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Abstract 

The production of membrane proteins of high purity and in satisfactory yields is crucial for 

biomedical research. Due to their involvement in various cellular processes, membrane proteins 

have increasingly become some of the most important drug targets in modern times. Therefore, 

their structural and functional characterization is a high priority. However, protein expression has 

always been more challenging for membrane proteins than for soluble proteins. In this review, we 

present four of the most commonly-used expression systems for eukaryotic membrane proteins. We 

describe the benefits and drawbacks of bacterial, yeast, insect and mammalian cells. In addition, we 

describe the different features (growth rate, yield, post-translational modifications) of each 

expression system, and how they are influenced by the construct design and modifications of the 

target gene. Cost-effective and fast-growing E. coli is mostly selected for the production of small, 

simple membrane proteins that, if possible, do not require post-translational modifications but has 

the potential for the production of bigger proteins as well. Yeast hosts are advantageous for larger 

and more complex proteins but for the most complex ones, insect or mammalian cells are used as 

they are the only hosts able to perform all the post-translational modifications found in human cells. 

A combination of rational construct design and host cell choice can dramatically improve membrane 

protein production processes. 
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1. Introduction 

Over the last few years, there has been a high demand for obtaining in-depth information for 

membrane proteins due to their association with human pathophysiology, which makes them 

targets for drug discovery [1-3]. The accessibility of membrane proteins, many of which are located 

on the cell surface in comparison with internal cellular targets, and the great variety of protein 

families and functions makes them highly important as potential drug targets. Examples of these 

targets are receptors (e.g. G protein-coupled receptors (GPCRs)), transporters (e.g. ATP-binding 

cassette (ABC) transporters or secondary active transporters) and channels (e.g. aquaporins or ion 

channels). Targeting these proteins can influence biological processes such as cell communication, 

secondary signalling and the transport or facilitated diffusion of nutrients and waste products in and 

out of the cell [4]. 

Despite recent, significant technical progress, membrane protein structural and functional 

characterization remains challenging. The major difficulty is obtaining large amounts of pure protein. 

This requires high yields produced by suitable hosts. A single optimised system that produces all 

membrane proteins is unlikely to be found and expression is still dependent on trial and error 

experiments. Several options have been explored in order to overcome this bottleneck in research. 

In some cases, researchers have focused on the use of modified expression systems that would 

improve protein yield, thanks to a better understanding of signalling pathways, protein folding and 

post-translational modifications [5-7]. Another option lies in protein engineering by using stabilizing 

mutant proteins which has allowed successful crystallization of the target protein, although it can 

have a detrimental impact on protein activity [8-10]. 

One of the key features in membrane protein production is the design of the construct that will 

be used to express the target protein. Thought must be given to specific modifications that could 

enhance the production of the protein such as promoter strength and fusion partners [11]. Another 

essential point is the selection of the organism in which the target protein will be expressed. 

Potential expression systems usually range from prokaryotic organisms such as Escherichia coli (E. 

coli) to eukaryotic systems such as yeast, insect cells or mammalian cells. The relationship between 

the lipid composition of the membrane in each of these organisms and the requirements of the 

recombinant protein in terms of its functionality is of paramount importance in determining its 

eventual stability and activity. The nature of any post-translational modifications can also be vital 

[12]. This review aims to cover the different aspects of the production of membrane proteins, from 

the design of the construct to the selection of a suitable expression system, comparing the four main 

ones: E. coli, yeast, insect cells and mammalian cells. We consider how the transcription and 

translation of the target gene is influenced by the choice of signal sequence, promoter and host 

strain, which combinations of host strain and expression vector are most commonly used and how 

they affect the proper folding and yield of the membrane protein. Furthermore, we review the value 

of multiple affinity tags and their use during and after expression. 

2. Changing trends in membrane protein expression over the last decade 

Thanks to technological and methodological advances, 76.5% of all known unique membrane 

protein structures were solved in the past decade. 48.7% of them are of eukaryotic proteins and 
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46.6% are of bacterial proteins (Figure 1A). The number of eukaryotic membrane protein structures 

elucidated per year and as a proportion of the total number of structures is continuously increasing 

(Figure S1A/B). In comparison, the number of bacterial structures per year has remained fairly 

constant, but as a proportion of all elucidated structures, bacterial ones are declining. In 2019, the 

proportion of eukaryotic structures was nearly 3 times higher than bacterial structures. This is an 

eight-fold increase since 2010 when the proportion of eukaryotic structures was three times lower 

(Figure S1C). This can be explained by an increased use of eukaryotic expression systems over the 

years (Figure 1B). 26.0% of eukaryotic membrane proteins of known structure have been expressed 

in cells from S. frugiperda, followed by HEK 293 (25.3%) and yeast cells (16.2%) including S. 

cerevisiae (8.5%) and P. pastoris (7.7%). The consistent increase in the number of eukaryotic 

membrane protein structures in comparison to bacterial structures is representative of the great 

interest and importance of their functional and structural investigation. 

 
Figure 1: Analysis of eukaryotic membrane proteins of known structure from 2010 to 2020. (A) 796 structures have been 

solved. 48.7% of them were of eukaryotic and 46.6% of bacterial origin (see pie chart). Since 2015, the total number of 

elucidated structures per year is dominated by eukaryotic structures. The proportion of elucidated eukaryotic to bacterial 

structures has increased every year. (B) Predominantly, S. frugiperda and HEK 293 cells have been used for eukaryotic 

membrane protein expression in recent years with E. coli and yeast also being common hosts. The number of eukaryotic 

membrane proteins expressed in yeast cells only takes S. cerevisiae and P. pastoris expression systems into account. The pie 

chart considers all unique eukaryotic membrane protein structures elucidated and their expression systems from 2010 to 

2020. Data were obtained from https://blanco.biomol.uci.edu/mpstruc/ [13]. 

https://blanco.biomol.uci.edu/mpstruc/
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3. Construct design 

The selection of an appropriate host strain for the expression of the target membrane protein is 

critical. However, this alone does not ensure the successful production of the protein. The design of 

the expression construct is essential and constitutes a key element for all recombinant expression 

systems (Figure 2). The overall aim is to generate a construct that is optimal for all stages of 

membrane protein production from transcription to translation and translocation-insertion into the 

membrane. Furthermore, downstream applications should be considered in the optimal design. 

Following expression, the protein will need to be detected and isolated from the membrane. A 

variety of tags are available, however they should be designed to have minimal effect on the 

function and structure of the protein. The final application, whether functional or structural study, 

dictates the modifications of the membrane protein. Structural studies demand high concentrations 

of pure, stable and homogenous protein preparations. Therefore, modifications of the protein 

coding sequence aim to increase the stability and the homogeneity of the overexpressed protein 

during purification and final applications.  

Traditionally, constructs have been generated through molecular biology techniques such as 

restriction enzyme cloning, gateway recombination cloning, topoisomerase based cloning, Gibson 

Assembly, etc., [14-16] but this is increasingly being replaced with de novo synthesis of DNA. Even 

though these services facilitate the process, the manipulations of the gene need to be carefully 

evaluated. A study in 2012 showed that single synonymous codon substitutions can influence mRNA 

stability and structure, influence translation initiation and elongation and affect protein folding and 

translocation [17]. The rate and accuracy of translation are directly connected with the expression of 

the recombinant membrane protein and therefore the mRNA sequence plays a crucial role [18]. 

Several adjustments can be made to optimise the gene in order to match the transcription and 

translation machineries of the expression host. In principle, optimisation of the translation initiation 

sequence and adaptation to the codon usage of the expression host can have a positive impact on 

the production of the protein target. The translation initiation sequence has been shown to be 

influenced by the sequence around the start ATG (methionine) [19]. A study conducted in 2009, 

where 13 human aquaporins (AQP) were produced in P. pastoris, showed that the usage of a Kozak 

sequence instead of the yeast consensus sequence resulted in higher recombinant protein yields 

[20]. The Kozak sequence for mammalian proteins is gccRccatgG, where R represents purine (most 

often adenosine). A G (guanine) in the +4 position was common among the AQP genes with 

increased yields suggesting that the presence of alanine, and to a smaller extent glycine, at the 

second codon has a positive influence on protein expression. In a different report from 2013, 

synonymous codon substitutions in the 5’ coding region adjacent to the AUG start significantly 

improved the expression of membrane proteins in E. coli [21]. However, this is not always the case. 

