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Abstract 

Traditional farm-based products based on livestock are one of the main contributors to 

greenhouse gas emissions. Cultivated meat is an alternative which mimics animal meat, 

being produced in a bioreactor under controlled conditions rather than through 

slaughtering of animals. The first step in the production of cultivated meat is the 
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generation of sufficient reserves of starting cells. In this study, bovine adipose-derived 

stem cells (bASCs) were used as starting cells due to their ability to differentiate 

towards both fat and muscle, two cell types found in meat. A bioprocess for the 

expansion of these cells on microcarriers in spinner flasks was developed. Different cell 

seeding densities (1,500, 3,000 and 6,000 cells/cm2) and feeding strategies (80%, 65%, 

50% and combined 80/50% medium exchanges) were investigated. Cell 

characterisation was assessed pre- and post-bioprocessing to ensure that bioprocessing 

did not negatively affect bASC quality. The best growth was obtained with the lowest 

cell seeding density (1,500 cells/cm2) with an 80% medium exchange performed 

(p<0.0001) which yielded a 28-fold expansion. The ability to differentiate towards 

adipogenic, osteogenic and chondrogenic lineages was retained post-bioprocessing and 

no significant difference (p>0.5) was found in clonogenicity pre- or post-bioprocessing 

in any of the feeding regimes tested. 

Keywords: cultivated meat, bovine adipose-derived stem cells (bASCs), 

bioprocessing, microcarriers, spinner flasks 

1. Introduction 

There is an increased need for sustainable, protein rich food sources to support the 

rapidly growing population (Arshad et al, 2017). There is also a direct correlation 

between increasing per capita income and meat consumption (Stephens et al, 2018; 

Gerbens-Leenes et al, 2010), so that developing countries are expected to significantly 

impact the global demand for meat products. The food and agriculture organisation of 

the United Nations (FAO) report from 2016 predicts an increase of 48 Mega tons for 

meat demand by 2025 with 73% of this increase coming from developing countries 

such as Brazil and China (OECD/FAO, 2016). With animal agriculture currently 
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occupying 70% of arable land, generating 14.5% of anthropogenic greenhouse 

emissions (Grossi et al, 2019) and consuming 27% of fresh water resources just for 

livestock feed production (Gerbens-Leenes et al, 2013), it becomes evident that 

conventional animal agriculture and meat production methods cannot sustain such 

growth in meat demand. Alternative food technologies such as cultivated meat might 

provide a solution to this growing problem (Salonen & Helne, 2012; Fan et al, 2019; 

Stephens et al, 2018), as initial projections show that it will require 45% less energy, 

99% less land and will emit 78-96% less greenhouse gas emissions (Tuomisto et al., 

2011; Stephens et al, 2018). Other life cycle analyses of cultured meat production 

showed that the environmental impact is highly dependent on the type of meat produced 

(Mattick et al, 2015), as well as the method of energy production employed in the 

manufacturing (Smetana et al, 2015). As the production of cultivated meat will most 

likely require the use of bioreactors to achieve the necessary scale, the energy 

requirement for operation of bioreactors could have a significant environmental impact. 

However this problem could be minimised in the future if decarbonisation of energy 

production can be achieved (Bodiou et al, 2020). Cultivated meat can undoubtedly have 

a positive impact on animal welfare and can also offer a potentially healthier and safer 

option for consumers as the production process can be closely controlled and possibly 

tuned to produce meat that is free from antibiotics, free from zoonotic bacteria and 

viruses and with a specific, desired nutritional profile (e.g. enriched in omega fatty 

acids, reduced cholesterol).  

In 2013, the worlds’ first cultivated meat burger was produced by Prof Mark Post as a 

proof of concept, however with a cost of approximately £250,000 (Mouat & Prince, 

2018). In the past couple of years, the interest in cultivated meat and its potential 

benefits has increased significantly. Now there is a race to bring commercially viable 
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cultivated meat products to the market, but to achieve this, research to increase product 

output i.e. yield and to decrease cost must be conducted. The underpinning biological 

knowledge needed to produce a cultivated meat product is somewhat understood. The 

first step in cultivated meat production is the choice of the starting cell source. Some 

research groups in the field of cultivated beef use bovine satellite cells which are 

