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Abstract: In many seasonal industries, market demands are constantly changing over time and accordingly the facility 

layout should be re-optimized timely in order to adapt to the expected material handling patterns between manufacturing 

departments.  This paper investigated the aperiodic facility layout problem (AFLP) that involves arranging facilities 

layout and re-layout aperiodically in a given planning horizon in a dynamic manufacturing environment. The AFLP is 

decomposed into a master problem and a slave problem without loss of optimality in this paper, and all problems are 

formulated as mixed-integer linear programming (MILP) models that are directly solvable to MIP solvers for small-sized 

problems.  An exact backward dynamic programming (BDP) algorithm is developed for the master problem of large-size 

with a computational complexity level of O(n2), and an improved version of problem evolution algorithm based on linear 

programming (PEA-LP) is developed for the slave problem of all sizes.  Computational experiments are conducted on 

two new provisioned problems and twelve benchmarked problems in literature, and the experimental results show that the 

proposed solution approach is promising for solving the AFLP with all sizes of problem instances, where five benchmark 

problems have found new best solutions by using the improved PEA-LP algorithm. 

1. Introduction 

The facility layout problem (FLP) plays an important role for efficient material handling in a manufacturing system. 

It involves optimizing the layout of a set of given manufacturing elements (e.g., machine tools, manufacturing cells, 

work centers, departments, etc.) with specified requirements (e.g., specified areas and patters of spaces) within a 

rectangular facility floor space without overlapping, in order to increase materials handing efficiency and minimize 

the total material-handling cost between departments over a given planning horizon (Koopmans and Beckmann, 1957; 

Armour and Buffa, 1963; Sahni & Gonzalez, 1976; Montreuil, 1990; Meller et al., 1999; Sherali et al., 2003; Castillo 

and Westerlund, 2005; Konak et al., 2006; Kulturel-Konak, 2012; Xie et al., 2018).  The dynamic FLP (DFLP), 

introduced first by Rosenblatt (1986), is an important extension of the static FLP, seeking to optimize the layout and 

re-layout of departments over multiple planning periods in which the manufacturing departments may have different 

material-flow patterns due to changes in product demands and others (Montreuil and Venkatadri, 1991; Urban, 1993; 

Lacksonen, 1997; Kulturel-Konak and Konak, 2015; Ulutas and Islier, 2015; Xiao et al., 2017; Kulturel-Konak, 2019).  

The main characteristic of today's manufacturing environments is volatility, requiring manufacturing systems to 

be agile and flexible in order to respond rapidly to market changes (Baykasoglu et al., 2006; Kulturel-Konak et al, 
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2004).  In many seasonal industries such as garments and footwear industry, consumer demands, both in terms of 

product variety and quantity, change frequently over time.  These constantly changing market demands 

consequently requires constantly change material flows among manufacturing departments.  To maintain high 

operational efficiency and a low material-handling cost, it is, therefore, necessary to re-optimize the layout of a 

production plant in a timely manner to make the system agile. However, as the re-layouts of the facilities incur 

additional cost, the facilities should be properly managed in both WHEN and HOW to conduct layout and re-layout 

optimizations, e.g. aperiodically or periodically based on the accumulated changing of material-flow over time. The 

problem hereby is referred to as the aperiodic facility layout problem with time-varying demands (AFLP-TVD). 

 The traditional models for dynamic FLP (or periodic FLP) (Rosenblatt,1986; Lacksonen, 1994; Kulturel-Konak 

and Konak, 2015) involves only HOW to optimize the layout of facilities in a given time of period, without 

considering both when and how many times the layout/re-layouts should be carried out. This study is focused on joint 

optimization on both WHEN and HOW the layout/re-layouts should be carried out. The contributions of this paper 

includes: 

(1) The AFLP-TVD is described for the first time as a mixed-integer linear programming (MILP) model. 

(2) An efficient solution approach based on the master-slave framework was developed. In this framework, a 

master problem determines WHEN the re-layouts should be arranged, and a slave problem (i.e., the traditional 

static FLP) determines HOW the re-layouts should be done. 

(3) An exact algorithm based on dynamic programming is developed for the master problem, and an improved 

Problem Evolution Algorithm (PEA) is developed for the slave problem. 

(4) Rigorous computational experiments were conducted to study the efficiency and effectiveness of the proposed 

algorithms while new best solutions were found for many of the benchmark FLP problems. 

The rest of the paper is organized as follows.  In Section 2, the related literature is reviewed.  In Section 3, the 

AFLP is formally described and formulated with a general formulation, and then it is decomposed as a master problem 

and a slave problem.  In Section 4, a new algorithm based on dynamic programming and a heuristic algorithm based 

on PEA are developed for the slave problem. In Section 5, experiments are conducted to test and validate the proposed 

algorithms. Finally, conclusions are drawn in Section 6. 

2. Related work reviews 

2.1 Static facility layout problems 

Material handling involves short-distance movements of raw/auxiliary materials, semi-finished/finished products, 

non-conforming items, tools, etc., transported on a conveyor or lift truck or other types of material handling 

equipment among the departments of a manufacturing system. The facility layout problem (FLP) is important for the 

efficient and low-cost operations of most manufacturing firms.  Models and formulations for the FLP are abundant 

in literature and can be basically categorized into two types: (1) the static models that optimize the layout design for 

only one period, and (2) the dynamic models that optimize concurrently the layout design for multiple periods. The 

static FLP was first modeled by Koopmans and Beckmann (1957) as a quadratic assignment problem (QAP), seeking 



to find the optimal assignment of n departments to n predetermined locations toward minimization of material 

handling cost (MHC) expressed as the product of distances and material flows. The QAP is NP-Complete (Sahni & 

Gonzalez, 1976), and exact algorithms can be found for only small-sized instances (Lawler, 1963; Bazaraa and 

Elshafei, 1979).  Armour and Buffa (1963) proposed an extended version of the QAP model with a grid-based block 

FLP and the well-known CRAFT algorithm, where departments have pre-specified shape requirements (fixed heights 

and widths), seeking to optimize the placement of a set of n departments in a grid-based rectangular facility divided 

into basic squares or rectangles having a unit area. 

There are various models of the static FLP beside the QAP that were developed in the literature for different 

practical scenarios. Typical models are those for the unequal area FLP (UE-FLP), which involves placing a set of 

unequal-area blocks representing departments within a continuous rectangle plane without overlapping (Bazaraa, 

1975; Tam, 1992; Montreuil, 1990; Lee and Lee, 2002; Dunker et al., 2005).  The block UE-FLP with fixed 

departmental shapes considers the situation that all departments have unequal areas but fixed shapes (e.g., given 

heights and weights) and their layout arrangement involves only optimizing the department coordinates and their 

vertical or horizontal orientations while satisfying the non-overlap requirement at the same time (Baykasoglu et al., 

2006; Drira et al., 2007, Balakrishnan and Cheng, 2009; McKendall and Hakobyan, 2010; and McKendall and Liu, 

2012).  

