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Abstract 

The purpose of the study is to demonstrate a new method of Stokes-correlometric evaluation of polarization-inhomogeneous 

images of optically thin (optical thickness smaller than 0.01) histological sections from optically anisotropic biological tissues 

of different morphological structure.  

This method is based on a correlation (“two-point”) generalization of traditional optical methods for analyzing “one-point” 

distributions of polarization states of microscopic images of biological tissues. 

Analytical algorithms are obtained for describing the “two-point” complex parameters of the Stokes vector image of a 

birefringent biological tissue. 

An experimental technique has been developed for measuring polarization-correlation maps, i.e. the coordinate distributions 

of the magnitude and phase of the “two-point” Stokes vector parameters. Within the framework of the statistical and 

correlation analysis of the obtained data, new quantitative criteria for the differentiation of the optical properties of biological 

tissues of various morphological structures are found. A comparative analysis of the distribution of the "single-point" and 

"two-point" parameters of the Stokes vector of polarizationally inhomogeneous images was performed. It revealed а higher 

sensitivity (2-5 times) of the Stokes-correlometry method to variations in orientation-phase structure of biological tissues 

compared to the single-point approach.  

 

Keywords: Stokes vector, Stokes polarimetry, mapping, diagnostics, biological tissue 

 

Page 1 of 16 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-123607.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



1. Introduction 

Polarization methods occupy an important place in the diagnosis and visualization of the optically anisotropic component of 

biological tissues [1-5]. For the most complete description of the interaction of polarized light with such complex objects, the 

Stokes vector-parametric formalism is used [6-11]. Stokes polarimetry is based on the principles of “single-point” mapping, 

i.e. obtaining coordinate distributions (maps) of the azimuth and polarization ellipticity at points of microscopic images of 

histological sections of biological tissues [12-17]. In the framework of statistical, correlation and fractal analysis of 

polarization maps, objective criteria for differential diagnosis of various stages of pre-cancer and cancer of human tissues 

were found [4,6,7,12-17]. However, development of practical applications of the methods of “single-point” Stokes 

polarimetry limits the azimuthal dependence of the magnitude of the polarization parameters on the rotation of the plane of 

the sample of biological tissue relative to the incident laser beam. One of the directions in solving this problem may be the 

use of the azimuthally invariant correlation approach in polarimetric diagnostics. In [18], a new “two-point” analytic 

parameter (complex degree of mutual polarization, CDMP) was proposed to describe the degree of matching of polarization 

states at various points of optical fields. 

This polarization-correlation approach was developed and successfully used for a group of differentiating pathological 

changes in optical anisotropy of representative samples of histological sections of biological tissues [19-20]. At the same 

time, the further development and diagnostic application of new “two-point” methods of polarization correlometry of the 

biological tissue structure of various morphological structures and physiological conditions requires overcoming a number of 

unresolved problems: 

1) improvement of “CDMP theory” using more general "two-point" formalism of the Stokes vector theoretically introduced 

in [21,22];  

2) development of universal methods for measuring coordinate distributions of “two-point” parameters of the Stokes vector 

(polarization-correlation maps) of polarization-inhomogeneous object fields of biological tissues; 

3) obtaining and substantiation of new diagnostic relationships between optically anisotropic structures of biological tissues 

and their polarization-correlation maps ("Stokes-correlometry parameters", SCP). Our work is aimed at theoretical 

substantiation and experimental testing of the diagnostic capabilities of the “two-point” method of Stokes correlometry with 

the aim of differentiating polarization-correlation SCP maps of optically thin (optical thickness smaller than 0.01) histological 

sections of biological tissues with different spatial-angular structures of the optically anisotropic component. 

 

2. Theoretical background 
 

Let us consider the object field of an optically anisotropic biological layer. The complex amplitudes ( )rE  of each point r  

of such a field are described by the Jones vector [4,12,13] in the following form: 
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Here,   is orientation of optical axis; ( )
( )

( )r
x

E

r
y

E

rtg =  and ( ) ( )( )rr xy  −=  are phase shifts between the orthogonal 

components ( ( ) ( )rErE yx , ) of laser wave amplitude. 

To describe the correlation structure of the stationary distributions of the fields of complex amplitudes of laser radiation 

converted by optically anisotropic layers, a biological matrix of mutual spectral density can be used in the following form 

[21,22]: 

yxjirErErrW jiji ,,),()(),( 2121, == 
.                                                                 (2) 
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Here 1r and 2r  are coordinates of the neighboring points in the laser radiation field. 

Using this matrix operator one can introduce the following relations for the "two-point" Stokes vector parameters 

 

),(),( 21211 rrWrrWS yyxx += ;                                                                          (3) 

 

),(),( 21212 rrWrrWS yyxx −= ;                                                                            (4) 

 

),(),( 21213 rrWrrWS yxxy += ;                                                                           (5) 
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It is known that the first Stokes vector parameter characterizes the full intensity at the point r ; the second ( )rS2  and third 

( )rS3  ones characterize changes in polarization azimuth and ellipticity, and the fourth ( )rS4  one characterize the value of 

polarization ellipticity. On this basis we will carry out further detailed analytical and experimental analysis of the potentiality 

of polarimetry of "two-point" Stokes vector parameters using ( )213 ,rrS and ( )214 ,rrS  as examples.  

