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ABSTRACT

In this paper, we analyze the formation and dynamical properties of discrete light bullets in an array of passively mode-locked lasers coupled
via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neighbor coupled Haus master equations,
we show numerically the existence of discrete light bullets for different coupling strengths. In order to reduce the complexity of the analysis,
we approximate the full problem by a reduced set of discrete equations governing the dynamics of the transverse profile of the discrete
light bullets. This effective theory allows us to perform a detailed bifurcation analysis via path-continuation methods. In particular, we show
the existence of multistable branches of discrete localized states, corresponding to different number of active elements in the array. These
branches are either independent of each other or are organized into a snaking bifurcation diagram where the width of the discrete localized
states grows via a process of successive increase and decrease of the gain. Mechanisms are revealed by which the snaking branches can
be created and destroyed as a second parameter, e.g., the linewidth enhancement factor or the coupling strength is varied. For increasing
couplings, the existence of moving bright and dark discrete localized states is also demonstrated.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002989

Light bullets are composed of pulses of light that are simulta-

neously confined in the transverse and propagation directions.

These phase invariant localized structures have attracted a lot

of interest in the last two decades for both fundamental and

practical reasons: They are individually addressable and can be

envisioned for three-dimensional optical information storage. In

this paper, we study the possibility to build discrete light bullets

in an array of passively mode-locked lasers coupled via evanes-

cent fields. Starting with the generic model based upon a system of

nearest-neighbor coupled Haus equations, we derive an effective

discrete model describing the dynamics of the transverse profile of

the discrete light bullets. We provide a detailed bifurcation anal-

ysis of this model and compare the results with direct numerical

simulations of the full system.

I. INTRODUCTION

Discrete localized states (dLSs) in nonlinear lattices appear in
many areas of research such as biological molecular chains or energy
transfer in protein α-helices,1,2 conducting polymer chains,3,4 solid-
state systems,5 Bose–Einstein condensate,6 or optical wave-guides7,8

just to mention a few. In nonlinear optical systems, these states
are often referred to as discrete solitons (dSs) and they have been
a subject of intense investigation in recent years both theoretically
and experimentally, see, e.g., Ref. 9 for a review. In particular, one-
and two-dimensional dSs were predicted theoretically and observed
experimentally in arrays of weakly coupled nonlinear cavities with
Kerr, saturable cubic, and quadratic nonlinearities.10–17

The properties of dSs usually differ from those of continu-
ous systems. In particular, the lack of translational symmetry in
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discrete systems usually causes the trapping of dSs by the so-called
Peierls–Nabarro potential18 so that they remain at rest unless the
coupling between the array elements exceeds some critical value.
In the limit of strong coupling, the mobility properties of dSs were
discussed in Ref. 14, whereas in Ref. 19, the uniformly moving
as well as chaotic oscillatory dSs were observed in an array of
coupled Kerr-nonlinear cavities. The chimera-like localized states
consisting of spatiotemporal chaos embedded in a homogeneous
background were recently studied20 in a discrete model for an array
of coupled-waveguide resonators subject to optical injection. These
intermittent spatiotemporal chaotic states are shown to coexist with
stationary dSs corresponding to different numbers of active waveg-
uides. The multistability and snaking behaviour of dSs were also
reported in the model for optical cavities with focusing saturable
nonlinearity.15,16 The front propagation in an overdamped one-
dimensional periodic lattice leading to the formation of dLSs was
discussed in Ref. 21. The interaction properties of short pulse trains
in an array of nearest-neighbor coupled passively mode-locked
lasers were recently addressed in Ref. 22. It was shown that this
array can produce a periodic train of clusters consisting of two or
more closely packed pulses with the possibility to change the interval
between them via the variation of the coupling parameter.

