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Abstract—Objective: A new method for fitting diffusion-
weighted magnetic resonance imaging (DW-MRI) data
composed of an unknown number of multi-exponential
components is presented and evaluated. Methods: The
auto-regressive discrete acquisition points transformation
(ADAPT) method is an adaption of the auto-regressive mov-
ing average system, which allows for the modeling of multi-
exponential data and enables the estimation of the number
of exponential components without prior assumptions.
ADAPT was evaluated on simulated DW-MRI data. The op-
timum ADAPT fit was then applied to human brain DWI
data and the correlation between the ADAPT coefficients
and the parameters of the commonly used bi-exponential
intravoxel incoherent motion (IVIM) method were investi-
gated. Results: The ADAPT method can correctly identify
the number of components and model the exponential data.
The ADAPT coefficients were found to have strong corre-
lations with the IVIM parameters. ADAPT(1,1)-β0 correlated
with IVIM-D: ρ = 0.708, P < 0.001. ADAPT(1,1)-α1 correlated
with IVIM-f: ρ = 0.667, P < 0.001. ADAPT(1,1)-β1 correlated
with IVIM-D∗: ρ = 0.741, P < 0.001). Conclusion: ADAPT
provides a method that can identify the number of expo-
nential components in DWI data without prior assumptions,
and determine potential complex diffusion biomarkers. Sig-
nificance: ADAPT has the potential to provide a generalized
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fitting method for discrete multi-exponential data, and de-
termine meaningful coefficients without prior information.

Index Terms—Multi-exponential fitting, diffusion MRI,
robustness.

I. INTRODUCTION

MULTI-EXPONENTIAL fitting is a challenging task for
diffusion-weighted magnetic resonance imaging (DW-

MRI) data, where there are a limited number of data points
and the number of components within the diffusion signal is
unknown. Both theoretical and experimental studies have sug-
gested that the water diffusion in tissue is characterized by multi-
exponential behavior [1], [2], [3]. Diffusion weighted imaging
(DWI) has been demonstrated to have clinical relevance for
identifying areas of cerebral ischemia and oncological diagno-
sis [4]. As the reported diffusion coefficient is dependent upon
the fitting method implemented, it is crucial that the optimum
method is realized.

In order to attain the diffusion coefficient for each voxel in
the MR image, the scan is repeated at different b-values [5], a
parameter that is changed by varying the diffusion sensitization
of the MR sequence. If a gradient pulse is applied during the
MR scan, a phase shift in the proton precession is induced.
If an exact reverse gradient is subsequently applied, particles
that have moved, via diffusion, will experience at net phase
shift and the detected signal intensity will attenuate. The b-
value is related to the duration, strength and time-spacing of
these two gradient pulses. As the b-values increase, so does the
sensitivity to particle motion, and the detected signal attenuates
exponentially. By plotting the signal on a logarithmic scale and
calculating the gradient, the diffusion coefficient for that voxel
is attained [6]. The greater the signal attenuation, the greater the
rate of diffusion.

Multi-component models have been applied to DWI data
previously, and the most common is the Intravoxel Incoher-
ent Motion (IVIM) method [7]. The IVIM method assumes that
the signal is composed of two exponentials, accounting for tis-
sue water diffusion and bulk flow in small blood vessels. When
plotted on a logarithmic scale, the gradient of each compo-
nent provides the diffusion related coefficients for each expo-
nential term. If IVIM is fitted using the Levenberg-Marquardt
algorithm, initial starting values for the parameters are required,
and the fitting stability is often improved by using a multistep fit-
ting approach [8]. However, additional physical processes such
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as multiple diffusion rates within one physical component, bulk
flow in tubules or glandular secretion may also affect the de-
tected signal, which leads to more than two exponential com-
ponents [9]. Hence, a method with the ability to optimize the
number of components could provide a new insight into the
physical properties of water motion in tissue.