dedicated muscle progenitors (Verbruggen et al, 2017; Katim et al, 2015). However, 

these cells can only differentiate towards muscle. Meat is complex and comprises 

several types of tissues (e.g. muscle, fat, connective tissue) (Listrat et al., 2016), thus 

using satellite cells as starting material is not sufficient as it requires the addition of 

other cell types (e.g. fat) from other sources. Mesenchymal stem cells on the other hand, 

have the ability to differentiate towards both adipogenic and myogenic lineages 

(Okamura et al., 2018; Bosnakovski et al., 2005), thus being able to produce both cell 

types of interest (e.g. muscle and fat) for production of cultivated meat. Additionally, 

mesenchymal stem cells are easy to isolate from a variety of tissues such as bone 

marrow, adipose, umbilical cord, placenta and foetal fluids (Hill et al, 2019). In this 

study, bovine adipose-derived stem cells (bASCs) were chosen as a starting cell source.  

The first step in the production of cultivated meat is the expansion phase, i.e. the 

production of quality starting cells. It has been estimated that the number of cells 

required for producing 1 kg of protein from muscle cells will be of the order of 2.9 

x1011 cells (Allan et al., 2019)) to 8x1012 cells (Stephens et al., 2018). Such cell 

numbers are in any realistic sense unattainable from monolayer culture, but 

microcarriers used in conjunction with stirred bioreactors are a much more feasible 

option. For example, one 5L stirred bioreactor with a 5000 cm2 surface area provided 

by microcarriers per litre was able to produce as many human MSCs as 65 T-flasks at 

confluence (Rafiq et al., 2013). To date, there are many other published studies focused 
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on the use of stirred bioreactors for the expansion of human MSCs at different scales 

(Hewitt et al., 2011; Rafiq et al, 2013; Heathman et al, 2015; Rafiq et al, 2017; deSoure 

et al, 2016; Rafiq et al, 2018; Lawson et al, 2017). However, there is no available 

literature on the development of bioprocesses in stirred bioreactors for the expansion of 

bovine analogues.  

Before moving to the litre scale bioreactors, due to cost considerations, process 

development for MSCs is typically carried out in spinner flasks which are essentially 

small stirred tank bioreactor vessels operated at the 100 to 250 mL scale (Hewitt et al., 

2011; Bardy et al., 2013; Goh et al., 2013; Schirmaier et al. 2014). Spinner flasks are 

easy to use, provide a dynamic environment and are relatively-easily translatable to litre 

scale stirred tank bioreactors (Rafiq et al., 2013). This manuscript focuses on the 

development of a scalable bioprocess in spinner flasks for the expansion of bASC as 

the first step in cultivated beef production. The objectives of this work were: 1) to 

establish bASCs cultures examining growth and cell product quality attributes; 2) to 

develop a scalable bioprocess in spinner flasks for bASCs expansion 3) to investigate 

if cell quality is retained post-bioprocessing. 

2. Materials and methods 

2.1 Planar culture of bovine adipose derived stem cells (bASC) 

Bovine adipose derived stem cells (bASCs) were purchased from Cellider Biotech 

(Spain) and stored in liquid nitrogen. Upon thawing, the cells were cultured in T-flasks 

using a growth medium comprising of α-Modified Eagle Medium (1 g/L glucose, 

Lonza, UK) supplemented with 10% (v/v) foetal bovine serum (FBS; Sigma Aldrich, 

UK), 1 ng/mL bFGF (Peprotech, UK) and 2mM ultraglutamine (Lonza, UK). bASCs 
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between passage numbers 2 and 10 were used for the planar study, while for the 

microcarrier cultures, only cells between passage numbers 2 and 5 were used. The cells 

were stored in a humidified incubator, at 37°C and 5% CO2. A complete medium 

exchange was performed after 72 hours in culture and cells were passaged at day 5 

when ~80% confluency was achieved. Cell passage was performed with 0.25% trypsin-

EDTA (Gibco, Thermofisher, UK) for 8 minutes at 37°C until complete cell 

detachment. The enzyme was then inactivated by the addition of growth medium and 

the cell suspension was centrifuged at 250g for 5 minutes.  