Passive mode locking (PML) is a well-known method for
achieving short optical pulses.23 For proper parameters, the com-
bination of a laser amplifier providing gain and a nonlinear loss
element, usually a saturable absorber, leads to the emission of tem-
poral pulses much shorter than the cavity round-trip. However, if
operated in the so-called long-cavity regime, the mode locked pulses
become individually addressable temporal localized states coexist-
ing with the off solution.24–26 In this regime, the round-trip time is
much longer than the semiconductor gain recovery time, which is
the slowest variable. This temporal confinement regime was found
to be compatible with an additional spatial localization mechanism,
leading to the formation of stable three-dimensional light bullets,
i.e., localized pulses of light that are simultaneously confined in
the transverse and propagation directions.27–29 Light bullets have
attracted a lot of attention in the last two decades. In particular,
they should be addressable, i.e., one can envision that they would
circulate independently within an optical cavity as elementary bits
of information.

In this paper, we study the formation and dynamical proper-
ties of discrete light bullets (dLBs) in an array of mode locked lasers
coupled via evanescent fields in a ring (see Fig. 1). Here, the blue
and red parts correspond to the gain and absorber sections of the
individual PML laser, whereas the arrows indicate the next neighbor
coupling with the coupling strength c. We perform the analysis in
this paper in two steps: First, using an ensemble of nearest-neighbor
coupled Haus master equations, we show the existence of dLBs for
a wide range of coupling strengths. To understand the localization
mechanism in details, we approximate the solution of the full system
by the product of a slowly evolving discrete transverse profile and of
a short temporal pulse propagating inside the cavity. This allows us
to obtain a reduced discrete model governing the dynamics of the
transverse profile. This effective model termed the discrete Rosanov
equation allows for a detailed multi-parameter bifurcation study. It
also enables us to identify the different mechanisms of instabilities
of transverse dLBs.

FIG. 1. Schematic representation of a ring array of coupled mode-locked lasers.
Blue and red parts of eachmode locked laser correspond to the gain and absorber
sections, respectively. The arrows indicate the coupling via evanescent fields with
the coupling strength c. Green spheres illustrate dLBs.

II. MODEL

We describe the mode locked laser array in Fig. 1 using nearest-
neighbor coupled Haus master equations23,27,28 for the evolution of
the field profile Ej = Ej(z, σ), j = 1, . . . N, over the slow time scale
σ that corresponds to the number of round-trips in the cavity

∂σEj =
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whereas z is a fast time-like variable representing the evolution of
the field within the round-trip. The carrier dynamics for Gj = Gj(z)
and Qj = Qj(z) reads
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Here, κ is the fraction of the power remaining in the cavity after
each round-trip, γ is the bandwidth of the spectral filter, α and β are
the linewidth enhancement factors of the gain and absorber sections,
respectively, and c denotes the nearest neighbor coupling constant.
Furthermore, G0 is the pumping rate, 0 is the gain recovery rate, Q0

is the value of the unsaturated losses, and s is the ratio of the satura-
tion energy of the gain and of the saturable absorber sections. Note
that in Ref. 27 it was shown that carrier diffusion plays almost no
role in the dynamics, so we set the corresponding carrier diffusion
coefficients to zero without loss of generality.

In Eqs. (1)–(3), time has been normalized to the saturable
absorber recovery time that we assume to be τsa = 20 ps. If not
otherwise stated, we choose s = 30, Q0 = 0.3, and κ = 0.8, which
corresponds to modulation of the losses of 26% and 20% of the
light extraction. Also, setting γ = 40 and 0 = 0.04 corresponds to
a full width at half maximum (FWHM) of 250 GHz for the gain
bandwidth and a carrier recovery time τg = 500 ps. For these proper
parameters, Eqs. (1)–(3) sustain the existence of stable dLBs as
depicted in Fig. 2. Here, the intensity profile of a stable dLB in the
array of N = 30 elements is shown for four different values of the
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FIG. 2. Exemplary solutions of Eqs. (1)–(3) showing the intensity pro-
file of a stable dLB existing in an array of N = 30 elements for dif-
ferent couplings strength c: (a) c = 0.05, (b) c = 0.10, (c) c = 0.15,
and (d) c = 0.20. Other parameters are (γ , κ ,α,β ,G0,0,Q0, s, Lz ,Nz)

= (40, 0.8, 1.5, 0.5, 0.3840, 0.04, 0.3, 30, 5, 128), where Lz is the length of the
cavity and Nz are the number of grid points. If not otherwise stated, all the data
represented in the figures are dimensionless.

coupling strength c. Note that dLBs are stable with respect to noise,
i.e., they remain unaffected in the stable parameter region if a noise
of a small amplitude is added during the simulation.

