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Abstract 

Organic Rankine cycle systems are suitable technologies for utilization of low/medium-temperature heat 

sources, especially for small-scale systems. Waste heat from engines in the transportation sector, solar 

energy, and intermittent industrial waste heat are by nature transient heat sources, making it a 

challenging task to design and operate the organic Rankine cycle system safely and efficiently for these 

heat sources. Therefore, it is of crucial importance to investigate the dynamic behavior of the organic 

Rankine cycle system and develop suitable control strategies. This paper provides a comprehensive 

review of the previous studies in the area of dynamic modeling and control of the organic Rankine cycle 

system. The most common dynamic modeling approaches, typical issues during dynamic simulations, 

and different control strategies are discussed in detail. The most suitable dynamic modeling approaches 

of each component, solutions to common problems, and optimal control approaches are identified. 

Directions for future research are provided. The review indicates that the dynamics of the organic 

Rankine cycle system is mainly governed by the heat exchangers. Depending on the level of accuracy 

and computational effort, a moving boundary approach, a finite volume method or a two-volume 

simplification can be used for the modeling of the heat exchangers. From the control perspective, the 

model predictive controllers, especially improved model predictive controllers (e.g. the multiple model 

predictive control, switching model predictive control, and non-linear model predictive control 

approach), provide excellent control performance compared to conventional control strategies (e.g. 

proportional–integral controller, proportional–derivative controller, and proportional–integral–

derivative controllers). We recommend that future research focuses on the integrated design and 

optimization, especially considering the design of the heat exchangers, the dynamic response of the 

system and its controllability.  
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1. Introduction 

The future energy demand of the ever-increasing global population requires efficient utilization of 

current energy resources as well as the development of sustainable energy solutions. The conversion of 

energy, from primary energy sources to end use, involves several losses that result in waste heat to the 

environment. Waste heat resources for organic Rankine cycle (ORC) systems are normally classified 

into three categories [1]:  

1) Low-grade or low-temperature waste heat (ambient – 250 oC);  

2) Medium temperature waste heat (250 oC – 500 oC);  

3) High temperature waste heat (> 500 oC).  

It is estimated that 72 % of the primary energy consumption is discarded as waste heat, and about 78 % 

of the waste heat is low-grade heat or low-temperature heat [2]. For energy efficiency improvement and 

reduction of the overall energy consumption, the conversion of waste heat to power can play an 

important role. The low-grade thermal energy cannot be converted efficiently to electrical power by 

conventional energy conversion technologies (Steam Rankine or Brayton cycle), and a large amount of 

low-temperature heat sources remain untapped. These low-grade thermal energy and waste heat 

resources include heat from energy conversion plants based on renewable energy sources as well as 

waste heat from industries, thermal power plants, and the transportation sector.  

The conversion of low-grade thermal energy and waste heat to power can provide financial benefits for 

the plant owner, as well as improve energy efficiency and reduce CO2 emissions of the plant [3]. Among 

the existing technologies to convert low-grade heat to power, the organic Rankine cycle (ORC) can be 

considered an ideal technology. The ORC systems have the following unique features:  

• Adaptability to various heat sources 

• Advantages with respect to common steam Rankine cycle systems for heat source temperature 

below 300-400 ℃ and small scale (below 5 MW) 

• Proven technology 

• Suitability for distributed power generation 

• Usable over a wide capacity range (a few kW to a few MW) 

• Good part-load performance 

• Low complexity 

• Experienced manufacturers and technology providers 

• Extensive market potential  

Geothermal energy, waste heat from various thermal processes, biomass combustion, solar energy and 

ocean thermal energy are the major heat sources for the ORC technology [4]. A number of review studies 
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have been reported for the ORC technology regarding waste heat recovery (WHR) from internal-

combustion engines (ICE) [5], and for maritime applications [6].  

WHR from gas turbines in compressed gas stations is also an important field of application for ORC, as 

reported in [7] and [8]. Hoang A. T. [9] presented a comprehensive review of the component design and 

economic feasibility of ORC for waste heat recovery from diesel engines. Shi et al. [10] reviewed the 

different configurations of the ORC system based on heat source temperature and nature of the working 

fluids for waste heat recovery from internal-combustion engines. Lion et al. [11] provided a 

comprehensive review of the application of ORC technology on a heavy-duty diesel engine with 

particular focus on vehicle applications for on and off highway sectors. The paper also provided 

operating profiles (engine torque and speed) and used them to assess the emissions with and without an 

ORC system. Zhou et al. [12] provided a detailed review of the ORC system for passenger vehicles and 

outlined the major challenges for ORC integration. Zhai et al. [13] provided a theoretical categorization 

of heat sources based on the heat source availability, and the type, temperature, capacity, and dynamics 

of the heat source. Lecompte et al. [14]  reviewed the typical and innovative ORC architectures for 

WHR. The authors identified the difficulty in assessing the additional complexity and the importance of 

evaluating also the economic feasibility of new architectures rather than focusing only on 

thermodynamic analysis. 

The core research in the field of ORC technology can be broadly classified into working fluids, 

expansion machines, cycle configuration, design, experimental investigation, optimization, and dynamic 

modeling and control of the ORC system [15]; see Table 1. It can be observed that a significantly large 

area of work is within the domain of optimization and design. However, in the open literature, the 

dynamic modeling and control studies constitute less than 10% of the total number of publications in 

the area of ORC technology [16,17].  

Table 1. Major research areas in ORC technology, Park et al. [17]. 

Research area 
Number of publications in ORC technology (normalized number of papers 

published in the area divided by total papers published in the ORC field) 

Design/Modeling/Analysis 0.369 

Optimization 0.139 

Expander/Turbine 0.148 

Working fluid 0.126 

Dynamics 0.031 

Control 0.030 

Pump 0.018 

Heat exchanger 0.016 

Cycle configuration 0.009 
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The dynamic modeling and control aspects are critically important for ORC systems that are subjected 

to changes in the heat source or cold sink conditions. ORC systems operated in off-grid/island-mode 

need to react to load changes as well. Fluctuating primary heat sources (mass flow rate or temperature) 

include solar thermal, waste heat recovery from industries, waste heat recovery from internal-

combustion engines of heavy-duty vehicles and gas turbines in compressed gas stations. The use of 

transient heat sources can lead to over-heating, causing fluid decomposition of the working fluid of the 

ORC, and component failure of the ORC due to stalling or temperature shocks. With respect to WHR 

from a diesel engine, the transient heat source may result in operational difficulties of the emission-

control system during start-up and shutdown procedures. In addition, frequent and rapid changes of the 

heat source force the ORC system to operate far from the design-point, thus deteriorating its performance 

and economic potential. Storage solutions might be used, but the additional capital costs for the storage 

might affect the economic feasibility of the WHR. 

Furthermore, it is known that for isentropic or dry working fluids, a decrease in the degree of working 

fluid superheating at the turbine inlet leads to an increase in the thermal efficiency, if the ORC does not 

preheat the working fluid with an internal heat exchanger (recuperator) [18]. However, operating the 

ORC using a turbo-expander with a very small degree of superheating may lead to erosion on the turbine 

blades as the fluctuations in the heat source conditions may lead to incomplete evaporation of the 

working fluid. The potential occurrence of turbine erosion is governed by the system thermal inertia and 

configuration. Thus, the estimation of operational parameters such as superheating and its sensitivity to 

heat source fluctuation and load conditions require rigorous analysis of the process dynamics. The data 

for such dynamic studies can be obtained from experimental work, but the cost of constructing test rigs 

is generally high. Moreover, often sub-optimal control schemes are employed in experimental work for 

safety concerns. In order to resolve the aforementioned barriers, it is of crucial importance to understand 

the dynamic response of the system and develop suitable controllers ensuring safe operation, long life 

of the ORC unit and maximum performance under varying heat source and cold sink conditions. 

To some extent, the expertise and guidelines concerning the dynamic modeling of ORC systems can be 

obtained from the fields of steam power plants, gas turbine engines, and combined cycle power plants 

[19,20]. However, these power plants typically operate close to the design point, whereas ORC systems 

utilizing fluctuating heat sources often operate far from the design point depending on the heat source, 

cold sink and loading conditions.  

A literature review indicates that the dynamic modeling and control of ORC systems have evolved from 

component-level analyses in the last decade and are now mature enough to simulate complex ORC 

systems with the integration of components. However, despite the availability of specific studies, there 

is no previous work presenting a holistic picture of the state-of-the-art on the topic.  
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The lack of a review critically evaluating and comparing the different dynamic modeling and control 

approaches, makes it difficult for researchers and industry developers to make the appropriate choices 

with regards to these methods, hindering the development of optimal controllers for ORC systems that 

encounter highly transient heat sources. Consequently, the lack of a holistic review may impede the 

commercialization of ORC systems for applications characterized by highly transient heat sources (e.g. 

the truck industry).    

This paper provides a comprehensive review of the dynamic modeling and control of ORC systems. The 

component-level modeling is discussed, as well as the integration of components to form and model 

complex systems; the technical difficulties, simulation pitfalls, best practices, and different modeling 

techniques are presented in detail. Various control schemes are compared, and the advantages, 

disadvantages and maturity level for each of them are discussed. The more suitable dynamic models of 

each component, solutions to common problems, and optimal control approaches are identified. 

Directions for future research are provided. Overall, the paper provides a unique, unified reference 

benchmark for future work concerning dynamic modeling and control of ORC systems. 

The paper consists of five sections. The introduction and state-of-the-art review are presented in 

Section 1. Section 2 discusses the common dynamic modeling approaches of ORC systems, both at the 

component and the system-level. The control approaches for ORC systems and their merits and demerits 

are discussed in Section 3. Dynamic modeling and controller development tools and software are 

covered in Section 4. Finally, the concluding remarks are presented in Section 5.  

2. Dynamic modeling 

This section provides a detailed description of the methodology and state-of-the-art approach used for 

the dynamic modeling of the ORC components, namely, the heat exchangers (evaporator and 

condenser), expander, pump, control valves, and storage tank. The modeling of single-phase heat 

exchangers, such as preheaters, subcoolers and recuperators, can be derived from the evaporator and 

condenser models, considering that the working fluid is found only at the liquid or only at the vapor 

phase under normal operation.   

The control of the ORC system is based on its dynamic response. Therefore, understanding the process 

dynamics plays a critical role for a successful controller design. The dynamic response of the ORC 

system depends on a number of factors, such as cycle configuration, type of the components, and 

working fluid.  

The modeling paradigm to study the dynamics of the ORC technology used today is mostly modular, 

rather than simultaneous. The principle of modularity implies that the outputs of a module (component 

model) must be dependent on the inputs of the module and be a function of internal parameters only. 

This allows for the reusability of a model and for using a bottom-up approach to develop libraries of 
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components for easy application and reconfiguration. On the other hand, the use of a simultaneous 

modeling approach fixes the system as a whole and generates a computationally efficient code; however, 

this technique does not allow modifications to be easily done to the model, and the set of equations 

needs to be rewritten if a component is added.  

The interest in dynamic modeling goes back to 2007 when Colonna et al. [19,20] presented a dynamic 

modeling paradigm for a steam Rankine cycle and experimentally validated the results against 

measurements from a steam power plant. Wei et al. [21] presented two alternative approaches for a 

dynamic model for the design of heat exchangers of an ORC unit in 2007. Quoilin et al. [22] presented 

a dynamic model and control strategy for a varying heat source in 2011. In 2013, Casella at al. [23] 

presented a software library [24] including modular, reusable ORC components which were 

experimentally validated against a commercial ORC unit. Later, Quoilin et al. [25] reported the 

development of a library for the dynamic simulation of thermodynamic systems in the object-oriented 

language Modelica. Pierobon et al. [26] presented a novel approach to integrate the dynamic 

performance of the ORC system into the preliminary design phase. The numerical model performed the 

thermodynamic cycle calculation and the design of the components of the system. The results of these 

simulations were used within the framework of a multi-objective optimization procedure to identify a 

number of equally optimal system configurations. A dynamic model of each of these systems was 

automatically parameterized, by inheriting its parameter values from the design model. Lakhani et al. 

[27] presented a dynamic modeling scheme of an ORC-based solar thermal power system with an 

integrated multi-tube shell and tube thermal storage system in 2017. Recently, Hustler et al. [28] 

presented a validated dynamic model of an ORC unit for waste heat recovery in a diesel truck. In 

addition, the thermo-physical properties of the working fluids (such as heat capacity, latent heat, critical 

temperature, and density) affect the dynamic response of the ORC system. Shu et al. [29] investigated 

the dynamic response of 14 different working fluids based on the rise time, settling time and time 

constant. The results suggest that the working fluids with low critical temperature provide a faster 

response than those of working fluids with a high critical temperature.  

Colonna et al. [19] recognized a difference between simultaneous and modular paradigms classifying 

the causal and non-causal models. In causal models, the systems are decomposed into computational 

blocks with predefined causal interactions. This implies that input variables to the system must be 

decided prior to the development of the overall model, and the resulting model will have certain rigidity 

tied to the boundary and initial conditions, resulting in an explicit state-space form. However, bilateral 

coupling, discussed in detail in Ref. [19], can be used to choose input and output variables. The early 

computer solvers were able to work with causal models only, and often there was a need to manually 

reduce differential algebraic equations (DAEs) to ordinary differential equations (ODE), increasing 

chances of errors and modeling efforts. Modern solvers can handle non-causal models and simplify the 
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models using computer algebra and reorder the equations depending upon the choice of input and output 

variables, simplifying the work for the user.  

The ORC component modeling generally involves the solution of three conservation equations for each 

component, namely, the energy, mass and linear momentum balances. In addition, there are often needed 

constitutive equations, which can include heat transfer and pressure drop correlations and 

thermodynamic fluid property relations. 

Depending on the accuracy and computational time, dynamic models can be classified into two 

categories: data-driven and physics-based models [22]. The data-driven models are based on the 

knowledge of the system coming from measurements or previous simulations, and make use of 

computational methods such as machine learning [30] or transfer function identification to develop 

models of high computational efficiency [31]. The drawback is that the accuracy of the model is highly 

dependent on the quality of the data set [32]. Extrapolation out of the operating range of the data set can 

lead to poor accuracy and estimation errors. If there are modifications to the original system, the model 

cannot be adapted if physical information is missing. Physics-based models are component-level models 

based on the conservation laws (mass, energy and momentum). For this reason, changes in the system 

configuration and tests of the system performance in extreme operating conditions can be assessed more 

easily. The complexity of both data-driven and physics-based models can change according to the 

required accuracy and computational time. Low-order models are developed by doing several 

simplifications in physics-based models as well as by selecting a lower number of independent variables 

for data-driven models. They can be used for real-time applications and for longer time simulations, 

such as annual simulations. High-order models are suited for shorter time period simulations, spanning 

from a few minutes to several hours, when the computation time is not critical, and these are the ideal 

choice for the development of controllers of broader applicability.  

A list is shown in Table 2 of the dynamic modeling studies of ORC systems and the applied modeling 

approaches. 
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Table 2: List of dynamic modeling studies in the area of organic Rankine cycle technology. 

Ref.  Application Software 
Cycle Modeling approach 

Configuration Working fluid Evap. Cond. Pump Exp. 

