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Abstract—This paper reports the first microstructured solid-core fiber 

drawn from a 3D-printed preform and the first fiber Bragg gratings 
inscribed in a fiber of this type. The presented fiber is made of 
polycarbonate and displays single-mode behavior. The fiber attenuation 
was the lowest reported so far for a POF drawn from a 3D-printed preform 
across a broad range of wavelengths. In addition, extensive fiber 
characterization results are presented and discussed including: fiber 
attenuation, mode simulations, dynamic thermomechanical analysis and 
thermo-optic coefficient. Fiber Bragg gratings are successfully inscribed 
in the produced fiber using three different lasers: a continuous wave 
helium-cadmium laser, a pulsed femtosecond frequency doubled 
ytterbium laser and ultra-violet nanosecond krypton fluoride laser. Mechanical testing of the fiber showed that the 3D 
printing approach did not introduce any unexpected or undesirable characteristics. 

Index Terms— Fiber optics sensors, fiber Bragg gratings, microstructured fibers, fiber characterization, additive 
layer manufacturing, 3D printing, fused deposition modeling. 
 

 
I.  Introduction 

HE group of techniques commonly described as 3D 
printing or additive layer manufacturing (ALM) have been 

revolutionizing the field of manufacturing and rapid 
 

Date submitted for review: XX December 2019. The research leading 
to these results has received funding from the People Program (Marie 
Curie Actions) of the European Union's Seventh Framework Program 
FP7/2007-2013/ under REA grant agreement n° 608382. C. A. F. 
Marques acknowledges FCT through programs UID/EEA/50008/2013, 
UID/CTM/50025/2019 and SAICTPAC/0036/2015 and by the National 
Funds through the Fundação para a Ciência e a Tecnologia / Ministério 
da Educação e Ciência, and the European Regional Development Fund 
under the PT2020 Partnership Agreement. This work is also funded by 
national funds (OE), through FCT – Fundação para a Ciência e a 
Tecnologia, I.P., in the scope of the framework contract foreseen in the 
numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of 
August 29, changed by Law 57/2017, of July 19. 

M. G. Zubel is with Aston Institute of Photonic Technologies, Aston 
University, Birmingham, B4 7ET, UK (e-mail: zubelmg@aston.ac.uk). 

A. Fasano is with Department of Mechanical Engineering, Technical 
University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail: 
andfas@mek.dtu.dk). 

G. Woyessa is with Department of Photonics Engineering, Technical 
University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail: 
gewoy@fotonik.dtu.dk).  

R. Min is with ITEAM Research Institute, Universitat Politècnica de 
València, Valencia, Spain (e-mail: rumi@doctor.upv.es).  

A. Leal-Junior is with Telecommunications Laboratory (LABTEL), 
Electrical Engineering Department, Federal University of Espírito Santo, 
Fernando Ferrari avenue, 29075-910, Vitória-ES, Brazil (e-mail: leal-
junior.arnaldo@ieee.org).  

prototyping in recent years and are increasingly envisioned as 
the manufacturing techniques of the future [1, 2]. Among their 
advantages lie the rapidly increasing quality of fabricated parts; 
ease and speed of customizability; decreasing price; ability to 

A. Theodosiou is with Photonics and Optical Sensors Research 
Laboratory, Cyprus University of Technology, Limassol 3036, Cyprus 
(e-mail: theodosiou.antreas@gmail.com).  

C. A. F. Marques is with I3N & Physics Department, Universidade de 
Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal 
(e-mail: carlos.marques@ua.pt).  

H. K. Rasmussen is with Department of Mechanical Engineering, 
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-
mail: hkra@mek.dtu.dk).  

O. Bang is with Department of Photonics Engineering, Technical 
University of Denmark, DK-2800 Kgs. Lyngby, Denmark (e-mail: 
oban@fotonik.dtu.dk).  

B. Ortega is with ITEAM Research Institute, Universitat Politècnica 
de València, Valencia, Spain (e-mail: bortega@dcom.upv.es).  

K. Kalli is with Photonics and Optical Sensors Research Laboratory, 
Cyprus University of Technology, Limassol 3036, Cyprus (e-mail: 
kyriacos.kalli@cut.ac.cy).  

A. Frizera-Neto is with Telecommunications Laboratory (LABTEL), 
Electrical Engineering Department, Federal University of Espírito Santo, 
Fernando Ferrari avenue, 29075-910, Vitória-ES, Brazil (e-mail: 
frizera@ieee.org).  

M. J. Pontes is with Telecommunications Laboratory (LABTEL), 
Electrical Engineering Department, Federal University of Espírito Santo, 
Fernando Ferrari avenue, 29075-910, Vitória-ES, Brazil (e-mail: 
mjpontes@ele.ufes.br).  

K. Sugden is with Aston Institute of Photonic Technologies, Aston 
University, Birmingham, B4 7ET, UK (e-mail: k.sugden@aston.ac.uk). 

Bragg gratings inscribed in solid-core 
microstructured single-mode polymer optical 
fiber drawn from a 3D-printed polycarbonate 

preform 
 Michal G. Zubel, Andrea Fasano, Getinet Woyessa, Rui Min, Arnaldo Leal-Junior, Antreas 

Theodosiou, Carlos A.F. Marques, Henrik K Rasmussen, Ole Bang, Beatriz Ortega, Kyriacos 
Kalli, Anselmo Frizera-Neto, Maria José Pontes, and Kate Sugden 

T 



8  IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 

 

reproduce complex shapes that are difficult to manufacture 
otherwise; and a growing number of printing materials which 
offer ever more potential applications.  

Fused deposition modelling (FDM) is the most popular 3D 
printing approach. It starts with melting thermoplastic filament 
in a hot printing nozzle. Subsequently, the resulting semi-liquid 
material is pushed through the printing nozzle and deposited in 
the desired location for the model being printed. After leaving 
the printing nozzle, the molten material cools down and 
solidifies to build up the manufactured object layer by layer.  

In theory, FDM should be intrinsically well-suited for 
manufacturing fiber preforms for the production of polymer 
optical fibers (POFs), as the basic material requirement for both 
POF preforms and FDM filament is thermoplasticity. The 
biggest advantage of using the FDM technique for fabricating 
POF preforms is ease of reproducing complex shapes that 
would be very difficult to manufacture with other methods such 
as drilling techniques. Moreover, FDM offers the broadest 
printing material range of all ALM techniques. In addition, 
printing polymers can be mixed within one preform printout, 
which allows for the potential tuning of the material properties 
(including refractive index, transparency, chemical 
composition, flexibility, biodegradability, coefficient of 
thermal expansion, affinity to water etc.).   

