline profiling (discussed in
section 4.1), we implemented the NSGA-II algorithm in the
Python script. For the NSGA-II implementation, we empirically
chose some parameters based on results in the literature.
The parameters were set as population size = 10, number of
generation = 30 and the tournament population size = 5. The
genetic parameters were set as crossover probability = 0.5 and
mutation probability = 0.2.

5.2.2. Two-Step Search Algorithm
The applications designed for mobile devices (smartphones,
robots etc) use the available device-limited libraries or resources,
such as GPS, sensors etc. Some classes that use them are not fit

FIGURE 6 | Two-Step search algorithm. The class, method and hybrid-level

configuration sets are shown. The red dots in the class-level set represent the

best configurations searched in first step. The blue dots in method-level and

red dots in hybrid-level configuration sets are the collapsible configurations of

the respective best class-level configurations. The circles represent the

neighbor configurations of the collapsible best configurations the can be

searched.

for offloading to the cloud as a whole. This results in a very few
number of classes that are fit for offloading as a whole or partly.
On the other hand, the methods in offloadable classes are usually
in a high number. Therefore, the class-level configuration set in
MCH applications, comparatively smaller than the method and
hybrid-level, can be searched exhaustively in feasible time.

We design the Two-Step search algorithm to explore
the configuration sets of MCH applications/tasks in two
searching steps: (1) The first step aims to explore the class-
level configuration set exhaustively to obtain elitist class-level
configurations. (2) The second step aims first to search the
collapsible method and hybrid-level configurations of the elitist
ones and then randomly search their neighbor configurations up
to some extent.

The best class-level configurations are the Pareto-optimal
approximations. We create their collapsible method-level and
hybrid-level configurations. The neighbor configurations are
obtained by flipping the bits of the collapsible configurations
randomly. Figure 6 illustrates how the Two-Step search
algorithm works. The circles represents the limit of the neighbor
search space.

Algorithm 1 presents the pseudocode for the Two-Step search.
It starts by generating the class-level configurations, taking the
number of class-level offloadable modules. In the first step, the
efficiency of the generated class-level population is measured
using the offline profiling. It finds the power and network usage
by running the foraging task with the configurations. After the
profiling is finished, it calculates fronts based onminimum power
and network values of the configurations. The non-dominated
solutions represent the Pareto-optimal approximation set.

Frontiers in Robotics and AI | www.frontiersin.org 9 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

Algorithm 1 : Two-Step Search Algorithm

1: pop← Population(MODULES) ⊲ First Step
2: PROFILE(pop, “classLevel”)
3: pop.findfronts()
4: pop.findCrowdingdistance()
5: elitePop← pop.findClasslevelElitistPop()
6: methodLevelPop← findMethodLevelPop(elitePop) ⊲ Second

Step
7: hybridLevelPop← findHybridLevelPop(elitePop)
8: PROFILE(methodLevelPop, “methodLevel”)
9: PROFILE(hybridLevelPop, “hybridLevel”)
10: procedure PROFILE(pop, granularityLevel)
11: robot← connectToDevice()
12: for each config ∈ pop.configs do
13: power, net, execTime ←

getMeasurements(robot, config, granularityLevel)
14: pop.saveMeasurements(config, power, net,

execTime)
15: end for

16: end procedure

For selecting the elitist configurations from the class-level
population, we apply the crowding distance (Deb et al., 2000) to
rank the configurations. The selection of elitist configurations
starts with the best non-dominated front and iterates through
all fronts. A configuration presenting a high crowding distance
value is selected. We select the best five configurations from the
population as the elitist class-level configurations.

6. EXPERIMENTAL STUDY

To evaluate our proposed approach for battery-powered and
Raspberry Pi controlled robots, we have used the work carried
out by Heinerman et al. (2016) as a test-bed application. The
application that they have created for performing a robotic
task, called foraging task, is executed on a Raspberry Pi that is
connected to a battery-powered Thymio-2 robot (as shown in
Figure 5). The robot collects red colored pucks in an arena and
carry them to a blue colored target area in the corner of the arena.
The controller of the robot is a feed-forward neural network,
which evolves on-the-fly as it performs the task. In the code, they
have implemented a Python-based library, NEAT (Stanley, 2004),
to evolve an objective function that assesses the robot behavior for
some time.

6.1. Application Modularization
The source code of the foraging task is available on Github1.
After analysing the code, we found 4 classes having a total of 14
methods that are suitable for offloading. The offloadable modules
do not use mobile-limited libraries or resources, i.e., sensors,
GPS, LCD etc.Wemodularized the code and create configuration
sets for the foraging task. For 4 classes (n = 4), the total number
of class-level configurations are 16 (24). For 14methods (n = 14,)

1https://github.com/jvheinerman/NEATThymio

FIGURE 7 | The configurations of all class-level and selected method and

hybrid-level granularity for the MCH foraging task. All-zero configurations are

those that run all the modules of the task only on the mobile device. Each dot

on the plot represents the mean power and network usage of a configuration

for 30 runs.

the total number of method-level configurations are 16, 384 (214).
For two classes and 14 methods, the total number of hybrid-
level configurations are 16, 000. We have created a small Java-
based tool2 that can create all possible hybrid-level configurations
for an MCH applications by providing the number of classes
and methods.

6.2. Executing the MCH Application
We have converted the foraging task to an MCH application
and using the offline profiling (as discussed in section 4.1), we
were able to execute it with all the configurations. The main goal
of the offline profiling is to instrument the MCH application
and measure the power and network usage while executing the
application. However, due to some uncontrollable variables, it
is necessary to perform any test over many algorithm runs. For
example, the Raspberry Pi system was busy in doing system
related tasks and the foraging task took more computation time
or the data packets were dropping due to network congestion.
Therefore, to eliminate the effect of the uncontrolled variables
and obtain meaningful statistical significant results, we executed
the Python-based script (discussed in section 4.1) multiple times.
Doing so, we were able to take 30 samples of the 16 class-level
configurations. For the method and hybrid-level configurations,
initially, we executed all the configurations. We then select the
best 150 configurations, residing near the Pareto-front. We took
29 more samples of the selected configurations, which results in a

2https://github.com/aamirakbar/Creating-Hybrid-Level-Configurations-for-

MC-hybrid-Apps

Frontiers in Robotics and AI | www.frontiersin.org 10 August 2020 | Volume 7 | Article 102

https://github.com/jvheinerman/NEATThymio
https://github.com/aamirakbar/Creating-Hybrid-Level-Configurations-for-MC-hybrid-Apps
https://github.com/aamirakbar/Creating-Hybrid-Level-Configurations-for-MC-hybrid-Apps
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

TABLE 2 | Offline and online profiling of the mobile-cloud foraging task carried out by a Raspberry Pi controlled Thymio robot.