Fitting of multi-exponential equations to experimental data
is a notable problem for many different scientific fields. The
number of exponential terms within a signal, the decay coeffi-
cients of each term along with the fractional value of each term,
indicating each component’s contribution to the overall signal,
all have to be determined [10]. The accuracy of such mod-
els is of particular importance in the biomedical field, where
multi-exponential decay is common and robust biomarkers are
required. The complex fitting problem is therefore further exac-
erbated by the poor signal to noise ratios (SNRs) and a limited
number of data points [11].

Common exponential fitting methods such as graphical meth-
ods are simple to execute, but are subjective and prone to high
errors [12]. Parametric techniques, which provide a solution as
a series of damped sinusoids [13], are also commonly imple-
mented, but are restricted to data equally spaced in time [11].
These algorithms have also been demonstrated to be highly sus-
ceptible to noise and perform poorly when trying to determine
the number of exponential terms in signals with a large number
of components [10], [11]. Transform methods have also been de-
veloped [10], in which the data is Fourier transformed to create
a spectral plot with spikes representing exponential components
[11]. However, this approach exacerbates high frequency noise
in the deconvolution process [14], causing ripples and broaden-
ing of the spectral peaks, making interpretations of the results
difficult. Overall, there is a need to develop improved analysis
methods for multi-exponential data.

Auto Regressive Moving Average (ARMA) models [15] are
generalized versions of multi-exponential models and can pre-
dict the behavior of a data series from previous values alone.
ARMA has the flexibility to represent a wide range of data
series, with the order (number of lag terms) of the optimum
ARMA model relating to the complexity of the data. However,
such a method is restricted to the time domain. To adapt the
method for the modeling of DWI data, the ARMA model was
modified, henceforth referred to as the Auto-regressive Discrete
Acquisition Points Transformation (ADAPT) method. ADAPT
interprets the discrete signal as a function of acquisition points.
Although there is no simple relationship between the IVIM

parameters and ADAPT coefficients, ADAPT presents the op-
portunity for novel diffusion biomarkers to be obtained with
no prior assumption about the nature of the data. Futhermore,
ADAPT does not require any multistep fitting processes, unlike
other DWI fitting methods. The aim of this study was therefore to
develop a new generalized fitting method for multi-exponential
data where the number of components is unknown a priori and
evaluate it on simulated and real multi b-value DWI data.

II. MATERIALS AND METHODS

A. The Auto-Regressive Discrete Acquisition Points
Transformation (ADAPT) Method

ADAPT models the diffusion signal by the equation:

ln (Sn ) =
Q∑

i=0

βibn−i+
p∑

j=1

αj ln (Sn−j ) (1)

Where Sn -Signal at acquisition point n; bn - b-value at acqui-
sition time point n. αj , βi- minimisation coefficients. Here the
acquisition point of the b-values is used such that b-value = 0
s/mm2 at acquisition point 0, b(0) = 0. b-value = 20 s/mm2

at acquisition point 1, b(1) = 20 and so forth. The previously
acquired b-values are therefore used as previous input terms.
Upon selecting the order of the ADAPT(P,Q) model, the α and
β minimization coefficients are determined such that the error
between the data and the model is minimized. The coefficients
are determined via establishing the matrices in (2) shown at the
bottom of this page. S is a matrix engineered from the input b-
values and the detected signal with acquisition point n = 0, . . . ,
N. A is the matrix of ADAPT coefficients. Spred is the final
model of the predicted signal normalised by S(0)- the initial
signal value at b = 0 and n = 0. By finding the least squares er-
ror of (3), the ADAPT coefficients are minimised and the model
Spred is established:

S · A = Spred (3)

1) Determining the Number of Components: Upon selec-
tion of the optimum ADAPT order, the transfer function can be
expressed as (4):

H(n) =
ln (Sn)

bn
=

β0 + β1L̂ + · · · + βPL̂P

1 − α1L̂ − · · · − αQL̂Q
(4)

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(0) 0 · · · 0 0 0 · · · 0

b(1) b(0) · · · ... ln
(

s( 0 )

s( 0 )

)
0 · · · ...

...
... · · · ... ln

(
s( 1 )

s( 0 )

)
ln

(
s( 0 )

s( 0 )

)
· · · ...

...
... · · · ...