The qualities of FDM applied to POF manufacturing 
(predominantly for visible and infrared range) have already 
been recognized, leading to several interesting publications in 
the recent years. A step-index fiber was drawn from a preform 
made of two polymers, printed on a dual-head 3D printer [3]. 
The core of this fiber was made of styrene-butadiene copolymer 
and polystyrene (SBP) and cladding of modified polyethylene 
terephthalate glycol (PETG). In [4], cores of various shapes 
(made of polycarbonate, PC) and complementary claddings 
(made of acrylonitrile butadiene styrene, ABS) were printed 
separately and assembled together to form preforms, which 
were subsequently drawn. This demonstrated the ease at which 
3D-printed shapes and hence fiber properties could be 
customized. Air-structured fiber drawn from a 3D-printed 
preform made of SBP was presented in [5]. Hollow-core 3D-
printed POF preforms have also been reported. The first one 
proposed was made of poly(methyl methacrylate) (PMMA) and 
drawn to cane stage [6], and the first HC POF drawn from 3D-
printed preform was made of ABS [7]. This was followed by a 
publication on mid-IR HC microstructured POF (mPOF) drawn 
from 3D-printed preform made of PETG [8]. Coreless POFs 
drawn directly from 3D printer nozzle were reported in [9], in 
which preform stage in POF manufacturing was omitted. In 
addition, larger THz waveguides have been directly 3D-printed 
at the size required for use [10, 11, 12]. 

The aim of this work is to advance further POF 
manufacturing research with regards to the 3D printing of 
preforms and demonstrate the feasibility of fabricating single-
mode microstructured solid-core fibers in order to further 
understand some of the limiting factors associated with the 
technology. This opens up the opportunity for complex perform 
designs, comprising of single or multiple materials, that are 
difficult to realize with conventional techniques to be directly 
printed in a single-stage process. For example, with hollow-
core fibers this could include hollow-core negative curvature 

fibers that contain nested elements, ellipses or half-ellipses, 
which have been modelled but are not feasible to make with 
conventional fabrication methods. The work also aims to 
produce a fiber suitable for the inscription of fiber Bragg 
gratings at 870nm and 1560nm. Extensive fiber 
characterization results are presented in order to understand the 
properties of the fiber.   

The prototype preform was printed using PC, which has 
previously been used to successfully fabricate POFs using the 
drill-and-draw technique [13, 14]. PC was chosen due to the 
highest glass transition temperature (145°C) and highest 
operational temperature (125°C) of all POF materials reported 
so far [13, 14]. For reference, the highest reported operational 
temperature of Topas 5013S-04 is 110°C [15], of Zeonex 480R 
is 100°C [16] and of PMMA (the most popular POF material) 
is 92°C [17].  

Dynamic mechanical analysis (DMA) was used to evaluate 
the mechanical characteristic of the fiber. DMA is a well-
established method for polymer characterization used in 
different fields including industrial [18], automotive [19], 
aircraft [20] and biological applications [21]. In this technique, 
a sample is fixed at one end, and an oscillatory tensile load is 
applied on the other. This results in performing sequential strain 
cycles with controlled frequency and displacement. Moreover, 
the method can also involve temperature variation. This then 
allows evaluating dependency of Young’s modulus of sample 
on all the mentioned parameters (strain, temperature and strain 
cycle frequency). Such analysis has previously been used to 
characterize POFs of various structures and made of different 
materials, including PMMA microstructured polymer optical 
fibers (mPOFs) [22], PMMA step-index fibers [23], mPOFs of 
different materials (Topas 5013S-04, Zeonex 480R, 
polycarbonate) [24], and CYTOP graded-index fibers [25].  

Despite still being considered an emerging family of optical 
fiber sensors (OFSs), polymer optical fiber Bragg gratings 
(POFBGs) [26] have been attracting growing attention. They 
share common advantages of OFSs, which include: being 
lightweight, small and potentially low cost; ease of integration 
with existing fiber optic networks; the potential for use in many 
applications for which electronic sensors are intrinsically 
unsuitable such as in harsh, flammable and explosive 
environments; ease of multiplexing; immunity to 
electromagnetic interference; remote interrogation ability. 
POFBGs are often contrasted with silica optical fiber Bragg 
gratings (silica FBGs or SOFBGs) in order to highlight their 
particular qualities. These entail much lower elastic modulus 
(3.3 GPa for POFBGs made of PMMA compared to 73 GPa for 
SOFBGs); much higher yield strength resulting in greater strain 
sensing range; biocompatibility and biodegradability; 
flexibility in modification of chemical composition and 
structure, allowing fine tuning of the fiber material properties 
e.g. to make it sensitive or insensitive to water [26]. 

POFBGs are capable of sensing various parameters e.g.: 
strain [27, 28, 29, 30], bend [31], other mechanical deformation 
[32, 33], temperature [27, 28, 34], humidity [14, 35, 36], 
pressure [33, 37, 38, 39], refractive index [40] and acceleration 
[41]. The most used material for fabricating POFBGs is PMMA 
[27, 28]. However, POFBGs have been successfully 
manufactured in several other polymer types: polycarbonate 
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(PC) [14], Topas [42, 43], Zeonex [16] and CYTOP [31]. The 
application of POFBGs has been demonstrated in a number of 
fields including: medicine [44, 45, 46], biochemistry [40], 
aviation [47, 48], dosimetry [49], cultural heritage preservation 
[50] and integration with textiles [50]. 

Inscribing FBGs in POFs drawn from 3D-printed preforms is 
potentially very attractive in terms of being able to further 
broaden application range of POFBGs through the use of 
bespoke fiber designs for particular applications.  

The paper commences with describing research leading to 
optimization of transparency of 3D printouts made of PC. 
Based on this work, a POF preform is printed and characterized. 
Secondly, preform post-processing and fiber drawing is 
presented. The resulting POF is characterized, which include 
cleaving and light coupling to core, modelling of the 
propagation, cut-back attenuation measurements and dynamic 
thermomechanical analysis. Finally, FBGs inscribed with 
different lasers and techniques are shown and characterized, 
and the thermo-optic coefficient of the fiber is calculated. 