To understand the formation mechanism of dLBs in detail,
we start the analysis with the dynamics of the transverse profile
of a dLB, that in the following we refer to as a discrete localized
state (dLS). To this aim, we follow27,28,30 to derive an approximate
model governing the shape of the transverse profile. We assume that
each field Ej = Ej(z, σ) is represented as a product of a short nor-
malized temporal localized pulse p (z) upon which the dLB is built
and a slowly evolving amplitude of the transverse field Aj (σ ), i.e.,
Ej(z, σ) = p (z) Aj (σ ). Note that this is a strong approximation as
we assume the temporal pulse p(z) to be identical in width and tim-
ing for all the array elements. We can integrate Eqs. (2)–(3) using
the fact that during the emission of a light bullet, the stimulated
terms (i.e., |Ej|2 � 1) are dominant.27,28,30 This allows us to identify

the gain as G
(f)
j = G(i)

j exp(−|Aj|2), where G
(f)
j (G(i)

j ) is the gain before
(after) the jth pulse emission. Using the same argument, we find that

Q
(f)
j = Q(i)

j exp(−s|Aj|2). Now we can multiply Eq. (2) by the com-
plex conjugate of the temporal pulse, integrate over the pulse length,
and neglect the contribution γ −1ṗ related to the spectral filtering of
the pulse. This allows us to find the discrete equation governing the
dynamics of Aj = Aj(σ ), j = 1, . . . N, as

∂σAj = i c (Aj+1 − 2Aj + Aj−1)+ F(|Aj|2)Aj. (4)

Defining h
(
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)

=
(

1 − e−pj
)

/pj with pj = |Aj|2, the nonlinear func-
tion F reads
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2
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Note that the continuous counterpart of discrete equation (4),
obtained taking the limit c → ∞ with a nonlinear function F cor-
responding to a static saturated nonlinearity, i.e., h = 1/(1 + |A|2)

is a so-called Rosanov equation31,32 that is known in the context of
static transverse autosolitons in a bistable interferometer.

III. RESULTS

A single solution of Eqs. (4) and (5) can be found in the form

Aj(σ ) = aj e−iωσ , (6)

where aj is a complex amplitude of each array element and ω repre-
sents the carrier frequency of the solution. Substituting Eq. (6) into
Eqs. (4) and (5), we are left searching for unknowns aj and ω of the
following algebraic equations set:

i c (aj+1 − 2aj + aj−1)+ iωaj + F(|aj|2)aj = 0. (7)

We followed the solutions of Eq. (7) in parameter space, by
using pseudo-arc length continuation within the AUTO-07P
framework.33–35 Here, the spectral parameter ω becomes an addi-
tional free parameter that is automatically adapted during the
continuation. We define Gth = 2√

κ
− 2 + Q0 as the threshold gain

value above which the off solution aj = 0 for all j = 1, . . . N
becomes unstable. The primary continuation parameter could be,
e.g., the gain normalized to the threshold g = G0/Gth, the linewidth
enhancement factor α or the coupling strength c.

Multistability of dLSs: One can start at, e.g., a numerically given
solution, continue it in parameter space, and obtain a dLS solution
branch. The result for an array of N = 51 elements is presented in
Fig. 3, where in the panel (a) the power P =

∑

i |ai|2 of three differ-
ent dLSs is depicted as a function of the normalized gain g for the
fixed small coupling strength c. One can see that dLSs only occur in
discrete widths corresponding to different numbers of lasing lasers
in the array, see Figs. 3(b)–3(d), where the exemplary profiles of
one-, two-, and three-sites dLSs are shown. Furthermore, the system
is multistable, and we find separate branches for solution profiles
containing different number of lasing nodes. Each of the branches
bifurcates from the threshold g = 1, possesses a fold at some fixed