...
... · · · ...

b(N ) b(N −1) · · · b(N −Q) ln
(

s(N −1 )

s( 0 )

)
ln

(
s(N −2 )

s( 0 )

)
· · · ln

(
s(N −P )

s( 0 )

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

...

βQ

−α1

...

−αP

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Spred =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ln
(

S ( 0 )

S ( 0 )

)

ln
(

S ( 1 )

S ( 0 )

)

...

ln
(

S (N )

S ( 0 )

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(2)
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Where L̂ is the lag operator [16] such that ln(Sn) L̂ =
ln(Sn−1) . By mapping the transfer function of the optimum
order to the Z-domain the following is obtained (5):

H(z) =
β0 + β1z−1 + · · · + βPz−P

1 − α1z−1 − · · · − αQz−Q (5)

Equation 5 can be rearranged using partial fraction decom-
position. An inverse Z-transform was then performed and the
number of components established. For example ADAPT(1,1)
gives:

ln (Sn) = β0 bn + β1bn−1 + α1 ln (Sn−1) (6)

Taking the transfer function of ADAPT(1,1) in the Z-domain
and performing partial fraction decomposition (PFD) and an
Inverse Z transform:

H(n) = β1 α1
n−1 + β0α1

n (7)

Here ADAPT(1,1) is evaluated to be a two component decay
model.

B. Data Simulations

All simulated and acquired in vivo data was created or ob-
tained using a range of 11 exponentially spaced b-values be-
tween 0 and 1000 [0, 20, 40, 80, 110, 140, 170, 200, 300, 500,
1000] s/mm2. All simulations and data analysis were conducted
using MATLAB (MathWorks, Natick, MA, USA, v.2016b).

1) Simulation of a Bi-Exponential Signal: A range of bi-
exponential diffusion signals were created by simulating data
using the equation for the IVIM method (8):

S (b)
S (0)

= f · exp−bD∗
+ (1 − f) · exp−bD (8)

Where S(b)/S(0) is the signal intensity for a particular b-
value, b, normalized by the signal intensity when b = 0 s/mm2;
D is the tissue diffusion coefficient; D∗ is the pseudo-diffusion
coefficient (related to the perfusion of blood in the capillary
network); and f is the volume fraction of incoherently flowing
blood in the tissue describing the fraction of the signal arising
from the vascular network [6].

Bi-exponential signals were created with a range of f values
(0.1, 0.3 and 0.5) and three different D∗/D ratios corresponding
to those observed in the brain, kidney and liver (10, 20 and
70 respectively) [17]. The D parameter was fixed at 0.0007
mm2/s and the D∗ parameters considered were 0.007 mm2/s,
0.014 mm2/s and 0.049 mm2/s. Random white Gaussian noise
was added to the simulated signals to mimic SNR levels of 50,
typical of those measured in in vivo data. The ADAPT method
was applied to the bi-exponential signals, and a range of orders
from ADAPT(0,0) to ADAPT(3,3) were considered.

2) Simulation of a Multi-Component Partial Volume
Effects Model: A partial volume effects (PVE) model was
simulated, in which compartments from both cerebral white
matter (WM), assumed to be a two compartment model, and
cerebrospinal fluid (CSF), assumed to be one compartment, are
simultaneously detected, thus creating a tri-exponential model

(9).

S (b)
S (0)

= Ae−bα + Be−bβ + Ce−bγ (9)

Such a tissue model is of particular interest to DWI, as the
use of the IVIM method in the brain requires cautious inter-
pretation in regions of tissue edges due to PVE. The high
value of the diffusion coefficient in CSF and the much lower
diffusion coefficient in WM results in the incorrect detection
of a large perfusion value within the cerebral cortex, when
a voxel contains information from both these regions [18].
CSF was assumed to exhibit mono-exponential behavior with
a diffusion coefficient assumed to be that of free water at
37◦C ( DCSF = 3 × 10−3 mm2/s) [19]. WM was assumed to
be represented by the bi-exponential IVIM method. The WM
model parameters were taken from averaged IVIM values pre-
viously reported in a volunteer study ( fWM = 0.07; DWM =
0.77 × 10−3 mm2/s; D∗