2.2. Microcarrier culture in spinner flasks 

The inside of the spinner flasks (100 mL working volume with a magnetic rod impeller 

equipped with a paddle (Figure 3A), Belco (US)) were first coated with Sigmacote 

(Sigma Aldrich) to prevent cells attaching to their inner surface. Plastic microcarriers 

(Pall, UK) were weighed to achieve a surface area of 5 cm2/mL in the spinner, which 

were then sterilised by autoclaving. bASCs between passage numbers 2 and 5 were 

seeded at different seeding densities of 1,500, 3,000 and 6,000 cells/cm2 of microcarrier 

surface. Upon seeding, the spinner flasks were stored in a humidified incubator at 37°C 

and 5% CO2. Different feeding regimes ranging from 50% to 80% medium exchanges 

were investigated with the first carried out at day 3 and then every other day. Samples 

were taken regularly during culture to enable cell imaging, cell counts and analysis for 

glucose and lactate. The spinner flask cultures were agitated at the minimum speed 

required for microcarrier suspension, Njs (30 rpm) for the first 3 days (Hewitt et al, 

2011; Nienow et al., 2016a), followed by an incremental increase of 10 rpm every 2 

days thereafter to ensure suspension was maintained and to control aggregation of 

microcarriers, as cells on them were growing more confluent. The cultures were kept 
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for up to 9 days when full harvest was performed by using a previously described 

protocol (Nienow et al, 2016b). Briefly, two washes with DPBS were performed while 

stirring, followed by incubation with 0.25% trypsin-EDTA at 37°C while stirring at 150 

rpm for 10 minutes. During the last 10 seconds of incubation, the agitation was 

increased to 250 rpm. The aim of this approach was to use the high specific energy 

dissipation rate to enhance the detachment of the cells from the microcarriers. The 

advantage of this period of high agitation intensity is that essentially 100% of the cells 

are detached from the microcarriers and the time during which potential damage to the 

cells could occur from the detachment enzyme is greatly reduced. In addition, as soon 

as the cells are detached, they are smaller than the microscale of turbulence and the 

cells do not get damaged by fluid dynamic stresses (Nienow et al., 2016a; Nienow et 

al., 2016b). Once the cells were completely detached from the microcarriers, the cell-

microcarrier suspension was passed through an 80 µm filter (Steriflip), which removed 

the microcarriers and the cell suspension was then centrifuged at 250g for 5 minutes.  

2.3. Cell characterisation 

2.3.1. Tri-lineage differentiation potential 

All chemicals were purchased from Sigma Aldrich unless otherwise stated. SCs were 

differentiated towards adipogenic, osteogenic and chondrogenic lineages using 

StemPro differentiation kits (Thermofisher). A 12-well plate was used for all 

experiments. bASCs were seeded at 5,000 cells/cm2 for osteogenic differentiation and 

10,000 cells/cm2 for adipogenic differentiation. For chondrogenic differentiation, the 

macromass method was used (Heathman et al, 2015). Briefly, 5 µL droplets of a highly 

concentrated bASCs suspension (1x107 cells/mL) were seeded in an empty well plate 

and allowed to attach for 1-2 h at 37°C in a CO2 incubator. Upon cell attachment, 
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chondrogenic differentiation medium (Stempro) was added. For all differentiation 

cultures, the cells were grown in their respective media for 21 days with a medium 

change performed every 3-4 days. At the end of 21 days, the cells were fixed with 4% 

paraformaldehyde for 20 minutes at room temperature. Adipogenic differentiation was 

assessed by using LipidTox green (Thermofisher) to stain lipid vesicles in adipogenic 

differentiated cells. The stain was used according to the manufacturer’s instructions. 

Osteogenic differentiation potential was assessed using von Kossa stain as previously 

described (Hanga et al, 2017). Silver nitrate was used to stain bone mineralisation, 

while also assessing alkaline phosphatase expression. Chondrogenic differentiation was 

assessed by Alcian blue staining (Hanga et al, 2017).  

2.3.2. Clonogenicity 

Three hundred cells were seeded into a T-25 flask in growth medium and placed into 

an incubator set to 37oC and 5% CO2. The medium was changed every 3-4 days and 

the flasks were kept for up to 14 days. The medium was then removed and cells were 

fixed and stained with 1% crystal violet (Sigma Aldrich, UK) for 30 minutes at room 

temperature. The stained colonies were then manually counted. 