Another widely studied model is the block UE-FLP that considers a more general situation of facility layout with 

flexible departmental shapes.  In this case, the side lengths of departments (e.g., heights x
il  and widths y

il ), in 

addition to their locations, are also considered as decision variables to take any continuous values as long as the 

departmental area is guaranteed ( x y
i i ia l l= × ) with some common constraints on department shape, such as the 

aspect-ratio or minimum side-length, being satisfied (Montreuil 1990; Bozer and Meller, 1997; Meller et al., 1999; 

Sherali et al., 2003; Konak et al., 2006; Ulutas and Kulturel-Konak, 2012; Kulturel-Konak and Konak, 2013, 2015; 

Gonçalves and Resende, 2015; Xiao et al., 2017; Xie et al., 2018).  This version of the UE-FLP is categorized as 

the FLP on the continuous plane (Montreuil, 1990; Kulturel-Konak and Konak, 2013) and is even more difficult to 

solve due to two additional continuous variables ( x
il  and y

il ) and their non-linear relations to the required areas.  

Relevant research on the linearization of the nonlinear relationship can be found in Montreuil (1990), Bozer and 

Meller (1997), Meller et al. (1999), Sherali et al. (2003), Gonçalves and Resende (2015), and Xiao et al. (2017).  

The unequal area FLP with flexible bay structure (FLP-FBS) is a special case of the UE-FLP often confronted in 

multi-bay environments where the departments need to be arranged in parallel-bays with varying widths (Meller, 

1997; Chae and Peters, 2006; Konak et al., 2006). In this situation, the departments must be aligned in parallel-bays 

with an equal width to the bay but flexible lengths/heights to satisfy area requirements.  Several formulations and 

heuristic approaches for the unequal area FLP-FBS can be found in literature, such as ant system algorithm (Wong 

and Komarudin, 2010; Komarudin and Wong, 2010), artificial immune systems (Ulutas and Kulturel-Konak, 2012), 

and probabilistic tabu search (Kulturel-Konak, 2012). 

The single row facility layout problem (SR-FLP) is another widely studied model in applications involving the 

arrangement of a set of departments along a straight line such as in supermarkets, hospitals or offices (Simmons, 

1969; Amaral, 2006).  It is also applicable to the arrangement of books on a shelf and manufacturing systems design 



as well in order to minimize transportation costs (Picard and Queyranne, 1981; Heragu and Kusiak, 1988). The SR-

FLP is NP-hard (Beghin-Picavet and Hansen, 1982), and exact algorithms exist only for small-sized problems such 

as the branch-and-bound (Simmons, 1969) and dynamic programming (Picard and Queyranne, 1981).  Recent state-

of-art heuristics for RS-FLP can be found in Datta et al. (2011), Hungerländer and Rendl (2012), Guan and Lin (2016), 

Rubio-Sánchez et al. (2016), and Cravo and Amaral (2019). 

There are a number of other variants of the static FLP in literature, including the zone-based FLP where the facility 

needs to be divided into several zones with pre-defined relative position relations before the departments being 

arranged optimally in zones (Montreuil et al., 2002, 2004; Xiao et al., 2017, Kulturel-Konak 2019), the multi-

objective FLP that considers multiple objective functions in addition to the material handling cost, such as the number 

of devices and the average WIP (Saraswat et al., 2015; Liu and Liu, 2019), the multi-floor FLP that considers the 

floor having been separated into multiple sub-floors by inner structure walls, passages, or fixed split lines (Lee et al., 

2005; Meller and Bozer, 1997; Ahmadi et al., 2017), the FLP with input/output station design that associates each 

department with input (and output) stations from which the materials are received or sent to other interactive 

departments (Montreuil and Ratliff, 1988, 1989; Montreuil et al., 1993; Arapoglu et al., 2001; Friedrich et al., 2018), 

and the FLP with heterogeneous distance metrics that considers a mixed use of metrics such as Rectilinear, squared 

Euclidean, and Tchebychev distance, and Contour distance metrics for measuring the material moving distances 

between departments (Ozdemir et al., 2003; Hale et al., 2012; Niroomand and Vizvári, 2013; Paes, 2017; Xie et al., 

2018).  

2.2 Dynamic facility layout problems 

In a time-varying market environment, the product demands/volumes of a manufacturing system may suffer from 

constantly changing.  To adapt to this situation, the manufacturing systems have to be updated over time and the 

facility layout needs to be re-optimized dynamically in order to maintain high operational efficiencies and low 

material handling costs.  This dynamic nature of the FLP was first recognized by Hitchings (1970) who pointed out 

that a change in a layout system is appropriate when the cost of the change is less than the savings which would 

accrue due to an increased efficiency resulting from the change.  Rosenblatt (1986) first introduced the dynamic 

facility layout problem (DFLP) that was an important extension of the FLP considering optimizations of the layout 

manufacturing units over multiple planning periods.  The proposed DFLP model is based on the QAP formulation 

with the objective function includes the total material handling cost in all periods and the re-layout costs between 

consecutive periods. 

Montreuil and Venkatadri (1991) presented a proactive methodology for the dynamic layout optimization of a 

manufacturing system with multiple expansion (or decline) phases, including the initial layout, tactically intermediate 

layouts, and final strategic layout at the maturity level.  They provided a linear programming model for generating 

optimal layouts for all expansion phases of the expansion plan of a manufacturing firm from the initial phase to the 

final mature scenario. Urban (1993) developed a heuristic based on the steepest-descent pairwise-interchange 

procedure for the QAP version of the DFLP, where the material handling cost could be optimized based on varying 

lengths of forecast windows and the corresponding rearrangement costs were included.  Lacksonen and Enscore 

(1993) modeled the DFLP as a modified QAP by assuming unit department sizes and pointed out that the cutting 

plane was the best algorithm, outperforming other four alternative algorithms under comparing, including CRAFT, 
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branch and bound, dynamic programming, and cut trees, based on a series of realistic test problems.  Lacksonen 

(1994) developed a two-step algorithm for static and dynamic layout problems with unequal department areas, using 

a heuristic cutting plane routine for solving a QAP formulation and a mixed-integer linear programming model for 

optimizing the block diagram layout.  Lacksonen (1997) improved the model and algorithm by using a 

preprocessing method developed to pre-specify certain obvious department pair orientations and therefore achieved 

significant cost reductions and computational efficiency improvements. 

In recent decades, various solution approaches and algorithms have proposed for the DFLP.  Balakrishnan et al. 