WM = 7.9 × 10−3 mm2/s) [20]. A
partial volume effect (PVE) model was created as a summation
of the CSF and WM model such that (9) was parameterized with
physically meaningful coefficients:

S (b)
S (0)

= fCSF e−bDC S F + (1 − fCSF)
(
fWMe−bD∗

W M

+ (1 − fWM) e−bDW M
)

(10)

Where fCSF indicated the fraction of the signal that was
contributed by the CSF compartment. A range of PVE mod-
els were created with varying CSF:WM ratios (100:0, 75:25,
50:50, 25:75 and 0:100). White Gaussian noise was added to
PVE models to mimic SNR levels � 50.

3) Robustness Analysis: Poor signal quality can result in
a change of parameter values or in the detection of an additional
component. Hence the effects of poor SNR on the robustness of
the fitting methods were investigated. Random white Gaussian
noise was added to the simulated signals to mimic SNR levels
between 20 and 100. Although the noise present in MRI data
is governed by a Rician noise distribution, the distribution is
nearly Gaussian for the SNR levels considered in this study
[21]. Noise was added using the MATLAB Communications
System Toolbox ‘Add White Gaussian Noise’ (awgn) function.
The data simulations were performed using 1000 random data
iterations for each model and SNR level.

C. In Vivo Data Acquisition

A volunteer brain scan (age 25 years), SNR � 50 in WM
at b-value = 0 s/mm2, was acquired on a Philips Achieva 3T
TX (Philips Healthcare, Best, the Netherlands) MRI scanner at
Birmingham Children’s Hospital using a 32-multichannel re-
ceiver head coil. A brain tumour, suprasellar pilomyxoid astro-
cytoma, patient (age 3.2 years) was also scanned. The patient
case was considered due to the ventricles being enlarged, al-
lowing for an easier investigation of the one compartment CSF.
It should be noted that no tumour was present on the slice
considered. Informed parental consent was obtained for all sub-
jects and the East Midlands – Derby Research Ethics Commit-
tee (REC 04/MRE04/41) approved the study operating under
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the rules of Declaration of Helsinki 1975 (and as revised in
1983). The diffusion-weighted MRI sequence used a sensitivity-
encoded (SENSE) approach with the following parameters: b-
value data acquired in three orthogonal directions, FOV 230 mm
× 230 mm, TR/TE 3,214/84 ms, matrix size 256 × 256, 5 mm
slice thickness and in plane resolution 0.9 mm × 0.9 mm. The
spectral presaturation with inversion recovery (SPIR) was used
for fat suppression and the scan duration was 2.21 minutes.

D. Data Analysis

1) Measuring SNR: In vivo SNR levels were calculated us-
ing the standard NEMA method based on the difference image
from two acquisitions, this is the recommended method for de-
termining SNR when parallel imaging techniques are used [22].
The quality of parameter estimation depends strongly on the
SNR, with the SNR for the low IVIM perfusion regime recom-
mended to be above a critical value of 40 [17], [21]. A SNR �
50 was recorded in the White Matter (b-value = 0), in agreement
with previous studies using this acquisition protocol [8].

2) Model Selection: The Akaike information criterion
(AIC) [23] was used as a means of model selection for determin-
ing the optimum ADAPT order. The AIC estimates the relative
quality of each of the multiparametric fitting methods, reward-
ing for goodness of fit and penalizing for the complexity. Such
a selection process aims to reduce the risk of over-fitting. As the
b-value sequence used within the diffusion-weighted imaging
(DWI) protocol typically has less than 30 b-values (11 in the
cases considered), they can be considered to be a finite data set
[3]. Thus the corrected AIC (AICc) [24], with a harsher penalty
for over fitting, was implemented. The AICc formula (11):

AICc = n · log
(

RSS
n

)
+

2 · k · (k + 1)
n − k − 1

(11)

Where n is the number of b-values used to fit the signal;
k is the number of parameters; and RSS is the residual sum
squared. The fit with the lowest AICc value is considered to
be the optimum fit. The number of parameters, k, includes the
diffusion signal S0 [25] and an additional parameter is counted
due to the Gaussian noise hypothesis for the signal residuals [3].
There is debate in the literature that the AIC is only suitable for
analysing nested models and is consequently inherently biased.
The authors believe that although the models in this study are
nested, the AIC is a suitable criterion for a wide range of model
types, both nested and non-nested [26]. To ensure that such a
selection criterion is not ad-hoc, an additional selection criterion
is also considered- the Bayesian Information Criterion corrected
for small samples (BICc) [27].