Profiling Configuration Granularity level Samples Runtime (s) Battery power consumption (J) Network bandwidth usage (kB)

Mean Mean Standard deviation Mean Standard deviation

Offline C1 = 1011:001000000001 Hybrid 30 32.6 0.2849 0.0113 38.2503 0.0695

C2 = 00100000000000 Method 30 32.6 0.2958 0.018 15.9743 0.0971

C3 = 00000000000000 Method 30 32.6 0.3061 0.0136 0 0

Online (Scenario one) C3 Method 1 251 0.4046 0 0 0

C1 Hybrid 1 368 0.29 0 486.539 0

Self-adaptive system (C1, C3) Hybrid, Method 1 259 0.3793 0 192.117 0

Self-aware system (C1, C3) Hybrid, Method 1 264 0.3885 0 169.51 0

Online (Scenario two) C3 Method 1 251 0.4046 0 0 0

C1 Hybrid 1 415 0.4529 0 502.065 0

Self-adaptive system (C1, C3) Hybrid, Method 1 298 0.4232 0 312.917 0

Self-aware system (C1, C3) Hybrid, Method 1 255 0.3733 0 163.314 0

The number of samples obtained of the configurations and their mean and standard deviation of battery power consumption and network bandwidth usage along with total samples

and their average run time are stated.

total of 30 samples. The mean power and network usage of these
configurations are plotted and shown in Figure 7.

6.3. Finding Pareto-Optimal Configurations
To achieve an efficient MCH application, we employ a
filter that only picks the non-dominated and statistically
significant configurations. To achieve this, we created sets
of collapsible configurations (as mentioned in section 3.3).
We applied the filter on these collapsible sets to pick the
non-dominated configuration(s) along with their statistically
significant configuration(s) if they are present.

In the end, we created a final set of configurations by
combining all the collapsible sets along with the configurations
which were not collapsible. The non-dominated configurations
in the final set are the Pareto-optimal configurations, listed
in Table 2. These configurations are superior to the others
when the objectives are considered (Srinivas and Deb, 1994).
Also, these configurations optimize the efficiency trade-off and
provide efficient alternatives to the MCH application in terms
of battery power consumption and network bandwidth usage.
The configurations from the final set are plotted in Figure 8,
which also shows the Pareto front. As the offline profiling was
carried out in a place near to the wireless base station with no
interference or signal level degradation, the mean runtime of all
the configurations were the same.

6.4. Runtime Decision Making of the MCH
Framework
To evaluate the self-adaptive and self-aware approaches, our
experimental work is based on online profiling of the MCH
applications—foraging task. This will involve measuring the
performance of both approaches in terms of minimizing the
two objectives and comparing it with static offloading and no
offloading. We created a lab-based controlled environment in
which the robot performs the foraging task and a Python-based
script simulates the change in the signal level over time. We
considered the signal level variation, caused by an interference,

as the changing environment during the course of performing
the foraging task. One cycle of signal level variation takes 60 s.
The cycle starts from a signal level of −32dBm and decreases
until −90dBm. It then starts increasing back until −32dBm and
then repeats itself. As the signal level degrades it causes packet
loss. We imposed the packet loss at the Linux kernel-level on the
cloud side, which is aligned with the change in the signal level.
For this to achieve, we used tc and Netem3 command-line tools
to randomly drop the number of packets. As shown in Figure 10,
we modeled the packet loss with respect to the signal level as:
(1) from −32 to −70dBm the packet loss is 0%, (2) from −71
to −80dBm the packet loss is 20%, (3) from −81 to −85dBm
the packet loss is 50% and lastly (4) from −86 to −90dBm the
packet loss is 80%. We estimate these measurements by using
Wireshark to observe the packet loss concerning the signal level
while moving the robot in the network coverage area.

6.4.1. Profiling the Pareto-Optimal Configurations at

Different Signal Levels
The offline profiling (discussed in section 4.1) was carried-out
while keeping the robot under the footprint of good signal level
(around −32dBm) from the wireless access point. As the robot
moves around the network coverage area, the signal level changes
and in some cases might degrade enough to cause large amount
of packet loss. For the self-adaptive decisionmechanism to switch
to the all-zero configuration (C3), we need to find the signal
level threshold. To find the signal level threshold for the self-
adaptive switching, we did profiling of the task where the robot
was moving in the network coverage area and the signal level was
changing. While measuring the power consumption, network
usage and execution time, we executed the foraging task for 30
times at various signal levels ranging from −53 to −90dBm. In
these runs, we recorded the efficiency of the two configurations
(C1 and C2) that use offloading at 7 different signal levels.
Configuration C3 was kept same as before at all levels as it

3https://wiki.linuxfoundation.org/networking/netem

Frontiers in Robotics and AI | www.frontiersin.org 11 August 2020 | Volume 7 | Article 102

https://wiki.linuxfoundation.org/networking/netem
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 8 | The filtered configurations of mixed granularity for the foraging

task. The Pareto efficient configurations making the Pareto front are

highlighted.

does not use offloading. The average battery power consumption,
execution time and network usage at these different signal levels
are recorded and shown in Figures 9A–C, respectively.