(2003) developed a hybrid genetic algorithm with several effective heuristics for solving the large-sized DFLP under 

QAP formulation.  Baykasoglu et al. (2006) first formulated the budget-constrained DFLP where the accumulated 

cost for shifting of facilities in each period should not exceed pre-specified budget limitations and developed an ant 

colony optimization (ACO) algorithm to solve the model with budget constraints.  Balakrishnan and Cheng (2009) 

investigated the DFLP with rolling planning horizons containing demand uncertainties and conducted experiments 

to show the differences from the traditional settings for DFLP with fixed planning horizons and no forecast errors.  

Kulturel-Konak and Konak (2015) studied the cyclic facility layout problem (CFLP), a special case of the DFLP 

assuming that the production cycle repeats itself by going back to the first period after the last one, and the authors 

developed a large-scale hybrid simulated annealing algorithm (LS-HSA) which is applied to various facility layout 

problems.  Ulutas and Islier (2015) studied the DFLP of a footwear facility and several scenarios generated by the 

real-life data, and they proposed a clonal selection based algorithm to the real-life DFLP.  Kulturel-Konak (2019) 

proposed a matheuristic approach combining tabu search (TS) and mathematical programming to solve the zone-

based DFLP on the continuous plane with unequal area departments. Xiao et al. (2017) developed a general 

formulation of the zone-based unequal-area DFLP and proposed a new meta-heuristic algorithm called problem 

evolution algorithm (PEA) for facility layout problems.  Xiao et al. (2019) modeled the unequal-area DFLP with 

pick-up and drop-off locations, and they developed an improved particle swarm optimization (PSO) algorithm as the 

solution approach.  Other heuristic approaches for the DFLP existing in literature include the simulated annealing 

algorithm (McKendall et al., 2006), tabu search heuristics (McKendall and Liu, 2012), hybrid particle swarm 

optimization (Hosseini-Nasab and Emami, 2013), hybrid ant colony optimization (Chen, 2013), heuristic Wang-

Landau (WL) sampling algorithm (Liu et al., 2017), and hybrid heuristic algorithm based on bacterial foraging 

optimization (Turanoğlu and Akkaya, 2018). 

All reviewed works above aim to optimize the layouts of a facility in multiple periods, and occasionally introduced 

some individual settings such as resource limitation, cycling periods, and input/output stations for practical needs.  

Most of the existing DFLPs were still modeled based on the static FLP model by extending it from a single period to 

multiple periods with additional re-layout costs between consecutive periods added to the objective function.  Some 

critic issues of dynamic layout such as when the optimization and re-optimizations should be carried out and how 

many times they should be arranged in a long planning horizon were still not involved. This is particularly important 

in an uneven time-varying manufacturing environment but could be found with few relevant types of research in 

literature. 

3. Problem description and formulation 

The AFLP-TVD is described as follows. A production plant has a set, N, of n blocks of departments (e.g., machine 



tools, manufacturing cells, work centers, storage units, departments, etc.) with specified area/shape requirements to 

be placed within a rectangular facility without overlapping.  The material-flows among the departments change over 

time in response to the time-varying demands of products.  Thus, the entire planning horizon can be divided into a 

set, T, of multiple short production periods, and for each period t T∈ , the material-flow volume, fijt, between a 

department pair (i, j), ,i j N∈ , is constant.  The production plant needs an initial layout and may require re-layouts 

in the following periods in order to minimize the material handling cost (MHC), which is expressed as the sum of 

material-flow volumes weighted by the distances between departments.  However, the re-layouts also lead to 

production disruptions that result in the re-layout cost (RLC) including such as profit loss, fixed wages, and rental 

fee.  Thus, re-layouts may be needed in some periods after the first one in order to reduce the total MHC, but they 

cannot be very frequent due to the RLC.  In this paper, the RLC, Ct, in period t is considered as an overall estimated 

fixed cost related to the period t.  Thus, the objective of the AFLP-TVD is to determine an initial layout at the first 

period and find out a subset of periods in which re-layouts are performed to re-optimize the material flows toward 

minimizing the total MHC and RLC occurred during the entire planning horizon.  

3.1 A general formulation of the AFLP-TVD 

Below, we provide a general formulation of the AFLP-TVD using a mixed integer linear programming model 

(MILP).  The parameters and decision variables used in the MILP model are summarized as follows. 

Parameters: 

T  set of period, where m = card (T) 

t, k  time period index, where ,t k T∈  

Ct  relayout cost if a re-layout occurs in period t 

N  set of departments, n = card (T) 

i,j  index of departments, i, j∈N 
x, y axis directions 
e  an axis direction, e∈{x, y} 
Bx, By  side length of the rectangle facility in the x and y axis directions 

fijt  material flow between department i and j in period t. 

ai   minimum area requirement of department i  
αi   maximum aspect ratio of department i (the ratio of the longer side to the shorter)  
M   a large number 

Decision Variables: 

st binary variable indicating whether a re-layout is set in period t (st = 1) or not (st = 0) for t T∈  

,x y
it itc c  centroid coordinate of department i in period t in the x and y axis directions 

,x y
it itl l  side length of department i in period t in the x and y axis directions 

,x y
ijt ijtd d  distance between the centroids of departments i and j in period t in the x and y axis directions 

,x y
ijt ijtz z  binary variables denoting the relative locations of departments i and j in period t in the x and y axis directions 

such that   



(1) zx
ijt = 1 and zy

ijt = 1: department i is on the left side of department j (in the x axis direction) 

(2) zx
ijt = 0 and zy

ijt = 0: department i is on the right side of department j (in the x axis direction) 

(3) zx
ijt = 0 and zy

ijt = 1: department i is on the bottom side of department j (in the y axis direction) 

(4) zx
ijt = 1 and zy

ijt = 0: department i is on the top right side of department j (in the y axis direction) 

tv  representing a variable in period t, e.g., cit
x, cit

x, ,x y
it itl l , ,x y

ijt ijtd d , ,x y
ijt ijtz z , where t T∈  

Objective function:  

The objective function is to minimize the total cost including the MHCs occurred in all periods and the RLCs 

occurred in the re-layout periods.  Thus, the AFLP-TVD can be formulated as MILP model as follows. 

Problem AFLP-TVD: 

, ;
min ( ( ))x y

t t ijt ijt ijt
t T i j N i j

Total Cost s C f d d
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In the above model, Constraint (1) ensures that an initial layout must be arranged in the first period.  Constraints 

(2) guarantee that for period t T∈  and t >1, if st = 1, then all other decision variables for period t, including citx, citx, 

,x y
it itl l  , ,x y

ijt ijtd d  , ,x y
ijt ijtz z   and represented by notation vt, must take the same value with the previous period, t-1. 