A study in 2012 showed that the translation initiation could be up-, or down-, regulated for the 

optimisation of the expression of each target protein. CD20 (containing 4-transmembrane (TM) 

helixes) and the 7TM GPCRs, EG-VEGFR1 and RA1c, were expressed in E. coli using different leader 

sequences. The proteins expressed with weaker translational initiation sequences had higher yields 

because they reduced the overload of the translocation machinery and allowed continuous 

membrane protein accumulation over several hours of induction [22].  
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There are 64 possible codons present in the genetic code but only 20 amino acids, meaning there 

is more than one codon for each amino acid (except methionine and tryptophan). The preference of 

organisms for the usage of codons varies for each amino acid. The mRNA sequences of highly-

expressed genes contain codons associated with abundant tRNAs. Therefore, based on the codon 

bias of each expression system there should be appropriate codon optimisation of the DNA 

construct to maximize the expression of the protein. However, codon optimisation can have 

unexpected effects on the membrane protein expression. Codon optimisation was shown to have 

positive, negative or no effect on overexpressed membrane protein yield [23]. This highlights that 

any modifications should be target specific and the influence of codon optimisation on final protein 

yield should be carefully monitored. The frequency of each codon used in different organisms can be 

found at http://www.kazusa.or.jp/codon [24] and can be used for gene design. 

A number of additional sequences are typically incorporated into a recombinant membrane 

protein expression construct, especially when the proteins are expressed heterologously in a 

different expression system. In order to control membrane protein targeting in recombinant 

expression systems, native signal sequences are often modified/replaced. Amino-terminal signal 

peptides, which are usually short 20 to 30 amino acid helices, mediate the trafficking of the protein 

to the membrane through a complex cellular machinery. The choice of signal sequence can have a 

dramatic effect on protein production. A study in 2013 showed that signal peptides can significantly 

increase expression levels of recombinant membrane proteins [25]. The most commonly-used signal 

sequence in yeast cells is the S. cerevisiae α-mating factor pre-pro-sequence on account of its high 

secretion efficiency; it is also used for expression in P. pastoris. The periplasmic leader sequences 

derived from ompT, ompA, pelB, phoA, malE, lamB and β-lactamase are used to direct proteins to 

the inner membrane of the periplasm in E. coli. In mammalian and insect cells, proteins are often 

expressed with their native signal sequence, although there are proteins, such as many family A 

GPCRs, which express in mammalian cells without a signal sequence. However addition of a signal 

peptide can help increase expression [26]. Examples of signal peptides that can be used include the 

baculoviral gp64, or in mammalian cells the modified human serum albumin (mSA), human  

azurocidin (AZ), modified Cricetulus griseus Ig kappa chain V III region MOPC 63 like (mIgkC) and 

modified human Ig kappa chain V III region VG (mIgkH) [26, 27]. 

Furthermore, the protein coding sequence can be modified to facilitate structural studies. As 

stated previously, these studies require high concentrations of pure and stable homogeneous 

protein preparations. One approach is the introduction of point mutations. Individual or multiple 

point mutations can increase the stability of membrane proteins. The alanine-scanning method has 

been used in the past to find point mutations that can increase the stability and facilitate the 

crystallisation of GPCRs as shown for the β1-adrenergic receptor (β1 AR) [28], as well as A2A 

adenosine receptor (A2A AR [29, 30]. This approach has also been used to avoid heterogeneity 

generated by post-translational modifications (PTMs). Two possibilities are the disruption of the N-

glycosylation site sequence (Asn-X-Ser/Thr), usually achieved by mutating the Asn to Gln, as well as 

the substitution of palmitoylated Cys residues [31]. Caution should be exercised if the Cys residues 

are replaced by Ser to ensure that a potential kinase site is not inadvertently created. This can be 

performed for crystallography studies, where the goal is to obtain the structure of the protein. The 

glycosylation is therefore not needed in this particular case. Another approach is the replacement of 

unstructured loops with stably-folding domains such as T4-lysozyme (T4L) and the thermostabilized 

http://www.kazusa.or.jp/codon
http://www.kazusa.or.jp/codon
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apocytochrome b562RIL (BRIL) [32]. This approach has been mostly used for the stabilization of 

GPCRs expressed in insect cells, however it can also be applied in E. coli [33]. 

After expression and extraction, the next step is detection and purification of the target 

protein. For that reason, a broad range of epitope tags and fusion partners has been developed to 

simplify the process using quick and generic techniques and tools [34]. This is especially important 

for membrane proteins such as ion channels that lack significant antigenic epitopes. Chosen tags 

should have minimal effects on the protein structure and function. They are usually added onto the 

amino- or carboxy-terminus of a target protein through the addition of their cDNA sequence into the 

construct through gene synthesis or polymerase chain reaction (Figure 2). The carboxy-terminus is 

preferred when a signal peptide has been added to the amino-terminus for membrane 

translocation. However, a study in 2018 showed that the addition of more than one tag has been 

successful for the production and purification of complex membrane proteins including GPCRs and 

RAMPs [35]. The most commonly-used protein tag is the poly-histidine tag (His). The number of the 

histidine residues varies from 3 to 12. The His tag offers several advantages because it does not 

typically interfere with the protein due to its small size, it has low toxicity and offers a one-step 

purification by metal chelate chromatography using IMAC resins such as nickel-charged affinity resin 

Ni-NTA (nitrilotriacetic acid). Other frequently-used tags for recombinant membrane proteins are 

the poly-Arg, FLAG, c-myc, streptavidin-based, GST and green fluorescent protein (GFP) tags. The 

GFP tag is becoming an increasingly popular choice; it is used to monitor production yields and as a 

folding reporter [36]. Tags like the His, FLAG and GST can be used for protein binding on a surface 

e.g. for ligand binding experiments or the analysis of protein interactions with surface plasmon 

resonance spectroscopy or for antibody drug development by phage or mammalian display [37-41]. 

However, if tighter binding is required, the AviTag may be a better option for these kinds of 

experiments [42]. Biotinylating the AviTag makes it possible to bind the protein to streptavidin which 

is bound to a surface. The recently-developed SpyTag shows promising features for purification and 

surface binding by using the Spy&Go or SpyCatcher system [43, 44]. In the future, this may be a 

useful alternative to current, commonly-used tags.  

 

Figure 2: Construct design. The cloning of the target gene into the expression plasmid can be achieved by various methods 

such as restriction enzyme, gateway recombination or topoisomerase based cloning. A signal sequence is inserted upstream 

of the gene so that the resultant membrane protein is translocated to the membrane. Tags can be cloned at the 5ˊ- or 3ˊ- 

end of the gene encoding the membrane protein. It is advisable to insert a cleavage site between the sequences in order to 

retain the option of removing the tag after protein purification. The sequence is flanked by the chosen promoter and 

terminator sequences. The expression vector must include a selection marker and an origin for replication. 
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The presence of tags may influence the structure and/or function of the target membrane 

protein and therefore it is important to have the option to cleave the tag following purification. Tags 

can be removed by either enzymatic cleavage or chemical cleavage. Cleavage sites are used to 

enzymatically remove tags by exploiting the ability of enzymes to facilitate site-specific proteolysis. A 

commonly-used protease is tobacco etch virus (TEV) protease that can easily be produced in-house, 

is active in the presence of detergents and has high specificity. Alternatives such as enterokinase, 

thrombin and factor Xa have also been used successfully [45]. Chemical reagents can also be used 

for the removal of tags. The most commonly-used reagent is cyanogen bromide (CNBr). However, 

even though chemicals are cheaper than proteolytic enzymes, they are not as popular because their 

reaction conditions are harsh and can cause protein modifications. Furthermore, CNBr cleaves 

peptide bonds at the C-terminus of methionine (Met) residues and that can result in fragmented 

proteins that contain Met residues in their sequence. Nevertheless, they have been used 

successfully in the cleavage of fusion proteins from inclusion bodies [46].  

4. Microbial expression systems 

The two yeast species Saccharomyces cerevisiae and Pichia pastoris together with the bacterial 

E. coli system have been used for the production of the majority of membrane proteins expressed in 

microbes. A successful strategy starts with the selection of an appropriate host strain and continues 

with the vector, promoter, selection markers, signal sequence and the optimal gene sequence. The 

different factors in this design strategy for the overexpression of membrane proteins in bacteria and 

yeast are described in the following sections. 

4.1 E. coli expression systems 

Due to its potential for high expression efficiency, the possibilities for genetic manipulation and 

its fast growth rate, E. coli is an attractive expression system not only for soluble proteins but also 

for membrane proteins [47-49]. Overall, from 2010 to 2020, 49.9% of all recombinantly- 

expressed membrane proteins used E. coli as a host (Figure S2) 

(https://blanco.biomol.uci.edu/mpstruc/)[13]. 12.6% of eukaryotic membrane proteins of known 

structure have been expressed in E. coli (Figure 1B). These include small transmembrane units of 

membrane proteins used in NMR studies [50-52] but also large oligomers such as the retromer Vps5, 

the ion channel Nav1.4 from electric eel and the 27 homomer Gasdermin A3 which were analysed 

using X-ray crystallography and electron microscopy [53-55]. However, most subunits of larger 

complexes were membrane proteins of smaller size. Overall, monomeric protein sizes lie between 40 

and 750 residues (Figure S3A). Normally, protein expression takes 2-3 days in E. coli, the cost of 

medium is below £10/L and the protein yield is considerably higher in comparison to other 

conventionally used expression systems [56]. 