II. PREFORM AND FIBER FABRICATION 
A. Transparency Optimization of 3D Printouts 

All preforms described in this paper were produced using an 
UP! Plus 3D printer (model 3DP144A) and its proprietary slicer 
software with the FixUp3D extension. Commercially available 
PC filament of 1.75mm diameter was used (manufactured by 
Dr3DFilament). 

Before 3D-printing the preform, the printing parameters had 
to be optimized so as to achieve maximal transparency of the 
printed structure. The biggest challenge lies in air being trapped 
between thread lines during the fabrication process, which 
results in light scattering defects being created in preform. 
Transparency optimization relies then on ensuring that adjacent 
thread lines melt together well with no air voids between them. 

To optimize the transparency a series of thin (4 mm) circular 
samples of diameter equal to the preform (65 mm) were printed. 
The key printing parameters were varied, including the printing 
speed (speed of movement of printing nozzle), filament feed 
rate and nozzle temperature. The values for layer thickness, 
nozzle diameter and printing bed temperature were kept 
constant. After printing, the samples were polished from top, 
bottom and side, and the transparency was evaluated visually. 

The printing speed was varied from 5 to 20 mm/s. Generally, 
lower printing speeds resulted in better transparency (see Fig. 
1) probably due to heat transfer from nozzle to printout. The 
higher the temperature, the better the infill threads melt 
together, and the lower printing speed allows a given region of 
printout to absorb more heat from nozzle as it approaches before 
the material is deposited. Such a mechanism would also explain 
the difference in transparency between the samples printed on 
heated (105°C) and non-heated printing bed (compare Fig. 1 (c) 
and (d)). 

The layer thickness was set to 150 µm, and diameter of the 
nozzle used was 300 µm. It had been found previously that the 
optimal printing temperature from the viewpoint of 
transparency for PMMA was 280-290°C [6]. Due to its higher 
melting point, PC would ideally be printed at higher nozzle 
temperatures than PMMA. Consequently, the nozzle 

temperature was fixed at 300°C, which was the maximum 
settable value for the 3D printer used. 

Finally, the material infill was optimized by varying line 
separation and filament feed rate (software parameters: hatch 
width 0.28mm, feed scale x0.75 and hatch scale x0.99). 
Unfortunately, due to the control software, it is not possible to 
give an absolute value for the filament feed speed. Both too high 
and too low quantities of material infill were found to decrease 
transparency. Too low values resulted in volume of printout not 
being fully filled in. Too high feed rates made excessive 
material aggregate on printout walls which in turn lowered the 
printing accuracy and hindered operation of the printer.  

B. Fabrication of the Preform 
The rationale behind the initial preform design was to make 

it as easy as possible to be reliably reproduced by the printer. 
Consequently, a two-ring structure in a hexagonal arrangement 
was printed (top view shown in Fig. 2(a)), which has previously 
been shown to guide light [51]. The hole diameter (d) was set 
to 6 mm and the hole pitch (Λ, distance between centers of 
adjacent holes) to 12 mm. The preform diameter and height 
were 65 mm and 105 mm, respectively. Before drawing, the 
preforms were machined down to 60 mm and 100 mm, 
respectively.  

The preform (Fig. 2) was printed at a speed of 5 mm/s (other 
settings were the same as in Section II.-A), taking ~323 hours 
in total and using 291.7 g of material. The printout warped a 
little during printing (the sides of the raft detached from the 
printing bed), resulting in a slightly rounded bottom surface. In 
the case of this preform, warping was not an issue, because it 
did not distort the designed geometry above the bottom surface. 
The quality of the top and bottom sections is not overly 
important, since they are sacrificed during fiber drawing stage. 

C. Preform Post-Processing and Fiber Drawing 
 The finished preform was annealed in a conventional oven 

at 130°C for 4 weeks to remove air bubbles trapped in preforms 
and hence increases transparency [3, 5]. It was then machined 
in order to remove surface roughness and make it suitable for 
cane drawing using the polymer draw tower. The resulting 
length and outer diameter were 100 mm and 60 mm, 
respectively and an outer surface roughness of ~3-4 µm. The 
preform was then further annealed prior to drawing for 4 more 
weeks under the same conditions. 

The fiber was produced using the two-step heat and draw 
method [51] where first, the preform was drawn into 
intermediate canes at a temperature of 180°C. The canes were 
6 mm in diameter and 50 cm in length. Each cane was 
subsequently inserted in a PC sleeving tube. The resulting 
composite canes were annealed for 10 days at 130°C to ensure 
that any bubbles trapped in the sleeving tube and cane were 
removed. Then, one of the composite canes was drawn to fiber 
at a temperature of 185°C. In the remaining part of the text, the 
resulting fiber is referred to as 3D PC mPOF. 

III.  FIBER CHARACTERIZATION 
A. Fiber cleaving and light coupling to core 

 Fig. 3(a) shows a microscopic image of a cleaved facet of 
the 3D PC mPOF. The darker inner region corresponds to the 
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preform, and the lighter outer one corresponds to the sleeving 
tube. In the magnified image (Fig. 3(b)), the core is clearly 
visible. The literature reports the optimal cleaving temperature 
for a PC mPOF fiber to be 80°C [13, 14]. In this instance a 
temperature of 75°C yielding the best cleave quality for the 
temperatures tested where both the fiber and the blade were 
heated. However, this temperature was possibly a little too high 
for this fiber as can be inferred from the slight ellipticity of the 
microstructure holes [52]. In this research, fiber cleaving was 
performed manually using a blade and a hot plate, which only 
gave limited control over the process. Further optimization of 
cleaving temperature was not undertaken as the cleave quality 
was found enough for light coupling. Such optimization often 
involves specialized cleaving apparatus and is a separate 
research question [52, 53, 54] beyond the scope of this work. 

Red light from a fiber-coupled semiconductor laser 
(wavelength ~638 nm, optical power ~2.5-5.0 mW) was butt-
coupled into the fiber (fiber length = 38.1 mm) and projected 
onto a screen (experimental setup in Fig. 4) to observe the clear 
core guidance, shown in Fig. 3(c). Core guidance was visible 
by eye over fiber lengths of ~10 cm. For this wavelength of 
light, only cladding guidance from the outer tube was observed 
at longer fiber lengths (see Fig. 3(d)). 