Further, for simplification (without reducing completeness of the analysis) we will consider relations (1)-(7) in the 

approximation of a weak phase modulation ( 12,0i ; ( ) 1cos 21 →− ; ( ) 2121sin  −→− ). Please note that this 

assumption is not artificial for optically thin histological sections of biological tissues. It can be shown that for laser radiation 

with the wavelength of m 63.0=  within geometrical thickness ml 30=  of completely optically-anisotropic 

birefringent layer of biological tissue (value of birefringence 
34 105.110 −− n  [4,15,17]) the maximal phase shift 

( nl=





2
12 , l  - geometrical thickness) is 45.003.0   . Moreover, among birefringent networks or "islets" 

(clusters of spatially non-oriented protein fibers and bundles) there are variations of transverse dimensions of birefringent 

( mlm  202  ) structures, which cause weak phase modulation ( ( ) ( )3.002.003.0002.0   ) in the plane of a 

polarizationally inhomogeneous image. 

Under these conditions dependences (5)-(6) are reduced to:  
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Here 4;3=iS is SCP modulus, 4;13=iArgS is SCP phase. 
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It follows from the analysis of the obtained formulas (8)-(9) that the SCP absolute value 
( )yxSi = ,4;3  carries information 

about the координатной 
( )yx,

 orientation structure 
( )yx,

 of polycrystalline networks and structures. The SCP phase 

( )( )yxSArg i = ,4;3  carries information about their birefringence (
( )yx,

). Here 
yx  ,

 are the “steps” of scanning in 

mutually perpendicular directions 
( )yx,

. 

In the future, algorithms (8) and (9) will be used in the analysis and forecast of changes in the orientation-phase structure of 

experimental polarization-correlation SCP maps of the optically anisotropic component of biological tissue samples of 

different morphological structures. 

 

3. Materials and methods 

3.1 Setup 

Measurement of the coordinate distribution values is carried using a Stokes-polarimeter, which optical scheme is shown in 

figure 1 [4]. 

 

 
 

Figure 1. Optical scheme of the polarimeter. 1 - He-Ne laser; 2 - collimator; 3 - stationary quarter-wave plate; 5, 8 - 

mechanically movable quarter-wave plates; 4, 9 - polarizer and analyzer; 6 - biological sample (layer); 7 - polarization micro-

objective; 10 - CCD camera; 11 – computer. 

 

A low-intensity (W = 5.0 mW) He-Ne laser 1 radiation with a wavelength of 633 nm (Lasos HeNe Laser, Edmund Optics, 

USA) is used as an optical probe. The collimator 2 consists of two micro lenses, the foci of which coincide. As a result, a 

parallel illuminating beam is formed - a probe with a diameter of 2 mm. To realize the conditions of azimuthally invariant 

SCP mapping, a circular polarization of the laser beam is formed. 

To this end, we use a multifunctional polarizing filter, which consists of sequentially placed quarter-wave plates 3; 5 

(Achromatic True Zero-Order Waveplate (APAW 15 mm, Astropribor, Ukraine) and polarizer 4 (B + W XS-Pro Polarizer 

MRC Nano, Kaesemann, Germany). Histological section 6 converts the circular polarization of the optical probe according to 

the topographic structure of the optical anisotropic components of biological tissue. 

As a result, a polarization-inhomogeneous image of the biological sample under study is formed. A polarizing micro-

objective 7 (CFI Achromat P, focal length: 30 mm, numerical aperture: 0.1, magnification: 4x, Nikon, Japan) projects an 

image of a histological section of biological tissue 6 into matrix plane ( 9601280 =nm  pixels) of the photosensitive area 

of the digital CCD-camera 10 (CFI Achromat P, focal length: 30 mm, numerical aperture: 0.1, magnification: 4x, Nikon, 

Japan).  

Achromatic True Zero-Order Waveplate (APAW 15 mm, Astropribor, Ukraine) and a polarizer 9 (B + W XS-Pro Polarizer 

MRC Nano, Kaesemann, Germany) are placed in front of the pixel matrix. The polarization filter passes various linear and 

circular polarization states of the image of the biological tissue sample 6. As a result, a set of digital (discretized by total 

number of pixels) polarization-filtered images of the histological section 6 is formed. Then, using the computer 11, 

algorithmic calculation of the coordinate distributions of the SCP value is performed. 
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The method of measuring the absolute value ( )( )yxSi = ,4;3  and the phase ( )( )yxSArg i = ,4;3  of the SCP consists of the 

following sequence of steps: 

1. Sample 6 is illuminated by the circularly polarized laser beam 1, which provides a filter consisting of quarter-wave plates 

3, 5 and polarizer 4 (figure 1); 

2. The axis of a polarizer-analyzer 9 (in the absence of the quarter wavelength plate 8) is rotated by the angles 
00= , 

090= , 
045= , 

0135= , and the intensities of the transmitted radiation 

13545900 ;;; IIII  are measured; 

3. The values of the “one-point” first, second and third Stokes vector parameters
 += 9001 IIS ; 

 −= 9002 IIS ; 

 −= 135453 IIS are calculated within each pixel of CCD camera 11. 

4. Quarter-wave plate 8 was placed in front of polarizer-analyzer 9, with its axis of the greatest speed being oriented at the 

angles of 
045+ and

045−  relative to the transmission plane of the polarizer; intensities 






 II ;  of the transmitted radiation 

were measured. 