FIG. 3. Bifurcation diagram of Eqs. (4) and (5) showing one- (red), two-
(green), and three-sites (blue) dLSs. The parameters used are (Q0,α,β , c, s, κ)
= (0.3, 1.5, 0.5, 0.004, 30, 0.8) and N = 51 array elements. Thick lines describe
stable solution branches, while thin lines stand for unstable ones. Green squares
denote Andronov–Hopf (AH) bifurcation points, whereas black dots stand for sad-
dle-node (SN) bifurcations. The inset gives a zoomed view on the area around the
folds. The panels (b)–(d) show exemplary intensity profiles marked in (a).
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value (marked as a black circle in Fig. 3), and goes to higher inten-
sities. The stability properties of different dLSs branches are similar:
The one-site-dLS (red line) is stable between the saddle-node (SN)
bifurcation point and the Andronov–Hopf (AH) bifurcation point
H3 (marked as a green square) close to the threshold. However, for
two- and three-sites dLSs, other AH bifurcations occur around the
SN point [e.g., H1 and H2, see the inset in Fig. 3(a)] that can limit the
stability of the dLSs for low values of the gain. For the higher bias
and intensities, the stability is again limited by the AH bifurcations
(cf. H4 and H5 points) close to g = 1 value. Analyzing the destabiliz-
ing AH bifurcations on the right flank of the branches reveals that
each of H3 − H5 points actually corresponds to a double AH bifur-
cation. Here, the imaginary parts of the two eigenvalues are the same
which means that both eigenmodes exhibit the same frequency. The
real and imaginary parts of the corresponding eigenmodes for the
H3 − H5 bifurcation points are shown in Fig. 4. One can see that
there is always one even (upper row) and one odd (lower row)
eigenmode. Numerical simulations performed slightly above the AH
points H3 − H5 indicate that the corresponding dLS becomes unsta-
ble: first, the laser nodes next to the lasing laser get excited and
become lasing as well. That happens successively until all lasers in
the array are lasing. In general, the perturbation corresponding to
the symmetrical excitation is selected; however, one can get unsym-
metrical invasion of the neighbor laser by putting corresponding
perturbation to the initial condition.

Note that although the appearance of the double Hopf bifur-
cation is not generic, it can be also found in, e.g., a complex cubic-
quintic Ginzburg–Landau equation. There, a presence of a double
AH bifurcation can lead to a so-called soliton explosions regime,
where a localized structure experiences an abrupt structural collapse
at certain points of its time evolution and subsequently recovers its
original shape; two AH modes correspond to a symmetrical and
asymmetrical explosion modes, respectively.36–38 The dependence of
the position of these double AH bifurcations on the system param-
eters and its origin will be discussed in details in the next two
sections.

FIG. 4. Real and imaginary parts of the critical eigenfunctions ψ of the double
Hopf bifurcations H3 [(a) and (b)], H 4 [(c) and (d)], and H5 [(e) and (f)] (cf. Fig. 3).
The red points correspond to the Re(ψ), whereas the blue points to Im(ψ).

FIG. 5. (a) Bifurcation diagram in the (g, P) plane for α = 0.8 showing the
snaking between the branches of dLSswith different odd numbers of lasing nodes.
The three insets display the solution profiles at g = 0.67 for the one-, three-,
and five-site dLSs, respectively. (b) Bifurcation diagram for α = 0.6, where the
branches for both odd (red) and even (blue) number of lasing nodes is shown (see
the multimedia view for a video showing the profile evolution along the branches).
Other parameters are (Q0,β , c, s, κ) = (0.3, 0.5, 0.004, 30, 0.8) andN = 51 .
Multimedia view: https://doi.org/10.1063/5.0002989.1

Snaking bifurcation of dLSs: Interestingly, the bifurcation struc-
ture of the branches becomes different if the linewidth enhancement
factor α is varied. In particular, reducing α reveals a snaking struc-
ture in the bifurcation diagram [see Fig. 5 (Multimedia view)]. Here,
the stable parts of the branches for odd, i.e., one-, three-, five-, etc.,
sites dLS (thick lines) are connected via SN bifurcations by unsta-
ble connections (thin lines). The stability on the left side is limited
by a SN bifuraction for the one-site (SN1, black dot) or AH bifurca-
tions (H1, H2, green square, for three or more lasing dLSs). For the
increasing value of the control parameter g, the dLSs become unsta-
ble in SN bifurcations (see e.g., SN2 and SN3 points). Furthermore,
the branches with an odd dLSs are not connected to the ones with
an even dLSs, see Fig. 5(b), because with increasing g the neighbor-
ing nodes of the array are excited symmetrically such that switching
from an even number of lasing lasers to an odd number is not pos-
sible. Note that the snaking bifurcation of dLSs was also reported
in Refs. 15 and 16, where a discrete model for optical cavities with
focusing saturable nonlinearity was studied.