B. Simulation of the Confinement Loss and Modality of 
the Fiber 

For a microstructured fiber to display endlessly single-mode 
behavior, the d/Λ ratio should be less than 0.406 [55]. Here the 
chosen dimensions of hole diameter and pitch of the preform 
would result in d/Λ = 0.5. After drawing, the geometry of the 
fiber changed and the average diameter of the holes in the inner 
ring (dinner) was visibly higher than of those in the outer ring (douter). 
The measured geometry was: dinner = 2.7 μm, douter = 1.45 μm, Λ = 
5.4 μm (see Fig. 3(b)). 

For non-endlessly single-mode mPOF, there is no strict 
criteria to differentiate single-mode and multi-mode behavior. 
As opposed to step index fibers, all modes in microstructured 
optical fibers have some non-zero confinement loss due to finite 
number of microstructure rings. However, a large enough 
number of rings (often 8) ensures that the confinement loss is 
negligible compared to other loss mechanisms [51, 56]. Hence, 
fiber modality is often designated based on acceptable value of 
loss for a particular application, and in the case of high loss for 
second mode, fiber can be considered “essentially” single-
mode. A useful approximation of the cut-off wavelength based 
on fiber geometrical parameters was presented in [55]. There, 
the cut-off wavelength was defined as the transition between 
delocalized single mode (the second mode not being localized 
in core) and localized multimode behavior (second and possibly 
higher order modes localized in core). However, this cut-off 
wavelength was defined for an ideal silica fiber made of 8 rings 
of even holes. 

In order to assess the confinement loss and modality of the 
fiber, COMSOL (v. 4.3) [57] and CUDOS (v. 2) [58, 59, 60] 
software packages were used to run simulations on the 
described geometry. They gave very similar results regarding 
real part of effective refractive index (Re(neff)) and modal 
patterns, while CUDOS seemed to provide higher precision of 
imaginary part of neff (Im(neff)). Simulations were performed for 

the two wavelengths (870 nm and 1550 nm, see Fig. 5 and Table 
I) at which FBGs were inscribed (Section IV). Material 
refractive indexes used were 1.577 and 1.567, respectively [13]. 
Simulations at 1550 nm resulted in virtually the same plots as 
at 870 nm (Fig. 5). 

Modes of microstructured fibers follow patterns of step-
index modes only approximately. The step-index fiber naming 
convention (HE, EH, TM, TE) does not work for more complex 
mode shapes and so designation of modes based on symmetries 
is used instead [61]. The symmetry group of 3D PC mPOF is 
C6v. This gives 8 classes of modes: 4 non-degenerate ones (1, 2, 
7, 8) and two pairs of two-fold degenerate classes (3 and 4, 5 
and 6). 

From simulation, the confinement loss of the second mode 
was found to be much larger than the fundamental mode at both 
870 nm and 1550 nm (220 times and 122 times, respectively). 
The second least lossy mode at both wavelengths (equivalents 
of Ex

23 and Ey
23 modes from step-index rectangular symmetry) 

showed losses 41 times higher (870 nm) and 48 times higher 
(1550 nm) than the fundamental. These values imply that the 
confinement loss would prevent higher order modes from 
propagating over more than a few cm, while guiding the 
fundamental mode over hundreds of cm. Hence, 3D PC mPOF 
can be considered single-moded at both 870 nm and 1550 nm. 
Effective single-mode behavior can also be inferred from modal 
field patterns (Fig. 5), which show that the second mode is not 
fully localized. This is evident in electric field magnitude plot 
and is supported by the relatively high loss value. 

To investigate fiber modality further, fiber parameters were 
compared with [55] to check whether the fiber is in delocalized 
single mode or localized multimode operation region. For 
comparison, the hole diameter was averaged over both inner 
and outer ring of the actual geometry to give the following: d = 
2.4 μm, Λ = 5.4 μm, d/Λ = 0. 4. These results compared to [55] 
also suggest the fiber is in delocalized single mode operation at 
870 nm and 1550 nm. 

C. Fiber Attenuation Measurements 
The fiber attenuation was measured using the cut-back 

method [62]. Light from a supercontinuum source (Fianium 
White laser WL-SC-400) was launched via a silica fiber into 
one end of the 3D PC mPOF under test. The two fibers were 
fixed together using a ceramic ferrule. The other end of the 3D 
PC mPOF was placed in a second ceramic ferrule and connected 
directly to an optical spectrum analyzer (OSA). Two OSAs 
were used: a Yokogawa AQ6373B for the wavelength range 
400-1200 nm and a Yokogawa AQ6370 for the 1200-2400 nm 
range. Transmission spectra were recorded for 7 fiber lengths, 
starting at 86 cm and finishing at 26 cm, giving 10 cm length 
decrements between measurements. In order to minimize the 
end face influence and maximize transmission, a few spectra 
were recorded for every fiber length after shortening the fiber 
by a small amount (1-2 mm) and the maximal transmission 
spectra for each length is shown in Fig. 6. 

Due to the low transmission power for the longer fiber 
lengths only the data from the three shortest fiber lengths (26, 
36, and 46 cm) was used for calculating the attenuation. The 
short lengths present a challenge because it then becomes 
difficult to remove cladding modes by bending the fiber and so 
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it should be noted that the data given is for all modes of the 
fiber.  For each spectral point, the attenuation plot (Fig. 7) 
shows the slope resulting from the linear regression (least 
squares method) of the 26, 36, and 46 cm data series. In some 
spectral regions (1110-1205 nm, 1340-1435 nm, 1729-1747 
nm), the calculated attenuation curve was very noisy due to 
bands of high material absorption, and hence the results in those 
regions are not credible. The data in the spectral region below 
550 nm was discarded due to low light source intensity. The 
shape of the attenuation spectrum seems to align well with [13], 
except for wavelengths below 750 nm, which is the range that 
would be more susceptible to scattering losses at the air-
polymer interface in the hole region. 

The lowest attenuation of ~0.27 dB/cm for 3D PC mPOF is 
found in a few spectral regions (780-785 nm, 820-825 nm, 953-
956 nm, 1070-1090 nm). Attenuation calculated in Fig. 7 is the 
lowest reported in the literature so far for solid-core POFs 
(including step index ones) drawn from 3D-printed preform at 
any wavelength (see Table II). However, Table II also shows 
that losses for fibers drawn from mechanically casted and 
drilled PC preforms are up to 8 times lower, which leaves room 
for optimization.  