It is advocated that an approach of using two criteria together
can increase the confidence in identifying the optimum order
[28], hence the BICc (12) was also calculated:

BICc =
k · n · log (n)
n − k − 1

+ n · log
(

RSS
n

)
(12)

The relative significance of the optimum information cri-
terion fit was justified with the used of Bayes Factors [29]
(Appendix A). wi is the Weight, indicating the probability of

model i being the optimum model and the associated statistic
the log evidence ratio (LER) indicates evidence for the parsi-
moniousness of the optimum model against a competing model.
LER values greater than 0, 0.5, 1 or 2 indicate respectively that
the evidence is ‘minimal’, ‘substantial’, ‘strong’ or ‘decisive’.

3) Statistical Analysis: For the data simulations, correla-
tion analysis (Pearson correlation coefficient, r) was performed
to determine how the ADAPT(1,1) coefficient were related to
the IVIM parameters. ADAPT(1,1) was considered as it was
found to be the optimum fit for bi-exponential equations. The
IVIM parameters were calculated using the multi-exponential
fitting methods as described in the section below (II.D.3).The
statistical significance of the relationship was assessed using the
p-value (P < 0.05). The robustness of the ADAPT and multi-
exponential coefficients, when fitted to the PVE models, was
assessed by calculating the coefficient of variation (CV) over
the 1000 iterations measured.

For the in vivo data, correlation analysis (Spearman’s rank
correlation coefficient, ρ) was performed to compare the
ADAPT(1,1) coefficients to the IVIM parameters. ρ values be-
tween 0.60–0.79, and 0.80–1.0, were considered to represent a
‘strong’ and ‘very strong’ correlation respectively. Five regions
of interest (ROIs), each 4 × 4 pixels, were selected from within
both the one compartment CSF and the two compartment WM.
The ROIs were drawn upon the DWI scans with no additional
filtering. The optimum ADAPT and multi-exponential fitting
methods were fitted to each of the ROIs. To investigate the ro-
bustness of the fitting parameters, the average parameter value
and CV was calculated.

4) Multi-Exponential Fitting Methods: The bi-exponential
fitting method for the IVIM equation was assessed using
non-linear least squares minimization, with the Levenberg-
Marquardt algorithm and a constrained 2-parameter fitting
method [21]. The tri-exponential fitting method used the same
minimization technique and a constrained 4-parameter fitting
method. The mono-exponential fitting method was also consid-
ered for the PVE models and in vivo data. By plotting the signal
on a logarithmic scale and calculating the gradient, the Apparent
Diffusion Coefficient (ADC) is attained.

5) Performance of Fitting Methods: All calculations were
performed on OS: Windows 10 Pro 64-bit (10.0 Build 16299),
CPU: AMD Ryzen 5 1600, 3.2 GHz, Memory: 8192 MB DDR4
RAM. To compare the performance of the ADAPT and IVIM
fitting methods, the CPU run time of each method was recorded
and averaged over 10 iterations.