5. The 2-dimensional array of values of the fourth Stokes parameter 






 −= IIS4  was calculated. 

6. ( ) ( )( )yxSArgyxS ii  == ;;; 33  
and ( ) ( )( )yxSArgyxS ii  == ;;; 44  were calculated by the following ratios  
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Here 0I
 
andv 90I are the intensities at the orientation of transmission plane of polarizer 

00 and 
090 ; i  are phase shifts 

between the orthogonal components of the amplitude of the laser radiation in the points with coordinates 1r  
and 2r  [4]. 

3.2 Biological samples 

In the region of “single-point” polarimetry, relationships were found between the maps of the polarization parameters and 

the optical anisotropy of the fibrillary and parenchymal structures of biological tissues [1-4, 6, 11, 23, 24]. The information 

obtained was effectively used in oncology for the differential diagnosis of various stages of cancer [8,12-17,25]. Therefore, in 

our work, we tested the technique of “two-point” polarization-correlation mapping specifically for these types of biological 

tissues. This approach makes it possible to conduct a comparative analysis of the sensitivity of various polarimetric 

techniques and determine the diagnostic potential of Stokes correlometry of pathological changes in the orientation-phase 

structure of biological tissues. 
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Histological sections of biological tissues were obtained by a microtome from frozen samples. 

The following optically thin (attenuation coefficient 01.0 ) samples of histological sections (geometric thickness 

ml 3025 = 0097.00089.0  ) were studied: 

•  biological tissues with "ordered" birefringent fibrillary networks (atrium myocardium - figure 2, fragments (1), (4)); 

•  biological tissues with a "disordered" birefringent fibrillary networks (ventricle myocardium - figure 2, fragments (2), 

(5)); 

•  biological tissues - with "islet" structure (clusters of spatially non-oriented protein fibers) of optically anisotropic 

formations in the optically isotropic matrix (rectal wall - figure 2, fragments (3), (6)). 

The selected samples are ultimate (extreme) types of morphological structure of most human biological tissues, both in 

orientation and of amorphous-anisotropic structure. This selection of samples will provide comparative information about the 

patterns and scenarios of changes in the polarization-correlation structure of microscopic images of such objects. This will 

provide an information basis in the search for relationships between changes in the orientation-phase anisotropy of biological 

tissue and their polarization-correlation manifestations. The retrieved information can be used for development of new, more 

sensitive objective criteria for the Stokes-correlometric diagnosis of oncological changes in human organs (formation of 

spatially oriented fibrillary networks and the growth of birefringence [4,7,10,12,17,20]), necrotic changes in the myocardium 

(degradation fibrillary networks and a decrease in birefringence [12,13]), inflammatory septic processes (degradation of 

parenchymal organs - lungs, liver, spleen, kidneys, etc. [1,14,16,19]). 

 

 
 

Figure 2. Polarization-inhomogeneous microscopic images of histological sections of biological tissues of different 

morphological structure: 

Upper row (coaxial polarizer 4 and analyzer 9 position): spatially ordered fibrillary (1), disordered (2) myosin myocardial 

networks and islet parenchymal structures of the colon wall (3).  

Bottom row (crossed polarizer 4 and analyzer 9 position): optically anisotropic structures of myosin myocardial networks 

((4), (5)) and colon wall parenchyma (6). 

 

Comparative analysis of these microscopic images (figure 2) revealed their individual polarizationally inhomogeneous 

topographical structure – the coordinate distributions of different polarization states visualized as spots of varying intensity – 

fragments (4)-(6). Correlation treatment of such polarizationally inhomogeneous images is the basis for a "two-point" Stokes-

polarimetry technique. The aim of such studies is to identify objective statistical, correlation, and fractal criteria that 

characterize the correlation coherence of optical anisotropy parameters and can be the basis for the differential diagnosis of 

biological tissues birefringence changes. 

3.3 Analysis of experimental data 
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3.3.1. Statistical analyses  
 

To assess distributions of random values of the module and phase of the “two-point” parameters of the Stokes vector of 

polarization-inhomogeneous microscopic images of histological sections of biological tissues a set of central statistical 

moments of the first and fourth orders (mean 1Z
, variance 2Z

, skewness 3Z
 and kurtosis 4Z

) is calculated according to the 

traditional method presented in [4]. 

3.3.2. Correlation analysis 

The correlation approach in the analysis of polarization-correlation SCP maps of microscopic images of histological sections 

of biological tissues is based on: 

• calculation of the set of autocorrelation functions of SCP-parameters by means of line scanning with a scanning step 

pixx 1=
 of according to the algorithm given in [12]; 

• calculation of the resulting autocorrelation function of the coordinate distribution of SCP-parameters by averaging the 

partial correlation dependencies over all ( n ) lines (
m...,,1

) of photosensitive matrix of the CCD camera 10 (figure 1). 