Compared to simulations in Section III.-B, it can be noted 
that confinement loss (~0.11 dB/cm) accounts for ~22% of total 
loss at 870 nm (~0.50 dB/cm). This ratio changes at 1550 nm, 
where confinement loss contributes as much as ~63% 
(~0.44 dB/cm) of the total loss (~0.69 dB/cm) although for the 
measurement the noise level at 1550 nm is relatively high.  

D. Dynamic mechanical analysis of the fiber 
Dynamic mechanical analysis (DMA) was performed on the 

3D PC mPOF to evaluate the Young’s modulus with respect to 
temperature and strain cycle frequency (following standard 
ASTM D4065), and thermal expansion coefficient of the fiber 
(standard ASTM E831-14). The equipment used for the stress-
strain cycles in the strain limit up to 11% was a DMA 8000 
(Perkin Elmer, USA). 

The first test performed was the implementation of a series 
of stress-strain cycles, which allowed the Young’s modulus of 
the 3D PC mPOF at room temperature to be estimated as 
2.47±0.10 GPa (determination coefficient R2 = 0.9979) – see 
Fig. 8. The confidence interval (CI) for measurement errors 
throughout this section is 95%, unless otherwise noted. The 
Young’s modulus was estimated through the slope of the linear 
region of the stress-strain curve (in the range 0.05-0.3%). From 
Fig. 8, it is also possible to estimate yield stress, which is stress 
at which stress-strain curve shows non-linear behavior. Such 
non-linear behavior was noted for the stress higher than about 
60 MPa. Yield stress is within the range for the PC material (59-
70 MPa [63]), while Young’s modulus slightly exceeds its 
upper range value (2-2.44 GPa [63]). Moreover, the Young’s 
modulus obtained for the 3D PC mPOF is close to the one 
estimated for the drilled-preform 3-ring PC mPOF in [24] 
(2.89±0.30 GPa) and [64] (2.70±0.01 GPa). 

In the Young’s modulus characterization with respect to 
temperature, the strain cycle frequency used was 1 Hz, while 
temperature was varied from 25°C to 140°C. The strain range 
was 0-0.2%. The 3D PC mPOF exhibits a linear decrease of its 
Young’s modulus with respect to a temperature increase with a 
slope of −4.775±0.094 MPa/°C (R2 = 0.9968; see Fig. 9(a)). 

The maximum Young’s modulus variation is similar to that 
obtained in [24] for a drilled PC mPOF (about 0.5 GPa). 
However, for the 3D PC mPOF, the Young’s modulus decrease 
shows higher linearity than in [24].  

Fig. 9(b) shows the Young’s modulus variation with respect 
to strain cycle frequency. The temperature was about 27°C, the 
frequency range was 0.01-10 Hz, and the strain range was 0-
0.5%. The fiber exhibits an increase of Young’s modulus with 
frequency until 5 Hz, after which sharp decrease of Young’s 
modulus is noted. Such behavior was also observed for PMMA, 
Topas 5013, Zeonex 480R, and PC mPOFs in [24]. However, 
in the case of the 3D PC mPOF, the Young’s modulus variation 
with respect to frequency is higher, and the slope of 
302±14 MPa/log10(Hz) (R2 = 0.9959) was obtained in the range 
0.01-5 Hz. This seems to contradict the results reported in [64], 
showing no Young’s modulus dependence on frequency, which 
might be due to different measurement equipment. 

Finally, the linear thermal expansion coefficient (linear CTE, 
LCTE) of the 3D PC mPOF was evaluated using TMA mode of 
the DMA 8000 device. A small constant tensile load (F = 
0.01 N) was applied on the fiber, and fiber strain was observed 
while changing temperature (see Fig. 10). Total variation of 
fiber strain (εtotal) with temperature was ascribed to two factors, 
thermal expansion (εTE) and different response to stress caused 
by tensile load (εσ), coming from dependence of Young’s 
modulus on temperature (measured earlier): 

 𝜀%&%'((∆𝑇) = 𝜀./(∆𝑇) + 𝜀1(∆𝑇)    

In the TMA method, εσ can often be neglected because it 
normally is much smaller than εTE due to very small value of 
force from tensile load. However, in the case of this fiber, εtotal 
was found to be so small that neglecting εσ would deviate the 
value of LCTE. εσ and εTE can be written as: 

 𝜀./(∆𝑇) = 𝛼∥ ⋅ ∆𝑇    

 ε1(∆𝑇) =
𝜎

𝐸(Δ𝑇) −
𝜎
𝐸:
=

𝜎
𝑑𝐸
𝑑𝑇 ⋅ ∆𝑇 + 𝐸:

−
𝜎
𝐸:

    

where: α∥ (°C-1) is the linear CTE along the fiber axis, ΔT (°C) 
is the temperature change above the initial temperature of the 
experiment (T0 = 27.10±0.01°C), σ = F/A (Pa) and is the stress 
on the fiber coming from tensile load F = 0.01±0.002 N acting 
on fiber area A (m2), E(ΔT) = dE/dT · ΔT + E0 (Pa) and is the 
Young’s modulus of the fiber, dE/dT (Pa/°C) is the dependence 
of Young’s modulus on temperature, and E0 (Pa) is the Young’s 
modulus at T0. In (3), subtraction of the second term (σ/E0) is 
required to make εσ start from zero at T0. 

By measuring the cross-sectional area of the fiber from the 
microscope image (A = 22,500±500 μm2), σ was estimated to be 
4.45±0.98×105 Pa. This stress caused the fiber to be prestrained 
by 175±39 με at the beginning of the experiment (at T0), which 
is the value of the second term (σ/E0) in (3). Changes to εσ 
coming from decrease of cross-sectional area of the fiber upon 
straining were found to be very small and hence were neglected. 
Based on the experiment described earlier (see Fig. 9), dE/dT 
and E0 were calculated to be -4.775±0.094 MPa/°C and 
2.5479±0.0084 GPa, respectively. Inserting these values to (1)-
(3) allowed to plot εσ and εTE along with the experimental values 
of εtotal in Fig. 10. The value of LCTE along the fiber axis (α∥) 
coming from linear regression was 7.34±0.53×10-7 °C-1 (CI = 
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95%).  
This LCTE is about two orders of magnitude smaller than 

those usually encountered in the literature for PC material, 
which are in the range of 5.0-8.1×10-5 °C-1 (in bulk as well as in 
the form of thin films and pellets) [65, 66, 67, 68, 69, 70, 71]. 
For this reason, special care was taken to ascertain the obtained 
value is accurate. The calculated LCTE value was cross-
validated by manual calculations to check the experimental 
error yielded by the total differential method and gave the result 
of 7.3±1.5×10-7 °C-1. The larger experimental error obtained does 
not change the two orders of magnitude difference between the 
calculated value and the literature ones. 