Even though E. coli provides many advantages for expression of eukaryotic membrane proteins, it 

may be undesirable as a host because of differences in membrane composition between eukaryotes 

and prokaryotes and the fact that the lack of eukaryotic post-translational modifications and 

processing can lead to non-functional and incorrectly-folded proteins [49, 57]. The overexpression of 

certain membrane proteins can be toxic for bacterial cells which can result in low or no yields at all 

[58]. Nevertheless, therapeutically-relevant eukaryotic membrane proteins have been successfully 

expressed in E. coli [59-64]. An alternative approach can be to create chimeric proteins combining 

https://blanco.biomol.uci.edu/mpstruc/
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elements of the target eukaryotic membrane protein with a bacterial membrane protein which can 

more easily be expressed in bacteria [65, 66]. In the following sub-sections, the most common E. coli 

expressions systems are introduced.  

   4.1.1. Choosing the right E. coli expression system 

The appropriate combination of expression strain and promoter is essential. A study in 2018 

listed a total of 477 possible combinations of promoters and E. coli strains [48]. The most exploited 

bacterial strain for the production of membrane proteins is BL21(DE3), followed by C43(DE3), 

C41(DE3), pLysS-containing BL21(DE3), BL21(DE3) CodonPlus and Rosetta™ 2(DE3) (Figure 3A). 

BL21(DE3) cells have been used successfully in the homologous and heterologous production of 

membrane proteins [48, 67]. The majority of these proteins were expressed using the T7 RNA 

polymerase (T7RNAP)-based promoter system followed by the ara-, T5- and tet-promoters (Figure 

3B). Additional commonly used plasmids and promoters for E. coli membrane protein expression can 

be found in tables 1 and 2. 

 

Figure 3: Most used E. coli strains (A) and promoter systems (B) used in the successful membrane protein expression of 
known structure. Using data from Dilworth et al. 2018, bacterial expression experiments were analysed for strain and 
promoter usage in the time period 1985-2017 [48]. BL21(DE3) and the T7 promoter are the most used strain and promoter, 
respectively. 

Table 1: Commonly used bacterial plasmids. 

Plasmid 

Series 
Promoter Inducer 

Repressor 

System 
Tag Selection Marker Source 

pET T7/lac, T7 IPTG LacI None Ampicillin (AmpR) Invitrogen 

pBAD araBAD Arabinose araC  None Ampicillin (AmpR) Invitrogen 

pRSET T7/lac IPTG LacI 6xHis Ampicillin (AmpR) Invitrogen 

pASK-IBA tet 

Anhydrotetr

acycline 

(AHT) 

Tet-

repressor 
Various 

Chloramphenicol 

(CamR) 

IBA Life 

Sciences  

pMAL tac IPTG LacI MBP Ampicillin (AmpR) NEB 

pQE T5  IPTG LacI 8xHis Ampicillin (AmpR) Qiagen 
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pGEX tac IPTG LacI GST fusion Ampicillin (AmpR) GE Healthcare 

 

Table 2: Commonly used bacterial promoters. 

Promoter Description Regulation Reference 

lac Promoter from lac operon  
Inducible by lactose or IPTG. Repressed by lacI 

protein. 
[68] 

T7 Promoter from T7 bacteriophage Constitutive [69] 

T7/lac 
Promoter from T7 bacteriophage plus 

lac operators 
Inducible by IPTG. Repressed by lacI protein. [70] 

araBAD 
Promoter of the arabinose metabolic 

operon 
Inducible by arabinose. Repressed by araC dimer. [71] 

tet Promoter of tetracycline promoter 
Inducible by AHT. Repressed by tetracycline 

transactivator (tTA) protein. 
[72] 

T5/lac Promoter from T5 bacteriophage  Inducible by IPTG. Repressed by lacI protein. [73] 

trp 
Promoter from E. coli tryptophan 

operon 

Inducible by 3-β-indoleacrylic acid (IAA). 

Repressible by high levels of cellular tryptophan. 
[74] 

tac 
Combination of promoters from the 

trp and lac operons 
Inducible by IPTG. Repressed by lacI protein. [75] 

 

T7-based expression systems take advantage of the DE3 gene, encoding the T7RNAP and 

originating from T7 bacteriophages. In contrast, the bacteriophage T5 promoter can be used in any 

E. coli strain because it facilitates the native E. coli RNA polymerase and is not dependent on the DE3 

gene. E. coli RNA polymerase is eight times slower than the T7RNAP thus producing less protein but 

decreasing the pressure on the expression machinery of the cell [76]. As already stated above, 

producing large amounts of membrane proteins can be toxic for host cells. To overcome this 

challenge, the more tolerant C41(DE3), C43(DE3), C44(DE3) and C45(DE3) strains (which are mutants 

of BL21(DE3) cells) can be used [6, 77]. In C41(DE3) and C43(DE3), mutations in the lac operon can 

be found [78]. These mutations reduce the basal expression of the target membrane protein, 

thereby diminishing any toxicity. Additionally, lon promoter activity in C43(DE3) cells is restored 

resulting in the expression of the lon protease. This helps with the removal of misfolded or partially 

translated proteins so that the Sec pathway is not blocked. In C44(DE3) and C45(DE3), the T7RNAP 

gene is mutated [77]. An additional stop codon in the sequence results in the production of 

truncated, non-functional polymerase. Therefore, the transcription of the target gene is dependent 

on the suppression of the stop codon. In comparison, BL21(DE3), containing the pLysS plasmid, 

represses toxic basal background expression of the target membrane protein by co-expressing T7 

lysozyme which inhibits the transcription activity of T7RNAP [79]. Basal background expression is an 

undesired effect of the lacI repression system which is used by T7-based expression systems (Figure 

4A). Basal expression is a function of the “leakiness” of an expression system or the production of 

the target membrane protein in the absence of an inducer (Figure 5B). The lacI gene, encoding the 
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lacI tetramer, is positioned on the host DNA and the expression vector [58]. The transcription of the 

target membrane protein is inhibited by the tetramer which blocks the T7RNAP binding site on the 

DNA strand. Adding isopropyl β-D-1-thiogalactopyranoside (IPTG) removes lacI. By using varying 

concentrations of IPTG, the amount of overexpressed membrane protein can be titrated. The ara 

and tet expression systems provide much stronger repressors. The ara expression system comprises 

the araBAD promoter, araC promoter and araC gene (Figure 4B). Transcription from the araC 

promoter creates the araC dimer which binds to the I1 binding site upstream of the araBAD 

promoter and the O2 binding site in front of the araC promoter, which results in a DNA loop that 

blocks both of the promoters [80]. The binding of L-arabinose to the araC dimer is followed by the 

displacement of the dimer from the O2 binding site to the I2 binding site which sits between the O1L/1R 

binding sites and the araBAD promoter. The loop dissipates so that the transcription from the 

araBAD promoter can be started. This repressor system is sometimes used with the MC1061 host 

strain because it does not metabolize L-arabinose [48, 81, 82]. Nevertheless, this repressor system 

often gives an “all-or-nothing” induction instead of a gradually increasing protein expression with 

different inducer concentrations [83]. The tet expression system is based on tetracycline binding and 

takes advantage of the tet operon which contains the tetA and tetR genes. TetA introduces an 

antibiotic resistance against tetracycline whereas tetR encodes the repressor which is blocking the 

RNA polymerase binding site but can be displaced by adding tetracycline [84, 85]. Similar to the T5 

expression system, the tet expression system can be used in any E. coli strain. 

 

Figure 4: Repressor systems in E. coli expression systems. (A) LacI repressor system. Due to the binding of the lacI 
tetramer, T7 RNA polymerase cannot bind to the T7 promoter (PT7). Binding of IPTG displaces the tetramer and the 
transcription of the target gene is started. Additionally, the cAMP receptor binding protein (CRP), which regulates promoter 
activity using cAMP, can bind to its binding site (BSCRP). (B) AraBAD repressor system. The DNA strand forms a loop by 
binding the araC dimer to the I1 and O2 binding site. The loop blocks the araBAD promoter (PBAD). Binding of L-arabinose 
changes the conformation of the dimer so that it is displaced from O2 and binds to I2, thereby giving the RNA polymerase 
access to PBAD. Excess araC binds to O1L/1R thereby autoregulating its own production by blocking PC. PI = lacI promoter; O3/1 
= lacI tetramer binding sites; BSCRP = CRP binding site; CRP = cAMP receptor binding protein; PT7 = T7 promoter; PC = araC 
promoter; O2/1L/1R/I1/I2 = araC dimer binding sites; PBAD = araBAD promoter. 