 

3.3.3. Fractal analysis 

Fractal analysis of coordinate distributions of SCP-parameters of microscopic images of histological sections of biological 

tissues is based on: 

• row-by-row calculation of the set of partial logarithmic dependences (
( ) )log(SCPlog mi −=J

) of power spectra of random 

SCP values, where 
1−= d
 is spatial frequency defined by the physical sizes ( d ) of structural elements of SCP-maps; 

• averaging over all ( n ) lines (
m...,,1

) of photosensitive matrix of the CCD camera 10 (figure 1) partial logarithmic 

dependences of power spectra of random SCP values; 

• determination by the least squares method [15] of an approximating curve 
( )F

 to the resulting logarithmic dependences 

(
( ) )log(SCPlog mi −=J

);  

• fractal (the constant value of slope angle 
const=

 for 2-3 decades of size d  changes), multifractal (several constant 

slope angles) and statistical (absence of several constant slope angles) dependencies 
( )F

 [8,9,12];  

• calculation of the variance that characterizes the distribution of the resulting logarithmic dependences 

(
( ) )log(SCPlog mi −=J

). 

 

4. Results and discussion 

4.1 Tissue with ordered (rectilinear) birefringent fibrillar networks – myocardium atrium 

Figure 3 present 2D distributions of values ( )yxSi = ;4;3  (figure 3a) and ( )( )yxSArg i = ,4;3  (figure 3b) (fragments (1), 

(5)), histograms N  (fragments (2), (6)), autocorrelation functions ( )x  (fragments (3), (7)) and logarithmic 

( )( ) )log(;log 1
4;3

−
= − dyxSJ i , ( )( )( ) )log(;log 1

4;3
−

= − dyxSArgJ i  
dependences (fragments (4), (8)) of SCP modulus 

and phase distributions, calculated for polarizationally inhomogeneous microscopic image of histological section of 

myocardium atrium. 
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Analysis of the obtained polarization-correlation maps of the SCP module (figure 3a) revealed the following:  

• coordinate heterogeneity of the distributions of the magnitude of the third and fourth “two-point” parameters 

( )yxSi = ,4;3  of the Stokes vector of the microscopic image of a spatially ordered network of myosin fibrils atrium 

myocardium (figure 3a, fragments (1), (5));  

• histograms of distributions of random variables 
( )yxSi = ,4;3  are individual for the third and fourth “two-point” 

parameters (figure 3a, fragments (2), (6)); 

• probabilistic distributions N  are characterized by the presence of major extrema localized in the vicinity 
( ) 0,4;3 == yxSi

, 

as well as a significant scatter in SCP, asymmetry and peak acuity (figure 3a, fragments (2), (6)); 

For polarization-correlation maps of the SCP phase of the third and fourth “two-point” parameters of the Stokes vector 

(figure 3b) the following is found: 

• individual and coordinate-inhomogeneous topographic structure of the distribution of quantities 
( )( )yxSArg i = ,4;3  (figure 

3b, fragments (1), (5)); 

• high sharpness of the peak, asymmetry, and the range of variation in the phase magnitude of the third and fourth “two-

point” 
( )( )yxSArg i = ,4;3  parameters relative to the main extrema (figure 3b, fragments (2), (6)). 

 
(a) 

 
(b) 

 

Figure 3. Stokes correlometry of spatially ordered birefringent fibrillary networks. Topographic (fragments (1), (5)), 

statistical (fragments (2), (6)), correlation (fragments (3), (7)) and fractal (fragments (4), (8)) SCP maps structure of modulus 

(a) and phase (b) of polarizationally inhomogeneous image of myocardium atrium. 
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From the physical point of view, the results of the experimental structure of the polarization-correlation maps of the module 

( )yxSi = ,4;3  can be explained as follows. 

In the “one-point” approximation, the third parameter of the Stokes vector characterizes the magnitude of the polarization 

azimuth [4, 6]. The magnitude of the polarization azimuth is proportional to the direction of the optical axis 


 (relation (1)) 

of the biological crystal, which is determined by the spatial orientation of the birefringent fibrils [13, 15, 17]. Therefore, the 

degree of correlation “point-to-point” matching (
( )yxSi = ,3 ) of polarization azimuths at the points of the microscopic 

image of spatially ordered atrium myocardium myosin fibrils practically does not change. 

As a result, the polarization-correlation map of this SCS parameter is quite homogeneous (figure 3a, fragment (1)), and the 

distribution histogram is characterized by a pronounced extremum (figure 3a, fragment (2)). 

The fourth “one-point” parameter of the Stokes vector characterizes the magnitude of the ellipticity of polarization [4,11,12]. 

This parameter is more pronounced in comparison with the azimuth associated with the direction of the optical axis 


 of the 

birefringent fibrils (relation (1)). Therefore, the degree of correlation “point-to-point” matching (
( )yxSi = ,4 ) of the 

ellipticity of polarization at the points of the microscopic image of myosin fibrils of myocardium atrium is more sensitive to 

variations 


. 

As a result, the degree of correlation matching of the ellipticity of polarization at different points decreases. As a result, the 

coordinate heterogeneity of the polarization-correlation maps of this SCP parameter (figure 3a, fragment (5)) increases, and 

additional “decorrelation” extremes (figure 3a, fragment (6)) are formed in the distribution histogram. 

The topographic and statistical structure of the polarization-correlation maps of the phase of the “two-point” parameters 

( )( )yxSArg  ,4;3  of the Stokes vector are similar (figure 3b, fragments (1), (2), (5), (6)). 

The experimentally obtained structure of polarization-correlation maps of the modulus 
( )yxSi = ,4;3  and phase 

( )( )yxSArg i = ,4;3  is in good agreement with the developed model representations of the processes of formation of the 

magnitude of the third and fourth “two-point” parameters of the Stokes vector of the microscopic image of a birefringent 

spatially ordered network of atrium myocardium myosin fibrils. 