6.4.2. Determining the Threshold for Self-Adaptive

Switching
We can see in Figure 9A that the battery power consumption in
case of configurationsC1 andC2 changes with respect to a change
in the signal level. The signal degrades from a better (−32dBm)
to a poor (−80dBm) level, during which C1 performed better
than C2 and C3. Below the signal level of−80dBm is an unstable
network zone. In this zone, the power consumption can either
increase very high (due to TCP retransmission) or decrease
very low (due to Latency). As shown in Figure 9B, with the
configuration C2 the execution suffered from a long socket-
wait (latency) at signal level −87dBm (unstable zone). While the
mobile was suffering from packet loss at the receiving end the
cloud was continuously retransmitting packets and using more
network, as shown in Figure 9C. Similarly, execution with C1
suffered from TCP retransmission at the signal level of −83dBm
in the unstable zone. This caused high delay and high network
usage as shown in the Figures 9B,C, respectively. Based on the
above analysis, we choose the threshold for the self-adaptive
switching at a signal level of−80dBm. As shown in Figure 9A,C1
performed better above−80dBm and C3 performed better below
−80dBm in terms of battery power consumption. Therefore,
the self-adaptive decision mechanism of the framework while
executing the MCH foraging task will use C1 on and above
−80dBm, and will switch to C3 when the signal level is below
(−80dBm).

6.4.3. Online Profiling: Foraging Task
The rate of packet loss increases due to factors like wireless
interference, link failure and network congestion. The packet
loss causes latency in the network and, therefore, can affect the
execution of the MCH application if the mode of static code-
offloading is being used. As a result, at the mobile endpoint,
long socket-wait time will cause more delay to the completion
of the task. At the cloud, long socket-wait will cause the mobile
to retransmit the TCP packets with the cost of using more
battery power and network usage. We consider the following two
scenarios, which are intended to capture two contrasting types of
environment that might be encountered by a robot.

6.4.3.1. Scenario 1
In the first scenario, we will consider zero per cent congestion in
the network. As shown in Figure 10A, the congestion is kept zero
during the course of the task execution.

6.4.3.2. Scenario 2
In the second scenario, we introduce a high degree of network
congestion (100%), where the packet loss is 100%, as shown in
Figure 10B. Adding the congestion simulates the behavior of the
unstable zone, discussed in section 6.4.2. During the congestion,
we assume that the self-adaptive approach will likely be unable to
switch to C3 as the signal level would still be good (from −50 to
−70dBm).

6.4.4. Results and Analysis
To determine the performance of the self-adaptive and self-aware
enabled framework, we executed the MCH foraging task for an
increased time duration. Doing the online profiling and using
the two scenarios, we measured the mean power consumption,
bandwidth usage and run-time of the task with C1, C3, and
enabling either the self-adaptivity or self-awareness approach.
The measurements are listed in Table 2. The execution of the
task with C3, which does not use code-offloading, is used for
both scenarios. The executions of the task with C1, which uses
code-offloading, suffered from high latency in both scenarios.

6.4.4.1. Scenario 1
In scenario one, the execution of the task with the self-adaptive
or self-aware approach, which switches between C1 and C3
according to the signal level (self-adaptivity) and packet loss (self-
aware), consumed less battery power than C3 with the cost of
using network bandwidth. The executions did not suffer from
latency, as happened in case of C1, because the framework
switches to all-zero configuration (C3) when the signal level is
low and causing packet loss, as shown in Figure 10A.

6.4.4.2. Scenario 2
In scenario two, the execution of the task with the self-adaptive
or self-aware approach again performed better than C1 by taking
less time to complete. However, with the self-adaptive approach,
the execution suffered from latency due to packet loss caused by
the high network congestion. The task execution with the self-
aware approach performed better by avoiding the packet loss
caused by both network congestion and low signal level. The self-
aware MCH framework used less battery power than C3 and less

Frontiers in Robotics and AI | www.frontiersin.org 12 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 9 | Plots showing the results of profiling the Pareto-optimal configurations at different signal levels. (A) Mean power consumption of 30 samples at different

signal levels. (B) Mean execution time of 30 samples at different signal levels. (C) Mean network bandwidth usage of 30 samples at different signal levels.

network bandwidth than C1 and self-adaptive, and also finished
in good time as shown in Figure 10B.

6.5. Scalable MCH Application—Robotic
Foraging Task
We will compare the outcomes of the two multi-objective
optimization algorithms (NSGA-II and Two-Step) discussed in

sections 5.2.1 and 5.2.2, respectively. Performance assessment
include both the quality of the outcome as well as the
computational resources needed to generate this outcome.
Concerning the latter aspect, the number of fitness evaluation
will be the same for both algorithms. As to the quality aspect,
comparing solutions in the presence of multiple criteria, the
Pareto dominance concept must be used. However, when
comparing two sets of solutions, some solutions in either

Frontiers in Robotics and AI | www.frontiersin.org 13 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 10 | Plots showing results of the two scenarios. Mean of battery power consumption of configurations C1, C3, self-adaptive, and self-aware approaches

with a passage of time are plotted. The lines end show the completion time. The packet loss caused by signal level degradation and congestion is also shown. (A)

Scenario one: the self-adaptive and self-aware MCH tasks both achieve better optimization in a changing environment (signal level variation). (B) Scenario two: With a

packet loss caused by signal level and network congestion the self-aware approach out-performed the self-adaptive, C1 and C3 in terms of using less power and

network bandwidth. It is due to the fact that the robot monitored the packet loss by observing its runtime impact, i.e., avoiding latency.

set can be dominated by solutions in the other set and
some solutions can be incomparable. As both algorithms use
random optimization methods, due to the stochastic nature of
the algorithms, for obtaining a well-based judgement related
to the quality performance, it is necessary to perform any
test over many algorithm runs. Therefore, to eliminate the
random effect and obtain meaningful statistical significant
results, we executed both algorithms 10 times, each time with
a different seed for random number generator for both method
and hybrid-level configuration sets. The number of objective
function evaluation was kept the same (300) for both algorithms
in each run. To compare the quality of the solution sets
produced by these two MOO algorithms, we used two different
unary indicators: (1) Hypervolume Indicator (S-metric) and
(2) Attainment Surface. These indicators are discussed in the
following sub-sections.