The heterologous expression of eukaryotic membrane proteins in E. coli is desirable but the lack 

of rare tRNAs is a limitation. The deficiency in required tRNAs can result in truncations, mutations, 

misfolding or low yields of the target membrane protein [86]. Therefore, strains such as BL21(DE3) 

Codon Plus and Rosetta™ 2(DE3) have been generated. They contain codons, encoding rare tRNAs 

needed for the satisfactory production of eukaryotic membrane proteins. 
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Figure 5: Finding the optimal overexpression conditions for a tetrameric ion channel in E. coli. (A) Growth curves for 

BL21(DE3) cells transformed with the pBAT4 expression vector including the target gene at 37 °C, 30 °C and 25 °C. At 37 °C 

the desired OD600 of around 0.45 for induction is reached after 2 hours, whereas at 30 °C and 25 °C it takes at least 3 hours 

or 4.75 hours, respectively. (B) Western blot of the cell suspension after induction with either 1 mM, 0.5 mM, 0.25 mM or 

0 mM IPTG. The optimal IPTG concentration for this experiment is 0.5 mM, as seen by the densest band on the blot 

indicated by the grey arrow above the 28 kDa molecular weight marker. Basal expression of the protein can be seen when 

no inducer was added to the culture. This shows the “leakiness” of the plasmid. (C) Western blot of the cell suspension 

grown and/or induced at 37 °C, 30 °C or 25 °C for 2 hours and overnight (o/n). In this case, a growth temperature of 30 °C 

and an o/n induction at 25 °C is optimal for the overexpression. This is indicated by the protein bands below the molecular 

weight marker of 28 kDa. The densest band can be seen at the described temperatures. In comparison, the protein bands 

around the 62 kDa marker display no differences. The protein bands are indicated by the grey arrows. His-tagged GFP in 

combination with anti-His antibodies were used as a positive control on the blot. 

4.1.2. Influence of expression conditions on protein yields 

A very important variable in membrane protein production in E. coli is the choice of expression 

conditions. Insufficiently-regulated overproduction of the target membrane protein can result in 

slow cell growth, cell death and/or the formation of inclusion bodies [87, 88]. In the section above, 

various promoter and repressor systems have been described that reduce toxicity and regulate 

expression. The growth rate can be determined by measuring the optical density at 600 nm (OD600) 

in a time-course experiment (Figure 5A). Even though E. coli grow optimally at 37 °C, protein 

production is not necessarily favoured at that particular temperature (Figure 5C). The reason for that 
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is the “leakiness” of some expression vectors and the metabolic stress on the bacterial cells [58]. If 

too much protein is produced at once, the native folding machinery can be overwhelmed [88]. If the 

protein is not folded correctly, it aggregates and thereby forms inclusion bodies. In addition to 

lowering the temperature, the concentration of the inducer can be decreased (Figure 5B). 

Optimizing the induction time can result in an improved functional protein yield as well. Due to its 

toxicity, the membrane protein may be destroyed by auto-proteolysis [58]. Therefore, shorter 

induction times e.g. 2 hours should be investigated.  

4.2 Yeast expression systems 

4.2.1 Yeast host system features 

Recombinant membrane protein expression in yeast cells for crystallization studies was first used 

in 2005 in order to produce the rabbit Ca2+-ATPase SERCA1a in S. cerevisiae and the rat voltage-

dependant potassium ion channel Kv1.2 in P. pastoris [89, 90]. Ever since, yeast has remained a 

reliable option for eukaryotic membrane protein production. Indeed, membrane protein expression 

in yeast shows multiple advantages: as microbes, yeasts are inexpensive (<£10/L culture) and easy to 

grow compared to more complex eukaryotic cells [91]. They are also able to express complex 

proteins that require specific post-translational modifications such as disulphide bonds, glycosylation 

or folding that prokaryotic organisms are not able to process [92-94]. Yeast systems are capable of 

performing phosphorylation, prenylation -as it is a common characteristic of eukaryotic cells- and 

palmitoylation, of target proteins [95]. Phosphorylation consists in the reversible addition of 

phosphate groups that can be crucial for protein activity (it is estimated half of the enzymes in S. 

cerevisiae are phosphoproteins [96], while prenylation is the irreversible addition of prenyl groups in 

order to help protein anchoring on the cell membrane. Finally, palmitoylation is the reversible 

addition of a fatty acid such as palmitic acid on a cysteine residue that has an impact on subcellular 

trafficking and increases hydrophobicity. These modifications are essential for the correct function 

of proteins and their presence must be investigated on the protein of interest, especially for 

functional studies, before making a choice of expression system. Yeast system were mostly used to 

produce eukaryotic membrane proteins from 250 to 900 residues (Figure S3B) while E. coli systems 

are typically used for smaller proteins (Figure S3A). It was possible to efficiently produce proteins as 

large as up to 1,500 residues in length [97]. Yeast can also be very easily genetically modified [11, 94, 

98]. Thus, yeast protein expression has become a viable alternative to bacteria for large-scale 

eukaryotic protein production. However, yeast need a longer time than bacteria in culture in order 

to reach the required cell density, and they need more time to express the desired recombinant 

protein (4 to 6 days in total), compared to more simple bacterial hosts. They remain faster than 

more complex eukaryotic expression systems as it takes about a week to cultivate the cells and 

express the target protein. 

Several species of yeast have been tested as platforms for protein production. The two most 

successfully-used ones are S. cerevisiae and P. pastoris. Together, they have been used to produce 

16.2% of recombinantly-expressed eukaryotic membrane proteins of known structure during the last 

decade (Figure 1B) [13]. Other species show interesting features such as Hansenula polymorpha, 

known for its thermostability (between 30 and 50 °C) with an optimal growth temperature around 

37-43 °C which allows production of mammalian proteins that require temperatures of 37 °C to 

preserve their activity [99, 100]. Candida boidinii is also an interesting host as it can use different 
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methanol-inducible promoters that allow the control of the level of protein expression according to 

the carbon source used [101, 102]. These different yeast species have been reported to be able to 

produce gram quantities of mammalian soluble proteins per litre of culture supernatant [103]. 

S. cerevisiae has been very well studied in the literature so that tools and mutations for improved 

protein production are easily accessible. Indeed, a deletion library containing more than 20,000 

strains that carry precise start-to-stop deletions of ∼6,000 ORFs exists. This collection represents the 

first and only complete, systematically-constructed deletion collection available for any organism 

[104]. This can be extremely beneficial to allow tuning of the expression environment. For example, 

it is possible to modify sterol production in yeast in order to reach conditions closer to mammalian 

cells. As the natural sterol found in yeast membranes is ergosterol, and although the structural 

differences between ergosterol and cholesterol are minor, this may still result in a difference in 

interactions between the membrane protein and the lipids found in the native versus the host 

membrane. Therefore, specific strains have been produced that are able to make cholesterol instead 

of ergosterol in their membranes, thus allowing more native-like interactions for the protein [105]. A 

study from 2011 found that some proteins expressed in cholesterol-producing yeast strains showed 

good functionality (such as solute transporters for tryptophan or arginine), whereas others (such as a 

weak organic acid exporting protein called Pdr12p from the ABC transporters multi-drug resistance 

family) did not. More generally, the lipid composition in the yeast plasma membrane is very similar 

to the one found in mammalian cells: phosphatidylinositol has higher abundance in the plasma 

membrane whereas phosphatidylcholine is found in smaller amounts. In addition, the ratio of 

sterol/phospholipids is also slightly different; the choice of expression system must therefore take 

this into account [106]. However, production of mitochondrial membrane proteins is not affected, as 

the lipid composition of this organelle’s membrane is almost identical between yeast and 

mammalian cells. 

Yeast strains have also been engineered in order to induce protease deficiency. Host-specific 

protease activity can be a limiting factor in the production of high-yields of membrane proteins. A 

study has shown that the creation of protease-deficient strains, by disruption of two genes essential 

for maturation and activation of several proteases, can enhance recombinant protein yields by 10-

fold [107].  

One of the biggest disadvantages for the production of eukaryotic membrane proteins in yeasts is 

the difference in post-translational modifications, and especially glycosylation patterns, between 

higher eukaryotes and yeasts. Indeed, while N-linked glycans are quite similar between lower and 

higher eukaryotes, differences appear during the maturation in the Golgi apparatus. Moreover, 

there are major differences between O-glycosylation patterns between yeasts and higher eukaryotic 

systems, from the linkage between the different residues which is more linear in yeasts, to the 

composition in monosaccharides, which is much more complex in higher eukaryotes while it tends to 

contain only mannose in yeasts [108]. Protein glycosylation is of major importance as is involved in 

various pathways such as target receptor engagement, biological activity modulation, 

immunogenicity potential, tissue distribution or pharmacokinetics and pharmacodynamics [109]. 