Bifurcation analysis of the snaking: Now we want to understand
the transition between the independent branches for different dLSs
as presented in Fig. 3 to the snaking structure as shown in Fig. 5
(Multimedia view). To this aim, we analyze in details the behavior
of the branches of dLSs corresponding to different values of α. For
simplicity here, we focus on the transition between the solution pro-
files with one- and three-sites dLSs, and Fig. 6 (Multimedia view)
shows the resulting bifurcation diagrams in the (g, P) plane obtained
for different α. Figures 6(a) and 6(b) indicates that for small values
of α, the branches for one-site (red) and three-sites (blue) dLSs are
not connected to each other. However, the stability on the branches
here is different to those shown in Fig. 3: while a one-site dLS is
stable between a SN and a double AH bifurcation points, for a three-
sites dLS, the situation is different. In particular, the three-sites dLS
gains the stability in a AH bifurcation after the SN point and looses
the stability in a pitchfork bifurcation [marked as a magenta tri-
angle in Figs. 6(a)–6(c)]. At the pitchfork bifurcation point, two
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FIG. 6. Bifurcation diagrams in the (g, P) plane for different values of α = (0, 0.15, 0.18, 0.245, 0.25, 0.8, 0.817, 0.9, 1.3) for the panels (a)–(i), respectively. The cre-
ation/destruction cycle of the snaking structure is shown. Red and blue branches correspond to one- and three-sites dLS solutions. Thick and thin lines stand for stable and
unstable branch parts, respectively. The green branch in (e) and (f) appears by the reconnection of the one- and three-sites dLS branches and is unstable. See the multime-
dia view for the visualization of the transition between independent branches and snaking behavior. Other parameters are (Q0,β , c, s, κ ,N) = (0.3, 0.5, 0.004, 30, 0.8, 51).
Multimedia view: https://doi.org/10.1063/5.0002989.2

branches (red) corresponding to left- and right-site- asymmetrical
dLSs emerge [see Fig. 7 (Multimedia view)]. Because both dLSs
shown in Figs. 7(b) and 7(c) correspond to the same power P, the
branches coincide for the norm chosen. One can see that the range
of stability for these solutions is very small (thick red line) as the
branch looses its stability quickly in an AH bifurcation marked with
H in Fig. 7(a). Note that the double AH bifurcations limiting the sta-
bility of the one-site dLS are the same as presented in Fig. 3 but they
appear at much lower gain values. One can also see that in addition
to these AH points, another AH bifurcation corresponding to the
instability of the off state happens at g = 1 for all values of α.

For increasing values of α, the bifurcation structure becomes
more complicated: the double AH point moves to the left and two
additional SN bifurcations appear on the red branch as shown in
Fig. 6(c). Additionally, two branching points (BPs) arise close to the
two SN bifurcations. The BPs give rise to two pitchfork bifurcations,
where branches of asymmetrical dLSs are born (cf. Fig. 7 (Multi-
media view), where usymmetrical three-sites dLSs are discussed in
more details). However, these branches are unstable for all values
of g. Note that two additional SN bifurcations also appear on the
blue branch in Fig. 6(c). The created two SN bifurcation pairs sepa-
rate further from each other with α, cf. Fig. 6(d), until two of the SN
bifurcations, corresponding to the rightmost fold of the blue, three-
sites dLS branch and the leftmost of the red one, corresponding to
the one-site dLS solutions, merge. This leads to the reconnection of
the lower part of the one-site dLS and the upper part of the three-
sites dLS branches and a snaking structure emerges, see the red
branch in Fig. 6(e). As this takes place, the residual (upper part of
the red branch) connects to the lower part of the blue one and an
unstable branch, shown in green in Fig. 6(e) appears. However, at
this point, the part of the branch corresponding to three-sites dLS is
unstable and can be stabilized by an AH bifurcation if α is increased,
see Fig. 6(f). Note that further branches corresponding to larger odd