The results can be associated with the following physical considerations. The values of SCP modulus ( )yxSi = ,4;3  

(figure 3a, fragments (1), (5)) are primarily defined by the directions of the optical axes   in the neighboring points 1r and 2r  

of the plane of the histological sections (equations (8), (9)). For biological tissue with rectilinear packaging of myosin fibrils, 

in the extreme case the differences between ( )1r and ( )2r are minor ( ( ) ( ) 021 →− rr  ). So, most likely the following 

values of the modulus ( ) 0,3 →= yxSi  and ( ) 1,4 →= yxSi  (equation (8),(9)), which form the core extremes of 

histograms ( )( )yxSN i = ,4;3  (figure 3a, fragments (2), (6)) are probable. However, for real myocardial tissue of this type 

there is always a certain number of curved fibrils, packed differently. For such birefringent networks there is a certain 

condition ( ) ( ) 021 − rr  . Thus a set of other SCP modulus values is formed. Quantitatively, this scenario appears in the 

redistribution of the entire range ( ) 1,0 4;3  = yxSi  of values ( )yxSi = ,4;3  (figure 3a, fragment (2)). Furthermore, an 

additional extreme of the histogram ( )( )yxSN i = ,4  is formed (figure 3a, fragment (6)). 

The SCP phase value ( )( )yxSArg  ,4;3  (Fig. 3b fragments (1), (5)) is determined by the degree of coordinate coherence 

of both the directions of the geometry axes ( )r  of myocardium myosin fibrils and the value of the phase shift between the 

orthogonal components of the amplitude of laser radiation (equations (8), (9)). It comes from the analysis of the above 

relations that the extreme values ( )( ) 0,3 → yxSArg  and ( )( ) 5.0,4 → yxSArg  are determined by these orientation-

phase conditions 
( ) ( )
( ) ( ) 














21

21 ;

rr

rr




 fulfilment. Such conditions are most probable particularly for the ensemble of myosin 
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fibrils of the ordered birefringent network. Quantitatively, this is confirmed by the formation of major extremes of histograms 

( )( )( )0,3 = yxSArgN  and ( )( )( )5.0,4 = yxSArgN  (figure 3b, fragments (2), (6)). However, this mechanism is not 

the only one. The value of the phase shift is also changing due to the difference in the size of birefringent fibrils and their 

curvature. As a result of these two factors a wide range of values ( ( )( ) 5.0,0 4;3  = yxSArg i ) change of SCP phase is 

formed in polarizationally inhomogeneous image of myocardium atrium histological sections (figure 3b, fragments (2), (6)). 

 

4.2 Tissue with disordered birefringent fibrillar networks - myocardium ventricle 

In the series of dependencies in figure 4 the statistical, correlation and fractal characteristics of values ( )yxSi = ;4;3  

distributions (figure 4a) and ( )( )yxSArg i = ,4;3  (figure 4b), calculated for histological sections of myocardium ventricle 

with the network of myosin fibers disordered by the packaging directions are presented. 

A physical analysis of the data of polarization-correlation mapping (figure 4a) of the coordinate distributions of the 

magnitude of the 3rd and 4th “two-point” parameters of the Stokes vector of a microscopic image of a histological section of 

myocardium ventricle revealed:  

• an increase in the coordinate heterogeneity of the distributions of the quantity 
( )yxSi = ;4;3  (figure 4a, fragments (1), (5)) 

in comparison with the Stokes correlometry data of the microscopic image of the histological section of myocardium atrium 

(figure 3a, fragments (1), (5)); 

• a decrease in the magnitude of the main extrema that characterize the histograms of the distribution of parameters 

( )yxSi = ;4;3  and the formation of additional local extrema (figure 4a, fragments (2), (6)); 

 

 
(a) 

 
(b) 

 

Figure 4. Stokes-correlometry of spatially disordered birefringent fibrillary networks. 
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Topographic (fragments (1), (5)), statistical (fragments (2), (6)), correlation (fragments (3), (7)) and fractal (fragments (4), 

(8)) SCP maps structure of modulus (a) and phase (b) of polarizationally inhomogeneous image of myocardium ventricle. 

 

The revealed scenario of transformation of the topographic and statistical structure of the distributions of the magnitude of the 

3rd and 4th “two-point” parameters of the Stokes vector of the microscopic image of the histological section of myocardium 

ventricle can be associated with a wider range of spatial orientations of the optical axes of myosin fibrils. As a result, at the 

points of a polarization-inhomogeneous image of a myocardial sample of this type, the degree of correlation between the 

azimuth and ellipticity of polarization decreases. 

For polarization-correlation maps of the SCP phase of parameters (figure 4b), similar processes of transformation of 

coordinate (figure 4b, fragments (1), (5)) and probability (figure 4b, fragments (2), (6)) distributions of the value 

( )( )yxSArg i = ;4;3  are revealed. This scenario is caused by an increase in the dispersion of orientations 


 of the optical 

axes and phase shifts   introduced by birefringent myosin fibrils of various geometric thicknesses (relation (1)). 