Constraints (3) prevent overlapping of departments which were first introduced by Montreuil (1990).  Constraints 

(4) determine the rectilinear distance between departments i and j. Constraint (5) represents the department area 

requirements, which is nonlinearly expressed for the brevity of the model presentation.  This constraint can be 

linearized through the tangent-line based approximation method of Castillo et al. (2005) or the secant-line based 

approximation method of Xiao et al. (2017).  Constraint (6) restricts the aspect-ratio of the departments not to 

exceeding the given values.  Constraint (7) ensures all departments are arranged within the rectangle facility.  

Constraint (8) defines the value domains of decision variables. 



Solving the AFLP-TVD model formulated in Eq.(1) and Constraints (1)-(8) with optimality is extremely 

difficult because of the large number of the binary decision variables involved.  In the following sections, we 

decompose the problem as a master-problem and slave-problem such that the computational complexity is 

significantly reduced without losing the optimality. 

3.2 Formulation of the master-problem  

Let Fkt denote the optimal total MHC for the periods between t and k such that a new layout is determined in 

period t and used in the following periods from t+1 to k without layout change.  In the master-problem, Fkt is 

considered an input parameter, and its values are pre-calculated by the static FLP which acts as the slave-problem 

formulated in Section 3.3.  Thus, the master problem only determines the re-layout settings, which is formulated 

as a master-MILP model as follows.  

Parameters: 

T  a set of periods, where m = card (T) 

t, k index of time periods, where ,t k T∈  

Ct  cost of production if the facility is gone through a re-layout in period t 

Ftk the optimal total MHC of the periods from t and k, where t ≤ k, when the facility layout is rearranged in 

period t and used in periods from t+1 to k without layout change.  

Decision variables:  

st binary variable representing the re-layout decisions during the planning horizon such that st = 1 if a re-

layout takes place in period t, and st = 0 otherwise.  

utk binary variable indicating the last period k covered by the re-layout in period t such that utk = 1 if period k 

is the last period covered by the re-layout in period t, and utk = 0 otherwise. 

Master-problem AFLP-TVD: 

Min. 
, ;

+
n

t t tk tk
t T t k T t k

Total Cost C s F u
∈ ∈ ≤

= ∑ ∑              (2) 

s.t.   

(9)  1=1s  

(10)  
n

tk t
k t

u s t T
=
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t T

u
∈
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(13)  ,{0,1}; {0,1} ,t t ks u t k T∈ ∈ ∀ ∈  

In the above formulation, the first term of the objective function is the re-layout cost, and the second term is the 

material-handling cost.  Constraint (9) ensures that an initial layout must be set in the first time period.  Constraint 

(10) ensures that the last period covered by a re-layout in period t (t>1) should be t or after t.  Constraint (11) ensures 



that the last period covered by a re-layout in period t (t>1) must be immediately followed by a re-layout.  Constraint 

(12) ensures the last period (i.e., period m) must be covered by a re-layout optimization. Constraint (13) defines the 

value domains of decision variables.  The following constraints are not necessary for the integrity of the master-

problem AFLP-TVD, but they are valid and may help to improve the computational efficiency or develop heuristic 

rules.  

(14)  
1

1
0 , 1

t

tk
k

u t T t
−

=

= ∀ ∈ >∑  

(15)  ,tk tu s t k T≤ ∀ ∈  

(16)  0 , ;tku t k T k t= ∀ ∈ <  

Constraint (14) forces that the last period covered by a re-layout in period t (t>1) should not be before t, Constraint 

(15) forces uik to be zero if st = 0, and Constraint (16) allows variable uik to take positive values only at the right-top 

half of its value matrix, which plays the same role as Constraint (15) but with simpler expression. 

Since the master-problem involves determining a set of optimal re-layout settings in m periods through the decision 

variable st, and variable utk depends on st, the problem complexity can be recognized as exponential, i.e., O(2m-1).  

In Fig. 1, we provide an example of a feasible solution to illustrate the relationship between decision variables st and 

utk. In this example, the planning horizon has 9 periods (e.g.,9 weeks), and an initial layout is set in period 1 and re-

layouts are set in periods 4, 5, and 8, as shown by variable st.  The values for variable utk are accordingly determined 

by variable st. The objective value includes the re-layout cost occurred in periods 1, 4, 5, and 8, and the material-

handling costs indicating by F13, F44, F57, and F89.  

Variable st:  
t 1 2 3 4 5 6 7 8 9 
st 1 0 0 1 1 0 0 1 0 

Variable utk: 
k 

t 1 2 3 4 5 6 7 8 9 

1 0 0 1 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 0 1 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 
 

Fig. 1 A feasible solution example of the AFLP-TVD problem 

3.3 Formulation of the slave-problem 

The slave-problem is a static FLP to calculate the optimal values of Ftk. For each pair of (t, k), where ,t k T∈ and 

t k≤ , the material flows in all periods from t to k are combined to find the best layout that minimizes the total 

material cost between periods t and k.  The static FLP is formulated as a mixed-integer linear programming (MILP) 



model as follows (Montreuil 1990, Konak et al., 2006; Kulturel-Konak & Konak, 2013).  

Parameters: 

N  set of departments 
i,j  index of department and i, j∈N 

x, y  axis directions 
e  an axis direction, e∈{x, y} 
Bx, By  side length of the rectangle facility building floor in the x and y axis directions 

tk
ijf   material flow between departments i and j during periods from t to k, 

k
tk

ij ijt
t t

f f ′
′=

= ∑  

ai   minimum area requirement of department i  
αi   maximum aspect ratio of department i (the ratio of the longer side to the shorter)  
M   a large number 

Decision Variables: 

,x y
i ic c   centroid coordinates of department i in the x and y axis directions 

,x y
i il l   side length of department i in the x and y axis directions 

,x y
ij ijd d  distance between the centroids of departments i and j in the x and y axis directions 

,x y
ij ijz z  binary variables denoting the relative locations of departments i and j in the x and y axis direction, indicating 

that  

(1) zx
ij = 1 and zy

ij = 1: department i is on the left side of department j (in the x axis direction) 

(2) zx
ij = 0 and zy

ij = 0: department i is on the right side of department j (in the x axis direction) 

(3) zx
ij = 0 and zy

ij = 1: department i is on the bottom side of department j (in the y axis direction) 

(4) zx
ij = 1 and zy

ij = 0: department i is on the top right side of department j (in the y axis direction) 

Sub-problem to calculate Ftk: 

, ;
min ( )tk x y

tk ij ij ij
i j N i j

F f d d
∈ <

= ⋅ +∑                (3)  

s.t.   