Therefore, efforts have been made in order to engineer yeast strains capable of producing 

membrane proteins with O- and N-glycosylation patterns identical to human ones [110]. 

Yeast strains have been engineered to confer a selective advantage to cells producing the target 

protein, compared to those that do not, thus increasing the production yield [48, 111, 112]. 
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Although the total yield of produced protein reported is higher, a similar yield of functional 

membrane proteins was produced in the modified and unmodified strains; this could be limited by 

the lipid composition of the membrane. 

P. pastoris and S. cerevisiae to a lesser extent are able to grow rapidly in a range of complex 

media to a very high cell density when presented with high oxygenation rates (Figure 6), which 

means they are able to produce very large amounts of the target protein. In this particular 

experiment on average, for 1 L of culture, 10 g of cells are harvested, from which more than 1 g of 

membranes can be retrieved. This result is in accordance with previously-published studies using P. 

pastoris as an expression system. This is possible thanks to the ability of P. pastoris in not generating 

significant amounts of the toxic fermentative product, ethanol [113]. In addition, protein production 

in P. pastoris relies on very strong, methanol-inducible promoters (as P. pastoris strains are 

methylotrophic), so that there is no need for a high number of copies of the gene to result in a high 

yield of the protein. P. pastoris can also easily be grown in bioreactors, which tend to give higher 

yields of protein compared with shake flasks [114]. Increasing concentrations of antibiotic (e.g. 

Zeocin) can be used in order to select cells that have integrated the highest number of copies. 

However, the relationship between the number of copies of the gene of interest and the yield of 

recombinant protein is not always positive as a larger amount of protein can result in higher stress 

levels for the cells, leading to unfolded protein and protein degradation [115, 116]. The rate of 

protein production must therefore be adapted to the host’s production capacity in order not to 

overwhelm its abilities, especially translocation to the membrane. 

Figure 6: Using Pichia pastoris X33 cells to overexpress a membrane protein, monitoring growth by OD measurement at 

600 nm. A single colony was cultured in 50 mL BMGY medium supplemented with Zeocin at 30 °C and 200 rpm. After 

reaching an OD of 2.5 (after around 30 hours), 5 mL of the culture was diluted into 200 mL BMGY at 30 °C and 200 rpm. 

After 24 hours, the cells were harvested by centrifugation and diluted in 500 mL of BMMY (which contains methanol) to 

induce protein expression. After 24 hours at 30 °C and 200 rpm, the medium was supplemented with 5 mL 100% methanol 

for 24 more hours of induction. 
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4.2.2 Overcoming the production of non-functional protein 

Functional studies usually require a moderate amount of membrane protein. Structural studies 

have increased requirements in terms of yield, so agents that generate the UPR (Unfolded Protein 

Response), which is a suite of cellular responses following the build-up of misfolded proteins could 

prove beneficial [117]. Inducing a heat shock response can be done either by using a transcription 

factor inducing the heat shock pathway or by temperature shift. Using chaotropic agents such as 

urea or arginine can be another way to improve the correct protein folding rate [118]. 

The two hosts described here have been used together for the production of GPCRs: S. cerevisiae 

was first used to determine the best expression construct while P. pastoris was used to obtain the 

crystals in large amounts for structural studies [119]. The different advantages and disadvantages of 

using yeast expression systems are summarized in Table 3. 

Table 3: Advantages and disadvantages of yeast host systems. 

Yeast species Saccharomyces cerevisiae Pichia pastoris 

Advantages 

Simple growth and handling 
Low cost 

Possibility to express large proteins 
Easy genetic manipulations 

High cell density 
Mutant library available 

Very strong promoter for protein 
expression 

Very high cell density 

Disadvantages 
Need more time to culture than other microorganisms 

Some differences with human cells can still lead to improper folding or 
altered interaction in the membrane 

 

Table 4: Commonly used plasmids in P. pastoris. 

Plasmid Series Promoter Antibiotic selection 
Auxotrophic 

Marker 
Tags and Fusion partners Source 

pPICZa PAOX1 (Inducible) Zeocin (ZeoR) 
None 

a-factor, His Tag (6x), c-Myc 

Epitope Tag  
Invitrogen 

pPICZ PAOX1 (Inducible) Zeocin (ZeoR) 
None 

His Tag (6x), c-Myc Epitope Tag Invitrogen 

pPIC9K PAOX1 (Inducible) 
Ampicillin (AmpR), 

Gentamicin (GmR) 
His4 None Invitrogen 

pPIC3.5K PAOX1 (Inducible) 
Ampicillin (AmpR), 

Gentamicin (GmR) 
His4 None Invitrogen 

pGAPZ PGAP (Constitutive) Zeocin 
None 

C-His  Invitrogen 
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pGAPZa PGAP (Constitutive) Zeocin 
None 

a-factor, C-His Invitrogen 

 

 

Table 5: Commonly used plasmids in S. cerevisiae. 

Plasmid Series Promoter 
Antibiotic 

selection 

Auxotrophic 

Marker 
Tags and Fusion partners Source 

pYES2 PGAL1 (Inducible) 
Ampicillin 

(AmpR) 
URA3 None Invitrogen 

pYES3 PGAL1 (Inducible) 
Ampicillin 

(AmpR) 
TRP1 His Tag (6x), V5 Epitope Tag Invitrogen 

pRS426 
PGAL1 (Inducible), 

PTEF1(Constitutive) 
Not found 

URA3, TRP1, HIS3, 

LEU2 
Various [120], [121] 

pDDGFP-2 
PGAL1 (Inducible), 
pLEU2 (Truncated) 

Ampicillin 
(AmpR) 

URA3, LEU2 GFP, TEV, His Tag (8x), [122] 

p423 PGAL1 (Inducible) 
Ampicillin 

(AmpR) 
HIS3 None ATCC 

p426 PGAL1 (Inducible) 
Ampicillin 

(AmpR) 
URA3 None ATCC 

 

4.2.3 Expression plasmid design 

In general, there are two types of yeast vectors commonly used for recombinant expression. 

Usually, these vectors are shuttle vectors which means that they can be propagated in yeast and 

bacteria. This attribute is exploited for gene cloning and amplification. Episomal plasmids are more 

popular for expression in S. cerevisiae while integrative vectors are predominantly used in P. 

pastoris. Examples of commonly-used plasmids in S. cerevisiae and P. pastoris are listed in Table 4 

and 5.  

4.2.4 Promoter choice 

A promoter is one of the key elements of an expression plasmid and therefore choosing a 

suitable promoter is fundamental to success of any expression experiment. The nature of the 

protein affects the choice of the promoter, e.g. for membrane proteins that can be toxic to the cell 

when overexpressed, inducible promoters are preferred because they allow induction of expression 

after the growth of the cells to a high density. Typically, P. pastoris plasmids harbour strong, 

inducible promoters such as the PAOX1 from the alcohol oxidase encoding gene (AOX1) which is 

tightly-repressed by glucose and strongly-induced by methanol as the sole carbon source [123]. 

However, there are numerous studies where the strong, constitutive promoter glyceraldehyde-3-

phosphate dehydrogenase PGAP has produced equally good results [124]. For S. cerevisiae, the use 

of episomal plasmids with high copy numbers can be more beneficial because the promoters may be 

10- to 100- fold weaker than those used in P. pastoris [125, 126]. A method which increases the 

number of plasmid copies per cell and in turn the recombinant eukaryotic membrane protein 

production was studied for S. cerevisiae from Parker and Newstead in 2014 [127]. The use of a 

truncated promoter controlling the expression of the metabolic marker LEU2 gene was shown to put 
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selective pressure to yeast cells growing in minus leucine medium to maintain a high copy number of 

the vector pDDGFP2 (80-100 copies per cell). This resulted to up to fourfold increase of the 

expression. One strong promoter, which is the basis of the most commonly used plasmids used in S. 

cerevisiae, is the PGAL1, which is induced with galactose and repressed by glucose. Commonly used 

promoters used in S. cerevisiae and P. pastoris are shown in Table 6. 

Table 6: Commonly used yeast promoters. 