As a result of the analysis (figure 4a, figure 4b) of the obtained data concerning the SCP-maps structure (fragments (1), (5)) 

the increase of decorrelation degree between the values of Stokes vector parameters at the points of the polarizationally 

inhomogeneous image of myocardium ventricle are detected. Quantitatively, it is manifested in the reduction of peak 

sharpness of histograms ( )( )0;3 == yxSN i  
and ( )( )1;4 == yxSN i , and in the increase of the value of the additional 

extremum ( ( ) 0;4 = yxSi ) of distributions ( )( )yxSN i = ;4  (figure 4a, fragments (2), (6)). In addition, the major 

extremes of histograms ( )( )( )0;3 == yxSArgN i  and ( )( )( )5.0;4 == yxSArgN i  are reduced, and the probability of 

SCP phase values ( )( )yxSArg i = ;4;3  different from the boundary ones ( 5.0;0 ) increases (figure 4b, fragments (2), 

(6)). 

Physically detected features can be related to the influence of two factors. The first factor is the increase in the range of 

optical axes   orientations, determined by the packaging directions of birefringent myosin fibrils. As a result of the increase 

in differences between ( )1r and ( )2r the following tendency of the values of ( ) = yxSi ;3 and ( ) = yxSi ;4  increase 

is observed (equation (8), (9)). The second factor is the increase of spatial frequency of phase modulation ( )yx  ,  due to 

the geometry of disordered fibrillary network of this type of tissue – ( )( )= yxSArg i ;3  and ( )( )= yxSArg i ;4  

(equation (9)). 

 

4.3 Tissue with "islet" structure of optically anisotropic formations - the rectum wall 

Figure 5 show the maps ( )yxSi = ;4;3  (Fig. 5a, fragment (1)) and (figure 5b, fragment (1)), the distribution histograms 

( )( ) ( )( )( )yxSArgNyxSN ii  == ;,; 4;34;3  (fragments (2) (6)), autocorrelation ( )( ) ( )( )( )yxSArgyxS ii  == ;,; 4;34;3  

(fragments (3) (7)) and logarithmic ( )( ) ( )( )( ) )log(;log),log(;log 1
4;3

1
4;3

−
=

−
= −− dyxSArgJdyxSJ ii  

dependences 

(fragments (4), (8)) calculated for the histological sections of rectal wall. 
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(a) 

 
(b) 

 

Figure 5. Stokes correlometry of parenchymal optically anisotropic tissues. Topographic (fragments (1), (5)), statistical 

(fragments (2), (6)), correlation (fragments (3), (7)) and fractal (fragments (4), (8)) SCP maps structure of modulus (a) and 

phase (b) polarizationally inhomogeneous image of rectum wall. 

 

As it is seen from the analysis of the SCP maps (figure 5a and figure 5b, fragments (1), (5)) the polarizationally 

inhomogeneous image of parenchymal tissue shows a significant increase in the level of correlation between the values of the 

Stokes vector parameters. Quantitatively, it illustrates the growth of the peaks sharpness in histograms 

( )( )0;3 == yxSN i and ( )( )1;4 == yxSN i  (figure 5a, fragments (2), (6)) as well as ( )( )( )0;3 == yxSArgN i  

and ( )( )( )5.0;4 == yxSArgN i  (figure 5b, fragments (2), (6)) and reduction of the additional extremum 

( ( ) 0;4 = yxSi ) of distribution ( )( )yxSN i = ;4  (figure 5a, fragment (6)). 

From the physical point of view the determined features of the statistical structure of SCP-maps can be associated with 

having a significant impact of optically isotropic component in the substance of histological sections of rectal wall (figure 

5(a), fragments (2), (6)). Within these areas the field in the plane of the microscopic image is polarizationally homogeneous. 

Thus the consistency of the Stokes vector parameters is maximal: 
( ) ( )
( ) ( ) 









==

==

0

;0

21

21

rr

rr




. Due to this the probability of 

extreme values of ( ) 0;3 == yxSi ; ( ) 1;4 == yxSi and ( )( ) 0;3 == yxSArg i ; ( )( ) 5.0;4 == yxSArg i  in the total 

distribution of the SCP modulus and phase value of the corresponding microscopic image of the rectal wall histological 

sections significantly increases. 

4.4 Correlation analysis of SCP-maps 

As it was mentioned above, in each point ( r ) of polarizationally non-uniform microscopic images of histological sections of 

myocardium and amorphous anisotropic rectum wall, an individual value of Stokes vector parameters ( )rSi  is formed. In 

other words, the SCP-maps ( )( )yxSi = ;4;3  
and ( )( )yxSArg i = ,4;3  are also coordinately inhomogeneous. This fact is 

substantiated by the rapid decrease of autocorrelation  functions ( )( )( )yxSi  = ;4;3  and ( )( )( )yxSArg i  = ;4;3  (figure 3b 
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– figure 5, fragments (3), (7)). Comparative analysis of such dependencies showed the most rapid "decrease" for the sample 

of myocardium with the structure disordered by the directions of birefringent myosin fibrils (figure 4a and figure 4b, 

fragments (3), (7)). The autocorrelation functions of the distributions ( )yxSi = ;4;3 defined for the polarizationally 

inhomogeneous image of rectal wall (figure 5a and figure 5b, fragments (3), (7)) are the slowest in decrease. This may be 

related to the lowest period of the coordinate modulation of the values of modulus and phase of the SCP image of 

myocardium ventricle (figure 5a, fragments (1), (5)) due to the largest variance of birefringence parameters. On the contrary, 

for amorphous anisotropic tissue of rectum wall (figure 5b, fragments (3), (7)) fluctuations of such parameters are 

significantly lower or minimal. Due to this fact, the sharpness of the peak of autocorrelation function 

( )( )yxSi  = ;4;3 and ( )( )( )yxSArg i  = ;4;3  decreases, while the half-width increases. In other words, the statistical 

moments of the 2nd and 4th order can be selected as the objective criteria of changes in the topographic structure of 

distributions ( )yxSi = ;4;3 and ( )( )yxSArg i = ,4;3 that will be further referred to as correlation moments 
kZ2 and

kZ4 . 