(17)  
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(22)  0, 0, 0, {0,1} , ,e e e e
i i ij ijc l d z i j e≥ ≥ ≥ ∈ ∀  

In the above formulations, the objective is to minimize the total MHC expressed as a product of the material flow 

and rectilinear distance among the departments.  Constraints (17) prevent the departments from overlapping, which 

was first introduced by Montreuil (1990).  Constraint (18) bounds the rectilinear distance between departments i 

and j.  Constraint (19) represents the department area requirements, which are nonlinear for the brevity of model 

presentation. In this paper, the nonlinear area requirement constraints are linearized through the tangent-line based 

approximation method of Castillo et al. (2005) or the secant-line based approximation method of Xiao et al. (2017).  

Constraint (20) restricts the aspect-ratio of the department side lengths within the given requirement.  Constraint 

(21) ensures that all departments are located within the boundaries of the facility. Constraint (22) defines the domains 

of the decision variables. 

In the literature, there are several algorithms that were developed for solving the static FLP.  However, calculating 

all Ftk values is computationally expensive especially for problems with a large number of planning periods.  Fig. 2 

provides a fast algorithm for calculating Ftk efficiently.  In the algorithm, parameter Rt represents the nearest period 

after period t such that the next re-layout must be between [t+1, Rt] if a re-layout has been performed in period t.  

Initially, Rt is set to the default value of m. In Step 7), the algorithm assigns Rt with a value k such that the total cost 

after setting two re-layouts in periods l and k (one for re-layout and one for restoring) is smaller than Ftk.  That 

means there must be a re-layout between periods t-1 and k in the optimal solution.  Thus, for each period t, we just 

need to calculate Ftk for all [ , ]tk t R∈ instead of for all [ , ]k t m∈ .  After calculating Ftk values once, they are used 

by the dynamic programming algorithm described in Fig. 3 in Section 3.4. 

1) For t = m, m-1, m-2, …, 1 Do Begin 

2)   Let Rt ← m 

3)   Solve the MILP in Eq.(3) and Constraints (17)-(22) to get Ftm 

4)   For k = t, t+1, …, m-1 Do Begin 

5)     Solve the MILP in Eq.(3) and Constraints (17)-(22) to get Ftk 

6)     For l = t+1, …, k-1 Do Begin 

7)       If Ftk > Ft,l-1 + Cl + Fl,k + Ck Then Let Rt ← k 

8)       If Rt < m Then Break 

9)     End For 

10)     If Rt < m Then Break 

11)   End For 

12) End For  

Fig. 2 A fast procedure for calculating Ftk and Rt 

4. Solution approaches 

4.1 A dynamic programming approach to the master problem 

The master-problem defined by Eq.(2) and Constraints (10)-(14) has an exponential complexity of O(2m) since the 



main decision variable is st.  In this sub-section, we present an exact backward dynamic programming (BDP) 

procedure, which has only a polynomial complexity of O(m2) in the worst case, to solve the problem.  In BDP, Pt 

represents the sub-problem of the original master problem that covers only the periods from t to m for all t T∈ , and 

ht denotes the optimal objective function value of Pt.  Thus, the original master problem is represented by P1 and 

the last FLP problem for period m is represented by Pm. Obviously, we have hm = Cm + Fmm, and h1 can be obtained 

by the BDP recursive equations described as follows. 

,min{ ,min{C | [ 1, }} 1, 2,...,1
m mm

t
t tm t t t t t

C F t m
h

C F F h t t R t m m′ ′

+ ∀ ==  ′+ + + ∈ + ∀ = − −
  (4) 

The above BDP formulation determines the values of ht backwardly from t = m to t = 1, and for each period t, the 

lowest value of Ct + Ft,t'-1 + ht' for t' ∈ [t+1, Rt] is calculated for ht.  Thus, the BDP guarantees that the final value, 

i.e., h1, is an optimal solution of the original master-problem.  The DBP algorithm has a computational complexity 

of O(m2) for the worst case.  A detailed description of the BDP algorithm is shown in Fig. 3 as follows.  

1) Call the fast procedure in Fig.2 to calculate Ftk and Rt for t T∈ , k T∈ , and t k≤  

2) Let hm ← Cm + Fmm               //for last period m 

3) Let gm ← null                   //no re-lay is needed after period m 

4) For t = m-1, m-2, …, 1 Do Begin   // determine ht and gt reversely starting from t = m-1 

5)   Let ht ← Ct + Ft,m 

6)   Let gt ← null 

7)   For t' = t+1, t+2, …, Rt Do Begin 

8)     If Ct + Ft,t'-1 + ht' < ht Then 

9)       Let ht ← Ct + Ft,t'-1 + ht' 

10)       Let gt ← t'  

11)     End If 

12)   End 

13) End  

14) Output h1              //Output the optimal solution 

15) Let t1 ← 1, t2 ← g1 

16) Do while t2 is not null Begin 

17)   Output t1            //Output the re-layout period that covers [t1, t2 -1] 

18)   Let t1 ←t2,  t2 ← gt    //get next period for re-layout  

19) End  

20) Output t1              //Output the last re-layout period 

Fig. 3 The detailed BDP algorithm 

4.2 An improved problem evolution algorithm with linear programming for the static FLP 

The Problem Evolution Algorithm (PEA), introduced in Xiao el al. (2017), is a new general approach for good 

quality solutions to a complex problem through the control of a designed evolutionary process.  The PEA is a mimic 

of human’s learning process where a person is always first trained with simple problems, and then based on the 



learned experiences, he/she will gradually be able to solve problems with increasing complexity and finally solve the 

most difficult problem. The general framework of the PEA is shown in Fig. 4 as follows. 

1) Define a serial of evolution problems {P1, P2, …, Pn} with gradually increasing 

complexity, where P1 is the simplest problem and Pn is the original problem. 

2) Solve P1 to find the optimal solution 1π  

3) For x = 2 to n Begin 

4)   Based on 1xπ − , construct a feasible solution xπ  for Px 

5)   Implement a local search to improve xπ  

6) End For 

7) Return nπ  as the final solution for problem Pn 

Fig. 4 A general framework of the PEA 

Xiao et al. (2017) defined the PEA-LP algorithm that combines the PEA with linear programming (LP) to solve 

the dynamic facility layout problem. In their approach, sub-problem Px includes only x departments to be placed in 

the layout, and the PEA-LP algorithm solves a series of sub-problems by increasing the department number x 

gradually from 1 to n one at a time. The departments to be included in successive sub-problems are selected randomly 

based on an evolution index.  Xiao et al. (2017) used randomized material-flows (RMF), i.e. ,i ij
j

f i Nρ ∀ ∈∑  

where iρ  is a random number, as the evolution index to construct a series of evolutionary sub-problems with an 

increasing number of departments. In this paper, we improve the PEA-LP algorithm on two aspects: (1) the weighted 

RMF that considers the square-root of department areas, i.e., ,i i ij
j

a f i Nρ ∀ ∈∑ , instead of the original evolution 

index, and (2) a dynamic iterative neighborhood search (DINS), as described in Fig.5, for a more efficient local search 

procedure in the PEA. 