[28] WHR (ICE) gPROMS Basic Ethanol MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[33] Solar Matlab/Simulink Basic R245fa FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[34] Solar Matlab/Simulink Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[35] WHR (ICE) Matlab/Simulink Dual evap. R245fa FV FV Pr. Map Pr. Map 

[35] WHR (ICE) GT-POWER Dual evap. Ethanol FV FV Pr. Map Pr. Map 

[29] WHR (ICE) Matlab/Simulink Basic 14 Pure fluids MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[36] WHR (ICE) Matlab/Simulink Dual evap. R245fa MB MB Pr. Map Pr. Map 

[37] WHR Matlab/Simulink Basic R123 FV FV 𝜂𝑖𝑠 Pr. Map 

[38] WHR Matlab/Simulink Recuperated R134a MB MB Pr. Map Pr. Map 

[39] WHR (ICE) Matlab/Simulink Dual evap. Ethanol MB MB Pr. Map Pr. Map 

[40] WHR (ICE) Matlab/Simulink Basic NA MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[41] WHR (ICE) Modelica Basic R245fa FV FV Pr. Map Pr. Map 

[42] WHR (ICE) LMS Imagine.Lab Basic Ethanol FV FV Pr. Map Pr. Map 

[43] WHR (ICE) Matlab/Simulink Dual loop Toluene MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[44] WHR Matlab/Simulink Basic NA MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[45] WHR (ICE) NA Basic Acetone FV FV Pr. Map Pr. Map 

[46] WHR (ICE) NA Basic R134a MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[47] WHR Modelica Recuperated SES36 FV FV Pr. Map Pr. Map 

[31] WHR (ICE) NA Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[48] WHR (ICE) Matlab/Simulink Dual evap. Ethanol MB MB NA NA 

[49] Geothermal VMGSim Recuperated n-Pentane MB MB Pr. Map Pr. Map 

[50] WHR (ICE) Matlab/Simulink Dual evap. NA FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[51] WHR (ICE) Matlab/Simulink Basic Ethanol FV FV NA NA 

[52] WHR (ICE) NA Recuperated R245fa FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[53] WHR (ICE) Modelica Basic NA FV FV NA NA 

[54] WHR NA Basic NA FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[55] WHR Matlab/Simulink Basic R245fa FV FV NA NA 

[56] WHR (ICE) Matlab/Simulink Dual evap. Ethanol FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[57] WHR Matlab/Simulink Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[58] WHR (ICE) Matlab/Simulink Basic Ethanol MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[59] WHR (ICE) Matlab/Simulink Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[60] WHR (ICE) Matlab/Simulink Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[61] WHR (ICE) Matlab/Simulink Basic R123 FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[62] Geothermal Matlab/Simulink Recuperated R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[63] WHR (ICE) Matlab/Simulink Basic Ethanol MB MB NA NA 

[64] WHR Matlab/Simulink Basic R245fa MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[65] WHR (ICE) Matlab/Simulink Supercritical R134a FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[66] WHR (ICE) GT-Power Basic R245fa FV FV 𝜂𝑖𝑠 𝜂𝑖𝑠 

[22] WHR Modelica Basic R245fa FV FV Pr. Map Pr. Map 

[21] WHR Modelica Basic R245fa MB MB Pr. Map Pr. Map 

[67] WHR Modelica Basic R245fa FV FV Pr. Map Pr. Map 

[68] Geothermal VMGSim Basic NA MB MB 𝜂𝑖𝑠 𝜂𝑖𝑠 

[69] Geothermal  Modelica Dual evap. R245fa TV - - - 

NA = not available; MB = moving boundary approach; FV = finite volume approach; TV = two-volume approach; Pr. Map = 

performance map; 𝜂𝑖𝑠 = isentropic efficiency. 
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2.1 Heat exchangers 

The dynamic response of the ORC system is mainly governed by the heat exchangers. The heat 

exchangers account for the majority of performance lag due to dynamic changes in the operating 

conditions. This is because the time constant of the heat exchangers is much larger than those of 

expanders and pumps, and mechanical transients are much faster than heat transfer phenomena. This is 

valid not only for ORC systems [22,23], but also for conventional thermal power generation plants [70]. 

For instance, Shin et al. [71] studied the response time of a gas-fired combined cycle power plant to 

rapid changes in the gas turbine load. As it can be seen in Figure 1, the gas turbine could reach stable 

operation in 4 s, whereas the steam generator required more than 200 s for the high pressure part and 

2000 s for the low pressure part to reach steady operation.  

Figure 1: Time response of a) gas turbine and b) drum pressure of a gas-fired combined cycle power plant [71].  

In the particular case of heat exchangers involving two-phase flows, two commonly adopted heat 

exchanger modeling approaches are the finite volume and the moving boundary methods. Both methods 

are based on the conservation laws of energy, mass and momentum for a defined control volume. A 

third modeling approach, based on two volumes in non-equilibrium, is also illustrated. The conservation 

equations required to model the heat exchanger are mass, momentum and energy balances for the heat 

source and working fluid.  

2.1.1 Moving boundary method 

In a moving boundary (MB) model, the fluid flow in the heat exchanger is divided into as many control 

volumes as states of matter of the working fluid (i.e., liquid, two-phase, vapor) in the fluid flow. The 

size of the control volumes varies in real time during transient operation, following the saturated liquid 

and the saturated vapor boundaries. A moving boundary model of an evaporator is shown in Figure 2. 

Solving a moving boundary model is a non-linear implicit problem that leads to convergence issues if 

proper guessed values are not provided [72].  
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The issues related to the guessed values decrease the robustness of the proposed models. The set of non-

linear systems of equations of the MB is generally solved using the Newton solver [73]. However, the 

computational effort of the model depends on whether the system of the equations is presented in a 

causal formulation or an acausal formulation.  

 

Figure 2: Moving boundary approach layout for the evaporator, Peralez et al. [31]. 

The mass balance of the working fluid is given by: 

𝜕(𝐴𝑤𝑓,𝑋𝐴𝜌𝑤𝑓)

𝜕𝑡
+
𝜕�̇�𝑤𝑓

𝜕𝑧
= 0 (1) 

Since there is no mass entering and leaving the wall, there is no need for a mass balance of the wall. 

Generally, the dynamics of the heat source are fast enough, leading the term  
𝜕�̇�ℎ𝑠

𝜕𝑧
 to be close to zero. 

Therefore, it is not necessary to apply a mass balance for the heat source. The energy balance of the 

working fluid and exhaust gas share the same general form, given by: 

𝜕(𝐴ℎ𝑠,𝑋𝐴𝜌ℎ − 𝑝𝐴ℎ𝑠,𝑋𝐴)

𝜕𝑡
+
𝜕�̇�ℎ

𝜕𝑧
= 𝜋𝐷𝑒𝑞𝑈(𝑇𝑤 − 𝑇𝑤𝑓) = 𝜋𝐷𝑒𝑞𝑈∆𝑇 (2) 

𝐷𝑒𝑞 is the effective flow path diameter for either the working fluid and exhaust gas, 𝑈 is the overall heat 

transfer coefficient, and ∆𝑇 is the temperature difference between the fluid (working fluid or exhaust 

gas) and the wall. The energy balance of the wall is given by:  

𝐴𝑤,𝑋𝐴𝑐𝑝,𝑤𝜌𝑤𝐿𝑤
𝑑𝑇𝑤
𝑑𝑡

= 𝑈𝑤𝑓,𝑤𝐴𝑤𝑓,𝑤∆𝑇𝑤𝑓,𝑤 + 𝜂𝜖𝑈ℎ𝑠,𝑤𝐴ℎ𝑠,𝑤∆𝑇ℎ𝑠,𝑤 (3) 

where subscript w represents the wall, cp is heat capacity, Lw is the length in the axial 

direction, Aw,XA is the heat transfer area between working fluid and the wall, Uwf,w is the heat 

transfer coefficient between working fluid and the wall, ∆Twf,w is the temperature difference 

between the wall and the working fluid, 𝜂𝜖 is the heat exchanger efficiency multiplier, which 

accounts for heat loss to the environment, 𝐴ℎ𝑠,𝑤 is the heat transfer area between the exhaust gas 

and the wall, and 𝑈ℎ𝑠,𝑤  is the heat transfer coefficient between the exhaust gas and the wall. 
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The linear momentum balance is typically considered to be static, and if the pressure drop is neglected, 

the balance becomes trivial: 

𝜕𝑝𝑤𝑓

𝜕𝑧
= 0 (4) 

Eq. (1), Eq. (2), Eq. (3) and Eq. (4) represent the generalized forms of the mass, energy and linear 

momentum balances of the heat exchangers. These equations need to be extended to the subcooled, two-

phase, and superheated regions in the moving boundary model of the heat exchangers.  

2.1.2 Finite volume method 

In the finite volume method, the flow length of the heat exchanger is discretized into 𝑛 cells in which 

the energy and mass conservation equations are applied. The fluid properties are assumed to vary only 

in the flow direction. The finite volume model of a heat exchanger is shown in Figure 3.  

The properties of the fluid for each volume can be calculated either at the mean states of the two nodes 

(“central scheme”), or it can be assumed that the properties of the fluid for each volume are equal to the 

properties of the fluid leaving the volume (“upwind scheme”). If the fluid flows only in one direction, 

the upwind scheme is more robust. The central scheme is more computationally intensive than the 

upwind scheme, but it deals better with discontinuities in the case of flow reversal [74]. The properties 

of the fluid at the cell boundaries are represented by the symbol “*” in Figure 3. The area of cell, volume 

of cell, temperature and pressure at each node are given by: 

𝐴𝑖 =
𝐴

𝑛
;       𝑉𝑖 =

𝑉

𝑛
;    𝑖 = 1,2,3⋯⋯𝑛 (5) 

ℎ𝑖 =
ℎ𝑖+1
∗ +ℎ𝑖

∗

2
 ;    𝑇𝑖 =

𝑇𝑖+1
∗ +𝑇𝑖

∗

2
  

The mass balance for each cell and side of the heat exchanger is given by: 

𝑑𝑚𝑖

𝑑𝑡
= 𝑉𝑖

𝑑𝜌𝑖
𝑑𝑡

= �̇�𝑖
∗ − �̇�𝑖−1

∗       

(6) 
𝑑𝑚𝑖

𝑑𝑡
= 𝑉𝑖 [

𝜕𝜌

𝜕ℎ𝑖
|
𝑝

𝑑ℎ𝑖
𝑑𝑡

+
𝜕𝜌

𝜕𝑝𝑖
|
ℎ

𝑑𝑝𝑖
𝑑𝑡
] = �̇�𝑖

∗ − �̇�𝑖−1
∗  

The energy balance is given by: 

𝑑𝑈𝑖
𝑑𝑡

= (�̇�𝑖−1
∗ ℎ𝑖−1

∗ − �̇�𝑖
∗ℎ𝑖
∗) + �̇�𝑖 

(7) 

𝑉𝑖𝜌𝑖
𝑑ℎ𝑖
𝑑𝑡

= �̇�𝑖−1
∗ (ℎ𝑖−1

∗ − ℎ𝑖−1) − �̇�𝑖
∗(ℎ𝑖

∗ − ℎ𝑖) + �̇�𝑖 + 𝑝𝑖
𝑑𝑉𝑖
𝑑𝑡

 

The linear momentum balance is typically assumed to be static, and if the contribution of friction, 

buoyancy forces and fluid acceleration are considered, the balance becomes: 
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𝜕𝑝𝑤𝑓

𝜕𝑧
=  (

𝑑𝑝𝑤𝑓

𝑑𝑧
)
𝑓

+ (
𝑑𝑝𝑤𝑓

𝑑𝑧
)
𝑏

+ (
𝑑𝑝𝑤𝑓

𝑑𝑧
)
𝑎𝑐𝑐

 (8) 

 
 

 

Figure 3: Finite volume modeling approach of the heat exchanger, adapted from Xu et al. [75]. 

 

2.1.3 Comparison of moving boundary and finite volume method 

For a dynamic simulation of the ORC system, Wei et al. [21] compared the moving boundary and 

discretization technique approach. Their results suggested that both approaches can predict the dynamic 

performance of the ORC system fairly well, with less than 4 % relative difference compared with the 

experimental results. The simulation does not show the numerical chattering or oscillations in the results. 

As for the FV model, the level of discretization plays a critical role in the accuracy, computational effort 

and numerical inconsistencies.  

As a general rule of thumb, a minimum number of 20 nodes is recommended to avoid numerical 

inconsistency in the simulation results [76]. The level of discretization might affect the working fluid 

phase boundary from one cell to the next, which would generate a numerical mass flow rate due to the 

discontinuity characterizing the density in the regions around the saturation lines [77]. Desideri et al. 

[76] developed a dynamic model of an ORC system based on FV models for the evaporator and 

condenser, and compared the accuracy of the expander power output for different levels of discretization 

and corresponding computational effort; see Figure 4.  
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Figure 4: a) Expander output power as predicted by the finite volume model for different discretization levels. b) 

Computational time for the different discretization levels, Desideri et al. [76]. 

Applying a high level of discretization results in a better accuracy, but at the expense of a higher 

computation effort. For a number of CVs below 20, a non-physical oscillation between time t = 300 s 

and t = 310 s characterizes the expander output power simulation results. This phenomenon is explained 

by the displacement of the working fluid phase boundary from one cell to the next. This generates a 

numerical mass flow rate due to the discontinuity characterizing the density in the regions around the 

saturation lines. Increasing the number of CVs allows one to reduce the magnitude of this phenomenon. 

For a level of discretization above 20 CVs, negligible differences in the simulation results are registered, 

while the computational time of the models increases significantly, as shown in Figure 4b. This analysis 

allows one to identify a level of discretization of 20 CVs as a good compromise between accuracy and 

simulation speed for this specific simulation. 

Although the heat transfer and pressure drop correlations provide accurate assessments of the heat 

transfer and pressure drop, it is generally difficult to use these correlations for dynamic simulations as 

they may slow down the calculation process, and potentially cause numerical instabilities and simulation 

failure. Quoilin et al. [78] proposed a fast, robust approach to model heat transfer. At nominal conditions, 

the heat transfer coefficient is determined and termed as the nominal heat transfer coefficient. For 

situations other than nominal conditions, the heat transfer coefficient is computed as follows: 

𝛼 = 𝛼𝑛 (
�̇�

�̇�𝑛
)
𝑚

 (9) 

𝛼 and 𝛼𝑛 are the heat transfer coefficient at the given state and the nominal heat transfer coefficient, 

�̇� 𝑎𝑛𝑑 �̇�𝑛 are the mass flow rate of working fluid at the given state and the nominal mass flow rate, 

and 𝑚 is a constant that depends on the heat transfer correlation.  
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The heat transfer coefficient can also be calculated using Eq. (10) [78]. The transitions between the 

different heat transfer coefficients (liquid, two phase, and vapour) may cause inconsistency and 

simulation failure. The non-zero quality, 𝑥,  width based transition by interpolating between the heat 

transfer coefficients can resolve this issue. In the interpolation function, the heat coefficients are 

represented in the form of vapor quality, 𝑥. The vapor quality is defined by an enthalpy ratio as presented 

in Eq. (10). This results in a smooth function as the vapor quality and its first derivative are continuous. 

This continuity avoids negative effects in the solution process.  

 

𝛼 =

{
 
 
 
 

 
 
 
 
𝛼𝑙𝑖𝑞                                                                                       

𝛼𝑙𝑖𝑞 +
(𝛼𝑡𝑝 − 𝛼𝑙𝑖𝑞)

2
. (
1 + sin(𝜋𝑥 ∆𝑥⁄ )

2
)                

𝛼𝑡𝑝                                                                                      

𝛼𝑡𝑝 +
(𝛼𝑣𝑝 − 𝛼𝑡𝑝)

2
. (
1 + sin (𝜋

(𝑥 − 1)
∆𝑥
⁄ )

2
)    

𝛼𝑣𝑝                                                                                     

 

𝑖𝑓 𝑥 < −∆𝑥/2 

𝑖𝑓 𝑥 < ∆𝑥/2 

𝑖𝑓 𝑥 < 1 − ∆𝑥/2 

𝑖𝑓 𝑥 < 1 + ∆𝑥/2 

𝑖𝑓 𝑥 ≥ 1 + ∆𝑥/2 

(10) 

𝑥 =
ℎ − ℎ𝑙
ℎ𝑙 − ℎ𝑣

  

Desideri et al. [79] compared the FV and MB models based on experimental data. The heat transfer 

coefficients were calculated using Eq. (2), a heat transfer correlation, and a constant value of the heat 

transfer coefficient, respectively. The FV model predicts the experimental data more accurately than the 

MB, but with larger computational effort, as shown in Figure 5.  

The transient of the pressure dynamic is very fast. This leads to stiff models, which necessitate small 

time steps that can increase dramatically the simulation time. Therefore, in most of the studies in the 

area of dynamic modeling of heat exchangers of ORC systems, the pressure drop is generally neglected 

or lumped into a single parameter. Wei et al. [21] assumed a linear pressure drop across the entire 

evaporator during dynamic modeling of the ORC system, while Xu et al. [75] included a pressure drop 

for each working fluid phase independently by assigning each phase its own linear pressure drop along 

the spatial length in the dynamic modeling of an ORC system. 

The heat exchanger dynamic modeling is typically limited to one-dimensional modeling approaches, 

since two and three-dimensional spatial models bring a level of computational and analytical complexity 

that is unsuitable for the purposes of multi-component dynamic modeling and control. 
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Figure 5: Results of the heat transfer coefficient analysis on the finite volume and moving boundary models, 

Desideri et al. [79]. 

The moving boundary modeling approach is much faster (by approximately three times) than the finite 

volume approach. However, the moving boundary approach has a lower accuracy than the finite volume 

approach when compared with experimental data. In addition, the moving boundary approach is more 

difficult to implement due to the complexity of variable control volume lengths, the need to incorporate 

the mean void fraction and the difficulty to extend the model to various heat exchanger types and 

geometries. The finite volume approach is simple, easy to derive, and easy to implement with various 

heat exchanger types and geometries due to the ease in reconfiguration of the model.  