 

4.5 Fractal analysis of SCP-map 

It is known that the geometry of fibrillary and polycrystalline structures of most biological tissues is hierarchical or self-

similar in scale. In particular, for filamentous protein networks this is implemented in the following hierarchical sequence – 

"polypeptide chain – microfibril – fibril – fiber – bundle" [4,12]. On this basis we should expect the formation of fractal or 

multifractal distributions of values of not only polarization parameters, but also of the polarization-correlation ones of 

microscopic images of biological layers. Within Stokes-correlometry mapping it was determined that experimentally 

measured SCP-maps ( ( )yxSi = ;4;3 and ( )( )yxSArg i = ;4;3 ) have fractal or multifractal structure. The approximating lines 

to the logarithmic dependences of power spectra ( )( ) )log(,log 1
4;3

−
= − dyxSJ i  

and ( )( )( ) )log(,log 1
4;3

−
= − dyxSArgJ i  

are either straight or broken with two inclination angles (figure 3 – figure 5, fragments (6), (8)). The comparative analysis of 

these dependences shows that the distribution of their values are characterized by the individual value of dispersion
fD . The 

largest variation is observed for coordinate distributions of SCP-maps of microscopic images of histological sections of 

myocardium with disordered birefringent fibrillary network (figure 4a and figure 4b, fragments (6), (8)). The smallest 

variation is observed for polarizationally inhomogeneous image of rectum wall tissue (figure 5a and figure 5b, fragments (6), 

(8)). From a physical point of view it can be associated with the geometric features dimensions of the SCP-maps structural 

elements. The largest range of changes due to the specific morphological structure of biological tissue is observed for 

myocardium ventricle; while the smallest one is observed for the amorphous anisotropic tissue of the rectum wall.  

 

4.6 Intergroup statistical, correlation and fractal analysis of the modulus and phase distributions of SCP-maps 

The results of statistical ( 4;3;2;1=iZ ), correlation ( k
iZ 4;2= ) and fractal (

fD ) analysis of coordinate distributions of the values 

of ( )yxSi = ;4;3 and ( )( )yxSArg i = ;4;3  of polarizationally inhomogeneous images of histological sections of all types of 

biological tissues are presented in table 1 and table 2, respectively. For this purpose, three statistically reliable sample groups 

of biological tissues – 39 samples in each group – were formed. Further, within each group the average values of q  and 

average errors   were calculated. 

Table 1. Statistical, correlation and fractal parameters SCP modulus maps. 

 

Parameters, q  Myocardium tissue 

(ordered) 

( 39=n ) 

Myocardium tissue 

(disordered) 

( 39=n ) 

Rectum wall 

( 39=n ) 

( )yxSi = ;4;3  3S  4S  3S  4S  3S  4S  

1Z  0.04  

0.002 

0.81  

0.041 

0.081  

0.038 

0.62  

0.057 

0.019  

0.009 

0.51  

0.032 

2Z  0.006  

0.0003 

0.01  

0.0046 

0.004  

0.0002 

0.009  

0.0005 

0.002  

0.0001 

0.0078  

0.0003 

3Z  1.16  

0.057 

1.09  

0.049 

3.76  

0.16 

1.49  

0.078 

5.38  

0.29 

1.88  

0.098 

4Z  4.05  

0.23 

1.25  

0.063 

13.88  

0.88 

2.18  

0.12 

43.5  

2.88 

4.76  

0.27 
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kZ2  0.11  

0.006 

0.14  

0.008 

0.13  

0.007 

0.15  

0.008 

0.13  

0.005 

0.11  

0.004 
kZ4  1.14  

0.06 

1.26  

0.07 

1.46  

0.08 

0.98  

0.045 

1.27  

0.06 

0.74  

0.033 
fD  0.27  

0.016 

0.25  

0.011 

0.34  

0.016 

0.32  

0.012 

0.21  

0.013 

0.17  

0.008 

 

Table 2. Statistical, correlation and fractal parameters SCP phase maps. 