//The local search procedure for problem Px 

Procedure DINS (Pmax) 

1) Let P ← 0, Δ ← 6 

2) Repeat 

3)   Calculate the selection probabilities of the departments in terms of the selection policy 

4)   Select a number Δ of the departments in terms of their selection probabilities 

5)   Fix RPRs of all departments 

6)   Unfix RPRs of the selected Δ departments  

7)   Call a MIP solver to optimize the unfixed RPRs 

8)   If the CPU time used in Step (7) is greater than 10 seconds Then let Δ ← Δ-1 

9)   If the CPU time used in Step (7) is less than 0.2 seconds Then let Δ ← Δ+1 

10)   If the solution is improved Then let P ← 0 

11)   Else let P ← P+1 

12) Until P = Pmax 

Fig. 5 The dynamic iterative neighborhood search 



In the above DINS procedure, a partial solution xπ is repeatedly improved by solving the problem only for a subset 

of the departments included in Px.  The parameter Pmax acts as the stopping condition indicating that the DINS 

procedure stops after a maximum Pmax of successive attempts without improvement on the incumbent solution. The 

parameter Δ is an integer number representing the number of departments to be selected for each round of partial 

optimization.  We first let Δ ← 6 (in Step 1) such that only six departments (out of n departments) will be selected.  

However, the parameter Δ will be dynamically adjusted by Δ ← Δ-1 and by Δ ← Δ+1 in Steps 8 and 9, respectively, 

if the CPU time used in Step 7 is larger than a maximum threshold, e.g., more than 10 seconds, or smaller than a 

minimum threshold, e.g., less than 0.2 seconds. Such dynamic adjustment of parameter Δ limits the CPU time 

consumed for each round of partial optimization within a proper range.  Therefore, the local search has an overall 

high computational efficiency. In Step 3, a selection policy is adopted in advance for generating the selection 

probabilities of the departments.  Three candidate policies are introduced, named as (1) Random Selection (RS), (2) 

Frequency-Priority (FP), and (3) Material-Flow-Priority (MFP).  The RS policy is the simplest one under which all 

departments are assigned with equal probability to be selected.  The FP policy considers the number of times that 

the departments have been already selected and gives higher probabilities to those departments that have been 

selected with fewer times.  The MFP policy assumes that the departments with a larger amount of material-flow 

(with other departments) are more important and therefore should be assigned to larger selection probabilities. The 

selection probality is calculated by Eq.(5) as follows. 

/i ip i Nυ= Γ ∀ ∈ ,               (5) 

where N is the set of elements from which one element is to be selected, iυ  is the value for element i (i.e., 1, 

reciprocal of selected times, and weighted material flow for policies RS, FP, and MFP, respectively), and j
j N
υ

∈

Γ = ∑ .  

In the computational experiment section, we compared the performances of these three policies using different 

problem instances. 

5. Computational experiments 

In this section, we tested the proposed models and algorithms of the problem AFLP-TVD on several benchmark 

problems from the literature and compare our results with the existing best-known solutions.  The MIP solver 

CPLEX (version 12.6.0.1) was used to solve benchmark problem instances, and the algorithms were coded in the 

AMPL environment. Computational experiments were conducted on a PC server with two 2.30 GHz Intel@ Xeon(R) 

CPUs (32 cores) and 110 GB memory.  

5.1 Tested problem instances 

The problem instances for testing the AFLP-TVD model are listed in Table 1, where M4 and M5 were generated 

in this paper, O7, O8, and O9 were originally from Meller et al. (1999), and F10 were from Montreuil et al. (2004), 

respectively.  We associated each of the small-sized instances M4, M5, O7, O8, O9, and F10 with 48 periods, in 

which the first period has the original material-flow patterns and the following periods have randomly generated 

time-varying material-flow patterns. The problem instances BA12, BA13, BA14, M11*, M14*, M25*, SC30, and 

SC35, which were originally from Bazaraa (1975), Meller (1992) and Liu and Meller (2007), were used to test the 



performance of the improved PEA-LP algorithm for larger-sized static FLP problems. 

Table 1. Summary of parameters of test problems. 

Problem 

(n×T) 

Period 

Number 

Dimensions Number of 

Departments 

Shape 

Constraint 

Data reference 

M4 48 10×12 4 α = 4 This study 

M5 48 11.5×12 5 α = 4  

O7 48 13×8.54 7 α = 4 Meller et al. (1999) 

O8 48 13×11.31 8 α = 4  

O9 48 13×12 9 α = 4  

F10 48 90×95 10 α = 3 Montreuil et al. (2004) 

BA12 1 10×6 12 lmin=1 Bazaraa (1975) 

BA13 1 9×7 13 lmin=1  

BA14 1 9×7 14 lmin=1  

M11* 1 6×6 11 α=4 Meller (1992) and Liu and 

Meller (2007) M15* 1 15×15 15 α=5 

M25* 1 15×5 25 α=5 

SC30 1 15×12 30 α=5 Liu and Meller (2007) 

SC35 1 16×15 35 α=4  

5.2 Testing the optimality of the AFLP model and the DBP procedure 

First, we solved the MILP model formulated for the sub-problem described by Eq.(3) and Constraints (17)-(22) 

using CPLEX to calculate Ftk for t = 1, 2, …, n, and k = t+1, t+2, …, n for each of the small-sized instances as given 

in Table 2. After that, the BDP algorithm described in Fig.3 was used to find the optimal solutions of the test instances.  

The computational results were listed in Table 2 in the last column (i.e., T=48).  To illustrate the effect of T on 

solution time, for each instance we also provide the optimal results for sub-problems containing only the first 3, 6, 

12, 24, and 36 periods, indicated by T=3, T=6, T=12, T=24, and T=36, respectively, in Table 2.  It can be observed 

that the computational efficiency dropped dramatically as the numbers of periods or departments increase.  For all 

test instances, the major part of the computational time was due to CPLEX for computing Ftk values while the BDP 

procedure used less than 1 second.  

Table 3 presents the extent to which the fast procedure described in Fig.2 can reduce the computational burden for 

calculating Ftk by comparing the actual number of times that the static FLP model was solved to the total times of 

full combinations. For problem instance F10 with 48 periods requires solving the static FLP model for a total of 1176 

times, but the fast procedure was able to calculate Ftk value using only 232 MIP solutions, a reduction of 80.3% in 

computational cost without losing optimality.  It can be generally recognized that a higher rate of computational 

time saving could be observed for larger numbers of planning periods.  The average time saving rates of all tested 

instances for T=6, T=12, T = 24 and T=48 are respectively 4.0%, 26.3%, 53.6%, 67.0%, and 73.8%.  In Table 2, 

the column AVG time indicates the average CPU time used to solve the static FLP model with optimal solutions using 

CPLEX. Notably, since the values of Ftk do not have any interdependency on one another, they can be computed in 



a parallel way, and thus the time span can significantly be reduced. 