Furthermore, the finite volume method can provide additional values of the heat exchanger parameters, 

while the moving boundary method only provides values for the outlet of the component and lumped 

values. For example, the finite volume approach can provide the tube wall temperature at uniform length 

intervals along the length of the tube, while the moving boundary model only provides the lumped value 

for each working fluid phase. 

Refer to Table 2 for the list of modelling methods applied to ORC systems. 
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2.1.4 Two-volume method  

For phase-change heat exchangers, where evaporation or condensation occurs in the shell side of the 

heat exchanger, it might be advantageous to model the shell side considering only two volumes, liquid 

and vapor, which are not in thermal equilibrium, as shown in Figure 6. The interface between the two 

volumes defines the level of liquid in the shell. This model is suitable for kettle reboilers, which are used 

to vaporize the working fluid in large-scale ORC units [69], or shell-and-tube condensers with hot-well, 

where the liquid is collected at the bottom of the shell [80]. Depending on the evaporation and 

condensation rate in each of the volumes, mass is exchanged between the two volumes. The heat source 

or cold sink flow in the tube bundle, which can instead be discretized using a finite volume approach. 

The mass, energy and linear momentum balance of the liquid (‘l’) and vapor volumes (‘v’) are: 

𝑑𝑚𝑙

𝑑𝑡
= 𝜌𝑙

𝑑𝑉𝑙
𝑑𝑡

+  𝑉𝑙
𝑑𝜌𝑙
𝑑𝑡

=  �̇�𝑐𝑜𝑛𝑑
∗  −  �̇�𝑒𝑣𝑎𝑝

∗ + �̇�𝑖𝑛
∗  

 

(11) 

𝑑𝑚𝑣

𝑑𝑡
= 𝜌𝑣

𝑑𝑉𝑣
𝑑𝑡

+  𝑉𝑣
𝑑𝜌𝑣
𝑑𝑡

=  − �̇�𝑐𝑜𝑛𝑑
∗   +  �̇�𝑒𝑣𝑎𝑝

∗ − �̇�𝑜𝑢𝑡
∗   

 

𝑑𝜌𝑙
𝑑𝑡

=
𝜕𝜌𝑙
𝜕𝑝𝑙

|
ℎ

𝑑𝑝𝑙
𝑑𝑡

+
𝜕𝜌𝑙
𝜕ℎ𝑙

|
𝑝

𝑑ℎ𝑙
𝑑𝑡

 
 

𝑑𝜌𝑣
𝑑𝑡

=
𝜕𝜌𝑣
𝜕𝑝𝑣

|
ℎ

𝑑𝑝𝑣
𝑑𝑡

+
𝜕𝜌𝑣
𝜕ℎ𝑣

|
𝑝

𝑑ℎ𝑣
𝑑𝑡

 
 

�̇�𝑒𝑣𝑎𝑝
∗ =  {

𝐶𝑒𝑣𝑎𝑝𝑚𝑙  (𝑥𝑙 − 𝑥𝑙,𝑟𝑒𝑓)                                             𝑖𝑓𝑥𝑙 > 𝑥𝑙,𝑟𝑒𝑓
       0                                                                               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒     

 
 

(12) 

�̇�𝑐𝑜𝑛𝑑
∗ =  {

𝐶𝑐𝑜𝑛𝑑𝑚𝑣 (𝑥𝑣,𝑟𝑒𝑓 − 𝑥𝑣)                                            𝑖𝑓𝑥𝑣 < 𝑥𝑣,𝑟𝑒𝑓
     0                                                                                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒     

 
 

𝑝𝑖𝑛
∗ − ∆𝑝𝑑𝑟𝑜𝑝,𝑖𝑛 = 𝜌𝑙𝑔𝑙𝑙 + 𝑝𝑣 

 

(13) 𝑝𝑙 = 
𝑝𝑖𝑛
∗ − ∆𝑝𝑑𝑟𝑜𝑝,𝑖𝑛 + 𝑝𝑣

2
 

 

𝑝𝑣 − ∆𝑝𝑑𝑟𝑜𝑝,𝑜𝑢𝑡 = 𝑝𝑜𝑢𝑡
∗  

 

𝑑𝕌𝑙
𝑑𝑡

=  �̇�𝑖𝑛
∗ ℎ𝑖𝑛

∗ + �̇�𝑐𝑜𝑛𝑑
∗ ℎ𝑠𝑎𝑡, 𝑣 − �̇�𝑒𝑣𝑎𝑝

∗ ℎ𝑠𝑎𝑡, 𝑙  +∑�̇�𝑙 
 

(14) 
𝑑𝕌𝑣
𝑑𝑡

=   − �̇�𝑐𝑜𝑛𝑑
∗ ℎ𝑠𝑎𝑡, 𝑣 + �̇�𝑒𝑣𝑎𝑝

∗ ℎ𝑠𝑎𝑡, 𝑙  − �̇�𝑜𝑢𝑡
∗ ℎ𝑜𝑢𝑡

∗ +∑�̇�𝑣 

 

Eq. (12) defines the mass exchanged between the two volumes, i.e., the evaporation and condensation 

rates �̇�𝑒𝑣𝑎𝑝
∗  and �̇�𝑐𝑜𝑛𝑑

∗ . They depend on the two coefficients 𝐶𝑒𝑣𝑎𝑝 and 𝐶𝑐𝑜𝑛𝑑 , which can be tuned from 

experimental data, and on the vapor quality of the volumes 𝑥𝑙  and 𝑥𝑣 with respect to the 

references 𝑥𝑙,𝑟𝑒𝑓  and 𝑥𝑣,𝑟𝑒𝑓, which are ideally 0 and 1, respectively. ∆𝑝𝑑𝑟𝑜𝑝,𝑖𝑛 and ∆𝑝𝑑𝑟𝑜𝑝,𝑜𝑢𝑡  refer to 

the working fluid pressure drops at the inlet and outlet ports, where as 𝜌𝑙𝑔𝑙𝑙  is the geodetic pressure for 

the liquid volume. 
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Figure 6: Two-volume model of the kettle reboiler, adopted from Pili et al. [69].  

2.1.5 Numerical issues and mitigation strategies 

The dynamic modeling is subject to different numerical issues, leading to potentially slow simulation or 

to simulation failures that can make the model unusable for some externally imposed operating 

conditions. 

In the moving boundary method, the simulation issues generally arise when the iteration process leads 

the solver to evaluate a physically impossible solution (typically the temperature profile of hot and cold 

streams crossing along the length of the heat exchanger). This can be due to the heat exchanger model 

itself, or to the external models imposing impossible operating conditions on the heat exchanger.  

Discontinuities in the model variables result in the phenomenon of chattering, a well-known issue in 

finite-volume, two-phase flow models. The chattering can lead the computed variables of the model to 

exceed their acceptable boundaries and cause failure of the simulation.  

Failure in the dynamic simulations may occur during the initialization phase or during the simulation 

phase of heat exchangers involving a discretized modeling approach. If start and initial values are not 

assigned properly, the solver may set these variables to default values, leading to non-convergence of 

the heat exchanger model [78]. However, also with adequate start and initial values, the non-linear 

system might fail to converge during initialization. Li et al. [81] proposed a simple approach to improve 

the convergence of non-linear systems. During initialization, the heat transfer coefficients and pressure 

drops are assumed constant, and after a few seconds (once the system is stabilized), the pressure drop 

and heat transfer equations are activated one by one. Another key element in non-convergence of the 

simulation may be the result of zero mass flow rate in components, leading to a stiff system of equations, 

which may require a very small time step and consequently, the computation time may drastically 

increase. In order to work around the problem, a very small mass flow rate (non-zero) may be imposed, 

ensuring that the system of equations converges without affecting the results.    

Region 1 «Pool boiling»

Region 2 «Vapor»

mout

mevap

min

mcond

Vl

Vv

Qwall,vapor

Qwall,liquid

Qliquid,vapor

Qext,vapor

Qext,liquid

.

.

.

.

..

.

.

. *

*
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In order to avoid freezing of the simulations at the initiation of the disturbance, the disturbances should 

not be defined as a step change, but rather as smooth transitions, avoiding infinite derivatives in the 

components of the system.     

Due to discontinuities in the model variables, chattering may occur and result either in simulation failure, 

extremely slow simulation or most often high-frequency oscillations. During the phase transition (liquid 

to two-phase) in two-phase heat exchanger models, a discontinuity in the first derivative of the density 

may lead to such issues. The simulation may fail or result in a stiff system if the cell-generated (and 

purely numerical) flow rate due to this discontinuity causes a flow reversal in one of the nodes as well 

as oscillations in pressure. Quoilin et al. [77] carried out a comprehensive analysis of the issues linked 

to simulation failures during integration in finite-volume flow models and provided several methods to 

tackle chattering and flow reversal problems. A filtering method, truncation method, smoothing of the 

density function and density derivative, a mean densities method, an enthalpy limiter method, and a 

smooth reversal enthalpy method were suggested to tackle such simulation failures and resolve these 

issues [77]. 

2.2 Expander 

For the dynamic modeling of ORC systems, the time constants characterizing the expansion and 

compression processes are small compared to those of the heat exchangers. Thus, the models for the 

expansion machine can be based on empirical or semi-empirical algebraic correlations where dynamics 

are neglected, i.e., a lumped model based on performance curves or the semi-empirical model developed 

by Lemort et al. [82].  

There are two types of expansion machines for ORC systems, the volumetric expander and the turbo-

expander. The choice of the type of expander is dependent on the system design, size, and application. 

Since the residence time of the working fluid in the expander is relatively small in comparison to those 

of the evaporator and condenser, the use of a static model is preferred for the modeling of the expansion 

machine. The model of the expander should include both the first and second thermodynamic laws. The 

first law includes the dependencies among pressure, flow rate, and rotational speed, while the second 

law relates the isentropic efficiency with the flow rate and pressure as well as the rotational speed [83].  

2.2.1 Volumetric expander 

The dynamics of the expander and the pump are very fast compared to those of the evaporator and 

condenser and are modeled at steady-state. Neglecting the heat loss, a volumetric expander can be 

modeled by its isentropic efficiency and filling factor, given by: 

𝜂𝑒𝑥𝑝,𝑖𝑠 =
�̇�𝑒𝑥𝑝

�̇�𝑤𝑓(ℎ𝑒𝑥𝑝,𝑖𝑛 − ℎ𝑒𝑥𝑝,𝑜𝑢𝑡)
 (15) 

𝜙 =
�̇�𝑤𝑓

𝜌𝑒𝑥𝑝,𝑖𝑛𝑉𝑠𝑤𝑁𝑒𝑥𝑝
 (16) 
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The outlet enthalpy is given by: 

ℎ𝑒𝑥𝑝,𝑜𝑢𝑡 = ℎ𝑒𝑥𝑝,𝑖𝑛 − 𝜂𝑒𝑥𝑝,𝑖𝑠(ℎ𝑒𝑥𝑝,𝑖𝑛 − ℎ𝑒𝑥𝑝,𝑜𝑢𝑡,𝑖𝑠) (17) 

In the case that experimental data are available, a performance map of a volumetric expander can be 

obtained, predicting the isentropic efficiency as a function of the expander inlet pressure, expander 

rotational speed, and expander pressure ratio (see e.g. reference [47]).  The mass flow rate through an 

expander is given by: 

 �̇�𝑤𝑓 = 𝜙𝜌𝑒𝑥𝑝,𝑖𝑛𝑉𝑠𝑤𝑁𝑒𝑥𝑝 (18) 

The losses of volumetric expanders include leakage losses, under- and over-expansion losses, friction 

losses, and heat losses. In order to obtain an accurate result, the work done by a volumetric expander 

should be calculated considering both the under-expansion and over-expansion losses [22,57]. Quoilin 

et al. [84] presented a detailed semi-empirical model of a scroll expander, accounting for heat losses, 

working fluid leakage loss, and under-expansion and over-expansion losses. The model is based on the 

physics of the expansion process across the machine, where a few unknown parameters are tuned by 

fitting with experimental data.  

2.2.2 Turbo-expander 

The dynamic of the turbine is very fast compared to that of the heat exchangers, and thus the turbine 

model is at steady-state. A performance map of the turbine can be used to calculate the mass flow rate 

through the turbine as a function of the rotational speed and pressure ratio:  

�̇�𝑤𝑓 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑎𝑝(𝑁𝑒𝑥𝑝, 𝑝𝑖𝑛,𝑒𝑥𝑝) (19) 

Xu et al. [75] used the turbine inlet temperature and Wei et al. [21] used the pressure ratio from the 

turbine performance map to calculate the mass flow rate through the turbine. The semi-empirical 

formulation of the Stodola equation [85] can be used to calculate the mass flow rate of the working fluid 

through the turbine: 

�̇�𝑤𝑓,𝑒𝑥𝑝 = 𝐾𝑒𝑞√𝜌𝑖𝑛,𝑒𝑥𝑝𝑝𝑖𝑛,𝑒𝑥𝑝(1 − (𝑃𝑅)
−2) 

(20) 
𝑃𝑅 =

𝑝𝑖𝑛,𝑒𝑥𝑝

𝑝𝑜𝑢𝑡,𝑒𝑥𝑝
 

The 𝐾𝑒𝑞 integrates the equivalent inlet nozzle cross-section and the discharge coefficient and is 

calculated from the turbine performance at the nominal condition:  

𝐾𝑒𝑞 =
(�̇�𝑤𝑓,𝑒𝑥𝑝)𝑛

√(𝜌𝑖𝑛,𝑒𝑥𝑝)𝑛
(𝑝𝑖𝑛,𝑒𝑥𝑝)𝑛

[1 − (𝑃𝑅𝑛)
−2]

 (21) 

The enthalpy at the outlet of the turbine is given by: 

ℎ𝑜𝑢𝑡,𝑒𝑥𝑝 = ℎ𝑖𝑛,𝑒𝑥𝑝 − 𝜂𝑒𝑥𝑝,𝑖𝑠(ℎ𝑖𝑛,𝑒𝑥𝑝 − ℎ𝑜𝑢𝑡,𝑖𝑠,𝑒𝑥𝑝) (22) 
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In most of the previous studies, the isentropic efficiency of the turbine was assumed constant. However, 

since the ORC system mostly operates far from design point in transient conditions, assuming a constant 

isentropic efficiency may lead to significant errors in the dynamic response of the ORC system [83]. 

Also the part-load performance in steady-state conditions will be inaccurately predicted by assuming a 

constant isentropic efficiency of the expander. An alternative to assuming a constant is to obtain the 

turbine isentropic efficiency from a turbine performance map, as in e.g. Xu et al. [75]: 

𝜂𝑒𝑥𝑝,𝑖𝑠 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑎𝑝(𝑁𝑒𝑥𝑝, 𝑃𝑅𝑒𝑥𝑝, 𝑇𝑖𝑛,𝑒𝑥𝑝) (23) 

The power output of the expander is given by: 

�̇�𝑒𝑥𝑝 = �̇�𝑤𝑓(ℎ𝑖𝑛,𝑒𝑥𝑝 − ℎ𝑜𝑢𝑡,𝑒𝑥𝑝) (24) 

2.3 Pump 

The dynamic response of the working fluid pump is very fast compared to that of the heat exchangers; 

hence, the pump is typically modeled using a steady-state lumped parameter model [60]. Such model 

can be based on performance maps provided by the pump manufacturer. The performance chart includes 

head versus volume flow curves at different rotational speeds. If the map is provided with one rotational 

speed only, curves at other speeds can be approximated by means of a kinematic similarity principle. 

Another type of performance chart includes efficiency curves on the head-flow plane or in terms of 

power consumption curves as a function of flow and speed [83]. Heat losses to the environment are 

usually neglected. 

For centrifugal pumps, the volume flow rate is a function of both the head and the rotational speed. The 

crossing point between the characteristic curve of the system and the performance curve of the pump 

defines the operating point, as shown in Figure 7. 