6.5.1. Hypervolume Indicator
The hypervolume is a unary value, which is calculated as the
sum of the areas formed by points on the non-dominated
front and a chosen reference point (w). Figure 11A shows
the area of the bi-dimensional region enclosed by a set of
non-dominated points and a reference point (W) considering
a minimization problem. It is a well-known quality measure
in evolutionary multi-objective optimization to evaluate the
performance of search algorithms (Auger et al., 2009; Bradstreet,
2011). Hypervolume takes into account the diversity as well
as the convergence of the non-dominated solutions. The
reference point (w) represents some upper boundary of the
region within all feasible points lie. The basic idea is that, for

a bi-dimensional minimization problem, the larger the area
dominated by one non-dominated set in the objective space, the
better the set is. To compare the performance of the two MOO
algorithms, we will calculate the hypervolume of the obtained
Pareto-optimal approximation set for each algorithm after
each run.

6.5.2. Attainment Surface
The attainment surface corresponds to a region in the objective
space which is attained by (dominated by or equal to) the good
solution returned by a MOO algorithm. It is formalized in the
concept of k%-attainment surface. Figure 11B shows the results
obtained from an arbitrary multiple runs of a MOO algorithm
describing the distribution of the obtained non-dominated set
using the notion of goal-attainment. The best attainment surface
is the limit between the region attained by at least one run
and the objective vectors never attained by any run. Whereas,
the worst attainment surface delimits the region attained by
all runs. The graphical visualization of attainment surface is
a powerful tool providing a good insight of the algorithm
performance. López-Ibáñez et al. (2010) developed graphical
tools for the analysis of bi-objective optimization algorithms
that plot the attainment surface of the solution sets. We will
use the tool in R to plot the probabilistic distribution of the
configurations along the Pareto front, obtained by the two
algorithms. The tool calculates the empirical attainment function
(EAF), which provides a summary of the outcomes of the 10
different runs of each algorithm. By plotting and comparing the
EAFs of the two algorithms, we will be able to pin-point several
performance behaviors.

Frontiers in Robotics and AI | www.frontiersin.org 14 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 11 | In (A) the hypervolume for a minimization problem, calculated as the area enclosed by the non-dominated solutions and a chosen reference point (w), is

shown. It computes the size of the region that the non-dominated points dominates. In (B) the attainment surface is created for several non-dominated solutions for a

minimization problem. It describes the distribution of the obtained non-dominated set using the notion of goal-attainment.

6.5.3. Hypervolume Indicator for the MCH Foraging

Task
We run each algorithm 10 times, and the hypervolume was
calculated for each obtained non-dominated solutions for both
algorithms. The reference point used was the same in all
obtained solutions in both algorithms. The box-and-whisker
plots in Figures 12, 13 show the distribution of hypervolume
values for the method-level and hybrid-level configuration sets,
respectively. For the method-level configuration set, the medians
of the hypervolume for both algorithms are nearly at the same
level. However, the underlying distributions are very distinct.
It indicates a better consistency in the hypervolume values
(for the 10 runs) for the Two-Step algorithm when compared
with NSGA-II. Given the amount of time (2 weeks) that both
algorithms took to generate these results, we can say that the
Two-Step algorithm performed well. If the time constraint is
removed, the NSGA-II might perform better by increasing its
number of generations.

As we can see in Figure 14, the mean hypervolume value,
corresponding to the mean hypervolume value for the 10
runs throughout the generations, has not fully converged
for the method-level configuration set. For the hybrid-level
configuration set, it is evident from Figure 13 that the Two-
Step algorithm performed better than the NSGA-II. In case of
NSGA-II, the distribution of the hypervolume values shows a
large spread. Similar to the method-level configuration set, the
mean hypervolume value has not fully converged as shown in
Figure 14.

6.5.4. Attainment Indicator for the MCH Foraging Task
To visualize the behavior of the two algorithms and illustrate
where in the objectives space and by how much the outcomes
differ for themethod-level and hybrid-level configuration sets, we
plotted the attainment surface of the non-dominated solutions
obtained by the two algorithms. In Figures 15A,B, we can see

FIGURE 12 | A box-and-whisker plot showing the hypervolume distribution of

10 independent runs of NSGA-II and Two-Step MOO algorithms. The

non-dominated configurations obtained by the algorithms were for the

method-level configuration sets created for the MCH foraging task.

the attainment surface of the obtained non-dominated method-
level configurations by NSGA-II and Two-Step search algorithm,
respectively. Additional to the best and the worst attained surface,
we have also shown the attainment surface with other percentiles
(20, 40, 60, 80%). We can see that the attainment surface of
method-level configurations obtained by the Two-Step search
algorithm is more compact with respect to all percentiles.

Similarly, in case of hybrid-level configurations, the
attainment surface obtained by the Two-Step search algorithm
is even more compact with respect to all percentiles as shown
in Figure 16. Figure 15C points the differences between the
two algorithms with respect to their corresponding EAFs. The

Frontiers in Robotics and AI | www.frontiersin.org 15 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 13 | A box-and-whisker plot showing the hypervolume distribution of

10 independent runs of NSGA-II and Two-Step MOO algorithms. The

non-dominated configurations obtained by the algorithms were for the

hybrid-level configuration sets created for the MCH foraging task.

FIGURE 14 | The mean hypervolume obtained for 10 runs of NSGA-II

throughout the generations. The dots represent the mean hypervolume level of

the 10 runs with respect to the number of generations. The two lines are for

method-level and hybrid-level configuration sets created for the MCH foraging

task.

value of the EAF indicates the probability of attaining an area
in the objective space. The performance of an algorithm would
be considered better than the other if its EAF value at certain
area is larger than the other. The gray level represents the
magnitude of the difference. From the figure, we can see that the
Two-Step search algorithm performs better in terms of finding
good solutions toward minimization of network usage that
were not good toward the minimization of power usage. On the
other hand, the NSGA-II performs better toward high quality
configurations for the minimization of power consumption and
also slightly for the minimization of both objective.

6.5.5. Results and Analysis
The above analysis of the obtained results provide some key
facts regarding how much an MCH application can be scalable,
proportional to the number of their offloadable modules, to
produce efficient configurations that optimize the trade-off
between power and network usage.