Some studies on POFs assume the literature LCTE values for 
bulk polymer to be valid [72, 73, 74, 75]. However, research by 
Zhang and Webb [76], tackling specifically the CTE of POF 
(made of PMMA), revealed its anisotropic behavior. According 
to their paper, the anisotropic nature of POF is caused by 
drawing process, during which polymer molecules tend to be 
preferentially aligned along drawing direction. This has been 
shown for a range of mPOFs drawn from different polymers, 
including PC, in [64]. Such molecular alignment in POF results 
in anisotropy of LCTE, making the LCTE value along drawing 
direction (α∥) lower than for the isotropic material (αiso) 
normally reported in the literature. Consequently, the value of 
LCTE perpendicular to drawing direction (α⊥) is higher than αiso. 
Such behavior is well-known in the field of oriented polymers 
[76, 77, 78, 79], and should apply equally to POFs. In extreme 
cases, even negative α∥ can be expected. In addition, the 
experimental data acquired by Zhang and Webb [76] suggested 
α∥ to be lower than the literature values of αiso. This could 
explain the two orders of magnitude difference in α∥	obtained 
for the 3D PC mPOF. 

IV. FIBER BRAGG GRATING INSCRIPTION AND TESTING 
A. Inscription Using a Continuous-Wave Helium-
Cadmium Laser 

A fiber Bragg grating (FBG1) was inscribed in the 
manufactured PC fiber by the phase mask technique [80] using 
a Kimmon 325 nm CW HeCd laser (model IK3301 R-G). The 
laser beam (power ~23 mW and ~1.2 mm diameter) was 
focused on the fiber through a cylindrical lens of 11 cm focal 
length. An Ibsen Photonics custom-made phase mask of 
557.50 nm pitch was placed directly on the fiber. The 
inscription time was 13 min. FBG1 was inscribed 10-15 mm 
away from the butt-coupling fiber end in order to minimize 
losses of optical power due to fiber attenuation. After the 
inscription, FBG1 was interrogated through a 3dB coupler 
using a supercontinuum light source Fianium White laser WL-
SC-400 and a Yokogawa AQ6373B optical spectrum analyzer. 
The reflection spectrum recorded by OSA is shown in Fig. 11. 
The calculated effective refractive index of the fiber core at the 
Bragg wavelength ~871.8 nm is 1.5638. 

The response of FBG1 to temperature was tested. In order to 
facilitate grating interrogation, a silica pigtail was glued to the 
mPOF with FBG1. Some UV-curable glue (Norland Optical 
Adhesive 78) was placed in the junction point between silica 
and polymer fibers. They were positioned with respect to each 
other so that reflection spectrum was single mode, and then the 

UV glue was cured. However, after curing the glue, the 
reflection spectrum of FBG1 displayed two peaks rather than 
one due to change in light coupling conditions. As it was 
explained in Section III.-B, ~1-1.5 cm distance between gluing 
point and the POFBG allowed higher order modes to propagate. 
Longer distance between fiber end and the FBG would increase 
the loss for higher order modes greatly and render them 
invisible. 

FBG1 was subsequently placed in a small v-groove on a 
Peltier plate and covered with some silicone grease to increase 
thermal conduction. The temperature was increased using 
a temperature electronic controller (TEC) from 27ºC to 42ºC in 
steps of 5ºC in room environment. The recorded spectra are 
shown in Fig. 12, along with their moving averages serving to 
increase legibility of the plot. The temperature sensitivity was 
calculated from the moving averages by taking the central 
wavelength of -3dB bandwidth of either peak at different 
temperatures (see inset in Fig. 12). The calculated temperature 
sensitivity was around -21.3±1.9 pm/ºC (-21.2±1.9 pm/ºC for 
the left peak and -21.4±1.0 pm/ºC for the right one). This value 
was similar to the ones achieved in previous studies on PC 
mPOFs: -25.8 pm/ºC in a humidity-controlled environment [14] 
and -29.9 pm/ºC in a room environment [13]. Lack of humidity 
control does not seem to have major impact on achieved 
temperature sensitivity values, as the humidity sensitivity of 
FBG inscribed in PC mPOF is only 7.25 pm/%RH (as opposed 
to 27.4-35.5 pm/%RH for POFs made of PMMA [26, 81]).  

Knowing the temperature sensitivity of FBG1 (ΔλB/ΔT), the 
effective RI (neff) of the fiber core at ~871.8 nm (λB) and the 
LCTE of the fiber along fiber axis (α∥) allowed the thermo-optic 
coefficient perpendicular to fiber axis (TOC⊥, (dn/dT)⊥) to be 
calculated. The fiber is not birefringent, so the TOC for all 
directions perpendicular to fiber axis is equal. COMSOL 
simulations showed that only up to ~3.3% of electric field is 
parallel to fiber axis, the remainder being perpendicular to it. 
Hence, it can be safely assumed that the Bragg peak position 
depends on TOC⊥	only. According to the equation describing 
Bragg wavelength change on temperature [75]: 

 
𝛥𝜆D
𝜆D

= E
1
𝑛HII

d𝑛
d𝑇KL

+ 𝛼∥M𝛥𝑇    

thermo-optic coefficient can be expressed as: 

 
d𝑛
d𝑇KL

= 𝑛HII N
1
𝜆D
𝛥𝜆D
𝛥𝑇 − 𝛼∥O    

Using the above equation, TOC⊥ was calculated to 
be -39.4±3.7×10-6 °C-1. The experimental error was estimated 
with the total differential method. It should be noted that the 
obtained TOC⊥ value is less than those found in the literature 
for PC in bulk and in the thin film form (-90 to -172×10-6 °C-1, 
most sources giving the value of about -107×10-6 °C-1) [65, 66, 
67, 68, 69, 82, 83, 84, 85]. Similarly to LCTE, this lower value 
of TOC⊥ can suggest that TOC is anisotropic, which would be 
justified in view of high anisotropy of molecular arrangement. 
However, further studies are required to fully understand fiber 
behavior. 