Table 2. Computational results of the BDP algorithm 

  T=3  T=6  T=12  T=24  T=36  T=48 

Problem  Obj. T.  Obj. T.  Obj. T.  Obj. T.  Obj. T.  Obj. T. 

M4  1580.15 <1s  2813.97 3s  6122.22 7s  12832.74 20s  19646.20 32s  25778.27 42s 

M5  3398.78 2s  6578.22 11s  13347.12 31s  27045.97 82s  40043.93 2.2m  53792.92 3.0ms 

O7  617.20 5.4m  1216.20 28m  2348.71 38m  4594.83 1.4h  6749.28 2.1h  9031.18 3h 

O8  869.63 24m  1811.23 2.4h  3648.53 2.9h  7592.65 8.1h  11239.17 13h  14779.40 16h 

O9  804.36 0.4h  1654.35 1.8h  3312.49 3.4  6833.09 7.9h  10109.55 12h  13730.80 15h 

F10  24019.78 0.4h  47230.44 2.2h  95259.88 6.0h  197850.46 21h  294935.67 44h  390545.18 96h 

Note: Boldface font indicates the optimal value. 

Table 3. Effect of the fast procedure (in Fig.2) for calculating Ftk  

Problem T=3 T=6 T=12 T=24 T=36 T=48 AVG time 

M4 6/6 19/21 51/78 139/300 251/666 277/1176 0.2s 

M5 6/6 21/21 44/78 92/300 139/666 199/1176 0.9s 

O7 6/6 21/21 64/78 161/300 244/666 352/1176 30s 

O8 6/6 18/21 68/78 185/300 289/666 449/1176 128s 

O9 6/6 21/21 71/78 151/300 244/666 337/1176 160s 

F10 6/6 21/21 47/78 108/300 166/666 232/1176 1489s 

AVG 100% 96.0% 73.7% 46.4% 33.4% 26.2%  

Next, we solved the general model for Problem AFLP-TVD formulated in Eq.(1) and Constraints (1)-(7) with 

the tested instances and with respect to period numbers T=1, 3, 6, 12, 24 and 48, respectively.  A two-hour time 

limit was set for all computations.  The results were compared to the optimal solutions (from Table 1) in Table 

4, where columns T./D.% indicate either the computational time (in seconds) if the result was optimal or the 

deviation (%) from the optimal value if the result was not optimal. The notation “--” indicates no feasible 

solution was found.  It could be observed that only a few optimal solutions could be found in the given time 

limit, e.g., T=1 for all instances, T=3 for M4 and M5, and T=6 for M4.  Most of the solutions were non-optimal 

and showed quite large deviations from the optimal ones especially for large numbers of periods.  This 

comparative experiment hinted that the AFLP-TVD, as a whole general model, is very difficult to be solved 

with good solutions even for very small-sized problem instances. Therefore, the BDP algorithm with pre-

calculated Ftk values would be a practically feasible approach for obtaining optimal solutions for small-sized 

problem instances. For large-sized problem instances, we adopted the improved PEA-LP algorithm as an 

efficient solution approach for calculating Ftk with the excellent results given in Section 5.3. 

Table 4. Computational results of solving the general model with CPLEX (Time limit = 2 hours) 
 T=1  T=3  T=6  T=12  T=24  T=36  T=48 

Problem Obj. T./D.%  Obj. T./D.%  Obj. T./D.%  Obj. T./D.%  Obj. T./D.%  Obj. T./D.%  Obj. T./D.% 

M4 511.38 <1s  1580.15 7s  2813.97 7200s  6234.70 1.8%  13109.35 2.2%  20159.39 2.6%  26458.99 2.6% 

M5 1417.61 1s  3398.78 7200s  6632.80 0.8%  13421.57 0.6%  27387.88 1.3%  -- --  -- -- 

O7 131.64 63s  638.83 3.5%  1291.80 6.2%  2541.87 8.2%  5959.88 29.7%  7856.45 16.4%  12751.02 41.2% 

O8 243.06 382s  935.69 7.6%  1980.64 9.4%  -- --  9578.13 26.2%  16340.28 45.4%  20076.43 35.8% 

O9 236.13 558s  879.79 9.4%  1949.17 17.8%  -- ---  -- ---  14429.36 42.7%  21969.73 60.0% 

F10 7649.99 1638s  32544.08 35.5%  57532.50 21.8%  137531.67 44.4%  -- --  553081.22 87.5%  699335.94 79.1% 



Note: Boldface font indicates the optimal value. 

5.3 Testing the improved PEA-LP algorithm for the static FLP 

As the computational results demonstrated BDP algorithm is quite efficient given that Ftk values are available.  

Therefore, the main computational challenge is to calculate optimal or near optimal Ftk values as efficient as 

possible.  In this section, we tested the improved PEA-LP algorithm using the test instances BA12, BA13, and 

BA14 (Bazaraa, 1975), the instances M11*, M15*, and M25* (Meller 1992; Liu and Meller, 2007), and the instances 

SC 30 and SC35 (Liu and Meller, 2007). We ran the improved PEA-LP algorithm 10 times for each of the test 

instances with respect to the three selection policies, namely, RS, FP, and MFP, respectively. The parameter setting 

weres Pmax = 50 and Δ = 6.  The first sub-problem solved in the PEA-LP algorithm is P6, indicating that the first six 

departments were initially selected and optimized. The parameter β is the accuracy setting introduced in Xiao et al. 

(2017) for controlling the maximum error range in the area constraint linearization.  We used β = 0.1% during the 

optimization process and β = 0.001% in the post-optimization to refine final solutions within a very accurate level.  

Thus, our final solutions will be very close to the actual optimal solution.  The computational results were listed and 

compared in Table 5, where column Selection policy indicates the department selection policy adopted for partial 

optimizations, column FS how many feasible solutions where found in 10 runs, columns Average and Best indicate 

respectively the average and best objective values obtained in 10 runs, column Dev.% indicates the deviation (%) 

from the previous best-known solutions in the literature, column AVG Time (s) indicates the average CPU time used 

in 10 runs, column Best policy indicates if the selection policy is the best one out of three policies under comparison, 

and column Prev. Best Known gives the previous best solutions provided in Kulturel-Konak and Konak (2013),  

Kulturel-Konak and Konak (2015), Gonçalves and Resende (2015), and Xiao et al. (2017).  