 

 Figure 7: Flow-head characteristics of a centrifugal pump.  
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For a positive-displacement pump, the mass flow rate through the working fluid pump is obtained from 

the performance curve (pump speed vs mass flow rate). If the dependency on the pressure ratio is 

neglected:  

�̇�𝑤𝑓,𝑝𝑢 = 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑎𝑝(𝑁𝑝𝑢) 

�̇�𝑤𝑓,𝑝𝑢 = 𝐶 + 𝐶1𝑓𝑝𝑢 
(25) 

where 𝑁𝑝𝑢 is the pump speed, 𝐶 and 𝐶1 are empirical constants, and 𝑓𝑝𝑢 is the frequency of the pump 

motor. In case the performance maps are not available, the mass flow rate can be obtained from the 

volumetric efficiency of the pump: 

�̇�𝑤𝑓 = �̇�𝑤𝑓,𝑖𝑑𝑒𝑎𝑙𝜂𝑣𝑜𝑙,𝑝𝑢 (26) 

The volumetric efficiency, 𝜂𝑣𝑜𝑙,𝑝𝑢, is a function of the pump speed 𝜔𝑝𝑢𝑚𝑝 (revolutions per second) and 

the pressure ratio across the pump [56]. The ideal mass flow rate of the pump is given by: 

�̇�𝑤𝑓,𝑖𝑑𝑒𝑎𝑙 = 𝑉𝑝𝑑𝜌𝑁𝑝𝑢 (27) 

𝑉𝑝𝑑 is the pump displacement volume, and 𝜌 is the working fluid density. The pump power consumption 

and the outlet temperature are given by: 

�̇�𝑝𝑢 =
�̇�𝑤𝑓

𝜌

(𝑝𝑜𝑢𝑡,𝑝𝑢 − 𝑝𝑖𝑛,𝑝𝑢)

𝜂𝑖𝑠,𝑝𝑢
 (28) 

𝑇𝑜𝑢𝑡,𝑝𝑢 = 𝑇𝑖𝑛,𝑝𝑢 +
(1 − 𝜂𝑖𝑠,𝑝𝑢)

�̇�𝑤𝑓,𝑝𝑢𝐶𝑝,𝑝𝑢
�̇�𝑝𝑢 (29) 

The isentropic efficiency can also be expressed as a function of known parameters (polynomial fit) from 

the performance map of the pump provided by the manufacturer. These parameters may include the 

pump capacity fraction, 𝑋𝑝𝑢,𝑐𝑓, defined by a reference [86]. 

𝑋𝑝𝑢,𝑐𝑓 =
𝑣𝑖𝑛,𝑝𝑢�̇�𝑤𝑓,𝑝𝑢

�̇�𝑖𝑛,𝑝𝑢,𝑚𝑎𝑥
 (30) 

Depending on the size of the pump, the pump capacity factor is limited by the boundary condition, 

�̇�𝑠𝑢,𝑝𝑢,𝑚𝑖𝑛 ≤ 𝑋𝑝𝑢,𝑐𝑓 ≤ 1. The known parameters in the polynomial fit can be represented by the mass 

flow rate fraction, 𝑋𝑝𝑢,𝑚𝑓, given by [75]: 

𝑋𝑝𝑢,𝑚𝑓 =
�̇�𝑤𝑓,𝑝𝑢

�̇�𝑤𝑓,𝑝𝑢,𝑚𝑎𝑥
 (31) 

�̇�𝑤𝑓,𝑝𝑢 is mass flow rate at any given condition while �̇�𝑤𝑓,𝑝𝑢,𝑚𝑎𝑥 is maximum mass flow rate that 

pump can deliver. Desideri et al. [79] used a second-order polynomial, as a function of the non-

dimensional pressure ratio and non-dimensional pump frequency, to estimate the isentropic efficiency 

of the pump: 

𝜂𝑝𝑢,𝑖𝑠 = 𝐶 + 𝐶1𝑓𝑝𝑢 + 𝐶1(𝑓𝑝𝑢)
2
+ 𝐶3𝑟𝑝𝑢 + 𝐶4(𝑟𝑝𝑢)

2
+ 𝐶5𝑓𝑝𝑢𝑟𝑝𝑢 (32) 
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In most of the simulation studies, the isentropic efficiency of the pump is assumed to be between 60 % 

and 85 %. However, a review of the experimental data obtained for ORC systems indicates that the 

isentropic efficiency of the pump can be as low as 40 % [16]. As with the expander, assuming a constant 

isentropic efficiency may lead to inaccurate dynamic response or part-load predictions; however, in this 

regard the influence of the pump is less than that of the expander. This is because the pump power is 

usually lower than 10 % of the mechanical power at the turbine shaft. 

Refer to table 2 for the list of studies presenting performance estimation for pump and expander models. 

2.4 Storage tank/Liquid receiver 

During the transient operation of the ORC system, the reservoir/storage tank acts as a buffer for the 

working fluid. The amount of working fluid charge and leakage can significantly alter the ORC system 

dynamics. A system with over filled working fluid will lead to conditions, where the working fluid start 

accumulating in the condenser as liquid. This will result in a larger degree of sub-cooling and a higher 

condenser pressure resulting in reduced power output and decreased efficiency.  

 The storage tank avoids the accumulation of working fluid in the condenser. On the other hand, if the 

working fluid amount is too small or working fluid has leaked out of the system, the system start-up will 

become almost impossible because during the start-up phase the pump will run out of working fluid and 

a cyclic flow may not be established. For the modelling of the storage tank (liquid receiver), it is usually 

assumed that the liquid and vapor phases are in thermodynamic equilibrium at all times, i.e., the vapor 

and liquid are assumed saturated at the given pressure. The pressure drop is typically neglected. The 

mass balance is given by: 

𝑑�̇�𝑤𝑓

𝑑𝑡
= �̇�𝑖𝑛,𝑤𝑓 − �̇�𝑜𝑢𝑡,𝑤𝑓               ;          

𝑑�̇�𝑤𝑓

𝑑𝑡
= 𝑉. [

𝜕𝜌

𝜕ℎ
|
𝑝
.
𝑑ℎ

𝑑𝑡
+
𝜕𝜌

𝜕𝑝
|
ℎ

.
𝑑𝑝

𝑑𝑡
] (33) 

𝑉  is the volume of the liquid receiver tank in m3. The density of the liquid can be represented in terms 

of a liquid level fraction 𝐿 (0 when the tank has only vapor, 1 when the tank is full of liquid), given by: 

𝜌 = 𝜌𝑙𝑌 + (1 − 𝑌)𝜌𝑣 (34) 

The term, 𝑌, is the level of saturated liquid in the receiver tank of the ORC system. Inserting the equation 

for the density, Eq. (34), into the mass balance equation, Eq. (33), gives the following equation: 

𝑉 [(𝜌𝑙 − 𝜌𝑣).
𝑑𝑌

𝑑𝑡
+ (

𝑑𝜌𝑙
𝑑𝑡

. 𝑌 +
𝑑𝜌𝑣
𝑑𝑡

. (1 − 𝑌))] = �̇�𝑖𝑛,𝑤𝑓 − �̇�𝑜𝑢𝑡,𝑤𝑓 (35) 

The generalized relation for the energy balance for the receiver tank [79] is given by: 

𝜌ℎ = 𝑌𝜌𝑙ℎ𝑙 + (1 − 𝑌)𝜌𝑣ℎ𝑣 (36) 

Substituting Eq. (36) into Eq. (7), the mass balance in receiver tank can be represented as [79]:  
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𝑉 {
𝑑𝑌

𝑑𝑡
(ℎ𝑙𝜌𝑙 − 𝜌𝑣ℎ𝑣) +

𝑑𝑝

𝑑𝑡
 [𝑌 ∙ (ℎ𝑙

𝑑𝜌𝑙
𝑑𝑝

+ 𝜌𝑙
𝑑ℎ𝑙
𝑑𝑝
) + (1 − 𝑌) ∙ (ℎ𝑣

𝑑𝜌𝑣
𝑑𝑝

+ 𝜌𝑣
𝑑ℎ𝑣
𝑑𝑝

) − 1]}

=  �̇�𝑖𝑛,𝑤𝑓ℎ𝑖𝑛 − �̇�𝑜𝑢𝑡,𝑤𝑓ℎ𝑜𝑢𝑡 
(37) 

Another aspect of ORC system design is to avoid that the change in the level/height of the receiver tank, 

at any time during operation, leads to a reduction of the net positive suction head available, becoming 

lower than net positive suction head required by the pump. Based on the level of working fluid in the 

receiver tank, the loss/leakage of working fluid charge quantity can be identified and working fluid 

quantity can be replenished.  

2.5 Control valves 

The dynamic characteristics of the control valve can be modeled with relevant equations that correlate 

the valve opening, boundary conditions and the flow through the component. The control valve model 

for WHR-based ORC systems is based on either  the incompressible flow for liquid flow or the 

compressible flow for vapor and two-phase flow [56]. If the system dynamics are fast, the valve 

positioning servo-system plays an important role in determining the closed-loop dynamic behavior of 

the system and should be included in the model [83]. However, it is difficult to gain access to information 

about the servo-positioner dynamics; hence, first-order or second-order linear systems can be used to 

consider these dynamics.  

In case experimental data are available for the ORC system, an empirical correlation can be developed 

to calculate the mass flow rate for incompressible flow based on the relative valve openings. Xu et al. 

[75] used an empirical approach to estimate the incompressible flow rate through the control valve for 

a parallel evaporator ORC system. In the parallel evaporator configuration, the waste heat from an 

internal combustion engine is recovered using two evaporators in a parallel arrangement, one recovers 

heat from the exhaust gas recirculation flow and the other from the exhaust gas tail pipe [75]. The mass 

flow rate for such configuration is given by: 

�̇�𝑤𝑓 = �̇�𝑤𝑓,𝑒𝑣1 + �̇�𝑤𝑓,𝑒𝑣2 (38) 

𝑟�̇� =
�̇�𝑤𝑓,𝑒𝑣1

�̇�𝑤𝑓,𝑒𝑣2
 (39) 

𝑟�̇� = 𝐶𝑑 (
𝜇𝑣𝑙,1
𝜇𝑣𝑙,2

)

𝑐1

 (40) 

�̇�𝑤𝑓,𝑒𝑣1 = �̇�𝑤𝑓 (
𝑟�̇�

𝑟�̇� + 1
) (41) 

�̇�𝑤𝑓,𝑒𝑣2 = �̇�𝑤𝑓 (
1

𝑟�̇� + 1
) (42) 

The parameters 𝜇𝑣𝑙,1 and 𝜇𝑣𝑙,2 are the opening of valves 1 and 2, respectively, before each evaporator. 

The discharge coefficient, 𝐶𝑑, and the constant 𝑐1 can be found by model identification  [87]. The term, 

𝑟�̇�, is the mass flow rate ratio of the working fluid between the two evaporators. For cases  where 
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experimental data are not available, the mass flow rate through the valve for incompressible flow can 

be determined as follows [56]: 

�̇�𝑐𝑣 = 𝜇𝑐𝑣𝐶𝑑𝐴𝑂√2𝜌(𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡) (43) 

The thermodynamic state of the working fluid at the outlet is calculated assuming an isenthalpic process 

through the valve. The mass flow rate through the valve for compressible flow is given by [75]: 

𝐼𝑓          (
2

𝛾 + 1
)

𝛾
𝛾−1

≤
𝑝𝑜𝑢𝑡
𝑝𝑖𝑛

≤ 1    (𝑠𝑢𝑏𝑠𝑜𝑛𝑖𝑐) (44) 

�̇�𝑐𝑣 = 𝜇𝑐𝑣𝐶𝑑𝐴𝑂√
2𝛾

𝛾 − 1
𝜌𝑖𝑛𝑝𝑖𝑛 [(

𝑝𝑜𝑢𝑡
𝑝𝑖𝑛

)

2
𝛾
− (

𝑝𝑜𝑢𝑡
𝑝𝑖𝑛

)

𝛾+1
𝛾
] (45) 

𝐼𝑓       0 ≤
𝑝𝑜𝑢𝑡
𝑝𝑖𝑛

≤ (
2

𝛾 + 1
 ) 

𝛾
𝛾−1  (𝑠𝑢𝑝𝑒𝑟𝑠𝑜𝑛𝑖𝑐) (46) 

�̇�𝑐𝑣 = 𝜇𝑐𝑣𝐶𝑑𝐴𝑂 (
2

𝛾 + 1
)

𝛾+1
2(𝛾−1)

√𝛾𝜌𝑖𝑛𝑝𝑖𝑛 (47) 

𝛾 is the heat capacity ratio. Assuming an isentropic process across the valve, the outlet temperature can 

be estimated by the enthalpy and pressure at the outlet of the valve. There is only one previous study 

[46] that considered the internal structure of the servo valves to estimate the valve opening.  

2.6 Sensors 

The measuring instruments might have a significant delayed response, especially the temperature 

sensors [83]. If the time scale of the measuring instrument is not negligible compared to the closed loop 

response time, it should be included in the model. First or second-order, low-pass linear systems can be 

used for this purpose. Lemort et al. [53,88] modeled the delayed response of the pump actuator, 

temperature and pressure sensors by a first-order model with the help of the manufacturer data.  

The dynamic modeling approach of the components of the ORC system are similar to conventional 

power plants such as combined cycle power plant [89–92], coal fired power plant [93–95], nuclear 

power plant [96–99], and concentrated solar power [100–102].  The dynamic modeling of these systems 

was carried in Dymola and Simulink. A comprehensive review of dynamic simulation, its development 

and application to various thermal power plants is presented in Ref. [70]. The underlying flow models 

and their fundamental assumptions and component level modeling of conventional thermal power plants 

are discussed in detailed.  
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3. Controller design  

The choice of working fluid, thermodynamic design, and mechanical design of the ORC components 

are prerequisite for the controller development and are used as input data for the controller design. 

Initially, the specific and concrete goals of the control system should be defined in terms of control 

variables and suitable set points. The main tasks of the control system are to keep the system safe and 

stable, to minimize the impact of disturbances and to optimize the ORC operation. In order to avoid 

singularities in the trajectories of the system, the number of manipulated variables should be equal or 

higher than the number of control variables. In the most common case, they are chosen in equal number. 

In the next phase, the dynamic interactions among the manipulated variables and control variables are 

investigated by analyzing the dynamic response of the control variables to step changes or more 

generally rapid changes of the manipulated variables. The step responses and transfer functions can 

provide an insight to identifying the dominant time constants of the system, the fastest system variables, 

and the slowest system variables. The transfer functions can be developed from experimental data or 

simulations of a physics-based model. Transfer functions are algebraic equations based on an input-

output relationship, whereas the physics-based models are ordinary differential equations described by 

means of inputs, outputs and states. 

The basic control strategy of the ORC system can be divided into two basic approaches: following the 

connected load (FCL) and following the thermal energy input (FTE) [103]. The number of actuators 

which can be manipulated in the system, as well as the variables that need to be controlled and kept 

close to the set points, define the basic control strategy. For instance, the rotational speed of the expander 

can be kept constant or it can be varied according to the operating point for optimal part-load 

performance. 

In the FCL mode, the expander and the generator are linked with the same shaft. A gearbox could be 

included to keep the same speed ratio between the expander and the generator, in the case they do not 

rotate at the same speed. In most cases, systems in FCL mode have the generator connected to the power 

grid without a power converter interface. The grid frequency and the number of poles of the stator 

winding of the generator determine the rotational speed of the generator (and the expander). The 

produced electric power from the generator needs to follow the variations of the electric demand, while 

the ORC process variables must be kept within safe operating limits. For this purpose, the heat source 

is controlled and adapted to the grid load. The FCL mode without a frequency converter is depicted in 

Figure 8. 
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Figure 8: A schematic of the ORC system operating with the FCL mode, Zhang et al. [57]. 

If a frequency converter is included, the rotational speed of the expander can be used to control the 

upstream pressure of the expander, thus providing an additional degree of freedom. However, the 

operating conditions of the ORC system may change substantially due to changes in the load 

requirements or expander speed. 

In the FTE mode, the goal of the system is to maximize the electricity production based on the heat 

available. The electric power from the generator follows the variations of heat source conditions. In an 

ideal case, all the heat available is fed to the ORC and converted into electricity. Some control elements 

on the heat source stream might still be required for extreme conditions to avoid overloading and/or 

thermal degradation of the working fluid. The FTE mode is shown in Figure 9. Here, a frequency 

converter is included, but if not present, the rotational speed of the expander is kept constant. 

 

Figure 9: A schematic of the ORC system operating with the FTE mode, Zhang et al. [57]. 