 

Parameters, q  Myocardium tissue 

(ordered) 

( 39=n ) 

Myocardium tissue 

(disordered) 

( 39=n ) 

Rectum wall 

( 39=n ) 

( )( )yxSArg i = ;4;3  3S  4S  3S  4S  3S  4S  

1Z  0.11  

0.006 

1.17  

0.05 

0.21  

0.01 

0.91  

0.053 

0.29  

0.015 

0.74  

0.042 

2Z  0.27  

0.012 

0.3  

0.014 

0.22  

0.011 

0.25  

0.013 

0.21  

0.011 

0.23  

0.012 

3Z  0.34  

0.014 

0.13  

0.007 

0.74  

0.036 

0.37  

0.015 

1.39  

0.037 

1.07  

0.055 

4Z  1.25  

0.037 

1.05  

0.027 

1.85  

0.093 

1.87  

0.098 

2.57  

0.13 

2.63  

0.14 
kZ2  0.11  

0.005 

0.14  

0.006 

0.13  

0.006 

0.15  

0.007 

0.13  

0.006 

0.11  

0.005 
kZ4  1.14  

0.052 

1.26  

0.061 

1.46  

0.071 

0.98  

0.044 

1.27  

0.058 

0.74  

0.034 
fD  0.34  

0.014 

0.24  

0.011 

0.34  

0.014 

0.21  

0.01 

0.25  

0.013 

0.17  

0.08 

 

Analysis of the data presented in table 1 and table 2 show that: 

• individual values of statistical 4;3;2;1=iZ , correlation k
iZ 4;2=  and fractal 

fD  parameters describing the coordinate 

distributions ( )yxSi = ;4;3  and ( )( )yxSArg i = ;4;3 for each type of biological tissue;  

• the values of statistical moments of the 3rd ( ( )( )4;34;33 ; == ii SArgSZ ) (3-5 times) and 4th ( ( )( )4;34;34 ; == ii SArgSZ ) orders 

(3-10 times), of correlation moment of the 4th ( ( )( )4;34;34 ; == ii
k SArgSZ ) order (2.2 times) and of dispersion 

fD  (up to 2.2 

times) of logarithmic dependences of power spectra ( )( )( ) log;log 4;34;3 −== ii SArgSJ  are maximally different (highlighted 

in light-gray) for the distributions of the values of the SCP modulus and phase of polarizationally inhomogeneous images of 

polycrystalline networks of optically thin biological layers of different types. 

The obtained results of the Stokes-correlometry mapping were compared with the similar results of the technique of the 

Stokes-polarimetry mapping of microscopic images of histological sections of three types for biological tissues samples 

(table 3).  

 

Table 3. Statistical, correlation and fractal maps of Stokes vector 4;3=iS
 
parameters of polarizationally inhomogeneous 

images of biological tissues. 

 

Parameters, q  Myocardium tissue 

(ordered) 

( 39=n ) 

Myocardium tissue 

(disordered) 

( 39=n ) 

Rectum wall 

( 39=n ) 

4;3=iS  3S  4S  3S  4S  3S  4S  

1Z  
0.32  

0.012 

0.19  

0.01 

0.26  

0.011 

0.18  

0.051 

0.21  

0.01 

0.16  

0.006 

2Z  
0.16  

0.008 

0.09  

0.0043 

0.13  

0.007 

0.11  

0.005 

0.14  

0.007 

0.086  

0.004 
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3Z  
0.56  

0.027 

0.69  

0.034 

0.71  

0.033 

0.79  

0.038 

0.98  

0.042 

1.03  

0.058 

4Z  
0.65  

0.034 

0.72  

0.043 

0.78  

0.048 

0.98  

0.052 

1.25  

0.068 

1.47  

0.071 

kZ2  
0.14  

0.007 

0.16  

0.008 

0.17  

0.008 

0.15  

0.007 

0.18  

0.009 

0.13  

0.004 

kZ4  
0.81  

0.056 

0.96  

0.067 

0.94  

0.078 

1.19  

0.065 

0.77  

0.046 

0.65  

0.038 

fD  
0.23  

0.012 

0.21  

0.011 

0.36  

0.019 

0.29  

0.015 

0.27  

0.013 

0.21  

0.011 

 

The Stokes-polarimetry mapping showed that the most sensitive (highlighted in light-gray) to the peculiarities of orientation-

phase structure of the studied "extreme" types of biological tissues were: 

• values of statistical moments of the 1st ( )4;31 =iSZ  (about 1.5 - 2 times), 3rd ( )4;33 =iSZ  (about 1.95 times) and 4th 

( )4;34 =iSZ orders (about 2.5 times); 

• values of the correlation moment of the 4th ( ( )4;34 =i
k SZ ) order (1.9 times); 

• values of dispersion (about 1.6 times) of logarithmic dependences of power spectra ( ) loglog 4;3 −=iSJ . 

5. Conclusions 

A new method of Stokes-correlometry is suggested and analytically substantiated. It reveals coordinate distributions of 

modulus and phase of "two-point" Stokes vector parameters of polarizationally inhomogeneous images for optically thin 

(optical thickness smaller than 0.01) histological sections of biological tissues with different morphological structure. 

Within statistic, correlation and fractal analysis the objective criteria characterizing the SCP-maps of polarizationally non-

uniform microscopic images for three groups of samples (with the ordered, disordered birefringent fibrillary networks and the 

"islet" isotropic, anisotropic structure) are revealed.  

Comparative analysis of the results based on statistical, correlation and fractal analysis of distributions of "single-point" and 

"two-point" Stokes vector parameters of polarizationally inhomogeneous sample images revealed a greater (2-5 times) 

sensitivity of the Stokes-correlometry method compared to the single-point approach. 

The results of the study show than the direct Stokes polarimetry mapping can be a basis for the differential diagnosis of 

changes in optical anisotropy of the human biological tissues of different morphological structure and physiological state. 
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