 

 

 

 

Table 5. Overall performances of the improved PEA-LP algorithm (β = 0.1%) 
 Section 

policy 

The improved PEA-LP (10 runs) Best Prev. Best  

Problem Fs Average Dev.% Best Dev.% AVG T.(s) policy Known Sources 

BA12 RS 10 8092.67 0.89% 8020.98 0.00% 722 Yes 8020.97 Gonçalves and 

Resende (2015)  FP 10 8100.48 0.99% 8020.98 0.00% 643 Yes  

 MFP 10 8089.74 0.86% 8020.98 0.00% 685 Yes  

BA13 RS 10 4654.71 0.57% 4628.23 0.00% 723 Yes 4628.32 Kulturel-Konak & 

Konak (2013)  FP 10 4746.69 2.56% 4628.23 0.00% 656 Yes  

 MFP 10 4710.36 1.77% 4628.23 0.00% 629 Yes  

BA14 RS 9 4677.92 1.06% 4628.23 -0.01% 860 Yes 4628.79 Gonçalves & 

Resende (2015)  FP 10 4702.93 1.60% 4628.23 -0.01% 946 Yes  

 MFP 10 4752.36 2.67% 4628.23 -0.01% 830 Yes  

M11* RS 8 1177.73 2.61% 1136.23 -1.00% 920 Yes 1147.75 Xiao et al. (2017) 



 FP 10 1191.46 3.81% 1136.23 -1.00% 831 Yes   

 MFP 10 1182.56 3.03% 1136.23 -1.00% 750 Yes   

M15* RS 9 25281.50 1.88% 23118.53 -6.84% 629 Yes 24815.22 Xiao et al. (2017) 

 FP 10 25888.73 4.33% 24411.54 -1.63% 745    

 MFP 10 25784.15 3.90% 23118.53 -6.84% 632 Yes   

M25* RS 8 1367.26 14.91% 1268.04 6.57% 861  1189.88 Kulturel-Konak & 

Konak (2013)  FP 8 1328.98 11.69% 1138.35 -4.33% 860 Yes  

 MFP 10 1381.04 16.07% 1218.03 2.37% 982   

SC30 RS 10 3300.44 -0.55% 3240.06 -2.37% 3634 Yes 3318.76 Kulturel-Konak & 

Konak (2015)  FP 10 3333.77 0.45% 3299.10 -0.59% 3231   

 MFP 10 3326.37 0.23% 3284.61 -1.03% 3126   

SC35 RS 10 3390.20 2.21% 3310.92 -0.18% 992  3316.77 Gonçalves & 

Resende (2015)  FP 10 3366.37 1.50% 3304.77 -0.36% 1076 Yes  

 MFP 10 3410.69 2.83% 3312.04 -0.14% 813   

Note: The Bold & Italic font indicates the new best-known value. 

As seen in Table 5, the improved PEA-LP algorithm was able to find the same best solutions reported in Kulturel-

Konak and Konak (2013) and Gonçalves and Resende (2015) for problems BA12, BA13, and BA14.  The slight 

differences in the solutions are due to numeric errors incurred by the area linearization as their departmental layouts 

are exactly the same.  New best-known solutions were found for all the rest problems including M11*, M15*, M25*, 

SC30, and SC35, with improvements of -1.00%, -6.84%, -4.33%, -2.37%, and -0.36%, respectively, and in 

comparison to the previous best known solutions provided in Xiao et al. (2017), Kulturel-Konak and Konak (2013, 

2015), and Gonçalves and Resende (2015).  This experimental comparison indicated that the improved PEA-LP 

algorithm can solve the static FLP efficiently with good solution qualities. 

 In Tables 6 and 7, the performance comparisons of three selection policies (i.e., RS, FP, and MFP) are provided 

in terms of the average solutions (in Table 6) and the best solutions (in Table 7) found in the experiments.  The 

numbers 1, 2, and 3 in the tables indicate the ranking positions of the policies, e.g., number 1 is the best, number 3 

represents the worst, and number 2 represents the middle. It can be observed that in terms of the ranking position of 

the average solutions found, the RS policy performed the best, followed by the FP policy and the MFP policy. In 

terms of the ranking position of the best solution found, the three policies showed an equal performance (all have 11 

summarized points).  The RS policy performed better than other two policies on problems M15* and SC30, but it 

was worse than the FP policy on problems M25* and SC35, and is worse than the MFP policy on problem M25*. 

This means that all three tested policies showed strength on a part of the test problems but may be weak on other 

problems.  Therefore, hybrid use of them may be a promising approach for various types of problems, and interested 

readers are suggested to refer to the competition strategy for hybrid use of multiple operators (Dellaert and Jeunet, 

2000; Xiao et al., 2016, 2019). 

 

Table 6. Ranking positions of three selection policies with respect to the average solution 

Ranking Position BA12 BA13 BA14 M11* M15* M25* SC30 SC35 Sum. 



RS 2 1 1 1 1 2 1 2 11 

FP 3 3 2 3 3 1 3 1 19 

MFP 1 2 3 2 2 3 2 3 18 

Table7. Ranking positions of three selection policies with respect to the best solution 

Ranking Position BA12 BA13 BA14 M11* M15* M25* SC30 SC35 Sum. 

RS 1 1 1 1 1 3 1 2 11 

FP 1 1 1 1 2 1 3 1 11 

MFP 1 1 1 1 1 2 2 3 11 

 

6. Conclusion 

The aperiodic facility layout problem (AFLP) studied in this paper is strongly NP-hard, as it combines concurrently 

two optimizations: (1) the combinatorial optimization for WHEN to carry out a re-layout (aperiodically or 

periodically) in pre-specified multiple periods, and (2) the static optimization for HOW to design optimally the 

facility layout in selected periods. Existing exact algorithms, e.g., the branch & bound algorithm in CPLEX, can only 

solve very small-sized problems, e.g., less than 5 departments over 6 periods, in acceptable CPU time.  The 

decomposition of the AFLP into a master problem and a slave problem is a promising way that has reduced the 

problem complexity significantly.  The proposed BDP algorithm in this paper is an exact algorithm that can solve 

the master problem with a complexity level of O (n2). The slave problem is a static FLP that has been extensively 

studied in the literature, and there are many algorithms available to solve it.  The PEA-LP algorithm is a proven 

solution approach that is among the best ones for solving FLPs. The improved PEA-LP developed in this paper 

showed even better performances on solving all sizes of FLP problem instances, with five the known benchmark 

problems being updated with new best-known solutions in the experiments.  Future studies may be conducted on 

two aspects: (1) to develop a more efficient approach for calculating Ftk that is a time-consuming part of the proposed 

solution approach, and (2) to extend the AFLP model by considering more practical factors that cause the re-layout 

cost such as in zone-based or multi-floor situations. 
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