In terms of a control strategy, the ORC system can be operated in the sliding pressure mode or the fixed 

pressure/variable mass flow mode, or a combination of both. However, these operational modes do not 

take into account the dynamic response of the ORC system. Nonetheless, they are useful for the part-

load modeling of the ORC system and for defining the controller set points.  
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The sliding pressure control involves changes in the evaporator pressure resulting from the pump, 

evaporator and expander characteristics. The fixed pressured/variable mass flow rate scheme can be 

implemented by the addition of a pressure control valve (throttling valve) at the expander inlet to 

maintain pressure at a constant level in the evaporator, while the pump controls the mass flow rate 

through the cycle. This technique is easy to implement and might maintain a high-cycle efficiency 

(arguably theoretically) by keeping a high pressure at part-load; however, the throttling of the valve 

results in exergy losses, and the evaporation process is not optimized for the different heat source 

conditions (mismatches of the heat source and working fluid temperature lines in the T-Q diagram), 

resulting in pinch-point limitations and sub-optimal operation. The fixed pressure operation might be 

chosen at low load to ensure practical operation of the system, avoiding exceeding the minimal load of 

the components. For these reasons, at medium/nominal load range the sliding pressure mode is typically 

preferred. The operational strategy, which will then be important for the controller set points, can be 

optimized offline without accounting for the dynamics. If the dynamics is included, the controller 

requires an internal optimization function (or a supervisory block) that defines its actions by solving an 

online optimization problem. 

As for the control of ORC systems, previous works were often carried out by validating a dynamic 

model against an open-loop response caused by a step disturbance or a set point change. The validated 

models are then simulated/tested with a control algorithm implemented in a closed loop. However, in 

practice the ORC system control schemes are highly dependent on the application, type of equipment 

and cycle configuration. The control scheme of a grid-connected unit is significantly different from that 

of a system in off-grid mode, because it can be assumed that larger plants in the grid will mainly be 

responsible for the stability of the grid in the first case, whereas in an off-grid system, the ORC unit has 

to ensure proper contribution to the frequency and voltage stability of the decentralized network. 

Renewable-based off-grid ORC systems have been proposed mainly for remote areas [104]. 

Various works utilizing validated dynamic models and discussing control schemes have been reported 

in the literature. Given the large amount of control ideas that have been proposed, a brief overview of 

the main classes of controllers is provided here. The main techniques are summarized in Figure 10. 
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Figure 10: Overview of control techniques for ORC systems. 

 State-of-the-art ORC systems make use of proportional-integral-derivative (PID) controllers. These 

systems rely on the idea of directly acting on the error between the set point and the control variable 

(output feedback control) [105]. They have the advantage of being simple and easily available as 

electronic modules. The tuning of the controller parameters can be carried out empirically, directly on 

the plant without the need of a model. Some simple guidelines for controller tuning have been developed, 

such as the Ziegler-Nichols rules [106].  

Another approach makes use of an input-output description of a linear or linearized dynamic model of 

the unit, and then applies techniques developed from the analysis of the linear dynamic system. For 

multi-variable systems, where more than a single pair input/output is considered, multiple PIDs that 

work independently of one another are typically installed. Given the interdependency of the system 

variables, for instance, between the evaporator pressure and the degree of superheating at the evaporator 

outlet, a conflict between the two controllers or performance degradation can occur. Some methods exist 

to decouple the controller action and avoid the interdependency among the variables, but the stringent 

mathematical conditions on the system properties that must be maintained limit the applicability of these 

methods. More measurements (not necessarily control variables) can be fed to the same controller, to 

increase the amount of information that it receives and improve its performance. This is the principle of 

cascaded control. Additionally, since linear systems do not account for internal time delays in the 

system, lead/lag compensators can be implemented to compensate for these phenomena. To conclude, 

another important improvement to classical PID controllers consists of including a feed-forward part 

acting on the manipulated variables. The feed-forward detects the disturbance or set point change and 

sets the manipulated variables to compensate directly for their impact before there is any noticeable 

change in the system output, which is different from what occurs in the case of classical PID controllers 

based on output feedback control.  

In addition to the classical control techniques based on PID controllers, the improvements made in 

computational science have enhanced the development of advanced control methods, where the 
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controller makes use of the computational power of modern processors to design the controllers. 

Advanced controllers include optimal controllers (OC), adaptive controllers (AC) and model predictive 

controllers (MPC). Optimal controllers are designed to minimize a cost function (optimization target). 

Optimal control methods include dynamic programming (DP) and linear quadratic controllers (LQ). 

Both methods are based on a state-space model of the system, which gives information on the dynamics 

and time development of the system. Dynamic programming is a technique that defines future decisions 

based on the previous ones, operating in a recursive manner. The technique can be applied to both linear 

and non-linear systems, but in discrete form. DP has the advantage of allowing for real-time optimization 

of the controller set points. The main drawback is the computational effort required to solve the optimal 

problem, especially if the system has more than one state or control input [107].  

LQ controllers are based on a state-space linear or linearized dynamic model of the system. They are a 

state-feedback technique and therefore require the knowledge of the system state. If not all the states are 

measurable, a state estimator (observer) has to be included to provide information on the system states. 

The design of LQ controllers is based on a trade-off between the performance of the controller to reach 

the desired state and the energy required to control the actuators. In fact, it can be worth accepting a 

penalty on controller performance, if this results in a reduction of its energy consumption or in an 

increased lifetime of the actuators. To reach this goal, a quadratic cost function is minimized to design 

the controller feedback matrix. LQ controllers can handle multi-variable systems with no particular 

increase in complexity. The drawback when applied to non-linear systems is that the technique was 

developed for linear systems and cannot account for the nonlinear couplings between the systems 

variables. LQ controllers cannot be used if the system states cannot be measured or estimated.  

Such state estimators (observers) have been developed both for linear and non-linear systems, and they 

can be deterministic or stochastic. State estimators make use of the manipulated variables and 

measurable system outputs to estimate the system state. The separation principle allows for the design 

of the controller and the state estimator to be carried out separately. For linear systems, the Luenberger 

observer is used to minimize the error between the system state and the estimation. If stochastic noise is 

present in the system measurements and inputs, the linear Kalman filter should be preferred because it 

minimizes the sum of the estimation error variances. Non-linear state estimators have also been 

developed, but the computational effort increases significantly. The Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF) have proven to have good estimation capabilities. Both filters have 

similar computational effort, but the UKF has shown to have higher speed of convergence and to be 

more robust against uncertainties. Other state estimators exist, such as the particle filter and moving 

horizon estimators, but they require considerable computational effort. 

If changes in the system occur over time or uncertainties are initially unknown, it would be ideal to use 

online adjustable controllers, which can react and adjust their parameters according to an estimation for 

the changes or uncertainties. These controllers are also known as adaptive controllers. There are many 
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different adaptive control techniques, varying from gain-scheduling, extremum-seeking and generalized 

predictive control. While having the advantage of being able to deal online with changes and 

uncertainties in the system, it might be difficult to obtain robust, high-performance controllers that work 

in the entire continuous range of the estimated parameters.  

A further development in the 1980s regarded the introduction of Generalized Predictive Controllers 

(GPC). These controllers, which can also be considered as a subgroup of the family of the adaptive 

controllers, minimize a cost function where the controller bases the choice of the future inputs on the 

prediction of the system evolution in future time steps. To reach this goal, an identification model of the 

system is used, which relates inputs, outputs and disturbances. If the time horizon for the optimization 

is infinite, the GPC becomes equivalent to the LQ control. 

Similar to the GPC, several other techniques have been developed which predict the response of the 

system to decide how to set future manipulated variables. These include Model Algorithmic Control 

(MAC), Dynamic Matrix Control (DMC), Extended Prediction Self Adaptive Control (EPSAC) and 

Predictive Function Control (PFC).  All these algorithms are part of the family of Model Predictive 

Controllers (MPC). The advantage of MPCs is that they account for constraints on both the control and 

manipulated variables. The algorithms differ in the adopted process model (impulse response, step 

response, transfer functions, state-space, neural networks), in the objective function, and in the 

determination of the control law. Particular attention has been paid to MPC methods because of their 

main advantages [108]:  

- They can be used in a large variety of systems, even more complex ones; 

- Multiple variables can be considered with no particular increase in effort; 

- They can handle constraints in the optimization of the control law. 

If the target function includes minimization of costs or maximization of profits as well as the net power 

output, the term economic MPC is often used. Economic MPC can define controller optimal set points 

without previous offline optimization. As drawbacks for the entire MPC class, the derivation of the 

control law is more complex than for simple PID controllers, the control performance is largely affected 

by the quality of the model, and the computational power might be an issue, since an online optimization 

needs to be carried out each time step. The advantages and disadvantages of each control approach are 

presented in Table 3. 
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Table 3: Summary of control techniques for ORC systems. 

Control 

technique 

Model-

based 
Linear/Nonlinear 

State 

estimator 

Single/Multi-

variable 

Development 

effort 

CPU 

effort 
Performance 

PID 

(empirical) 
No NA No Mostly single + +++ - 

PID with 

linear system 

analysis 

Yes Linear No Mostly single ++ +++ - 

Cascaded 

control 
Yes Linear/Nonlinear No Both + ++ + 

Feed-forward Yes Linear/Nonlinear No Both + + + 

Lead/lag 

compensation 
Yes Nonlinear No Mostly single + +++ + 

Dynamic 

Programming 
Yes Linear/Nonlinear Yes/No Mostly single -- -- +++ 

Linear 

Quadratic 
Yes Linear Yes 

Multi-

variable 
- + ++ 

Adaptive Yes Linear/Nonlinear Yes/No 
Multi-

variable 
-- --- +++ 

MPC Yes Linear/Nonlinear Yes/No 
Multi-

variable 
-- --- ++++ 

 

The ORC cycle layout and component selection also have an influence on the controllability of an ORC 

system [83]. For instance, an ORC system with controllable speed volumetric expander will have an 

additional parameter to control the evaporator pressure and thus allowing a tighter control, even with 

classical controllers [22]. ORC units with an intermediate heat transfer loops are easier to control due to 

the thermal inertia of the intermediate heat transfer loop and can therefore operate with classical 

controllers. The dynamics of recuperated ORC units is more damped compared to non-recuperated 

systems owing to the additional thermal inertia of the recuperator.  

High temperature ORC units with compact heat exchangers are more susceptible to thermal shocks that 

may cause heat exchanger damage during an emergency shutdown. Overall, each system has a different 

dynamic behavior and might need different control strategies, governed by the process dynamics and 

the application requirements.  

3.1 Proportional–integral–derivative control 
 

The simplest control to guarantee stability of an ORC unit, is to have a PI controller that manipulates 

the speed of the pump to keep the liquid level in the receiver tank constant. In this way, the ORC is 
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passive, in the sense that no optimal thermodynamic parameter is actively set, but the pump working in 

safe operation is ensured [108]. Quoilin et al. [22] presented three different control strategies based on 

a PI controller for an ORC system with a scroll expander used for waste heat recovery from an ICE. In 

all three approaches, the pump speed and expander speed (scroll expander) were used as control 

variables. The first approach set constant evaporation temperature and degree of superheating; the 

second approach used an optimized evaporation temperature from an offline steady-state optimization, 

which was a function of the condensation temperature, heat source temperature and mass flow rate of 

the working fluid; the third approach set the pump speed according to the offline optimization as a 

function of the condensation temperature, heat source temperature and expander speed. The controller 

parameters were tuned manually. The second control strategy provides an overall better thermal 

performance of the ORC system than those of the first and third control approaches.  

Ni et al. [33] investigated the dynamic performance of a solar ORC system with a scroll expander under 

cloudy conditions and proposed two conventional proportional–integral–derivative (PID) controllers for 

two control variables. The evaporation pressure and degree of superheating were controlled by 

manipulating the pump and expander speeds. The set points for both the evaporation pressure and the 

degree of superheating were kept constant. The results suggest that the cloud blockage of the sun for 

short periods (five minutes) does not affect the performance of the ORC system. For the specified 

simulation time (5000 s – 30 000 s), the system without the controller generated 84.95 kWh, while its 

counterpart with the PID control strategy generated 105.54 kWh, achieving an improvement of 24 %.  

Luong et al. [109] developed the load-following control strategy for an ORC system that recovers the 

waste heat of a heavy-duty diesel powertrain. Three independent PI controllers controlled the 

evaporation pressure, condensing pressure, and the load demand. The mass flow rate of the sink fluid 

and two throttle valves were selected as manipulated variables. Li et al. [34] developed a dynamic model 

of a small-scale solar ORC system with a turbine including a thermal storage system. It was observed 

that for a specific solar period, there is a specific range of thermal storage system capacity that causes 

instability. It was concluded that the capacity of the thermal storage system should be carefully designed 

based on the local solar irradiation and dynamic response of the thermal storage system. A PI controller 

was used to ensure the stable operation of the system by maintaining a constant degree of superheating 

by manipulating the pump speed. Lin et al. [95] compared an ORC and an oil storage/ORC system 

recovering waste heat from an automotive internal-combustion engine. PID controllers were used for 

the ORC unit, which acted on the speed of the pump and the expander to control the evaporator pressure 

and degree of superheating. The integration of an intermediate oil storage could dampen the dynamic 

oscillations, but the costs per unit kW were higher than for a simple ORC unit. 

Jolevski et al. [44] developed a control structure of an ORC system based on the non-square relative 

gain array and dynamic non-square relative gain array methods. A state-space model of the ORC unit 

was developed using a moving boundary approach for the heat exchangers and considering a turbine 
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with a control valve as the expander. The state-space model has been linearized, so that the coupling 

between the control variables (the turbine inlet pressure and temperature as well as the condensation 

pressure) and the manipulated variables (the mass flow rate of the coolant, the rotational speed of the 

pump and the opening of the turbine throttle valve) were analyzed. Approximated transfer functions, 

obtained from a Bode diagram (graph of the frequency response of a system), were used to get the 

optimal parameters of the control structure. The independent PI controllers were tuned to satisfy the 

robustness, phase margin of 45°, and high bandwidth. The proposed structure achieved satisfactory 

control performance for constant set points. Marchionni et al. [96] developed a dynamic model of a 40-

kW ORC system with radial turbine and plate heat exchangers and compared four different control 

strategies. For all cases, the control variable is the turbine inlet temperature, which is kept at the nominal 

value, to achieve maximum power output, to avoid thermal degradation of the working fluid and to keep 

sufficient superheating at the turbine inlet. The control strategies differed in the choice of the 

manipulated variables: i) speed of the pump only; ii) speed of the turbine only; iii) speed of both the 

pump and the turbine; and iv) speed of the pump and recirculation from the pump to the condenser. PI 

controllers with anti-windup were chosen and calibrated based on the step response of the system. The 

turbine-based regulation strategies achieved better control performance, whereas the pump-based 

control strategies could keep the net power output closer to the design point for increase and decrease 

ramps of the heat source mass flow rate.  

Imran et al. [97] developed a PID control strategy for waste heat recovery from long-haul trucks. The 

controllers were tested on a 45-minute run of a 450 hp 13 l long-haul truck engine. The control variable 

for every case was the degree of superheating at the turbine inlet, whose set point was set to 20 K. The 

controllers were tuned using the PID tuner application from MATLAB [110]. Two control strategies 

were investigated with the manipulated variables: i) the speed of the pump and a bypass valve for the 

exhaust gas flow entering the ORC evaporator; and ii) the speed of the pump and a throttling valve at 

the turbine inlet. The second control strategy could increase the net power output and outperform the 

first one.  

Yang et al. [98] focused on a manager/controller structure of an ORC recovering waste heat from a 

vehicle, where the manager has an internal optimizer that defines the operational mode and optimizes 

the evaporating and condensing pressures, whereas the controller utilizes PIDs. The performance was 

simulated on the Highway Fuel Economy Test cycle. The degree of superheating could be kept within 

5-15 K.  In contrast to testing the controller in a simulation environment, Usman et al. [111] presented 

the implementation of a PI controller in an ORC unit with a scroll expander. The controller was 

compared with a PI with feed-forward and lead-lag compensator on an actual experimental rig.  
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A FCL strategy was followed, and the speed of the expander was the control variable. The speed of the 

pump was chosen as the manipulated variable. The PI controller was tuned following the Ziegler-

Nichols rules. The solution with PI, feed-forward and lead-lag compensator could keep the expander 

speed within a relatively narrow range close to the set point, and the system recovered faster when a 

step load was imposed on the system; see Figure 11.   

 

Figure 11: Tracking of the expander set point speed by different control approaches, Usman et al. [111]. 

Pili et al. [112] investigated the dynamic performance of an ORC unit recovering waste heat from a 

reheat billet furnace. The unit was controlled by three independent PI-controllers: the evaporator outlet 

temperature and pressure and the condensing pressure were controlled by, respectively, a bypass valve 

in the heat source line, the speed of the pump, and the speed of the cooling fans at the condenser. The 

set points were set by an offline steady-state, part-load optimization.  