6.5.5.1. Small-scale MCH applications
According to our experiments, offloadable modules between 2
and 8 would lie the so-called small-scale MCH applications. For a
small-scale MCH applications, the exhaustive search algorithm is
appropriate to use for finding the Pareto-optimal configurations.
In the Two-Step search algorithm, we used an exhaustive search
to find Pareto-optimal class-level configurations (in the first
step) because of a small number (4) of class-level modules. The
exhaustive search completed in around 30 min for the class-
level configuration set of cardinality equals to 16. However, for
the total number of configurations (32, 400) in all the three
sets (class-level, method-level and hybrid-level) combined, the
exhaustive search took more than a month to find the Pareto-
optimal configurations using the offline profiling (discussed in
section 4.1).

6.5.5.2. Medium-scale MCH applications
According to our experiments, offloadable class-level modules <

8 andmethod-level modules higher than 8 would lie the so-called
medium-scale MCH applications. For a medium-scale MCH
applications, the exhaustive search algorithm will take a large
amount of time to complete and, therefore, would not be practical
to use. In this case, Evolutionary Algorithms, such as NSGA-II,
are appropriate to use, which can approximate the Pareto-front
solutions in a reasonable amount of time. For the Foraging task,
where the number of class-level configurations is equal to 16 and
the combined method-level and hybrid-level configurations are
equal to 32, 384, both the Two-Step and NSGA-II were feasible to
use. They took about 2 weeks time for the 10 independent runs
to complete.

6.5.5.3. Large-scale MCH applications
According to our experiments, offloadable class-level and
method-level modules higher than 8 would lie the so-called large-
scale MCH applications. For a large-scale MCH applications, the
Two-Step search algorithm would not be practical to use. For
such applications, finding a scalable solution is an open research
question that we will leave for the future work.

7. CONCLUSION

In this paper, we presented a self-aware and scalable solution to
efficient MCH robotic tasks. Using multi-objective optimization
and code-offloading techniques, we develop an MCH application
framework. We presented a workflow to modularize the source
code of applications developed for mobile devices and based on
the three granularity level we create class-level (coarse-grained),
method-level (fine-grained) and hybrid-level configurations for
the task. By doing offline profiling and using the framework,
MCH robotic tasks can be executed with the configurations and

Frontiers in Robotics and AI | www.frontiersin.org 16 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 15 | Ten independent outcomes obtained for the method-level configuration set by the two different MOO algorithms. In (A) the attainment surface of

Two-Step is shown with respect to six quartiles. In (B) the attainment surface of NSGA-II is shown with respect to six quartiles. In (C) the location of the difference

between the EAFs of the two algorithms is shown where the gray level represents the magnitude of the difference.

the battery power consumption and network usage are measured
at runtime to find efficient configurations. For scalability, we
presented a Two-Step search algorithm that can find the efficient
configurations in reasonable amount of time. A self-aware and
self-adaptive decision mechanism of the framework can use the
efficient configurations in the fly to optimize the tradeoff between
battery power consumption and network usage.

We evaluate the technique using a battery powered and
Raspberry Pi controlled Thymio Robot performing an MCH
foraging task. An exhaustive search algorithm, which took more
than a month, finds Pareto-optimal configurations that optimize
the tradeoff between power consumption and network usage. We
used these configurations to evaluate self-adaptive and self-aware
decision mechanism for which we carried out experiments using
two different scenarios. In scenario one, we created a lab-based

controlled environment in which a change of network signal level
would cause packet loss, resulting in TCP socket-wait delay or
packet retransmission. In scenario two, in addition to the poor
signal level, network congestion due to overloading would also
cause packet loss.

The self-adaptive switching was based on an evaluated signal
level threshold (−80dBm). The robot performing the task would
switch between two Pareto-optimal configurations, one which
would execute all modules on the robot when the signal level
was below the threshold, other which would use code-offloading
when the signal level was above the threshold. The self-aware
decision, however, was based on monitoring the packet loss by
the robot within itself rather the change of the signal level. With
high amount of packet loss the task would switch to the Pareto-
optimal configuration that would execute all modules on the

Frontiers in Robotics and AI | www.frontiersin.org 17 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

FIGURE 16 | Ten independent outcomes obtained for the hybrid-level configuration set by the two different MOO algorithms. In (A) the attainment surface of

Two-Step is shown with respect to six quartiles. In (B) the attainment surface of NSGA-II is shown with respect to six quartiles. In (C) the location of the difference

between the EAFs of the two algorithms is shown where the gray level represents the magnitude of the difference.

robot and with zero to small amount of packet loss the task would
switch to the configuration that use code-offloading. The self-
adaptive and self-aware switching were implemented to avoid
network latency and to minimize the power and network usage.
The experimental results indicate that in scenario one, using
the self-adaptive and self-aware decisions performed better than
using static offloading and no offloading. In scenario two, the
self-aware decision mechanism was better than the self-adaptive,
static offloading and no offloading. As the robot was monitoring
the packet loss by observing its runtime impact it avoid the
latency caused by network congestion.

To make the framework scalable, in terms of finding non-

dominated solutions in a large configuration set, we developed

a Two-Step search algorithm. We carried out an experimental

study to compare the outcome of the Two-Step search algorithm
with NSGA-II. The assessment was based on the quality of the

outcome of the algorithms. Due to the stochastic nature of the
algorithms, to eliminate the random effect and obtainmeaningful
statistical significant results, we executed both algorithms 10
times, each time with a different seed for random number
generator for both method and hybrid-level configuration
sets. We used two performance indicators: the Hypervolume
Indicator and visualization of the Attainment surface. The results
shows that the Two-Step algorithm performed well, given the
amount of time (2 weeks) that both algorithms took to generate
the results.

8. FUTURE WORK

In order to validate the idea of optimizing the battery power
consumption and network usage in MCH robotic tasks, we
presented a solution that with a self-aware decision mechanism

Frontiers in Robotics and AI | www.frontiersin.org 18 August 2020 | Volume 7 | Article 102

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

can optimizes the efficiency trade-off and is scalable for a small
to medium-scale robotic tasks. In the future work, we plan to
apply this technique to large scale MCH robotic tasks, as well as
applications created for smartphones/tablets. Further, we plan to
provide a formalmethod for self-adaptive and self-aware decision
mechanisms and also evaluate the framework with other context
factors, such as resource usage, code type, cloud-side context
and using non-WIFI networks (e.g., LoRa/LoRaWAN, NB-IoT,
SigFox, etc.).