number of lasing elements are created in a similar way. However,
further increases in α lead to the break-up of the snaking behav-
ior via the same mechanism the branch was created. In particular,
for increasing α, a part of unstable residual (green) branch goes
close to the main snaking branch and hits it at some fixed α. This
leads to connection of the red and green branches so that twofolds
appear as shown in Fig. 6(g). In addition, two BPs appear close to
the folds. Note that during this reconnection, the appearing branch

FIG. 7. (a) Branch of a three-sites dLS in the (g, P) plane for α = 0.15 [blue line,
cf. Fig. 6(b)]. The inset shows a zoom into the area where two branches of unsym-
metrical dLSs split off themain branch (red line) in a pitchfork bifurcation (magenta
triangle). The asymmetrical left- and right-site dLSs profiles at the AH bifurcation
point H are plotted in (b) and (c). Both branches have the same norm P and coin-
cide in the bifurcation diagram in (a) (see the multimedia view for a video showing
the evolution of the solution profiles along the branch). Other parameters as in
Fig. 6 (Multimedia view). Multimedia view: https://doi.org/10.1063/5.0002989.3
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of the one-site dLS (red) becomes separated from the still snaking
branch of three- and five-sites dLSs (blue). For even larger α, the SN
and pitchfork bifurcation points annihilate and create a double AH
point again [Fig. 6(h)]. Finally, separate, independent branches for
one-site and three-sites dLSs are formed as shown in Fig. 6(i). The
double AH point moves further to the larger gain values with α till
it merges with the AH bifurcation at the threshold value. That is, for
large α values, the stability of the branch is limited by the SN bifur-
cation on the left, and the AH bifurcation at g = 1 corresponding to
the instability of the off solution. Note that the five-sites dLSs branch
separates from the three-sites dLSs branch via the same scenario. For
more details, see the multimedia view where the video showing the
creation and destruction of the snaking structure is shown.

Influence of the coupling strength: Next, we are interested in
the influence of the coupling strength c on the dynamics of dLSs.
To this aim, we reconstructed the branches of the dLSs for differ-
ent values of c and for the fixed values of (α,β) = (1.5, 0.5). In this
case, the branches of all dLSs are independent, see Fig. 3. We start
with the branch of the one-site dLS and small coupling strength
and look to its evolution in c. The results are presented in Fig. 8(a),
where the branches for 14 different values of c are collected in a
three-dimensional (c, g, P) bifurcation diagram. One can observe
that with increasing coupling strength c the branch reveals a similar
transition to a snaking as in the case of changing α, cf. Fig. 6 (Mul-
timedia view). In particular, one can see, inspecting Fig. 8(a) that
with increasing c the stability region of the one-site dLS decreases
as one of the AH bifurcation points (green square), limiting the sta-
bility region is moving toward smaller values of g with increasing
c. Then, similar to the case of varying α, two SN points appear on
the branch and the AH point disappears. One of the appearing folds
is then connected to the fold of the three-site dLS branch and the

FIG. 8. (a) Evolution of the branch of the one-site dLS in the (g, P) plane with the
coupling strength c. The panels (b)–(d) show the branches close to the snaking
transition which are marked blue in (a) for c = (0.0095, 0.01, 0.011), respec-
tively. Similarly to Fig. 6 (Multimedia view) one can observe snaking branches
which occur above the critical coupling c ' 0.011. In (b)–(d), stable and unstable
branches are plotted with thick and thin lines, respectively, whereas black circles
and green squares stand for the SN and AH points. Stability information is not dis-
played in (a). Other parameters are (Q0,α,β , s, κ = 0.3, 1.5, 0.5, 30, 0.8) and
N= 51.

snaking bifurcation structure emerges, see Figs. 8(b)–8(d), where
three branches for three values of c illustrating this transition are
presented. Here, stable branches for solution profiles corresponding
to one-, three-, five-, etc., sites dLSs are interconnected by unstable
branches. One can see that with increasing of c new AH bifurcation
points appear leading to the decrease of the stability region of small-
sites dLSs. This is an expected result as with increasing c the systems
tends to the continuous limit where these dLSs do not exist.