The system was subjected to a negative and a positive ramp in the waste heat mass flow rate and 

temperature. The deviations from the set points increased as the ramp rates became larger. The effect of 

the environmental conditions on the controller parameters for the same application was analyzed in 

[113]. The control studies involving PID-based controllers for ORC systems are listed in Table 4.  
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Table 4: PID-based control studies for organic Rankine cycle technology. 

Ref. 
Control approach Manipulated  

Variables 

Control    

variables 

Disturbance 

variables System Controller 

[22] FTE PI 𝑁𝑒𝑥𝑝, 𝑁𝑝𝑢 𝑆𝐻, 𝑇𝑒𝑣 �̇�ℎ𝑠 

[33] FTE PID 𝑁𝑒𝑥𝑝, 𝑁𝑝𝑢 𝑆𝐻, 𝑝𝑒𝑣 DNI 

[109] FCL PI 𝜇𝑡𝑣,1, 𝜇𝑡𝑣,2, �̇�𝑎𝑖𝑟 
𝑝𝑒𝑣, 𝑝𝑐𝑜𝑛, 

𝑊𝑛𝑒𝑡 
�̇�ℎ𝑠, 𝑇ℎ𝑠, 𝑇𝑠𝑠 

[34] FTE PI 𝑁𝑝𝑢 𝑁𝑒𝑥𝑝 DNI 

[114] FTE PID 𝑁𝑒𝑥𝑝, 𝑁𝑝𝑢 𝑆𝐻, 𝑝𝑒𝑣 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[44] FTE PI 𝑁𝑒𝑥𝑝, 𝑁𝑝𝑢, �̇�𝑎𝑖𝑟 
𝑝𝑒𝑥𝑝, 𝑝𝑐𝑜𝑛, 

𝑇𝑒𝑥𝑝 
�̇�ℎ𝑠 

[115] FTE PI 𝑁𝑒𝑥𝑝, 𝑁𝑝𝑢, 𝜇𝑡𝑣 𝑇𝐼𝑇 �̇�ℎ𝑠 

[116] FTE PID 𝑁𝑝𝑢, 𝜇𝑡𝑣,1 𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[117] FTE PID 𝑁𝑝𝑢, 𝜇𝑡𝑣,1 𝑆𝐻, 𝑝𝑒𝑣 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[112] FTE PI 𝜇𝑡𝑣,1, 𝑁𝑝𝑢, 𝑁𝑓𝑎𝑛𝑠 
𝑇𝑒𝑥𝑝, 𝑝𝑒𝑥𝑝, 

𝑝𝑐𝑜𝑛  
�̇�ℎ𝑠, 𝑇ℎ𝑠 

[111] FCL PI+FF+LLC 𝑁𝑝𝑢 𝑊𝑛𝑒𝑡 𝑊𝑛𝑒𝑡 

[88] FTE PI+FF �̇�𝑤𝑓 𝑇𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠, ℎ𝑤𝑓 

 

3.2 Optimal control  

The optimal controller is based on a model of the ORC plant (differential equations) used to describe 

the path of the control variables that minimize the cost function or performance indexes. The common 

objective functions for the optimal control of ORC systems are thermal efficiency, net power output, 

control effort, closed-loop tracking error or a quadratic function as for the LQ control.  

Peralez et al. [118] designed a controller maximizing the recovered energy of an ORC system that 

recovers waste heat on board a diesel-electric train:  

𝐽 = ∫[�̇�𝑒𝑥𝑝(𝑡) − �̇�𝑝𝑢(𝑡) − �̇�𝐴𝑢𝑥(𝑡)]

𝑡𝑓

0

𝑑𝑡 (48) 

The control law maximized the net power output acting on the mass flow rate of the engine exhaust gas 

via a bypass valve and on the mass flow rate of the condensing air, while keeping the wall temperature 

and pressure inside the evaporator within allowable limits. The optimal control problem was based on a 

simplified model of the system solved using dynamic programming and further improved by adaptive 

grids for discretization. The ORC evaporator and condenser were modeled as single-state systems.  
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The results suggest that a reasonable accuracy of the controller can be achieved with lower 

computational effort compared to the optimal control algorithm without adaptive grid. The trajectories 

of the optimal control provide detailed insight into the dynamic behavior of the system. In an extended 

version of the work [119], the authors address the issue of real-time operation and reformulate the 

problem so that dynamic programming is used as a supervisory control on the system, avoiding 

observability issues.  

Zhang et al. [55] proposed a multi-objective estimation of the distribution algorithm to control the 

working fluid temperature at the evaporator outlet by manipulating the pump speed. The variation of the 

temperature difference between the set point temperature and the working fluid temperature at the 

evaporator outlet was minimized by tuning the controller to minimize simultaneously the squared mean 

value of the tracking error and the entropy of the superheated vapor temperature. The results indicate 

that the proposed approach can stabilize the superheated vapor temperature around the target value with 

small oscillations. The authors [120] approached the control problem of keeping the degree of 

superheating at the turbine inlet of an ORC system close to the set point and rejecting the disturbances 

in mass flow rate and temperature of the heat source, by using a single objective optimization. The 

optimal controller was obtained by minimizing an improved entropy criterion that combines the entropy 

of the tracking error, the mean value of the squared tracking error and the control effort. In addition, 

constraints on the rotational speed of the pump were considered. The proposed control algorithm 

obtained smaller overshoot and shorter settling time compared with a PID controller tuned in MATLAB. 

The comparison is shown in Figure 12.  

 

Figure 12: Response of superheated vapor temperature for the proposed controller and PID controller, Zhang et 

al. [120]. 

The approach was then further extended in [121] using a quantized information potential to characterize 

the quadratic entropy of the entropy error and a particle swarm optimization to achieve the optimal 

control law. The simulation confirmed the effectiveness of the method. 
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Zhang et al. [122] investigated the optimization of the set points of a controller of an ORC system to 

improve the energy conversion efficiency under varying operating conditions. The preliminary optimal 

set points of the ORC system were obtained by performing a performance analysis and optimization of 

the ORC system. Finally, the optimum evaporation pressure and working fluid temperature at the 

evaporator outlet were determined by combining the genetic algorithm with the least squares support 

vector machine (a machine learning and supervised learning model with associated 

learning algorithms that analyze data used for classification and regression analysis) [123]. Following 

the variation of the heat source, the optimal controller produces a signal to operate the expander at the 

optimum speed for maximum energy conversion efficiency. 

Wu et al. [124] presented an offline optimal control design approach based on a mechanistic non-linear 

model of the ORC system. The objective of the optimum controller is to maximize the nominal net 

power output and to ensure safe operation of the ORC system during the presence of disturbances. The 

evaporation pressure, condensation pressure and degree of superheating were controlled by 

manipulating the pump speed, expander speed, and mass flow rate of the cooling air.  

Ren et al. [125] proposed a single-neuron-based controller to control the evaporator outlet temperature 

of an ORC system. The survival information potential criterion was used to optimize the controller 

parameters, minimizing the randomness and magnitude of the closed-loop tracking error. The proposed 

neuro-controlled (NC) algorithm does not depend on the model of the controlled ORC process. In 

essence, this control algorithm is a data-driven control algorithm that can be implemented easily and 

can reject stochastic disturbances. 

An important class of optimal controllers include the linear quadratic controllers. Luong et al. [126] 

employed two-input, two-output and three-input, two-output multi-variable quadratic integral 

controllers for an ORC system. The evaporation pressure and condensation pressure were used as control 

variables, while the flow rate of the condensing fluid and the position of the throttle valves placed before 

the evaporator and expander were used as manipulated variables.  

The controller was designed through linearization in MATLAB. Larger weights on the quadratic cost 

function were chosen for the pressures and very low weights for the control inputs, related to their range 

of variability. The results suggest that the linear quadratic controller with three-input, two-output 

optimally determines the input-output relationship for pressure regulation; see Figure 13. The problem 

of state estimation was not addressed.  
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Figure 13: Controller regulation error of a non-linear controller based on 2- and 3-actuator configurations for an 

ORC system, Luong et al. [126]. 

Zhang et al. [64] presented a multi-variable control scheme of an ORC system used for waste heat 

recovery by incorporating a linear quadratic regulator with a PI controller in a simulation environment. 

The solution is equivalent to a linear quadratic integral controller with feed-forward, which was 

developed through linearization around the nominal point.  

The problem of state estimation was not addressed. The manipulated variables were the opening of the 

throttling valve at the turbine inlet, the speed of the pump, and the velocity of the heat source and cold 

sink media, which with a multi-variable approach controlled the power output, the throttle pressure, and 

the outlet temperature of the working fluid leaving the evaporator and the condenser. The simulation 

provided good response against load tracking and disturbance rejection. The studies in the area of 

optimum control of the ORC systems are listed in Table 5. A comparison of the main advantages and 

disadvantages of each optimal control solution is illustrated in Table 6. 

Table 5: Studies regarding optimum control strategies for organic Rankine cycle technology. 

Ref. 
Control approach Manipulated  

Variables 

Control        

variables 

Disturbance 

variables System Controller 

[118]  FTE DP 𝑁𝑝𝑢, 𝜇ℎ𝑠,1 𝑝𝑒𝑣, SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

[119] FTE DP 𝑁𝑝𝑢, �̇�𝑠𝑠 𝑝𝑖,𝑒𝑥𝑝, SH �̇�ℎ𝑠, 𝑉ℎ𝑠 

[120]  FTE NGS 𝑁𝑝𝑢 𝑇𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[55]  FTE NGS 𝑁𝑝𝑢 𝑇𝑜,𝑒𝑣 �̇�ℎ𝑠, 𝑉ℎ𝑠 

[122]  FTE OC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝 𝑝𝑒𝑣, SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

[124] FTE OC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝, �̇�𝑠𝑠 𝑆𝐻, 𝑝𝑒𝑣, 𝑝𝑐𝑜𝑛 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[121] FTE NGS 𝜔𝑝𝑢 𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[125] FTE NGS 𝑁𝑝𝑢 𝑇𝑜,𝑒𝑣 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[126] FCL LQI 𝜇𝑡𝑣, �̇�𝑎𝑖𝑟 𝑝𝑒𝑣 , 𝑝𝑐𝑜𝑛 �̇�ℎ𝑠, 𝑇ℎ𝑠, 𝑁𝑝𝑢 

[64] FCL LQI 𝑉ℎ𝑠, 𝑉𝑠𝑠, 𝑁𝑝𝑢, 𝜇𝑡𝑣 𝑝𝑡𝑣, SH, 𝑊𝑛𝑒𝑡, 𝑇𝑜,𝑐𝑜 𝜇𝑡𝑣, 𝑉ℎ𝑠 
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Table 6: Advantages and disadvantages of optimal control strategies for organic Rankine cycle technology. 

Controller Advantages Disadvantages 

Dynamic Programming 

• Applicable to both linear and non-

linear systems 

• Real-time optimization of plant 

trajectory 

• High computational effort 

• Multi-variable approach, 

highly computationally 

expensive 

Non-Gaussian stochastic control 

(minimum entropy criterion) 

• Minimizes uncertainties in tracking 

error 

• Real-time optimization of control 

inputs 

• Multi-variable control possible 

• Real-time multi-objective 

optimization required 

Data-driven set point 

optimization 

• Allows for real-time optimization of 

plant trajectory 

• Adaptive algorithm can account for 

system aging and small variations 

• Training of estimating 

function, computationally 

expensive 

• Large data-set required 

for good accuracy 

• System modifications 

require new training 

Linear quadratic control 

• Simple, fast and robust algorithm 

• Can handle high order systems and 

multi-variable control 

• Requires system 

linearization 

• Weight matrices need to 

be chosen properly 

3.3 Model predictive control  

Model predictive control (MPC) is an efficient control approach for control of multi-variable systems 

while satisfying a set of constraints. In MPC, the difference between the predicted output and the desired 

reference is minimized online over a future horizon, subjected to constraints on the manipulated inputs, 

the system outputs and the states. A block diagram of a MPC controller is shown in Figure 14. 

 

Figure 14: Basic structure of the model predictive controller, Liu et al. [39]. 
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Liu et al. [39] implemented a model predictive controller on a small-scale ORC system, recovering the 

waste heat from a heavy-duty diesel engine exhaust tailpipe and exhaust gas recirculation (EGR) system. 

Two variants of a MPC (linear and non-linear) were implemented on a real-time embedded platform, 

and the performance of the controllers was compared with that of a traditional PID controller. The state 

estimation was carried out using a MB model of the evaporator. The pump speed was controlled to keep 

the expander inlet temperature at the set point. The results suggest that the MPC outperforms the PID 

controller and is able to keep the control variable within ±10 ℃ under highly transient heat source 

conditions. Furthermore, the results indicate that the linear model predictive controller (LMPC) has 

better control stability for the control variable and outperforms the PID controller in terms of response 

time, overshoot, oscillations, and settling time; see Figure 15. Hernandez et al. [127] reported that a non-

linear model predictive controller (NMPC) strategy leads to a smoother, safer and more efficient 

operation, resulting in a similar or better tracking performance at a lower control effort.  

Hernandez et al. [128] presented an MPC strategy to increase the efficiency of an ORC system. The 

degree of superheating and evaporation temperature of the working fluid were controlled by 

manipulating the rotational speed of the working fluid pump and the single-screw expander. The results 

indicate that the Extended Prediction Self-Adaptive MPC algorithm provides higher efficiency of the 

ORC system than a decentralized PI controller. However, the variations of the heat source temperature 

and mass flow rate were less than ±10 %. 

 

Figure 15: Temperature responses of LMPC and PID controllers for a step change in set point temperature and 

engine operating conditions, adapted from Liu et al. [39]. 

Subsequently, the authors extended the MPC strategy by optimizing the evaporation temperature under 

the constraints of the pump rotational speed and degree of superheating [129]. By taking a switching PI 
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as reference (100 %) of the net electrical energy produced, it was concluded that the basic MPC produces 

15 % more energy, as it requires less control effort while keeping the unit in safe operation. The higher 

net power output is obtained by accurately optimizing the evaporation temperature, while keeping the 

degree of superheating within safe limits. However, the controller was evaluated for only ±10 % 

variation of the heat source temperature and the mass flow rate.  

Zhang et al. [130] presented a multiple MPC approach to deal with the non-linearity and varying  

operating conditions of ORC systems utilizing a transient heat source. The rotational speed of the pump 

and the shaft torque of the expander were manipulated simultaneously to provide the optimal 

evaporating pressure and superheating temperature. The operating range of the ORC system was divided 

into sub-operating regions, and the system response was represented by a CARIMA model. The 

predicted outputs of all sub-models and their corresponding weights were used to obtain the control 

signal. The simulation results suggest that the multiple MPC approach can effectively deal with non-

linearity, constraints on the control variables, manipulated variables and varying operating points. 

Pierobon et al. [131] implemented a linear MPC for offshore power stations with waste heat recovery 

using an ORC system. The MPC was coupled with a steady-state performance optimizer developed in 

SIMULINK/MATLAB [110]. The pump speed was varied to control the degree of superheating at 

turbine inlet. Transfer functions were achieved to reproduce the system dynamics. The system was able 

to cope with large disturbances effectively. Moreover, fuel savings and spared CO2 emissions in the 

range of 2–3 % were obtained by introducing the steady-state performance optimizer.  

Rahmani et al. [132] presented a constrained MPC strategy for an off-grid 4 kWe solar ORC system. 

The identification framework was used to identify non-linear maps for each variable of interest from the 

experimental real-time data. The net power output, degree of superheating, temperature of the working 

fluid at the inlet of the turbine and the pressure at the outlet of the turbine were used as control variables. 

The corresponding manipulated variables were the rotational frequency of the motor pump, the volume 

flow rate of the heat source, and the rotational speeds of the fan and the circulation pump.  The ORC 

was able to provide the required electrical power under variations of hot source and cold sink inlet 

temperature with low settling time and good disturbance rejection. 

Grelet et al. [133] employed an explicit multi-model MPC to control the degree of superheating at the 

inlet of the expander in an ORC-based waste heat recovery system mounted on a heavy-duty truck 

engine. The working fluid mass flow rate was chosen as the manipulated variable. The relationship 

between the manipulated variable and control variable defined in the non-linear single-input, single-

output model was identified by a series of first-order plus time-delay models. The multi-model MPC 

controller based on the first-order plus time-delay model provides fast control, and it does not require 

online optimization and dynamic model resolution. 
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Feru et al. [56] presented a switching linear MPC strategy to reject disturbances caused by the diesel 

engine waste heat of the Euro-VI heavy-duty truck in real on-road driving conditions. The ORC system 

was based on a parallel evaporator configuration and two recirculation valves at the pump outlet that 

control the vapor quality at the outlet of each evaporator. The dynamic model resolution was improved 

by combining the finite difference modeling approach with a moving boundary model. The operating 

range of the ORC system was divided in three regions, and an MPC controller was assigned for each 

region. It was concluded that the switching linear MPC could achieve better control performance than 

PI controllers, and provided the vapor quality at the outlet of each evaporator within reasonable 

accuracy. A limitation of the proposed MPC strategy is the need of vapor fraction measurement 

equipment or an estimator for this quantity. 