2.3.3. Cell surface marker expression 

Immunofluorescence staining was performed to assess expression of a panel of three 

cell surface markers identified as indicative of mesenchymal stem cells and these were: 

CD73 (Abcam), CD90 (Abcam) and CD105 (Thermofisher). Cells were fixed using 4% 

para-formaldehyde for 20 minutes at room temperature and then permeabilised using 

Perm Wash 1X (Biolegend) for 5 minutes. Cells were then incubated with 10% normal 

goat serum (Thermofisher) for 45 minutes in the dark to block any non-specific binding, 

followed by incubation overnight at 4°C with the primary antibody at the recommended 
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dilution and then incubation for 2h at room temperature with the secondary antibody at 

the manufacturer’s recommended dilution. DAPI was used for staining the nuclei and 

Phalloidin (Sigma Aldrich) was used to stain the cytoskeleton. Cells were then 

visualised and imaged under a fluorescence microscope (Evos FL Thermofisher). 

2.4. Analytical techniques 

Imaging was performed by either phase contrast microscopy or fluorescence 

microscopy. Live/dead staining (Calcein AM/ Ethidium Homodimer) kit 

(Thermofisher) was used to assess cell viability on microcarriers following 

manufacturer’s instructions. Cell counts were performed using the NucleoCounter NC-

3000 (Chemometec). For the spinner flasks cultures, cell counts were performed 

directly onto microcarriers using the reagent A100 and reagent B protocol. Briefly, the 

cell-microcarrier suspension was diluted in a 1:3 ratio with reagent A100 (lysing agent) 

and then reagent B (stabilizing agent). The resulting suspension was then loaded onto 

a Nucleocassette that contains acridine orange and DAPI. Spent medium samples were 

collected before and after medium exchanges and analysed for glucose and lactate 

concentrations on a Roche AccuTrend Plus meter. Fresh growth medium was used as 

baseline control. Based on cell counts, the following parameters were calculated: 

1. Specific growth rate 

µ =  
ln (

𝐶𝑥(𝑡)
𝐶𝑥(0)⁄ )

∆𝑡
 [eq. 1], 

2. Doubling time 

𝑡𝑑 =  
𝑙𝑛2

𝜇
 [eq. 2], 
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3. Fold increase 

𝐹𝐼 =  
𝐶𝑥(𝑡)

𝐶𝑥(0)
 [eq. 3],  

4. Cumulative population doublings 

𝐶𝑃𝐷𝐿 = Ʃ[
1

𝑙𝑜𝑔2
∗ 𝐿𝑂𝐺 ( 

𝐶𝑥(𝑡)

𝐶𝑥(0)
)] [eq. 4],  

where µ is the specific growth rate (h-1); td is doubling time (h); FI is fold increase; 

CPDL is cumulative population doublings; Cx(t) and Cx(0) represent cell numbers at 

the end and start of the culture; t represents time in culture (h). 

2.5. Statistical analysis 

All experiments were performed in triplicates with primary cells from the same animal. 

Cell counts were acquired from two independent samples from each replicate. Data was 

expressed as mean ±SD. Statistical analysis was carried out using Graph Pad Prism 8. 

For comparison between two data sets, statistical significance was determined by 

Student’s two-tailed t-test. For comparison of multiple data sets, significance was 

calculated by one-way ANOVA. Significance was determined at p < 0.05. 

3. Results and discussion 

3.1. Establishing a baseline for bASCs expansion 

The first step was to establish a baseline for growth and quality of the bASCs. For this, 

the cells were cultured for 10 consecutive passages. bASCs morphology was monitored 

throughout the entire duration of the continued culture and it was found to be fibroblast-

like and similar to that reported for human mesenchymal stem cells (hMSCs) 

(Heathman et al, 2016) (Figure 1A). In comparison to hMSCs, bASCs were found to 
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be smaller with sizes ranging from 13µm at the earlier passages to 16µm at the later 

passages (Figure 1C). An increase in cell size for mesenchymal stem cells is usually 

associated with senescence and slowdown of growth (Wagner et al, 2008) which was 

also found applicable to bASCs. Passage 2 cells had a doubling time of 42.32 ±0.83 h 

at a cumulative population doubling of 5.99 ±0.06, while passage 8 cells were found to 

have a doubling time of 199.55 ±30.16 h at a cumulative population doubling of 20.67 