 Promoter Description Regulation Reference 

S. cerevisiae Constitutive    

 ADH1 Alcohol dehydrogenase 1  [128], [129], [130] 

 GAP/TDH3 
Glyceraldehyde-3-phosphate 

dehydrogenase 
 [131] 

 TEF1 Translation elongation factor 1  [132] 

 Inducible    

 GAL1 Galactokinase Galactose [133] 

 GAL10 
α-D-galactose-1-phosphate 

uridyltransferase 
Galactose [133] 

 MET25  O-acetylhomoserine sulfhydrylase Methionine [134] 

P. pastoris Constitutive    

 GAP 
Glyceraldehyde-3-phosphate 

dehydrogenase 
 [135] 

 TEF1 Translation elongation factor 1 α  [136] 

 SDH  Sorbitol dehydrogenase  [137] 

 Inducible    

 AOX1 Alcohol oxidase 1 Methanol [138] 

 AOX2 Alcohol oxidase 2 Methanol [139] 

 FLD1 Formaldehyde dehydrogenase 

Methanol, 

methylamine, 

choline 

[140] 

 

5 Higher eukaryotic expression systems  

Higher eukaryotic hosts are frequently used for the production of eukaryotic proteins especially 

when post-translational modifications and native folding are crucial for the study. In addition, the 
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lipid environment plays an important role and these systems provide a more native lipid 

environment for proper protein function. The two most common host types are baculovirus-infected 

insect cells and various different mammalian cell hosts [141].  

 

 

5.1 Insect cell expression systems 

Over the years, insect cells have been used for a variety of applications including functional 

assays, structural analyses and antibody generation [142]. Some examples of membrane proteins 

successfully expressed in insect cells are GPCRs such as β2ΑΡΤ, A2A adenosine receptor, dopamine 

D3 receptor, muscarinic acetylcholine receptors (M2, M3), opioid receptors (κ-, μ-, δ-), channels 

including P2X4, GluA2, AQP4 (Aquaporin 4) and ABC transporters including P-glycoprotein, ABCG2 

and ABCC4 [26, 143-147]. 

The cell-lines that are most widely used are Sf9, Sf21 and Hi5. During the last decade, 26.0% of 

eukaryotic membrane proteins of known structure have been produced in Sf cell lines and 4.9% in 

Hi5 [13]. Using electron microscopy, it was possible to elucidate the structure of the human 

transporter ABCA1 with a size of 2,305 residues [148]. However, most elucidated structures are from 

medium sized receptors (40 to 80 residues; Figure S3C). Sf9 is a cell-line derived from the ovaries of 

the fall armyworm, Spodoptera frugiperda, a lepidopteran insect. Sf21 is another cell line from 

Spodoptera frugiperda and the High five (Hi5) cell-line originates from the ovarian cells of the 

cabbage looper, Trichoplusia ni [149]. Expression of proteins within these insect cells takes 

advantage of the natural ability of baculoviruses to infect and replicate within insect cells. By 

incorporating a target gene within the viral genome, the insect cells can be used for the production 

of eukaryotic proteins [150]. Drosophila Schneider 2 (S2) cells are immortalized non-tumorigenic 

cells isolated from primary cultures of Drosophila melanogaster embryos. They can be cultured to 

high densities and can be transiently- or stably-transfected using a non-lytic plasmid-based system 

that provides additional benefits over virus-infected insect systems. S2 cells possess all the 

mammalian-like cell machineries for gene expression, protein processing and trafficking, including 

post-translational modifications that may be critical for proper maturation, localization and function 

of target protein [151]. In addition, the ExpiSf expression system was developed in order to culture 

insect cells in yeastolate-free medium and provides high protein yields as well as consistent cell 

growth and protein expression [152]. 

5.1.1 Recombinant protein production systems 

The most commonly-used baculovirus is AcMNPV (Autographa californica multicapsid 

nucleopolyhedrovirus). Recombinant baculoviruses can be produced using systems such as Bac-to-

Bac or FlashBAC. The Bac-to-Bac system works as follows: the gene of interest is cloned into a 

transfer vector, pFastBac, under the control of the AcMNPV polyhedron promoter [143]. Polyhedrin 

is a protein involved in forming the coat of the baculovirus, and thus has a strong promoter, 

however polyhedrin is not needed for infection and replication within cultured cells [150]. The 

pFastBac vector containing the gene of interest is then transformed into specialised DH10Bac E. coli 

cells. They contain a baculovirus shuttle vector (bacmid) encoding the baculovirus genome with a 

transposon, and a helper plasmid, which aids with the site-specific transposition of the gene of 
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interest in the bacmid. This recombinant bacmid is then isolated, purified and transfected into insect 

cells to produce the recombinant baculovirus which get released into the medium (Figure 7). 

 

Figure 7: Bac-to-Bac expression system. The gene of interest is cloned into the pFastBac vector. After transformation of 

pFastBac into DH10Bac E.coli cells that contain the bacmid with a transposon and a helper plasmid, site-specific 

transposition occurs between the bacmid and the gene of interest in the vector. The recombinant Bacmid is then isolated 

and purified and used for insect cell transfection. Within the insect cells, the bacmid genome leads to the production of 

recombinant baculovirus, which lyses the cells and is released in the media. 

The FlashBAC system, on the other hand, is based on a baculovirus genome that lacks part of an 

essential gene, ORF1629, and contains a bacterial artificial chromosome (BAC) at the polyhedrin 

locus, replacing the polyhedrin coding region. The virus cannot replicate in insect cells because of 

the deletion of the essential gene. It would not usually be possible to replicate the baculoviral DNA 

in bacteria but the insertion of BAC into the AcMNPV gene locus allows viral DNA to be maintained 

and propagated as a circular genome in bacteria, thus producing the FlashBAC DNA which can be 

isolated and purified. The gene of interest is cloned into a transfer vector such as pOET, which also 

contains the essential ORF1629 gene. The transfer vector and the purified FlashBAC bacmid DNA are 

co-transfected into insect cells. After recombination, within the insect cells, the function of the 

essential gene is restored, leading to the replication of the viral DNA and the insertion of the gene of 

interest, removing the BAC sequence. The recombinant virus can be harvested from the culture 

medium (Figure 8) [153]. 



   
 

20 
 

 

 

Figure 8: FlashBAC expression system. To produce the recombinant baculovirus DNA using the FlashBAC system, a transfer 

vector containing the gene of interest, the polh promoter and ORF1629 gene is co-transfected into insect cells together with 

the viral FlashBAC DNA. The replication of the recombinant baculovirus DNA is only initiated after homologous 

recombination of the transfer vector and FlashBAC DNA. After recombination, new viruses are produced and can be 

harvested so that they can be used for further insect cell infection and protein production. The original FlashBAC DNA 

contains a truncated version of the ORF1629 gene (ΔORF1629) which is not functional. As ORF1629 is needed for the 

replication in insect cells, it can only start after the recombination has occurred. 

A different technology for multiprotein complex expression, called MultiBac system, has also 

been developed [154], which can be used for the expression of protein complexes or proteins with a 

number of different sub-units. This system uses a number of small donor and acceptor vectors into 

which the target genes are inserted, either by conventional cloning methods or sequence-

independent and ligation-independent cloning methods. Cre-mediated fusion of the donor and 

acceptor vectors generates a single multigene construct in a single-step reaction. The single 

multigene construct is inserted into the baculoviral genome by recombination with bacmid DNA in 

specialised DH10MultiBac E. coli cells, which also contain a helper plasmid, similarly to the Bac-to-

Bac system. The MultiBac baculoviral genome which contains all desired heterologous genes is then 

purified from small bacterial cultures and used to transfect insect cells. The resulting baculovirions 
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are harvested and applied to larger insect cell cultures for heterologous protein production [155]. 

Notably the MultiBac baculoviral genome was also engineered to remove genes encoding viral 

protease and apoptotic activities, with the aim of reducing proteolytic breakdown of the target 

proteins and delaying lysis of the infected cells  

Finally, one of the latest technologies that was developed for gene transfection is the SmartBac 

system [156]. This builds upon the MultiBac approach but simplifies some of the initial cloning, 

making long DNA sequences encoding polyproteins which are produced by overlapping PCR and 

Gibson assembly. The final transfer plasmid produced by Cre-LoxP recombination is designed to 

ensure a size below 25 kb, in order to facilitate efficient transformation. To increase the stability of 

the large final transfer plasmid, which is propagated in E. coli, a low-copy p15A replication origin into 

the acceptor vectors is introduced and the bacteria are cultured at 30 °C instead of the usual optimal 

37 °C. 

Table 7: Commonly used insect cell promoters. 

Promoter Description Regulation Reference 

Polyhedrin  
Strong promoter from the polyhedrin 

coat protein of baculovirus 
Constitutive [157] 

p10 
Strong promoter from the p10 gene of 

baculovirus 
Constitutive [158] 

p6.9 

Strong promoter from the basic protein 
of Baculovirus. Drives expression at an 
earlier point of infection than 
polyhedrin or p10 

Constitutive [159] 

 

Table 8: Commonly used insect cell plasmids. 