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

FUNDING

This work was funded by overseas Ph.D. scholarship program of
Abdul Wali Khan University Mardan (AWKUM) in Pakistan.

ACKNOWLEDGMENTS

We would like to thank Abdul Wali Khan University Mardan
(AWKUM) in Pakistan for financially supporting this work.
In addition, we were very thankful to all the researchers in
the ALICE research group with whom we discussed our work
and considered their insights and comments. Moreover, we
would like to acknowledge that this work is an extension
to our previous work, which we presented in IEEE Fifth
International Conference on Internet of Things: Systems,
Management and Security (IoTSMS-2018). Our paper, which
was entitled Self-Adaptive and Self-Aware Mobile-Cloud Hybrid
Robotics (Akbar and Lewis, 2018b), was published as the
conference proceedings.

REFERENCES

Ahmed, E., Gani, A., Sookhak, M., Hamid, S. H. A., and Xia, F. (2015). Application

optimization in mobile cloud computing. J. Netw. Comput. Appl. 52, 52–68.

doi: 10.1016/j.jnca.2015.02.003

Akbar, A., and Lewis, P. R. (2017). “Towards the optimization of power

and bandwidth consumption in mobile-cloud hybrid applications,” in 2017

Second International Conference on Fog and Mobile Edge Computing (FMEC),

(Valencia). doi: 10.1109/FMEC.2017.7946433

Akbar, A., and Lewis, P. R. (2018a). The importance of granularity in

multiobjective optimization of mobile cloud hybrid applications. Trans. Emerg.

Telecommun. Technol. 30:e3526. doi: 10.1002/ett.3526

Akbar, A., and Lewis, P. R. (2018b). “Self-adaptive and self-aware mobile-

cloud hybrid robotics,” in 2018 Fifth International Conference on

Internet of Things: Systems, Management and Security (Valencia).

doi: 10.1109/IoTSMS.2018.8554735

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A.,

et al. (2010). A view of cloud computing. Commun. ACM 53, 50–58.

doi: 10.1145/1721654.1721672

Auger, A., Bader, J., Brockhoff, D., and Zitzler, E. (2009). “Theory of

the hypervolume indicator: optimal µ-distributions and the choice of

the reference point,” in FOGA ’09: Proceedings of the Tenth ACM

SIGEVO Workshop on Foundations of Genetic Algorithms (Orlando, FL).

doi: 10.1145/1527125.1527138

Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and Yang, H.-I. (2002).

“The case for cyber foraging,” in Proceedings of the 10th Workshop on ACM

SIGOPS European Workshop (Saint-Emilion). doi: 10.1145/1133373.1133390

Bradstreet, L. (2011). The Hypervolume Indicator for Multi-Objective Optimisation:

Calculation and Use. Crawley, WA: University of Western Australia.

Brown, G. (2016). Mobile Edge Computing Use Cases and Deployment Options.

Juniper White Paper.

Chen, W., Yaguchi, Y., Naruse, K., Watanobe, Y., and Nakamura, K. (2018). QoS-

aware robotic streaming workflow allocation in cloud robotics systems. IEEE

Trans. Serv. Comput. 1–1. doi: 10.1109/TSC.2018.2803826

Chen, Y., Du, Z., and García-Acosta, M. (2010). “Robot as a service

in cloud computing,” in 2010 Fifth IEEE International Symposium on

Service Oriented System Engineering (SOSE) (Nanjing: IEEE), 151–158.

doi: 10.1109/SOSE.2010.44

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. (2011). “Clonecloud:

elastic execution between mobile device and cloud,” in Proceedings of the

Sixth Conference on Computer Systems, EuroSys ’11 (Salzburg: ACM), 301–314.

doi: 10.1145/1966445.1966473

Ciobanu, R., Dobre, C., Bălănescu, M., and Suciu, G. (2019). Data and

task offloading in collaborative mobile fog-based networks. IEEE Access 7,

104405–104422. doi: 10.1109/ACCESS.2019.2929683

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R.,

et al. (2010). MAUI: Making Smartphones Last Longer With Code Offload. San

Francisco, CA: ACM.

Deb, K. (2011). “Multi-objective optimisation using evolutionary algorithms: an

introduction,” inMulti-Objective Evolutionary Optimisation for Product Design

and Manufacturing, eds L. Wang, A. H. C. Ng, and K. Deb (Springer), 3–34.

doi: 10.1007/978-0-85729-652-8_1

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000). “A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization: NSGA-

II,” in Parallel Problem Solving From Nature PPSN VI, eds M. Schoenauer, K.

Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, et al. (Berlin; Heidelberg:

Springer), 849–852. doi: 10.1007/3-540-45356-3_83

Dutt, N., Jantsch, A., and Sarma, S. (2016). Toward smart embedded systems: a self-

aware system-on-chip (SoC) perspective. ACM Trans. Embed. Comput. Syst.

15:22. doi: 10.1145/2872936

Flores, H., and Srirama, S. (2013). “Adaptive code offloading for mobile cloud

applications: exploiting fuzzy sets and evidence-based learning,” in Proceeding

of the 4th ACM MobiSys Workshop on Mobile Cloud Computing and Services

(New York, NY).

Garey, M. R., and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. New York, NY: W. H. Freeman & Co.

Gu, X., Messer, A., Greenberg, I., Milojicic, D., and Nahrstedt, K. (2004).

Adaptive offloading for pervasive computing. IEEE Perv. Comput. 3, 66–73.

doi: 10.1109/MPRV.2004.1321031

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., andMilojicic, D. (2003). “Adaptive

offloading inference for delivering applications in pervasive computing

environments,” in Proceedings of the First IEEE International Conference

on Pervasive Computing and Communications, 2003 (PerCom 2003) (Fort

Worth, TX).

Heinerman, J., Zonta, A., Haasdijk, E., and Eiben, A. E. (2016). “On-line evolution

of foraging behaviour in a population of real robots,” in Applications of

Evolutionary Computation, eds G. Squillero and P. Burelli (Cham: Springer

International Publishing), 198–212. doi: 10.1007/978-3-319-31153-1_14

Hong, Z., Huang, H., Guo, S., Chen, W., and Zheng, Z. (2019). QoS-

aware cooperative computation offloading for robot swarms in cloud

robotics. IEEE Trans. Vehic. Technol. 68, 4027–4041. doi: 10.1109/TVT.2019.