±0.09. Beyond passage 8 (at approximately 20 population doublings), cell growth 

slowed down (Figure 1B). Knowing this profile is important as it dictates the flexibility 

in handling bovine cells before senescence is reached and cells become old and 

unusable. This information also shows what range of cell passages can be used for 

bioreactor inoculation to avoid reaching senescence. Guidelines for hMSCs 

characterisation were previously published by Dominici et al (2006); however no such 

quality guidelines have been set for their bovine analogues. As a result, the same 

Dominici guidelines were used here. The quality baseline for bASCs was assessed 

through differentiation towards the three lineages (adipogenic, osteogenic, 

chondrogenic), expression of cell surface markers (CD90, CD73 and CD105) and 

clonogenicity potential. Human MSCs have positive expression of markers such as 

CD73, CD90 and CD105 and lack expression of markers such as CD34, CD45, HLA-

DR, CD14, CD11b and CD19. Previous studies have shown that bovine mesenchymal 

stem cells have positive expression of some of the same markers as their human 

analogues (e.g. CD73, CD90 and CD105), but they also express additional markers 

such as CD29, CD166, CD44 and do not express CD45 or CD34 (Hill et al, 2019; Gao 

et.al, 2014). Here, the expression of CD73, CD90 and CD105 (Figures 1D, 1E and 1F) 

was assessed and was found to be positive.  
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Differentiation to osteogenic lineage was deemed successful as bone mineralisation was 

visibly stained in black, while alkaline phosphatase expression which is specific to 

osteocytes (van der Plas et al, 1994) was evident through the red staining (Figure 2B). 

Similarly, chondrogenic differentiation was also deemed successful as macromasses 

were formed and stained in blue (Figure 2C) indicating strong formation of GAGs 

representative to cartilage (Kuiper and Sharma, 2015). However, adipogenic 

differentiation was limited as indicated by the limited green fluorescence shown in 

Figure 2A indicating lipid vesicles typically present in adipocytes. The adipogenic 

differentiation efficiency (calculated as % of cells presenting lipid droplets per total 

number of cells) was found to be 12.1% ±2.8 (n=1982 cells analysed). This limited 

differentiation efficiency could be a direct result of the formulation of differentiation 

medium used here which was the commercially available Stempro (Thermofisher). As 

stem cells have an increased potential to cure diseases, their applicability is highly 

popular in human cell therapies (Watt et al, 2010). As a result, there is a huge market 

for reagents specifically formulated for human cells. Cultivated meat, on the other hand, 

is a newly developed concept that utilises stem cells from other species than human 

(e.g. bovine, porcine, ovine, poultry). Unfortunately, as this is a developing area, the 

availability of reagents specifically formulated for other species than human is limited. 

As the Stempro adipogenic differentiation medium is specifically formulated for human 

cells, the differences in the metabolism of bovine cells and human cells are not taken 

into consideration (Dodson et al., 2010), thus explaining the limited differentiation 

potential of bASCs to adipogenic lineage. Clonogenicity potential was also assessed at 

an early passage (p2) and late passage (p7) (Figure 2D) and it was found to be 

significantly lower at the later passages (****p<0.0001).  
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3.2. Initial expansion of bASCs on microcarriers in spinner flasks 

Microcarrier cultures were carried out in spinner flasks at the 100 mL scale (Figure 

3A). The cells successfully attached to the microcarriers and by day 5, cell-microcarrier 

bridges were observed as indicated by white arrows in Figure 3B which is a sign of cell 

proliferation. Live/dead staining was used here to assess cell viability on the 

microcarriers, while also visualising the distribution of cells on their surface. Figure 3C 

shows an increased cell viability on microcarriers at day 5 with live cells stained in 

green and dead cells in red.  