B. Inscription Using a Femtosecond Laser 
Another FBG (FBG2) was inscribed in the manufactured 

fiber by means of a femtosecond laser system (High Q Laser 
FemtoREGEN) operating at 517 nm with 220 fs pulse duration. 
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The fiber sample was fixed to a glass slide to minimize 
unwanted strain and bending and was subsequently mounted 
onto a 2D air-bearing translation system (Aerotech) for accurate 
motion control during inscription. The laser beam was focused 
on the fiber core by a long working distance objective (×50, 
Mitutoyo) using another translation stage. The laser pulse 
energy and repetition rate were set to ~50 nJ/pulse and 1 kHz, 
respectively. 

Using the plane-by-plane inscription method [86, 87, 88], 
1000 planes were inscribed in the fiber core with a period of 
~1.97 μm, giving a total grating length of 2 mm (see Fig. 13(a)). 

The fiber was cleaved with a cold blade and butt-coupled to 
using silica fiber and refractive index matching gel. It was 
subsequently illuminated through a 3dB coupler using a 
broadband light source (ASE730, Thorlabs, range 1530-
1610 nm). The reflection spectrum of the grating was measured 
using a commercial FBG interrogator (IBSEN IMON 512 HS), 
see Fig. 13(b). The effective refractive index of fiber core at 
~1562 nm (4th order FBG reflection) according to the resultant 
reflection spectrum was estimated to be ~1.586.  

The operation of FBG2 was tested qualitatively. Fig. 14(a) 
shows the response of the grating to random vibrations of the 
optical table after hitting it three times. The response of the 
grating to three breath cycles is shown in Fig. 14(b). Here, the 
Bragg peak wavelength decreases with the increased 
temperature from each exhalation, yielding negative 
temperature sensitivity (in line with the results achieved in 
Section IV.-A).  

C. Inscription Using a Krypton-Fluoride Laser 
A Coherent Bragg Star Industrial-LN krypton fluoride (KrF) 

excimer laser system operating at 248 nm wavelength was 
employed to inscribe the third FBG introduced in the paper 
(FBG3). The pulse duration and pulse repetition rate were 15 ns 
and 1 Hz, respectively. The laser beam profile was measured as 
a rectangular Tophat function of 6.0×1.5 mm2 size and 
2×1 mrad2 divergence. It was focused onto the fiber core 
utilizing a plano-convex cylindrical lens (Newport 
CSX200AR.10) with the focal length of 20 cm. The effective 
spot size of the beam on the fiber surface was 20.0 mm in width 
and 32.4 µm in height. A slit perpendicular to the fiber direction 
is used to reduce the width of the beam, which defines the 
physical length of the grating structure (in this case 5 mm long). 
A 10 mm long phase mask customized for 248 nm inscription 
wavelength with a pitch of 567.8 nm was used for Bragg grating 
inscription at the 850 nm spectral region. A supercontinuum 
source (Fianium White laser WL-SC-400) and an optical 
spectrum analyzer (Yokogawa AQ6373B) were used to 
measure power reflected from the grating through a 3dB 
coupler.  

Due to high fiber attenuation at this wavelength short fiber 
sections of around 4 cm were used. They were butt-coupled to 
an APC silica pigtail and a small amount of index gel was 
inserted to reduce Fresnel reflections. It took 5 min to inscribe 
a grating (300 pulses at 1 Hz pulse repetition rate, 0.6 mJ energy 
per pulse). The resulting FBG was 5 mm long and its Bragg 
wavelength was 887.25 nm (see Fig. 15). From the Bragg peak 
the effective refractive index at that wavelength was calculated 
to be 1.5626, which is very close to this calculated in 
Section IV.-A (1.5638 at ~871.8 nm) and in [13]. 

V. CONCLUSIONS 
This paper reports the first single-mode microstructured 

solid-core fiber drawn from a 3D-printed preform. The fiber 
preform was printed in a standard lab with a commercial, low-
cost printer. Whilst the preform fabrication process is not 
optimal in terms of the optical transparency of the fiber 
produced at this stage, it guides light over a sufficient distance 
to show the successful inscription of fiber Bragg gratings using 
three different laser systems: a 325 nm CW laser, a 517 nm 
pulsed femtosecond laser and a 248 nm pulsed nanosecond 
laser. The reflection peaks of these gratings were in the 850-
900 nm and 1550-1600 nm regions, showing light guiding over 
a wide wavelength range.  

Mechanical testing of the fiber showed that the 3D printing 
approach did not introduce any unexpected or undesirable 
characteristics. The fiber attenuation was the lowest reported so 
far for a POF drawn from a 3D-printed preform and the fiber 
was shown to operate in the 1550 nm region, which is useful for 
using with existing test and measurement equipment. The 
measured linear coefficient of thermal expansion was found to 
be two orders of magnitude smaller than for isotropic bulk 
material. Thermo-optic coefficient of the fiber was calculated 
to be only ~37% of this for isotropic bulk PC. Both of these are 
ascribed to high anisotropy of molecular arrangement in the 3D 
PC mPOF, but further studies are necessary to fully understand 
fiber behavior. 

Whilst the current performance is not yet as good as that of 
fibers drawn from preforms made by drilling or capillary 
stacking, the ultimate aim of this work is to optimize a 
technique that will facilitate complex fiber designs that cannot 
be easily fabricated with the conventional techniques. It is 
reasonable to expect that printing with tailor-made filaments 
rather than commercially available ones would allow much 
better control of the printing process. The custom-made 
filaments could be fabricated of optical quality plastics, which 
could result in decreasing the loss levels. In addition, their 
chemical composition could be precisely controlled, which 
could allow avoiding undesired chemical species that can 
adversely interfere with the POF fabrication process.  
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Fig. 1. Comparison of transparency of polished circular test printouts for 
different print speeds and printing bed temperatures (hot bed (105°C), cold bed 
(room temperature)). (Left) Photographs of the samples with front lighting and 
resting on white squared paper (5 mm pitch) with text illustrate the variable 
transparency of the samples. (Right) Photographs of the same samples on a 
black background illuminated from the side (the bottom edge of the pictures). 
This lighting accentuates the density and localization of air voids in the samples. 