2901761

Hu, G., Tay, W. P., and Wen, Y. (2012). Cloud robotics: architecture, challenges

and applications. IEEE Netw. 26, 21–28. doi: 10.1109/MNET.2012.6201212

Frontiers in Robotics and AI | www.frontiersin.org 19 August 2020 | Volume 7 | Article 102

https://doi.org/10.1016/j.jnca.2015.02.003
https://doi.org/10.1109/FMEC.2017.7946433
https://doi.org/10.1002/ett.3526
https://doi.org/10.1109/IoTSMS.2018.8554735
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1527125.1527138
https://doi.org/10.1145/1133373.1133390
https://doi.org/10.1109/TSC.2018.2803826
https://doi.org/10.1109/SOSE.2010.44
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/ACCESS.2019.2929683
https://doi.org/10.1007/978-0-85729-652-8_1
https://doi.org/10.1007/3-540-45356-3_83
https://doi.org/10.1145/2872936
https://doi.org/10.1109/MPRV.2004.1321031
https://doi.org/10.1007/978-3-319-31153-1_14
https://doi.org/10.1109/TVT.2019.2901761
https://doi.org/10.1109/MNET.2012.6201212
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

Akbar et al. Self-Aware and Scalable MC Robotics

Huang, D. (2011). Mobile cloud computing. IEEE COMSOC Multimed. Commun.

Tech. Committ. E-Letter 6, 27–31.

Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. (2015). A survey of research on

cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12, 398–409.

doi: 10.1109/TASE.2014.2376492

Khan, A. R., Othman, M., Xia, F., and Khan, A. N. (2015). Context-aware

mobile cloud computing and its challenges. IEEE Cloud Comput. 2, 42–49.

doi: 10.1109/MCC.2015.62

Kosta, S., Aucinas, A., Hui, P., Mortier, R., and Zhang, X. (2012). “Thinkair:

dynamic resource allocation and parallel execution in the cloud for mobile code

offloading,” in Infocom, 2012 Proceedings IEEE (Orlando, FL: IEEE), 945–953.

doi: 10.1109/INFCOM.2012.6195845

Kounev, S., Lewis, P., Bellman, K. L., Bencomo, N., Camara, J., Diaconescu, A.,

et al. (2017). The Notion of Self-Aware Computing. Springer.

Lewis, P. R., Chandra, A., Parsons, S., Robinson, E., Glette, K., Bahsoon, R., et al.

(2011). “A survey of self-awareness and its application in computing systems,”

in 2011 Fifth IEEE Conference on Self-Adaptive and Self-Organizing Systems

Workshops (Ann Arbor, MI), 102–107. doi: 10.1109/SASOW.2011.25

Lewis, P. R., Platzner, M., Rinner, B., Torresen, J., and Yao, X. (Eds.). (2016).

Self-Aware Computing Systems: An Engineering Approach. Springer.

Li, Z., Wang, C., and Xu, R. (2001). “Computation offloading to save energy

on handheld devices: a partition scheme,” in CASES ’01: Proceedings of the

2001 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (Atlanta, GA). doi: 10.1145/502217.502257

Lin, X., Wang, Y., Xie, Q., and Pedram, M. (2015). Task scheduling with

dynamic voltage and frequency scaling for energy minimization in the

mobile cloud computing environment. IEEE Trans. Serv. Comput. 8, 175–186.

doi: 10.1109/TSC.2014.2381227

Liu, B., Chen, Y., Blasch, E., Pham, K., Shen, D., and Chen, G. (2014). “A holistic

cloud-enabled robotics system for real-time video tracking application,” in

Future Information Technology, eds J. J. Park, I. Stojmenovic, M. Choi, and F.

Xhafa (Springer), 455–468. doi: 10.1007/978-3-642-40861-8_64

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., and Qureshi, A.

(2015). Application partitioning algorithms in mobile cloud computing:

taxonomy, review and future directions. J. Netw. Comput. Appl. 48, 99–117.

doi: 10.1016/j.jnca.2014.09.009

López-Ibáñez, M., Stützle, T., and Paquete, L. (2010). “Graphical tools for the

analysis of bi-objective optimization algorithms,” in Workshop on Theoretical

Aspects of Evolutionary Multiobjective Optimization (Portland, OR).

Nakahara, F. A., and Beder, D. M. (2018). A context-aware and self-adaptive

offloading decision support model for mobile cloud computing system.

J. Ambient Intell. Hum. Comput. 9, 1561–1572. doi: 10.1007/s12652-018-

0790-7

Naqvi, N. Z., Devlieghere, J., Preuveneers, D., and Berbers, Y. (2016).

“MAsCOT: self-adaptive opportunistic offloading for cloud-enabled smart

mobile applications with probabilistic graphical models at runtime,” in 2016

49th Hawaii International Conference on System Sciences (HICSS) (Koloa, HI).

doi: 10.1109/HICSS.2016.705

Oliveira, G., and Isler, V. (2013). View Planning for Cloud-Based Active Object

Recognition. Technical Report, Department of Computer Science, University

of Minnesota, Minneapolis, MN, United States.

Preden, J. S., Tammemäe, K., Jantsch, A., Leier, M., Riid, A., and

Calis, E. (2015). The benefits of self-awareness and attention in

fog and mist computing. Computer 48, 37–45. doi: 10.1109/MC.