The initial microcarrier expansion was carried out at the same seeding density as in 

monolayer of 5,000 cells/cm2 for 5 days. Cell growth on the microcarriers is compared 

to monolayer and is shown as fold increase in Figure 4A, specific growth rates in Figure 

4B and doubling times in Figure 4C. No significant difference (p>0.05) was found 

between cell growth in monolayer and on microcarriers. Similar fold increase values 

were obtained after 5 days of culture with 6.05 ±0.31 in monolayer compared to 6.23 

±1.69 in microcarrier culture. Similarly, a doubling time of 46.19 h ±1.34 was obtained 

in monolayer compared to 47.12 h ±8.7 in microcarrier culture. The similar growth on 

microcarriers was encouraging as this finding means that the bASCs can be expanded 

that way with its many advantages. These advantages include high surface area-to-

volume ratio (provided that the microcarriers are adequately suspended, i.e. at not less 

than NJS (Heathman et al., 2018)) on which the cells can grow. It also facilitates the 

scalability of the bioprocess in other ways: a highly homogeneous environment leading 

to minimal gradients and the potential control of pH, temperature and concentration 

combined with enhanced oxygen transfer. These advantages minimise culture 

variability, reduce cell quality variation and lead to enhanced cost efficiency through 
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optimised feeding strategies thereby maximising cell growth, while minimising 

medium use.  

3.3. Bioprocess enhancement for microcarrier expansion of bASCs in spinner flasks 

Bioprocess improvement was initiated with studies of different cell seeding densities, 

which have previously been found to be important (Hewitt et al., 2011) ranging from 

1,500 cells/cm2 to 6,000 cells/cm2. The microcarrier cultures were carried out for up to 

9 days. At the highest cell density (6,000 cells/cm2), the cell number increased 

exponentially up to day 5. However, beyond this time point, cell loss was observed 

(Figure 5A). This loss could be attributed to aggregation observed from day 5 onwards 

(Figure 5B) when most of the available surface area provided by the microcarriers was 

utilised leading to contact inhibition and arrest of cell growth (Eagle and Levine, 1967). 

At the intermediary cell seeding density tested (3,000 cells/cm2), a slight lag phase was 

observed until 72 h followed by a constant increase in cell number, while at the lowest 

seeding density of 1,500 cells/cm2, no lag phase was observed (Figure 5A). At the 

highest cell seeding density (6,000 cells/cm2), glucose concentration constantly 

decreased up to day 5 in line with the increase in cell number, followed by an increase 

in concentration as the drop in cell number occurred. Related to these changes, the 

lactate concentration increased for the first 5 days, followed by a decrease thereafter 

(Figure 5C). At the lowest cell seeding density tested (1,500 cells/cm2), there was a 

sudden drop in glucose concentration to 2.47 mmol/L up to day 3 compared to 3.13 

mmol/L obtained at the same time point for 6,000 cells/cm2, followed by a subtle 

decrease until the end of the culture. During this time, the lactate concentration for this 

seeding density increased to 2.57 mmol/L at day 5 and remained constant thereafter 

(Figure 5E). These trends (Figures 5C, 5D and 5E) mirrored the cell growth profiles 
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for each cell seeding density tested (Figure 5A). It is also worth noting that in all of the 

growth conditions tested, inhibitory levels of lactate were not reached, i.e. >15 mM/L 

(Schop D. et al, 2009), so the slowdown in cell growth observed at the highest cell 

seeding density (6,000 cells/cm2) can only be attributed to confluency being reached on 

the microcarriers. 

At the end of the culture, there was a consistent trend with the lowest cell seeding 

density of 1,500 cells/cm2 generating a significantly higher fold increase of 28.8 ±2.29 

compared to 10.4 ±3.39 for 3,000 cells/cm2 and 5.08 ±1.7 for 6,000 cells/cm2 (***p< 

0.0001) (Figure 6A). Similarly, the lowest cell seeding density also generated a 

significantly higher specific growth rate (***p< 0.0001) (Figure 6B) and a significantly 

lower doubling time (*p<0.05) (Figure 6C). A lower starting cell density is beneficial 

from a bioprocessing and handling point of view, as less 2D processing steps are 

required to get enough cells to seed a bioreactor culture, smaller cell banks can be used 

and more importantly, more doublings can be achieved in the same bioreactor size, 

allowing for less steps during the seeding train and therefore leading to lower 

production costs. Based on these results, the cell seeding density of 1,500 cells/cm2 was 

selected for the next set of experiments investigating the impact of the feeding strategy.  