 

Fig. 2. (a) Top view of the preform design. The blue ring shows the 
machined diameter. (b) Top view of the printed preform (illuminated from the 
top edge). (c) Side view of the printed preform (illuminated from behind). (d) 
View of the top surface of the printed preform. All dimensions in mm.  

 

Fig. 3. (a) View of a cleaved fiber facet (blade temperature = 75°C; fiber 
outer diameter = 170 µm, fiber core diameter = 8 µm). (b) Magnified view of 
the fiber core. (c) Image of a fiber end projected on screen (fiber length of 
38.1 mm) with clear core guidance. See Fig. 4 for the experimental setup. (d) 
Photograph of butt-coupling to the fiber on spool. 

 

Fig. 4. Schematic showing the experimental setup used for checking core 
guidance (fiber length = 38.1 mm). The image observed on the screen is shown 
in Fig. 3(c). 

 

Fig. 5. Poynting vector intensity and electric field magnitude for the 
fundamental, second and second least lossy modes simulated for 3D PC mPOF 
at 870 nm in CUDOS. 

 

Fig. 6. Transmission spectra for different lengths of the same piece of 3D 
PC mPOF used for cut-back attenuation calculations. Reference spectrum 
(marked “ref.”) comes from the supercontinuum light source attached directly 
to OSA. In order to reduce noise, moving averages (darker lines, data series 
marked with *) have been plotted over original spectra (lighter lines). In this 
paper, moving averages for each spectral point have been calculated using 5 
neighbors to its left and right, resulting in 11 spectral points being averaged 
over. 
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Fig. 7. Attenuation plot of the 3D PC mPOF calculated based on the 
transmission spectra for the three shortest fiber lengths in Fig. 6 (26, 36, and 46 
cm). Moving average (red) of the attenuation has been plotted over the original 
spectrum (blue) to reduce noise.  

 

Fig. 8. Stress-strain cycles and Young’s modulus of the 3D PC mPOF. 

 
Fig. 9. Young’s modulus variation for the 3D PC mPOF as a function of 
temperature (a) and strain cycle frequency (b). Error bars show mean deviation.  

 

Fig. 10. Strain variation of the 3D PC mPOF (εtotal) as a function of 
temperature. It was split into strain due to thermal expansion (εTE) and different 
response to stress caused by tensile load of 0.01 N, coming from dependence of 
Young’s modulus on temperature (εσ). See (1)-(3) for details. 

 

Fig. 11.  Reflection spectrum of an FBG (FBG1) inscribed in the 3D PC 
mPOF using HeCd 325 nm laser. Depending on light coupling conditions, 
reflection spectrum can display one (main plot) or more peaks (inset). 

 

Fig. 12.  Spectra of FBG1 recorded at different temperatures. Note two 
peaks in each spectrum corresponding to two different modes. Temperature 
sensitivity calculations performed on both peaks gave almost identical results 
(inset). In order to reduce noise, moving averages (darker lines, data series 
marked with *) have been plotted over original spectra (lighter lines). 

 

Fig. 13.  (a) Microscopic image (side view) of the FBG inscribed in 3D PC 
mPOF by femtosecond laser (FBG2). (b) Reflection spectrum (4th order) of 
FBG2. 

 

Left peak regression: 
y = -0.02120x + 872.0 
R² = 0.9988 

 

Right peak regression: 
y = -0.02140x + 872.4 
R² = 0.9960 

 (a) (b) 
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Fig. 14.  (a) Time response of FBG2 to vibration induced by hitting the 
optical table. (b) Time response of the FBG to three breathing shots, resulting 
in pulses of warmer and more humid air. As shown earlier, the POFBG shows 
negative temperature sensitivity. The Bragg wavelength increase after t = 15 s 
in (b) might be due to positive humidity sensitivity of the fiber [14].  

 

Fig. 15. Reflection spectrum of a 248nm KrF laser-inscribed FBG in the 3D 
PC mPOF. 

 
 

Table I.  
RESULTS OF CUDOS SIMULATIONS FOR FUNDAMENTAL, SECOND 

AND SECOND LEAST LOSSY MODES FOR 870 NM AND 1550 NM 

Mode 
Fundamental Second Second least 

lossy 
Mode class 3/4 

(degenerate) 
2 (non-
degenerate) 

5/6 
(degenerate) 

Step-index fiber 
equivalent 

HE11 (circular 
symmetry) 

TE01 (circular 
symmetry) 

Ex/y23  
(rectangular 
symmetry) 

 Wavelength = 870 nm 

Re(neff) 1.57535279891 1.57296137794 1.56379542212 
Im(neff) 1.75892967786 

× 10-7 
3.86335837268 
× 10-5 

7.15216328426 
× 10-6 

Confinement 
loss (dB/cm) 

0.11033757 24.23482671 4.48654826 

 Wavelength = 1550 nm 

Re(neff) 1.56194339477 1.55462887006 1.52603245572 
Im(neff) 1.23636037073 

× 10-6 
1.50868839412 
× 10-4 

5.90364581028 
× 10-5 

Confinement 
loss (dB/cm) 

0.4353189302 53.1204843936 20.7865670839 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table II.  
COMPARISON OF ATTENUATION (DB/CM) OF SOLID-CORE POFS FROM 3D-PRINTED AND DRILLED PREFORMSa 

Wavelength (nm) 

3D-printed preforms  Drilled preforms 

SI-POF [4] 
(PC+ABS) 

Air-structured POF [5]  
(SBP) 

SI-POF [3], 
(SBP+PETG) 

3D PC mPOF  
(this paper, PC)b  

mPOF [13]  
(PC) 

Optimized mPOF [14] 
(PC) 

543   0.64 0.53    
632-633 0.7-1.8c ~1.5  0.44  0.16 0.055 
819    0.29   0.041 
833.5    0.32  0.089  
1047-1052   0.44 ~0.34d    
1064  ~0.75  0.33    
1520-1560   0.94 ~0.68d    
1550  ~1.51  0.69    

aFiber materials are given in brackets after fiber name; for step-index (SI) fibers, both core and cladding materials, respectively, are given. bFor full attenuation 
spectrum, see Fig. 7. cAttenuation depending on 3D-printed core shape: square core – 1.2 dB/cm; triangular core – 1.3 dB/cm; rectangular core – 1.8 dB/cm. 
Attenuation of 0.7 dB/cm measured for circular core of solid material (not 3D-printed). dAverage values for the wavelength range. 
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