Plasmid Series Promoter Tag Selection Marker Source 

pFastBac Polyhedrin None Ampicillin (AmpR), Gentamicin  Gibco™ 

pFastBac-Dual Polyhedrin, p10 None Ampicillin (AmpR), Gentamicin Gibco™ 

pOET Polyhedrin, p10 None Ampicillin (AmpR) 
OxfordExpressionTec

hnologies 

pVL1392-3 Polyhedrin None Ampicillin (AmpR) Invitrogen 

pBAC-1  Polyhedrin 6xHis  Ampicillin (AmpR) Novagen 

5.1.2 Insect cell culture optimisation 

Insect cell cultures require a temperature of 27-28 oC to grow. There is no need for addition of 

CO2 to the incubator as their medium is buffered with phosphate rather than carbonate. Both 

serum-free and serum-containing media can be used, but insect cells tend to adapt to a specific 

medium and there may be loss of culture if they are passed abruptly from one medium to another. 
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Insect cells can be cultured in suspension or be adherent. However, they are loosely adherent so 

there is no need for EDTA or trypsin to detach them [150]. 

By using different ratios of virus to cells and different times of infection, insect cells can be used 

for either viral amplification or protein expression. Typically viral amplification uses a low MOI 

(multiplicity of infection – number of virus particles per cell) such as 0.1-0.25, for 5-7 days. Protein 

expression uses a higher MOI (1-5) for shorter time periods such as 24-72 hours. To optimise protein 

expression, several different factors can be altered. These include the cell density, the ratio of cells 

to virus and the time length of infection; the precise conditions vary for different proteins. Figure 9 

shows an example of the effect of time on expression of the ABC transporter MRP4/ABCC4 

(multidrug resistance protein 4) in Sf9 cells. Cells harvested after 72 hours of infection show 

extensive degradation of the target protein, whereas after 48 hours the protein remains intact. 

Other changes can be made to improve the quantity and the quality (full-length protein) of the 

protein such as adding protease inhibitors or altering the growth temperature. 

 

Figure 9: Effect of infection time on the expression of human MRP4/ABCC4 in Sf9 cells. Sf9 cells at 1x10
6 

cells/ml were 
infected with recombinant MRP4 baculovirus at an MOI of 4 and harvested after either 48h or 72h. Membrane preparations 
from these cells were tested for MRP4 expression by Western blot using an anti-MRP4 primary antibody, an anti-rat HRP 
secondary antibody and detection by chemiluminescence. 

5.1.3 Insect cell culture features 

Their ease of culture, the fact that they can express large proteins and the lack of human 

pathogen contaminants make insect cells simple to manipulate and decreases the cost and biosafety 

required. Also, the lack of the polyhedrin coat protein means the virus can only infect cultured cells, 

therefore posing no risk to insects in the environment. Another feature making them an important 

system for protein production is that they produce properly folded proteins and, since they are a 

eukaryotic system, provide post-translational modifications [149]. However, these modifications may 

differ from those of mammalian cells as insect cells may lack some mechanisms of post-translational 

modifications. One example can be the different glycosylation patterns in insect cells. Glycosylated 

proteins in yeast, insect and mammalian cells have a common sugar core containing two N-

acetylglucosamine and three mannose residues. Membrane proteins in mammalian cells are further 

modified with terminal fucose, sialic acid or galactose residues by the enzymes sialyltransferase and 

galactosyltransferase. Glycosylation patterns in insect cells depend on the expressed membrane 

proteins and on the host cell-line. Typical patterns are the high mannose-type or the insect-specific 
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paucimannose type [160]. Nevertheless, there have been advances towards the humanization of 

insect cells [161, 162]. Other advantages of this system are that it is available for multiple gene 

expression since the viral genome has a great degree of capacity and flexibility and that baculovirus 

does not infect humans which makes its manipulation safe [149]. 

However, insect cells have some disadvantages such as the high cost for consumables and 

equipment and the lower yield or protein in comparison to microbial expression systems [56]. 

Additionally, the generation of the recombinant virus is time consuming and cells can only be 

infected transiently because the virus causes cell lysis. Furthermore, the lipid composition and the 

levels of cholesterol in the insect cell membrane differ from the mammalian one since the insect 

plasma membrane contains higher amounts of unsaturated lipids and lower amounts of cholesterol 

to ensure membrane fluidity at the organism growth temperature [26]. This may adversely affect the 

expression of functional mammalian membrane proteins. 

5.2 Mammalian cell expression systems 

Mammalian cells are used for protein production for several applications such as functional 

assays, protein interaction studies and antibody generation [142]. Some examples of membrane 

protein expression in mammalian cells are GPCRs (including adrenergic receptors, serotonin 5HT 

receptors and the μ-opioid receptor) and ABC transporters (such as P-gp) [143, 146, 163, 164]. 

One of the most commonly used cell-lines is from human embryonic kidney cells; HEK 293 cells 

have been used for the production of 25.3% of eukaryotic membrane proteins of known structure in 

the last 10 years, principally thanks to their ease of transfection, the high protein yields [165] and 

the increased use of electron microscopy for structure elucidation. The size of the elucidated 

proteins ranged from 300 to 1900 residues (Figure S3D) with a maximum size 2,822 residues[166]. In 

contrast to insect cells, most of the proteins formed higher oligomeric complexes like tetramers up 

to hexamers. Other commonly-used cell types are baby hamster kidney cells (BHK-21), monkey 

kidney fibroblast cells (COS-7), Chinese hamster ovary cells (CHO), the latter being especially used 

when it comes to therapeutic protein production [167]. Finally, human epithelioid carcinoma cells 

(HeLa) is a very famous and widely used cell-line extracted from a patient called Henrietta Lacks who 

died from cancer in the 1950s [141, 160, 163]. Mammalian cells typically have an optimal growth 

temperature of about 37 oC and require 5% CO2. They usually grow in adherent cultures, but HEK 

293 and CHO have been adapted to grow in suspension, which greatly facilitates their scale-up [141]. 

Mammalian cells provide endogenous post-translational modifications needed for expression of 

mammalian proteins, alongside authentic translocation and trafficking machineries. Expression of 

GPCRs such as the angiotensin II type 1 receptor, the avian β1 adrenergic receptor and the serotonin 

transporter in mammalian cell-lines, provides evidence that mammalian cells can be superior for the 

production of functional and properly-folded proteins compared to insect cells [168]. Proteins 

expressed in mammalian cells are usually properly folded and functional. Mammalian cells also 

provide a close-to native lipid environment for mammalian proteins. There are differences between 

the various cell-lines so one should take this into consideration before starting the protein 

expression. [144, 160, 169]. 

Moreover, cell engineering of mammalian cells provided solutions for structural studies and 

biopharmaceutical manufacturing of proteins. Some examples are the N-
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acetylglucosaminyltransferase-I (GnTI) negative HEK293, the 293SGlycoDelete and the ExpiCHO cell 

lines [165, 167, 170, 171]. The GnTI- HEK293 cell line was designed in order to promote homogenous 

glycosylation which is essential for the stabilisation of folded proteins and helpful for crystallography 

attempts [170]. The 293SGlycoDelete cells were generated in order to solve the problem of N-

glycosylation heterogeneity and maintain a balance between the N-glycan heterogeneity and their 

folding-enhancing functions, which are important for the biopharmaceutical industry [171]. Finally, 

the ExpiCHO cell line was selected for its high transfection efficiency, thus providing a high yield of 

protein production and better quality for antibody production [165, 167]. 

Another big advantage of mammalian cells is that they can be transfected either transiently or 

stably with a plasmid containing the target gene, optionally with inducible promoters. Transiently 

transfected cells often show very high levels of overexpression in a single cell, but the transfection 

efficiency (% of total cells that are transfected) can be low. Transiently transfected cells can also only 

express the protein for a limited period of time and the gene is not integrated into the genome. The 

genetic material can be lost by environmental factors and cell division. Transient cell-lines are 

efficient, cost-effective and quick. They can be used to assess the effect of mutations and 

truncations prior to scale-up of protein production. However, when scale-up is required, there may 

be some variability in the amount of the protein that is expressed, and the requirement for large 

amounts of plasmid DNA and transfection reagent can become limiting. Some factors that could 

affect the level of expression are the plasmid size, the amount of the plasmid used, the strength of 

the promoter, the cell type, the efficiency of transfection and the toxicity of the transfection 

reagents [163]. Transfection methods can be biological (transduction, which is discussed below), 

chemical or physical. Chemical methods commonly use cationic polymers, calcium phosphate, 

cationic lipids or cationic amino acids. Physical methods use a variety of tools to deliver the gene, 

the most widely-used being electroporation, during which a short electrical pulse disturbs cell 

membranes and makes holes in the membrane through which nucleic acids can pass. Other tools are 

micro-injection, biolistic and laser-mediated transfection which may be more sensitive but usually 

require skill or expensive equipment. In all cases, the principle is that negatively-charged DNA makes 

complexes with positively-charged chemicals which pass through the cell membrane [172]. The 

process is very simple: generation of a plasmid, transfection in log phase and harvest from 48h to 14 

days depending on the particular protein, cell line and conditions used [141].  