In spinner flask cultures, 100% medium exchange is not possible if the aspiration of 

microcarriers is to be avoided leading to a loss of cells. In this study, 4 different medium 

exchange strategies were investigated ranging from 50% to 80% exchange throughout 

culture and a combination of 80% exchange for the first feeding point at day 3 followed 

by 50% exchange for the rest of the culture. For all investigated feeding strategies, 

medium exchanges were performed at day 3 and every other day thereafter. 

Additionally, the cell seeding density of 1,500 cells/cm2 was used for all runs. The 80% 
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medium exchange yielded the highest cell number throughout culture (Figure 7A) with 

a fold increase of 28.01 ±2.59 (****p<0.0001), while the 50% exchange yielded a fold 

increase of only 10.49 ±2.95. A doubling time of 45 ±1.28 h was obtained when 80% 

exchange was performed, while a 50% exchange produced a doubling time of only 

65.15 ±7.15 h (Table 1). The glucose consumption and lactate production profiles for 

the different feeding strategies tested are shown in Figures 7B, 7C, 7D and 7E. When 

the 80% exchange was used, there was a continuous drop in glucose concentration and 

an increase in lactate concentration indicating good cell growth (Figure 7B). On the 

other hand, when a 50% exchange was used, the increase in lactate concentration was 

minimal to only 2.16 ±0.055 mmol/L (Figure 7E) compared to 2.9 ±0.17 mmol/L for 

80% exchange at the end of the culture when the highest cell number was recorded. The 

glucose and lactate profiles showed a good correlation to the growth kinetics of 

bAMSCs at different exchange strategies.  

It is well established that culture medium represents a large proportion of the 

manufacturing cost due to the large volumes needed when scaling up a bioprocess. 

Several strategies can be applied to reduce this cost and these include altering medium 

composition, recycling medium and some of its components or devising feeding 

strategies to minimise medium consumption and to maximise cell production (Van der 

Weele and Tramper, 2014; Stephens et al, 2018). The latter was investigated here. Thus, 

a cost analysis of consumables and reagents required for carrying out microcarrier 

culture in spinner flask at the working volume of 100 mL for 9 days was carried out. 

The main variable in this cost analysis was the volume of medium used as a result of 

different exchange strategies. The lowest cost found in relation to the cell number 

obtained was associated with the 80% medium exchange which was significantly lower 

(**p<0.001) than the cost obtained for 50% medium exchange, but insignificant 
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compared to the 80/50% medium exchange where only the first medium exchange was 

80% and the rest 50% (Figure 8). This analysis suggests that in the early stages of 

culture, nutrient availability and lack of metabolites are very important for cell growth. 

3.4. Assessment of post-bioprocessing cell quality 

It is important to acknowledge that exposure of the cells to the culture environment may 

have a detrimental effect on cell quality. As such, cell characterisation needs to be 

performed before and after bioprocessing to ensure that none of the steps taken during 

the bioprocess impacts negatively on the cell quality. Post-bioprocessing, the bASCs 

expanded in spinner flasks retained their ability to differentiate towards adipogenic, 

osteogenic and chondrogenic lineages (Figures 8A, 8B and 8C). Moreover, there was 

no significant difference (p>0.5) in the clonogenicity before and after bioprocessing at 

any of the feeding regimes tested (Figure 8D). 

4. Conclusions 

Meat is composed of several different types of cells (fat, muscle and connective cells). 

Bovine adipose-derived stem cells (bASCs) are a suitable cell source for production of 

cultivated meat as they have the ability to differentiate to both adipogenic and myogenic 

lineages. The first step in the production of cultivated meat is scalable expansion of 

starting cells. This study describes the development of a bioprocess in small stirred tank 

bioreactors (e.g. spinner flasks) for the expansion of bASCs. The best bioprocess 

developed included using a low cell seeding density of 1,500 cells/cm2 of surface area, 

a feeding regime of 80% medium exchange and an agitation strategy of incremental 

increase every 2 days. These conditions yielded a 28-fold increase in cell number. The 

cells retained their cell surface marker expression and their ability to differentiate 
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towards adipogenic, osteogenic and chondrogenic lineages without any change in their 

clonogenicity. This bioprocess can serve as a starting point for translating the 

manufacturing of these bovine adipose-derived stem cells to the litre scale and beyond.  
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Table 

Table 1. Growth kinetics for bAMSC expansion on microcarriers in spinner flasks when 

different feeding strategies were employed. Data presented as Mean ±SD (n=5). 