Petr et al. [134] optimized the net power output using a non-linear model predictive control approach of 

an ORC system which recovers waste heat from an internal-combustion engine of a vehicle. The target 

function for the MPC optimization problem was the ORC net power output. The manipulated variables 

were the speed of the pump and of the volumetric expander. The dynamic model was developed in the 

object-oriented programming language Modelica [135] using their model libraries TIL and TILMedia. 

The model was exported to MoBA Lab (simulation tool developed by TLK thermo) using a Functional 

Mockup Interface. The results indicate that the non-linear model predictive controller can improve the 

fuel economy by 8.1 % for a virtual drive test between Hanover and Munich in Germany. The MPC 

controller provides 7 % higher average net power output in part-load operation of the ICE than the 

conventional PI controller; see Figure 16.  

 

Figure 16: Pump work (left) and expander power output (right) of the ORC for both PI-control and non-linear 

model predictive controller, Petr et al. [134]. 

Hernandez et al. [136] developed and experimentally validated an adaptive MPC control law to 

maximize the power generation of a small-scale, ORC-based waste heat recovery system. The system 

dynamics were investigated by manipulating the variable pump speed to control the degree of 

superheating, and the corresponding changes in evaporation temperature and electrical power were 

analyzed at a specific value of the disturbances (mass flow rate and inlet temperature of the heat source). 
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The dynamic response of the system indicates that the evaporation temperature has a linear response, 

while the degree of superheating has a non-linear response with respect to changes in pump speed. 

Empirical correlations were developed based on a performance map of the system. Using an optimizer 

the optimal evaporation temperature was identified, while the degree of superheating was controlled by 

manipulating the pump rotational speed. Moreover, the MPC controller was successfully implemented 

on a lab-scale prototype. The experimental results indicate that the adaptive MPC produces about 17 % 

more electrical power compared to a gain-scheduled switching PID-based controller during 

1800seconds of operation of the engine.  

Luong et al. [58] developed a multi-variable MPC to estimate the states of the evaporator and condenser 

of an ORC system. The performance of the MPC was compared to proportional integral and linear 

quadratic integral (LQI) controllers. The system states (evaporator and condenser) were estimated by 

using extended Kalman filters. The results suggest that the MPC outperforms the PI and the LQI in 

terms of pressure regulation errors, since it can incorporate constraints on the control law. 

Wu et al. [137] proposed an economic MPC scheme, where the controller set point is determined by the 

maximization of the net power output of the ORC unit. A MB model of the evaporator is reduced to a 

fourth-order model to reduce the computational effort. Both the expander and the pump speed are varied 

to reach the objective goal. Both the FTE and FCL modes are tested. The controller could optimize the 

power output with good performance. 

Koppauer et al. [138] focused on an MPC strategy using a prediction model based on a gain-scheduling 

of a local, partially linearized system model. The state estimation is carried out with an EKF, where also 

the heat flow rates on the working fluid and heat source side were estimated to account for plant 

mismatches. The reference was provided by offline, steady-state optimization. The goal was to track the 

optimal trajectory. The controller showed sufficient tracking performance. 

Rathod et al. [139] developed a non-linear MPC for an ORC recovering waste heat from a 13 l Diesel 

engine. The MPC was provided with an EKF for state estimation. The adaptability of the control strategy 

was proven by testing the controller under aging of the evaporator. The performance of the MPC was 

tested experimentally during a transient driving cycle, with the mean tracking error at 2.9 ℃. 

The previous studies utilizing the model predictive controller for the ORC system and the advantage 

and disadvantages of the main options are listed in Tables 7 and 8, respectively. 
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Table 7: Previous studies using the model predictive controller for organic Rankine cycle technology. 

9.5 
Control Approach 

Process 

variables 
Control  variables 

Disturbance 

variables system controller 

[140] FCL GPC 𝜇𝑡𝑣,1, 𝑣ℎ𝑠 , 𝑣𝑠𝑠, 𝑁𝑝𝑢 𝑊𝑛𝑒𝑡 , 𝑇𝑆𝐻 , 𝑝𝑡𝑣 ,  𝑇𝑐𝑜, 𝑊𝑛𝑒𝑡, 𝑉ℎ𝑠 

[39] FTE MPC 𝜇𝑡𝑣,1, 𝜔𝑝𝑢, 𝜇𝑡𝑣,2, �̇�𝑠𝑠 𝑝𝑒𝑣, 𝑇𝑆𝐻, ∆T, 𝑇𝑐𝑜 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[128] FTE MPC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝 𝑇𝑆𝐻 , 𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[129] FTE MPC 𝑁𝑝𝑢 𝑇𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[130] FTE MPC 𝑁𝑝𝑢, τ𝑒𝑥𝑝 𝑝𝑒𝑣, 𝑇𝑆𝐻 τ𝑒𝑥𝑝, 𝑁𝑝𝑢 

[57] FTE GPC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝, �̇�𝑠𝑠 𝑝𝑒𝑣, SH, 𝑇𝑐𝑜 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[131] FTE MPC 𝜇𝑡𝑣 , 𝑁𝑒𝑥𝑝 𝑁𝑇𝑓, SH 𝑊𝑛𝑒𝑡 

[132] FCL MPC 𝑁𝑝𝑢, 𝑉ℎ𝑠, 𝑁𝑝𝑢,𝑠𝑠 𝑝𝑒𝑣 ,𝑊𝑛𝑒𝑡, 𝑇𝑆𝐻 𝑇ℎ𝑠, 𝑇𝑎𝑚𝑏 

[133] FTE MPC �̇�𝑤𝑓 ∆T �̇�ℎ𝑠, 𝑇ℎ𝑠 

[56] FTE MPC 𝜇𝑡𝑣,1, 𝜇𝑡𝑣,2 𝑋ℎ𝑠1, 𝑋ℎ𝑠2 𝑁𝑒𝑛𝑔, �̇�ℎ𝑠1, �̇�ℎ𝑠2 

[134]  FTE MPC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝 𝑊𝑛𝑒𝑡 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[136] FTE MPC 𝑁𝑝𝑢 𝑝𝑒𝑣 , ℎ𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[137] FCL EMPC �̇�𝑤𝑓 , 𝑁𝑒𝑥𝑝 𝑝𝑒𝑣, SH, 𝑇𝑖,𝑒𝑥𝑝 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[58] FTE MPC+EKF 𝜇𝑡𝑣,1, 𝜇𝑡𝑣,2, �̇�𝑎𝑖𝑟 𝑝𝑒𝑣, 𝑝𝑐𝑜𝑛 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[138] FTE MPC+EKF �̇�𝑤𝑓, 𝜇ℎ𝑠,1 𝑊𝑛𝑒𝑡 �̇�ℎ𝑠, 𝑇ℎ𝑠 , 𝑇𝑎𝑚𝑏 

[139] FTE MPC+EKF �̇�𝑤𝑓 SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

 

Table 8: Advantages and disadvantages of model predictive controllers for organic Rankine cycle technology. 

Controller Model Advantages Disadvantages 

Linear model 

predictive 

controller with 

Identification 

method 

• Easy method 

• Does not necessarily require 

system model 

• Real-time optimization, has 

relatively low 

computational effort 

• Based on linear approximation 

• Might not be effective over a 

broad operational range 

• System modifications require 

new identification 

Model-based 

with 

linearization 

• Can be easily developed for 

multi-models by linearizing 

on different operating point 

• Real-time optimization, has 

relatively low 

computational effort 

• Requires a system model 

• Based on linear approximation 

Nonlinear 

model 

predictive 

controller 

Identification 

method 

• Identification is relatively 

simple 

• Does not necessarily require 

system model 

• System modifications require 

new identification  

• Nonlinear optimization problem 

increases computational burden 

Model-based 
• Potentially, it can achieve 

the best control performance 

• Nonlinear optimization problem 

increases computational burden 
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3.4 Compound control approach 

In the area of ORC control, it is common to use a compound control approach, consisting of two or more 

control techniques. Shi et al. [46] developed a compound control strategy, combining cascade control 

with two active disturbance rejection controllers, for an ORC-based engine waste heat recovery system. 

The exhaust gas flowing out of the evaporator was partially mixed and recirculated with the engine 

exhaust gas. The only control variable was the pressure of the evaporator, which was controlled by 

manipulating the mass flow rate of the engine exhaust gas using the exhaust gas recirculation (EGR) 

valve. The controller involved an extended observer based on a reformulation of a MB evaporator 

model. The results indicate that the control error of the evaporating pressure is lower than 0.1 %, and 

the fluctuation of the degree of superheating is less than 1 K; see Figure 17.  

Figure 17: Degree of superheating and evaporation temperature control of an ORC system using a compound 

control strategy, Shi et al. [46]. 

Zhang et al. [141] proposed a combined control strategy for an ORC system, incorporating a linear 

active disturbance rejection (ADR) with a static decoupling compensator (DC). The disturbances were 

estimated through an extended linear state observer and then compensated by a linear feedback control 

strategy. The proposed control strategy does not require an accurate mathematical model of the system, 

therefore making it an appealing method for real applications. It requires instead extensive system 

identification to apply static decoupling. Simulation results indicate that the proposed control algorithm 

can provide good tracking performance and handle well disturbances for the waste heat recovery system, 

see Figure 18. 
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Yebi et al. [142] proposed a two-level controller structure for WHR with an ORC from a 13 l engine of 

a heavy-duty vehicle. A PID acted on the evaporator pressure reference controlling the bypass valve of 

the exhaust gas, whereas an MPC ensured optimal tracking of the mixed temperature at the outlet of two 

parallel evaporators. An UKF was used for state estimation. The innovative control structure could 

outperform a multiple-loop PID leading to 9 % more recovered thermal energy. 

Figure 18: Response of controlled & manipulated variables of the combined control strategy, Zhang et al. [141]. 

Hernandez et al. [143] proposed a two-level, real-time optimization of a stationary sub-critical 11 kW 

ORC system by extremum-seeking control. Based on the results of the validated dynamic model, an 

empirical correlation for evaporating temperature was developed which maximizes the power generation 

for a range of operating conditions. The approach was extended to a perturbation-based extremum 

seeking algorithm to identify online the optimal evaporating temperature. The advantage of this 

algorithm is that it does not need a plant model. The low-level controller was then an EPSAC-MPC 

acting on the speed of the pump to track the optimal evaporating temperature (this one requires a model, 

developed here through parametric identification). A lower bound on the degree of superheating was 

also set as a constraint. The results indicate that the single PI controller acting on the degree of 

superheating rather than on the evaporating temperature can guarantee safe operation of the ORC 

system. In addition, it was concluded that the ESPAC-MPC strategy outperforms a PI-based controller 

in terms of energy generation. The previous studies using a compound control strategy are listed in Table 

9, showing the manipulated variable and control variables. The advantages and disadvantages of the 

main concepts are illustrated in Table 10. 

Table 9: List of studies based on compound control strategies for organic Rankine cycle technology. 

Ref. 
Control approach Process  

variables 

Control      

variables 

Disturbance 

variables System Controller 

[46] FTE ADRC+ESO �̇�ℎ𝑠 𝑝𝑒𝑣 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[141] FCL ADRC+ESO 𝜇𝑡𝑣,1, 𝑁𝑝𝑢, 𝑉ℎ𝑠 𝑇𝑜,𝑒𝑣, 𝑝𝑡𝑣, 𝑊𝑛𝑒𝑡 𝑊𝑛𝑒𝑡 

[142] FTE MPC+UKF + PID �̇�𝑤𝑓, 𝜇ℎ𝑠,1 𝑇𝑜,𝑒𝑣, 𝑝𝑒𝑣 �̇�ℎ𝑠, 𝑇ℎ𝑠 

[143] FTE ES+MPC 𝑁𝑝𝑢 𝑇𝑜,𝑒𝑣 𝑇ℎ𝑠 



 
 

47 
 

Table 10: Advantages and disadvantages of compound control strategies for organic Rankine cycle technology. 

Controller Advantages Disadvantages 

Active disturbance rejection 

control with extended state 

observer 

• Simple model development 

• Model uncertainties are 

compensated in real-time 

• Observer has to be fast 

compared to process dynamics 

• Observer  tuning can be limited 

by sample time and noise on 

measurement 

Nonlinear model predictive 

controller and PID 

• Allows for multivariable control, 

especially for different time-scale 

controlled variables 

• Accounts for constraints through 

NMPC 

• Reduces computational burden 

for NMPC 

• Real-time constrained multi-

objective optimization required 

Extremum-seeking algorithm 

and model predictive control 

• Real-time set point optimization 

• ES does not need a system model 

• Accounts for constraints through 

MPC 

• Multi-variable set point 

optimization becomes complex 

• Stability can be difficult to 

ensure 

 

3.5 Additional advanced controllers 

In order to tackle stochastic disturbances from the heat source and measurement noises, different types 

of controllers have been implemented for ORC systems, namely, minimum variance controllers, robust 

controllers, and neural controllers. 

Hou et al. [59] employed an online, self-tuning, generalized minimum variance (GMV) controller for a 

100 kW ORC-based waste heat recovery system. Online model identification was performed from the 

system input and output data. A controlled, autoregressive moving average model was used. The 

parameters were obtained using a recursive least squares (RLS) algorithm with a forgetting factor. The 

net power output, throttle pressure, degree of superheating, and the working fluid temperature at the 

condenser outlet were controlled by manipulating the throttle valve position (placed before the 

expander), pump rotational speed, mass flow rate of the exhaust gas, and velocity of the sink source 

(air). The result suggest that the GMV controller can effectively handle disturbances and ensure safe 

operation. Zhang et al. [144] developed a multi-variable robust controller for an ORC system. The 

evaporation pressure and degree of superheating were controlled by manipulating the pump and 

expander rotational speeds. The simulation results indicate that the proposed control strategy can obtain 

satisfactory performance in set point tracking and disturbance rejection operation. Such simply 

structured and easy-to-realized controller does not require a precise mathematical model to predict the 

dynamics of the system.  
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Wang et al. [145] designed and implemented a neuro-PID controller to control the outlet temperature of 

the evaporator in an ORC system used for waste heat recovery. The control variable was the velocity of 

the heat source (exhaust gas). The parameters of the PID controller were regulated using a back 

propagation neural network. However, the controller was developed only for the evaporator, and the rest 

of the components of the ORC system were not considered. Compared with a traditional PID control 

strategy, the proposed method could achieve better prediction for dynamic response and has strong 

robustness against parameter variations and external disturbances.  

Torregrosa et al. [146] presented a compound control approach based on a PID controller with adaptive 

gains for an ORC-based engine waste heat recovery system. The temperature at the evaporator outlet 

and pressure were controlled by manipulating the rotational speeds of the pump and expander. The gains 

were adapted after experimental tests, based on offline maps as a function of the thermal power from 

the heat source and the error from the evaporator outlet temperature. 

Padula et al. [147] developed a PI-based adaptive control system to control a geothermal ORC power 

plant. The purpose of the control system was to minimize the deviations from the design conditions 

when the plant is disconnected from the grid and put into island-mode operation. In this specific case, 

the dynamics and control mainly relate to the turbine and turbine bypass valves. When the ORC power 

plant is switched from the normal operation mode (grid-connected) to the island operation (standalone), 

an electric brake regulated by a non-linear feed-forward controller dissipates the excess of power 

produced in order to avoid excessive turbine speed overshoot.  

Peralez et al. [60] presented a strategy to control the degree of superheating at the turbine inlet of an 

ORC system by combining a PID feedback controller with an implicit dynamic feed-forward controller. 

The PID controller was tuned based on an extensive system identification campaign. The dynamic feed-

forward term was computed from a non-linear reduced model of the high-pressure part of the ORC 

system. Although the performance of the control of the degree of superheating is improved using the 

compound strategy, an extensive investigation of system identification is necessary in order to obtain a 

reliable, concise and efficient (short computational time) model. 

 In a recent study by the same authors [31] a controller combining gain-scheduling PID, feed-forward 

and implicit Extended Kalman Filters (EKF) approaches were experimentally evaluated. The system 

effectively controls the degree of superheating and the pressure at the turbine inlet, acting on the speed 

of the pump and bypass valve of the heat source. However, it needs to be pointed out that the magnitudes 

of the disturbances considered in the work are relatively small in comparison to, for example, the 

variations in heat source conditions that an ORC unit utilizing the exhaust gas of a truck engine would 

experience [148].  