Moving dLSs: Finally, we consider the case of even larger cou-
pling strengths. As was mentioned in the Introduction section, the
discreteness breaks the translational symmetry that usually causes
the trapping of dLSs so that they remain at rest unless, e.g., the cou-
pling strength between the nodes exceeds some critical value. An
example of a drifting dLS that we refer to as a bright dLS in the fol-
lowing, obtained by a direct numerical integration of Eqs. (4) and (5)
is shown in Figs. 9(a) and 9(b) (Multimedia views). A space–time
plot is presented in Fig. 9(a) (Multimedia view) where the time evo-
lution of the position of each element j in the array is shown, whereas
the color corresponds to the intensity. One can see that after a dLS
is formed in the array it becomes unstable, accelerates slowly and
drifts to the right. After some time, the acceleration phase ends and
the dLS moves with a constant velocity. An exemplary solution pro-
file is plotted in Fig. 9(b) (Multimedia view). Note that the direction
of the propagation can be arbitrary and is defined from numerical
fluctuations or applied noise. Here, a noise with a small amplitude
of 8 × 10−5 was applied to each node of the array at each time step
to trigger the motion. Note that for the coupling strength used, the
dLSs corresponding to smaller number of nodes are unstable. One
can demonstrate that the drift velocity of the dLS is determined by

FIG. 9. Time evolution of a bright (a) and dark (c) moving dLS calculated by
direct numerical integration of (4) and (5) for c = 0.1 and (a) G0 = 0.33 and (c)
G0 = 0.36. Panels (b) and (d) represent the exemplary profiles for both cases at
the last time step of the numerical simulation. The inset in (b) displays the center of
mass velocity vCOM as a function of the coupling c, showing the linear dependence.
See the multimedia view for more details of the time evolution. Other param-
eters are (Q0,α,β , s, κ ,N) = (0.3, 1.5, 0.5, 30, 0.8, 51). Multimedia Views:
https://doi.org/10.1063/5.0002989.4; https://doi.org/10.1063/5.0002989.5
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the coupling c, and the inset in Fig. 9(b) (Multimedia view) clearly
shows that the velocity increases linearly with c. For the estimation
of the drifting speed, the noise was, however, turned off after the
motion has been triggered as otherwise the noise would prevent the
system from settling into a uniform motion.

Interestingly, besides bright dLSs as shown in Figs. 9(a) and
9(b), the system exhibits also dark, or gray, moving dLSs, see
Figs. 9(c) and 9(d), which are formed for the same value of c but
slightly larger gain values. These dLSs are characterized by one
non-lasing node, whereas all other nodes have non-zero intensity.
Note that dark moving dLSs were also found in arrays of cou-
pled quadratic nonlinear resonators driven by an inclined holding
beam14 or in coupled in optical cavities with focusing saturable
nonlinearity.15 The time evolution of the dark moving dLS is shown
in Fig. 9(c). One can see that in the initial phase of the time evo-
lution–because of the strong coupling c and large gain value–more
and more laser nodes become unstable until all but one have a non-
zero intensity, cf. Fig. 9(d). This state remains stationary until the
dark dLS spontaneously starts to move with a constant velocity. The
motion is facilitated by switching between odd and even number of
nodes with zero intensity (see the multimedia view for a video of
the moving dark dLS). Furthermore, one sees that the intensity pro-
file is asymmetric and exhibits oscillatory tail on the right side, cf.
Fig. 9(d). This can potentially lead to the formation of bound states
between two dark dLSs in arrays with larger number of elements.
Note that for the dark soliton, no additional noise was added during
the simulations and the numerical fluctuations defined the direction
of the motion. Notice that generally the formation mechanisms of
the bright and dark moving dLSs are different: the linear stability
analysis reveals that for bright dLSs several AH bifurcations trigger
the translation while for dark dLS real eigenvalues appear unstable
in the spectrum making motion possible.