Medium 

exchange / 

Calculated 

parameter 

 

80% 

 

80/50% 

 

65% 

 

50% 

Fold Increase 28.01 ±2.59 21.12 ±5.69 

 

17.02 ±1.9 

 

10.49 ±2.95 

 

Specific growth 

rate (h-1) 

0.0154 ±0.0004 

 

0.0139 ±0.002 

 

0.0131 ±0.001 

 

0.0107 ±0.001 

 

Doubling time 

(h) 

45 ±1.28 

 

50.31 ±6.57 

 

52.95 ±2.03 

 

65.15 ±7.15 
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Figures 

 

Figure 1. A) Bovine adipose-derived mesenchymal stem cell (bADSCs) morphology. 

Image taken at day 2 in culture. Scale bar represents 200 µm. B) Cumulative population 

doublings over 10 consecutive passages. C) Cell size (µm) over 10 consecutive 

passages. Data expressed as mean ± SD, n=4. Immunofluorescence staining showing 

expression of D) CD73; E) CD90; F) CD105; Scale bars for D) and E) represent 100 

µm, while for F) 200 µm. 

 

Figure 2. Pre-bioprocessing cell quality assessment. Differentiation staining of bASCs 

towards A) adipogenic (LipidTox staining), B) osteogenic (von Kossa stain) and C) 

chondrogenic (Alcian blue) lineages. Scale bar for adipogenic represents 400 µm. Scale 

bars for osteogenic and chondrogenic represent 200 µm. D) Clonogenic potential of 

bASCs at early (p2) and late (p7) passage numbers. Data expressed as mean ± SD, n=5. 



 

This article is protected by copyright. All rights reserved. 

A
c

c
e

p
te

d
 A

r
ti

c
le

 

 

Figure 3. A) Spinner flask. B) Phase contrast image taken at day 5 in culture showing 

bASCs attached to microcarriers forming cell-microcarrier bridges. White arrows 

indicate cell bridging. Scale bar represents 200 µm. C) Live (green)/dead (red) staining 

of bASCs on microcarriers at day 5 in culture. Scale bar represents 400 µm. 
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Figure 4. Comparison between monolayer and microcarrier culture in spinner flasks of 

bASCs at passage 3. A) Fold increase. B) Specific growth rate. C) Doubling time. Data 

shown as mean ±SD; n=3. ns – not significant (unpaired t-tests). 

 

Figure 5. bASCs expansion in spinner flasks at different cell seeding densities. A) 

Specific growth at different cell seeding densities over 9 days in culture. B) 

Aggregation at day 5 as indicated by white arrows when using 6,000 cells/cm2 as a 

seeding density. Scale bar represents 200 µm. Glucose and lactate profiles for: C) 6,000 

cells/cm2; D) 3,000 cells/cm2; E) 1,500 cells/cm2. Data shown as mean ±SD; n=3. 
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Figure 6. Growth kinetics comparison at different cell seeding densities. A) Fold 

increase; B) Specific growth rate; C) Doubling time. Data shown as mean ±SD; n=3. 

***p<0.0001; *p<0.05 (One way ANOVA). 

 

Figure 7. A) The effect of different feeding strategies on cell growth. Glucose and 

lactate profiles for different feeding strategies: B) 80% medium exchange; C) 80/50% 

medium exchange; D) 65% medium exchange; E) 50% medium exchange. Data 

expressed as mean ±SD, n=5.  
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Figure 8. Cost (£) per million of cells produced when using different feeding strategies. 

Data expressed as mean ±SD, n=3. 

 

Figure 9. Post-bioprocessing cell quality assessment. Differentiation staining of bASCs 

towards A) adipogenic (LipidTox staining), B) osteogenic (von Kossa stain) and C) 

chondrogenic (Alcian blue) lineages. Scale bar for adipogenic represents 400 µm. Scale 

bars for osteogenic and chondrogenic represent 200 µm. D) Clonogenic potential of 

bASCs post-expansion when using different feeding strategies. Data expressed as mean 

± SD, n=5.  