For stable transfection, plasmids contain a marker gene for selection to retain the plasmid. Yields 

of protein per cell may be lower than with transiently-transfected cells, but the consistent level of 

target protein production is helpful, especially when scaling up, and negates the need to constantly 

produce purified plasmid DNA. Stable cell-lines are generated by the integration of the recombinant 

DNA in the host cells [172]. This can either be random or targeted with specific sequences being 

recognised by a recombinase. The selection is made using an antibiotic resistant marker so that only 

the cells that receive the transgene will survive when cultured in medium containing the antibiotic. 

However, this strategy can be unreliable, especially for high-level transgene expression [163]. In this 

case, GFP can be a useful tool. Cells that stably integrate a GFP expression vector can be identified 

by intracellular fluorescence and isolated by fluorescence-activated cell sorting (FACS). Cell sorting 

can isolate a small number of clones from millions of cells that produce the target protein in high 

yields. By repeating the process, cells that express GFP stably over time can be isolated. Once the 

recombinant DNA is established, the expression will be consistent [173]. 



   
 

25 
 

Different expression vectors have been designed to transfer foreign genes into mammalian cells. 

The choice of the vector depends on the application, the host cell, the time limitation, the yield of 

desired product, and safety. Most commonly-used, strong constitutive promoters (Table 8) are from 

viral genomes including the human cytomegalovirus (CMV) immediate early promoter and the 

simian virus 40 (SV40) early promoter [174]. CMV is a herpes virus that can infect various human cell 

types. During productive infection, CMV genes are expressed from immediate early (IE) genes to 

early genes and then to late genes in a coordinated order. The CMV IE promoter and enhancer are 

widely used to drive gene expression in a variety of cell types [175]. SV40 infects a wide range of cell 

types from humans to other mammals, and expresses its genes in them. Plasmids incorporating SV40 

genes and/or promoter may express either transiently or stably in cell-lines [176]. 

Table 9: Commonly used mammalian promoters. 

Promoter Description Regulation Reference 

Constitutive expression  

CMV Mammalian expression promoter from the human cytomegalovirus Constitutive [174] 

EF1a Mammalian expression promoter from human elongation factor 1 alpha Constitutive [177] 

SV40 Mammalian expression promoter from the simian vacuolating virus 40 Constitutive [174] 

Inducible expression  

CMV/TO 

Hybrid promoter consisting of the human cytomegalovirus immediate-early (CMV) promoter 

and tetracycline operator 2 (TetO2) sites for high-level tetracycline-regulated expression in a 

wide range of mammalian cells 

Inducible [163] 

 

 Table 10: Commonly used mammalian plasmids. 

Plasmid 
Series 

Promoter Description Tag Antibiotic Resistant  Source 

pcDNA4/TO CMV⁄TO 
Hybrid promoter consisting of CMV and 
tetracycline operator 2 (TetO2).  

None Zeocin (ZeoR) Invitrogen 

pcDNA3.1 CMV 
CMV promoter for high-level expression in a 
wide range of mammalian cells 

None 
Geneticin (G-418), 
Ampicillin (AmpR) 

Invitrogen 

pEF EF1a 
Overproduction of recombinant proteins in 
mammalian cell lines 

6xHis, c-Myc 
Epitope 

Blasticidin (BsdR) Invitrogen 

pACMVtetO CMV/TO 
Hybrid promoter consisting of CMV and 
tetracycline operator 2 (TetO2). 

None Ampicillin (AmpR) [178] 

pCMV CMV 
Protein expression in mammalian systems 
driven by CMV 

None 
Geneticin (G-418), 
kanamycin (KanR) 

Agilent 

pEG 
BacMam 

CMV 
Baculovirus-mediated gene transfer into 
mammalian cells (BacMam) 

None 
Gentamicin (GenR), 
Ampicillin (AmpR) 

[143] 
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 Inducible cell-lines can also be convenient. These cells do not normally produce protein except 

upon induction, such as via the tetracycline system. The expression vector includes Tet operator 

sites (TetO) downstream of the promoter. A repressor protein (TetR) binds to TetO, preventing 

transcription. Addition of tetracycline inactivates TetR allowing transcription from the 

cytomegalovirus (CMV) promoter. This system is applicable to both transient and stable cell-line 

production [163]. This can be particularly useful for expression of several membrane proteins, 

especially channels, for which overexpression can be toxic to the cell. Being able to first grow the 

cells to a reasonable density before inducing expression of the protein is helpful in that case. 

Viral infection methods can also be used. One example is the BacMam system which utilises 

recombinant baculovirus as with insect cell expression, but with a mammalian promoter 

incorporated. The baculovirus can transduce mammalian cells to express the target protein, 

however the baculovirus cannot replicate within mammalian cells which makes its use safe. This 

system is well-tolerated by cells. Its reproducibility, rapid manipulation and efficiency make it an 

appealing approach that combines the ease of baculoviral DNA delivery with the mammalian cell 

machinery [179]. Lentivirus offers an alternative approach, showing highly-efficient infection of 

mammalian cells to generate stable cell-lines [180], however the inherent safety risks of using a virus 

that can infect humans must be considered. 

The high cost, the demanding culture conditions, the susceptibility to contamination and low 

protein yields are some factors that may discourage the use of mammalian cells, especially for 

structural studies [142, 144, 160]. Nonetheless, they remain a very useful alternative to simpler 

expression systems when it comes to the expression of proteins that require complex post-

translational modifications that cannot be performed in other expression systems or for large 

proteins. 

6. Conclusion 

The production of eukaryotic membrane proteins remains a challenging task, but a diverse and 

increasing number of expression systems is available to address that challenge. In this review, we 

describe the advantages and disadvantages of bacterial, yeast, insect cell and mammalian cell 

expression systems (Table 11). We discuss the options for construct design and gene modification. 

There is no expression system that can be used for the production of all eukaryotic membrane 

proteins. Even though bacterial cells do not provide the perfect cellular environment for eukaryotic 

membrane proteins, they have been widely-used and have the advantages of cost efficiency, easy 

handling and modification. They are limited in their expression of large proteins and suffer from a 

lack of eukaryotic post-translational modifications. In comparison, yeast cells are able to perform 

simple eukaryotic post-translational modifications but can become quickly overwhelmed by mass 

production, resulting in non-functional proteins. Eukaryotic cells should be chosen if a correctly-

folded and modified eukaryotic membrane protein from higher organisms is desired. However, 

handling insect and mammalian cells in particular is more challenging than dealing with microbes. 

Additionally, the financial and temporal burdens are greater than for bacterial and yeast cells. The 

amount of consumables which are not reusable for insect and mammalian expression systems is 

much higher than for microbial systems and specialised equipment is needed. Therefore, these 

systems are not only more expensive but also show a bad ecological sustainability. Overall, it may be 
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necessary to explore several systems in order to find the ideal host for each membrane protein of 

interest. 

Table 11: Properties of the expression systems discussed in this article. Yields and sizes are based on the findings from 
eukaryotic membrane protein structural elucidations from the last decade.

 1
The expression time considers the steps from 

equilibrating the cells to their harvest after protein expression. 
2
 The preparation time considers all the steps needed to be 

done after plasmid generation and before the protein production can be started. 
3
 Ease of manipulation considers the range 

of optimisation possibilities. 

Properties E. coli Yeast Insect cells 
Mammalian 

cells 

Expression time1 2 to 3 days 4 to 6 days 
2 weeks 

minimum 
A few days to 2 

weeks 

Preparation time2 1 day 3 to 5 days 2 to 4 weeks 
Several days to 

weeks 

Ease of manipulation3 Very easy Easy Difficult Hard 

Relative yield High High Medium Low 

Medium cost [£/L] <10 <10 8 to 95 5 to 105 

Amount of residues 

40 - 750 

Up to 1850 

250 – 900 

Up to 1500 

350 – 600 

Up to 2300 

300 – 1900 

Up to 2900 

Eukaryotic PTMs None Simple Better Best 

Protein folding [56] 
Refolding 

usually required 

Refolding 

may be 

required 

Proper folding Proper folding 

Cost of storage 

Low 

(glycerol; 

-80 °C) 

Low 

(glycerol; 

-80 °C) 

High 

(liquid nitrogen) 

High 

(liquid nitrogen) 

Ecological sustainability 
(use of plastic ware, 

consumables) 
Good Good Medium Poor 

Advantages 
Low cost, fast 

growth 

Low cost, 

eukaryotic PTMs 

Most eukaryotic 

PTMs, simpler 

maintenance 

than 

mammalian 

cells 

All PTMs, native 

mammalian 

cellular 

environment 

Disadvantages 
Lack of 

eukaryotic PTMs 

Hyper-

glycosylation 

High cost, slow 

growth, limited 

glycosylation 

High cost, slow 

growth 
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