 A similar approach was used by Grelet et al. [88] to control the outlet temperature of an ORC recovering 

waste heat from a long-haul truck by manipulating the speed of the pump. The PID controllers were 
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tested on a multi-model FOPTD identification of the ORC unit. The dynamic feed-forward could 

significantly improve the tracking performance of the controller. The most commonly used advanced 

control approaches for ORC systems are listed in Table 11, and their advantages and disadvantages are 

compiled in Table 12.  

Table 11: List of the most commonly used advanced control strategies for organic Rankine cycle technology. 

Ref. 

Control approach Manipulated 

variables 
Control     variables 

Disturbance 

variables 
System Controller 

[59] FCL MVC 𝑉ℎ𝑠, 𝑉𝑠𝑠, 𝑁𝑝𝑢, 𝜇𝑡𝑣 𝑝𝑡𝑣, SH, 𝑊𝑛𝑒𝑡, 𝑇𝑜,𝑐𝑜 𝑊𝑛𝑒𝑡 

[144] FTE RC 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝 𝑇𝑒𝑣, SH  𝑉ℎ𝑠, 𝑇ℎ𝑠 

[145] FTE BPNN+PID 𝑉ℎ𝑠 𝑇𝑜,𝑒𝑣 �̇�𝑤𝑓, 𝑉ℎ𝑠, ℎ𝑖,𝑒𝑣 

[146] FTE GS-PID 𝑁𝑝𝑢, 𝑁𝑒𝑥𝑝 𝑇𝑜,𝑒𝑣, SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

[147] FCL GS-PI +FF 𝜇𝑏𝑝𝑣 𝑁𝑒𝑥𝑝 𝑊𝑛𝑒𝑡 

[60] FTE GS-PI+FF 𝑁𝑝𝑢 SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

[31] FTE GS-PID+FF +EKF 𝑁𝑝𝑢, 𝜇ℎ𝑠,1 𝑝𝑒𝑣, SH �̇�ℎ𝑠, 𝑇ℎ𝑠 

[88] FTE PID+FF �̇�𝑤𝑓 𝑇𝑆𝐻 �̇�ℎ𝑠, 𝑇ℎ𝑠, ℎ𝑤𝑓 

 

Table 12: Advantages and disadvantages of the most commonly used advanced control strategies for organic 

Rankine cycle technology. 

Controller Advantages Disadvantages 

Generalized minimum 

variance 

• Simple control law 

• Can reject stochastic disturbances 

• Response might be aggressive 

• Does not consider input effort in 

control law 

Robust control 
• Simple control law 

• Robust against uncertainties 

• Based on system linear 

approximation 

• Strict mathematical conditions have 

to apply 

Neuro-PID 
• Does not require system model 

• Can provide online tuning of PID 

• Quality of training set affects 

controller performance 

• System modifications require new 

training 

Gain-scheduled PI or 

PID 
• Good handling of nonlinearities of 

the system 

• Scheduling variable has to be chosen 

carefully to guarantee stability and 

good performance 

Feedforward 
• Good disturbance rejection 

• Good set point tracking 

• Requires system to be non-minimum 

phase or approximation necessary 

• Feedback might be required to 

account for uncertainties 
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4. Tools for dynamic modeling and controller design 

Several commercial and open-source numerical tools are available for steady-state and dynamic process 

simulation of thermal power plants including the ORC process. MATLAB/SIMULINK and 

MODELICA are the most commonly used for dynamic modeling and control of ORC systems. The 

former allows both for graphical and text-based programming, and has a large of number of toolboxes 

developed for controller design, system identification and optimization. The MODELICA language is 

used by DYMOLA, JModelica.org and SimulationX, and it has been specifically developed for the 

solution of differential algebraic systems, which are common in the fields of thermal, chemical, 

electrical and mechanical engineering. Different free and commercial libraries in MODELICA language 

are available, with already built-in models. In contrast to Simulink, modeling in MODELICA is acausal; 

the equations are rearranged by the software according to the solution algorithm without the need of a 

priori in/out sequential form, which represents a big advantage for the modeling of nonlinear thermo-

fluid systems as ORC systems. APROS, ASPEN Plus Dynamics, PPSD and TRNSYS are proprietary 

commercial software with built-in dynamical models of the main plant components. The user has 

however limited freedom in the extension of the available models. For example, the software might 

prevent the possibility to test or integrate unconventional heat exchanger geometries or turbomachinery, 

as well as novel heat transfer and pressure drop correlations. Other software are available, but hardly 

used in the field of organic Rankine cycle power systems. Commercial numerical tools for the dynamic 

process simulation of thermal power plants are listed in Table 13.  

Table 13: List of commercial software for dynamic modeling and control of thermal power plants, from Alobaid 

et al. [70]. 

No. Program Developer Website 

1 APROS Technical Research Center of Finland  http://www.apros.fi/en 

2 ASPEN Plus Dynamics Aspen Technology, Inc. https://www.aspentech.com 

3 DYMOLA Dassault Systèmes http://www.3ds.com 

4 gPROMS Platform Process Systems Enterprise Limited http://www.psenterprise.com 

5 JModelica.org Modelon AB http://www.jmodelica.org/ 

6 MATHEMATICA Wolfram Research https://www.wolfram.com/mathematica 

7 SIMULINK The MathWorks, Inc. https://www.mathworks.com 

8 PPSD KED GmbH http://www.ked.de/index.html?&L=1 

9 ProTRAX Software TRAX Energy Solutions https://energy.traxintl.com 

10 EASY5, etc. MSC Software http://www.mscsoftware.com 

11 EcosimPro, PROOSIS. Empresarios Agrupados A.I.E http://www.ecosimpro.com 

12 SimSci, DYNSIM Schneider Electric Software http://software.schneider-electric.com 

13 SimulationX ITI GmbH https://www.simulationx.com 

14 RELAP Idaho National Laboratory http://energy.gov 

15 TRNSYS University of Wisconsin http://sel.me.wisc.edu/trnsys 

16 UniSim Design Honeywell https://www.honeywellprocess.com 

17 3-Key Master Western Services Corporation https://www.ws-corp.com 

 

http://www.apros.fi/en
https://www.aspentech.com/
http://www.3ds.com/
http://www.psenterprise.com/
http://www.jmodelica.org/
https://www.wolfram.com/mathematica
https://www.mathworks.com/
http://www.ked.de/index.html?&L=1
https://energy.traxintl.com/
http://www.mscsoftware.com/
http://www.ecosimpro.com/
http://software.schneider-electric.com/
https://www.simulationx.com/
http://energy.gov/
http://sel.me.wisc.edu/trnsys
https://www.honeywellprocess.com/
https://www.ws-corp.com/
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5. Concluding remarks  

The dynamic response of the organic Rankine cycle system depends on the heat source, system size, 

operating conditions, type of equipment and working fluid to some extent. There are large variations in 

these parameters among organic Rankine cycle systems. It can be concluded that each organic Rankine 

cycle system will have unique dynamic response characteristics and control strategy, and hence, there 

are no established standard design rules or clear best practices in this field. Based on the review of the 

previous works concerning dynamic modeling of organic Rankine cycle systems, the following 

conclusions are drawn:  

• The dynamics of the organic Rankine cycle system is mainly governed by the heat exchangers. The 

heat exchangers account for the majority of performance lag due to dynamic changes in operating 

conditions. There are three approaches for dynamic modeling of the evaporator and condenser of 

the organic Rankine cycle system, namely, moving boundary, finite volume and two-volume 

models. The moving boundary approach has lower computational time, but higher prediction error 

compared to those of the finite volume approach. However, the computational time of the finite 

volume method can be reduced by selecting an optimum level of discretization. The two-volume 

approach is applicable only for phase change in a shell. The addition of the heat transfer and pressure 

drop correlations results in a larger computational effort and higher accuracy. The time constants 

characterizing the expansion and compression processes are small compared to those of the 

evaporator and condenser. Thus, the expander and pump models are typically based on steady-state, 

lumped parameter models. If performance maps of these components are available, non-dimensional 

parameters can be used to predict their performances.  The dynamic characteristics of control valves 

are typically modeled with relevant equations that correlate the valve opening, boundary conditions 

and the flow through the component. If the system dynamics are fast, the valve positioning servo-

system plays an important role to determine the closed-loop dynamic behavior of the system and 

should therefore be included in the model. However, it is difficult to gain access to the information 

about the servo-positioner dynamics; hence, first-order or second-order linear systems can be used 

to consider these dynamics. If experimental data are available, an empirical correlation can be 

developed to calculate the mass flow rate for incompressible flow (or the equivalent) based on the 

relative valve opening. 

• Measuring instruments may have a significant delayed response, especially temperature sensors. If 

the time-scale of a given measuring instrument is not negligible compared to the closed-loop 

response time, the response time of the measuring instrument should be included in the dynamic 

model.  

• Dynamic models have been matched to experimental data with reasonable accuracy. In most of the 

cases, the relative deviation is different among the observed parameters. For instance, the turbine 

inlet temperature may have a different relative deviation than the condenser pressure of the same 
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system in dynamic operation. Previous work indicate that if the models are calibrated properly, 

dynamic models can predict the process variables within a 3% relative deviation from the 

experimental results. 

The control of the organic Rankine cycle systems plays an important role in terms of the system 

performance and safe operation. In this paper, different control techniques and findings of previous 

research work in the area of control systems of organic Rankine cycle systems were reviewed and 

discussed. The prospects and constraints of the different control techniques and their limitations were 

analyzed and discussed. Some important points concerning the development of controllers for organic 

Rankine cycle systems can be summarized as follows: 

• The complexity of the control system and corresponding control strategy depends on the 

operation (grid-connected or off-grid) of the organic Rankine cycle system.  

• The model predictive controller, especially improved model predictive control (multiple model 

predictive control, switching model predictive control, non-linear model predictive control), 

provides excellent control performance as it can deal with non-linearity, process constraints, 

and a wide range of system disturbances efficiently.   

• Although the control strategies proposed for organic Rankine cycle systems depend on the 

dynamic model of the system, a few authors presented control-oriented models, such as two-

state models [119], simplified physical models [22,149], first-order plus dead-time model [150], 

and the transfer functions-based model [128].  

• There exists an optimal rotational speed for an expander that corresponds to its maximum 

isentropic efficiency for specific operating conditions. It is necessary to investigate both the 

machine-side and grid-side controller for organic Rankine cycle power generation systems. For 

optimal operation of organic Rankine cycle systems, the use of a supervisory control strategy 

could be helpful to produce optimal set points for the control system. 

• Since the dynamic response of the organic Rankine cycle system is complex in terms of non-

linearity, coupling and time variation disturbances, the use of advanced control algorithms is 

helpful.  

• Organic Rankine cycle systems are extremely diversified in terms of applications, operating 

conditions, size, and type of equipment; therefore, the optimal control strategy may be different 

for each system. In order to identify the optimal control strategy for a given system, a  

comparative analysis of the performance of different control strategies based on system 

performance, tracking error, overshoot, rise time, settling time, peak time, robustness to 

disturbances, handling constraints, computational effort, and practical implementation needs to 

be conducted.   

• Almost all of the previous studies analyzed the performance of the controller under a range of 

variation of the input disturbances typically smaller than those occurring during operation of 
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organic Rankine cycle systems utilizing highly transient heat sources in practice. In order to 

adapt to fluctuations in the heat sources or connected load, the performance of the controller 

needs to be evaluated over a wide (or entire) operating range of the system, ensuring safe and 

optimal operation of the organic Rankine cycle system.  

As far as recommendations for future research are concerned, first it needs to be stressed that in almost 

all of the previous works, the design and component sizing of the organic Rankine cycle system were 

based on the heat sink and heat source conditions without taking into account the dynamic response and 

control of the system. Such design and optimization approach may lead to an organic Rankine cycle 

system that is sensitive to highly transient heat sources and difficult to operate in a safe and efficient 

manner. Therefore, for future research and design practice of organic Rankine cycle systems utilizing 

highly fluctuating heat sources, we recommend to include the dynamic response and control aspects into 

the preliminary design of the system in an iterative manner. Such approach will discard the designs that 

feature unacceptable dynamic performance in an early phase of the design process and will support the 

selection of the best possible combination of on-design, off-design, and dynamic performances, while 

fulfilling at the same time all the constraints in terms of the operational parameters of the system. 

Most of the experimental work discussed the experimental validation of dynamic models which involved 

matching of response time and steady-state error for a measured/known disturbance. There are limited 

works which compared the efficacy of different types of controllers. There is an urgent need to 

implement the proposed controller on a real ORC system and assess the performance of the controller 

under changing heat source or sink conditions. Besides, it is essential to test the different control 

strategies on the same test rig under the same disturbance for a fair comparison of the different control 

schemes.  

 The start-up and shut-down control methods had not been reported in open literature yet, except few 

patents. The start-up and shut-down control methods for transient heat source are critical and require 

additional safety measures. There is a need for implementation to investigate control narratives, which 

discuss start-up and shut down to ensure safe operation and avoid thermal shocks. 
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Nomenclature 

Abbreviations 

AC Adaptive control   

ADRC Active disturbance rejection controller   

BPNN Back propagation neural network   

CC Cascade control   

CVr Control variable   

CARMA Controlled autoregressive moving average   

DC Decoupling compensator   

DNI Direct normal irradiance   

DNRGA Dynamic non-square relative gain array   

DP Dynamic programming   

EGR Exhaust gas recirculation   

FF Feed-forward controller   

FCL Following connected load   

FTE Following thermal energy   

FV Finite volume method   

EKF Extended Kalman filters   

GS Gain scheduling   

GMV Generalized minimum variance   

ICE Internal combustion engine   

LLC Lead-lag compensator    

LMPC Linear model predictive controller   

LQ Linear quadratic   

LQI Linear quadratic integral   

LQR Linear quadratic regulator   

MAC Model algorithmic control   

MB Moving boundary method   

MPC Model predictive controller   

NC Neuro control   

NGS Non-gaussian system control   

NRGA Non-square relative gain array   

OC Optimum control   

ORC Organic Rankine cycle   

PR Pressure ratio   

PVr Process variable   

PID Proportional integral derivative    

PI Proportional integral   

PMSG Permanent magnet synchronous generator   

RC Robust control   

RLS Recursive least squares   

SH Superheat    

TIT Turbine inlet temperature   

WHR Waste heat recovery   
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Symbols 

A Area, m2   

𝑐𝑝 Specific heat capacity, J/kg.K   

𝐷𝑒𝑞 Effective flow path diameter   

𝑓 Frequency, Hz   

𝐽 Total recovered energy, J   

h Specific enthalpy, kJ/kg   

L Length, m   

�̇� Mass flow rate, kg/s   

𝑁 Speed, rpm   

𝑝 Pressure, Pa   

�̇� Heat transfer rate, kJ/s   

𝑟 Non-dimensional pressure ratio   

𝑇 Temperature, oC   

𝑡 Time, seconds    

𝑈 Overall heat transfer coefficient, W/(m2.K)   

𝕌 Internal energy, J   

V Volume, m3   

𝑉𝑠  Swept volume, m3   

𝑣 Velocity, m/s   

x Quality, -   

𝑌 Level of saturated liquid in storage tank, -   

W Power, W   

Subscripts and superscripts 

Bpv  Turbine bypass valve   

Co  Condenser   

cv  Control valve   

Corr  Correlation   

Const  Constant   

Ev  Evaporator, evaporation   

eng  Engine   

exp  Expander   

f  Single-phase state (liquid)   

g  Single-phase state (gas)   

hs  Heat source   

i  Cell index i   

in  in   

𝑖𝑠  Isentropic   

liq  Liquid state   

n  Nominal condition   

net  Net (with reference to net power output)   

out  Out   

pd  Pump displacement   

𝑝𝑢  Pump   

sw  Swept volume   
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ss  Sink source   

tv  Throttle valve   

tp  Two-phase   

vp  Vapor state   

vol  volumetric   

w  wall   

𝑤𝑓  Working fluid   

𝑋𝐴  Cross-sectional area   

z   Spatial position   

 

Greek letters 

𝜂 Efficiency, %   

𝛼 Heat transfer coefficient, W/(m2.K)   

𝜌 Density, kg/m3   

𝜙 Filling Factor, -   

𝛾 Heat capacity ratio, -   

∆ Difference   

𝜂𝜖 Heat exchanger efficiency multiplier, %   

𝜇 Valve position, -   

𝜏 Torque, N.m   
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