Multistability of dLB in the discrete Haus model: The results
of discrete Rosanov model (4) and (5) indicate the multistability
between different dLSs corresponding to the transverse profile of a
dLB. To prove the possible co-existence of different dLBs, we go back
to the original coupled Haus equations (1)–(3) and conduct direct
numerical simulations for the case of small coupling c, cf. Fig. 3. We
show the resulting branches of one- three-, and five-sites dLBs in
Fig. 10. One can clearly see that also in coupled Haus model (1)–(3)
the multistability occurs and dLBs corresponding to different num-
ber of odd lasing lasers can form, see Figs. 10(b)–10(d). Note that
this scenario also occurs for an even number of nodes.

However, and at variance with the results of Fig. 2, the small
values of the coupling using in Fig. 10 make it so that the individual
lasing nodes are separated by a certain offset along the z axis. This
can correspond to the effective repulsive interaction along the fast
time axis between individual elements. The latter is induced by the
gain dynamics.25,39,40 Recently, it was shown22 that even in the case
when the pulses in an individual PML system exhibit strong repul-
sion, the formation of bound pulse trains can be achieved between
the elements of an array of mode-locked lasers coupled via evanes-
cent fields. This way the pulses interact not only within one system
but also with those in the neighboring nodes, leading to a different
balance between attraction and repulsion. Since the coupled Haus
equations (1)–(3) can be seen as an effective master equation for the
delay differential equation model used in Ref. 22 in the long delay

FIG. 10. (a) Branches of one- (red), three- (green), and five-sites (blue) dLB
found by the direct numerical integration of coupled Haus equations (1)–(3)
with N = 30 array elements. (b)–(d): Exemplary profiles of dLBs at g = 0.672
[black cross in (a)]. Parameters are (γ , κ ,α,β , T ,0,Q0, s, c,Nz) = (40, 0.8,
0.4, 0.5, 3, 0.04, 0.3, 30, 0.004, 128).

limit,25–27 the observed dLBs can be interpreted as the fully localized
analogues of the periodic train of pulse clusters consisting of two or
more closely packed pulses in the array as found in Ref. 22.

IV. CONCLUSION

We studied the formation and the dynamical properties of dLBs
in an array of passively mode locked lasers coupled via evanescent
fields in a ring geometry. Our results may pave the way toward
experimental observation in a realistic system of coupled lasers with
saturable absorbers. Using nearest-neighbor coupled Haus master
equations, we demonstrated the existence of dLBs for the wide range
of coupling strength. To understand the formation mechanisms in
details, the dynamics of dLBs was approximated by a simplified
discrete model governing the dynamics of the transverse profile
of the dLB, that we called a dLS. This effective discrete Rosanov
equation has allowed for a detailed bifurcation analysis. In particu-
lar, for small coupling strengths, our results revealed the multistabil-
ity between branches corresponding to different kinds of dLSs with
a varying number of active elements. These branches being indepen-
dent from each other for one parameter set can become connected
in the snaking bifurcation structure if one additional parameter,
e.g., the linewidth enhancement factor, is varied. The reconnection
procedure is involved and several intricate discrete states, includ-
ing stationary unsymmetrical dLSs, were disclosed. Furthermore, it
was demonstrated that the snaking behavior between different dLSs
branches can also be achieved by changing the coupling strength.
Moreover, further increasing of the coupling strength was shown to
lead to the formation of the moving bright and dark dLSs. Finally,
the multistability of several dLBs was demonstrated in the origi-
nal coupled Haus model. In contrast to the transverse multistable
dynamics, where all the temporal pulses were supposed to synchro-
nized for all the array elements, the elements of the resulting dLBs
are not in phase because of the repulsive underlying gain dynamics.
These dLBs can be seen as a localized version of the periodic train
of clusters consisting of closely packed localized pulses reported
recently in Ref. 22. There, one could change the interval between
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individual pulses via the variation of the coupling phase parameter,
which is missing in coupled Haus model (1)–(3) as we assumed the
coupling to be evanescent. This interesting issue is out of the scope
of this paper and will be discussed elsewhere.
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