2015.207

Rahman, A., Jin, J., Cricenti, A., Rahman, A., and Panda, M. (2017). “Motion

and connectivity aware offloading in cloud robotics via genetic algorithm,” in

GLOBECOM 2017-2017 IEEE Global Communications Conference (Singapore).

doi: 10.1109/GLOCOM.2017.8255040

Riazuelo, L., Civera, J., and Montiel, J. (2014). C2tam: a cloud framework

for cooperative tracking and mapping. Robot. Auton. Syst. 62, 401–413.

doi: 10.1016/j.robot.2013.11.007

Rodrigues, J. A., Marques, E. R. B., Lopes, L. M. B., and Silva, F. (2017). “Towards

a middleware for mobile edge-cloud applications,” inMECC ’17: Proceedings of

the 2ndWorkshop on Middleware for Edge Clouds & Cloudlets (Las Vegas, NV).

doi: 10.1145/3152360.3152361

Saha, O., and Dasgupta, P. (2018). A comprehensive survey of recent

trends in cloud robotics architectures and applications. Robotics 7:47.

doi: 10.3390/robotics7030047

Shuja, J., Gani, A., Ko, K., So, K., Mustafa, S., Madani, S. A., et al. (2018).

SIMDOM: a framework for simd instruction translation and offloading in

heterogeneous mobile architectures. Trans. Emerg. Telecommun. Technol.

29:e3174. doi: 10.1002/ett.3174

Shuja, J., Gani, A., ur Rehman, M. H., Ahmed, E., Madani, S. A., Khan, M.

K., et al. (2016). Towards native code offloading based mcc frameworks

for multimedia applications: a survey. J. Netw. Comput. Appl. 75, 335–354.

doi: 10.1016/j.jnca.2016.08.021

Srinivas, N., and Deb, K. (1994). Muiltiobjective optimization using

nondominated sorting in genetic algorithms. Evol. Comput. 2, 221–248.

doi: 10.1162/evco.1994.2.3.221

Stanley, K. O. (2004). Efficient evolution of neural networks through

complexification (Ph.D. thesis), Department of Computer Sciences, The

University of Texas at Austin, Austin, TX, United States.

Suryavansh, S., Bothra, C., Chiang, M., Peng, C., and Bagchi, S. (2019). “Tango

of edge and cloud execution for reliability,” in MECC ’19: Proceedings of

the 4th Workshop on Middleware for Edge Clouds & Cloudlets (Davis, CA).

doi: 10.1145/3366614.3368103

Tilevich, E., and Smaragdakis, Y. (2002). “J-orchestra: automatic java

application partitioning,” in Proceedings of the 16th European Conference

on Object-Oriented Programming (Malaga: Springer-Verlag), 178–204.

doi: 10.1007/3-540-47993-7_8

Wan, J., Tang, S., Yan, H., Li, D., Wang, S., and Vasilakos, A. V. (2016).

Cloud robotics: current status and open issues. IEEE Access 4, 2797–2807.

doi: 10.1109/ACCESS.2016.2574979

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Akbar, Lewis and Wanner. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Robotics and AI | www.frontiersin.org 20 August 2020 | Volume 7 | Article 102

https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.1109/MCC.2015.62
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1109/SASOW.2011.25
https://doi.org/10.1145/502217.502257
https://doi.org/10.1109/TSC.2014.2381227
https://doi.org/10.1007/978-3-642-40861-8_64
https://doi.org/10.1016/j.jnca.2014.09.009
https://doi.org/10.1007/s12652-018-0790-7
https://doi.org/10.1109/HICSS.2016.705
https://doi.org/10.1109/MC.2015.207
https://doi.org/10.1109/GLOCOM.2017.8255040
https://doi.org/10.1016/j.robot.2013.11.007
https://doi.org/10.1145/3152360.3152361
https://doi.org/10.3390/robotics7030047
https://doi.org/10.1002/ett.3174
https://doi.org/10.1016/j.jnca.2016.08.021
https://doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1145/3366614.3368103
https://doi.org/10.1007/3-540-47993-7_8
https://doi.org/10.1109/ACCESS.2016.2574979
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles

	A Self-Aware and Scalable Solution for Efficient Mobile-Cloud Hybrid Robotics
	1. Introduction
	2. Related Work
	2.1. Applications Partitioning
	2.2. Mobile-Cloud Hybrid Frameworks
	2.2.1. Cloud-Enabled Robotic Frameworks
	2.2.2. Self-Adaptive and Self-Aware Mobile-Cloud Hybrid Frameworks

	2.3. Insufficiencies in Available Approaches

	3. Efficient Modularization of Mobile Applications
	3.1. Granularity of Configurations
	3.2. Modular Configurations and Their Representation
	3.2.1. Class-Level Configurations
	3.2.2. Method-Level Configurations
	3.2.3. Hybrid-Level Configurations

	3.3. Collapsible Configurations
	3.4. Effective Partitioning of MCH Applications

	4. Mobile-Cloud Hybrid Application Framework
	4.1. Offline Profiling
	4.1.1. Measuring Battery Power Consumption
	4.1.2. Measuring Network Usage

	4.2. Runtime Optimization of MCH Applications
	4.2.1. Self-Adaptive MCH Application Framework for Dynamic Offloading
	4.2.2. Self-Aware MCH Application Framework for Dynamic Offloading

	4.3. Online Profiling

	5. Scalable Mobile-Cloud Hybrid Applications
	5.1. Challenges in Scaling Up
	5.2. Approaches to Scale Up
	5.2.1. NSGA-II
	5.2.2. Two-Step Search Algorithm

	6. Experimental Study
	6.1. Application Modularization
	6.2. Executing the MCH Application
	6.3. Finding Pareto-Optimal Configurations
	6.4. Runtime Decision Making of the MCH Framework
	6.4.1. Profiling the Pareto-Optimal Configurations at Different Signal Levels
	6.4.2. Determining the Threshold for Self-Adaptive Switching
	6.4.3. Online Profiling: Foraging Task
	6.4.3.1. Scenario 1
	6.4.3.2. Scenario 2

	6.4.4. Results and Analysis
	6.4.4.1. Scenario 1
	6.4.4.2. Scenario 2

	6.5. Scalable MCH Application—Robotic Foraging Task
	6.5.1. Hypervolume Indicator
	6.5.2. Attainment Surface
	6.5.3. Hypervolume Indicator for the MCH Foraging Task
	6.5.4. Attainment Indicator for the MCH Foraging Task
	6.5.5. Results and Analysis
	6.5.5.1. Small-scale MCH applications
	6.5.5.2. Medium-scale MCH applications
	6.5.5.3. Large-scale MCH applications

	7. Conclusion
	8. Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