III. RESULTS

A. ADAPT Method Applied to Simulated
Bi-Exponential Signal

1) Selection of Optimum Fit: A range of ADAPT orders
were fitted to the simulated bi-exponential signal (SNR � 50)
with varying IVIM parameters (Fig. 1). For each of the 9 sce-
narios considered ADAPT(1,1) was found to be the optimum
order, having the lowest AICc for every case (Table I). For the
bi-exponential signals where D∗/D = 10, the competing order
ADAPT(2,1) was found to have an AICc-LER just below 0.5 in
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Fig. 1. The ADAPT orders fitted to a range of simulated bi-exponential
signals.

two instances. For the bi-exponential signals with D∗/D = 70 and
f = 0.3 or 0.5, the AICc-LER ratio indicates that ADAPT(1,0)
and ADAPT(2,0) are competing orders that should also be taken
into consideration. ADAPT orders (2,2), (3,0), (3,1), (3,2) and
(3,3) were also considered for each case but possessed com-
paratively higher AICc values and thus very high AICc-LERs.
The BICc confirmed that the optimum order was ADAPT(1,1)
(Table II). No competing orders were detected when D∗/D =
10. For the signals with D∗/D = 70 and f = 0.3 or 0.5, the BICc
indicated that ADAPT(1,0) was the optimum order. However,
the BICc-LER for ADAPT(1,1) was low and the BICc values
almost equivalent.

2) Number of Components: The Transfer function, Z-
transform, PFD and subsequent inverse Z-transform were
performed on ADAPT(0,0), ADAPT(1,0), ADAPT(1,1),
ADAPT(2,0) and ADAPT(2,1). ADAPT(0,0) is equivalent to
the mono-exponential model and thus a one component de-
cay model. As previously stated, ADAPT(1,1) was evaluated to
be a two component decay model. In all bi-exponential sim-
ulations considered, a two component model was found to
be the optimum fit, based upon the AICc. ADAPT(2,0) and

TABLE I
ADAPT ORDERS FITTED TO BI-EXPONENTIAL DIFFUSION SIGNALS-AICC

A range of two compartment bi-exponential diffusion signals (SNR � 50) were inves-
tigated with a range of IVIM-D∗/D ratios and IVIM-f values. The ADAPT method was
applied to the bi-exponential signals and the optimum fit (highlighted) was selected by
choosing the method with the lowest AICc. The ADAPT orders lightly shaded have an
AICc-LER < 0.5 indicating competing models.

TABLE II
ADAPT ORDERS FITTED TO BI-EXPONENTIAL DIFFUSION SIGNALS-BICC

The optimum ADAPT order for the simulated bi-exponential diffusion signals was
selected using the lowest BICc. The ADAPT orders lightly shaded have a BICc-LER <

0.5 indicating competing models.



2622 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 66, NO. 9, SEPTEMBER 2019

Fig. 2. The optimum ADAPT order and the multi-exponential models
are shown fitted to the PVE model CSF:WM 50:50. The ADAPT model
demonstrates its ability to accurately fit and identify the tri-exponential
signal.

ADAPT(2,1), which were found to be competing orders are also
two-component decays models (Appendix B). ADAPT(1,0), a
one component decay model (Appendix B), was found to be a
competing order for some cases. However, for the D∗/D ratio of
70 and f value of 0.3, the AICc-LER of ADAPT(1,0) is 0.48 is
close to the cut off and the wi probability (ADAPT(1,0) wi =
0.14) is more than half that of the optimum order (ADAPT(1,1)
wi = 0.43).). The BICc selected ADAPT(1,0) as the optimum
order (wi = 0.44), however, the BICc-LER for ADAPT(1,1) was
very low, 0.12 and wi = 0.33. For the D∗/D ratio of 70 and f-value
of 0.5, the wi probability of ADAPT(1,0) (ADAPT(1,0) wi =
0.15) is more than half that of the optimum order (ADAPT(1,1)
wi = 0.37). The BICc selected ADAPT(1,0) as the optimum or-
der (wi = 0.46), however, the BICc-LER for ADAPT(1,1) was
low, 0.21 and wi = 0.28.

B. Tri-Exponential Partial Volume Effect Models

1) Selection of Optimum Order: Mono-, bi- and tri- expo-
nential fitting methods were applied to the PVE models (SNR �
50) with varying CSF:WM ratios and the optimum fit selected
using the AICc (Table III) and the BICc (Table IV). Based on the
AICc, the number of detected components did not correspond
to the number of exponential terms presented in the signal. In
particular, a tri-exponential fit was found to best represent both
two and three component models. The one compartment model
was best represented by a bi-exponential fit. However, the LER-
AICc values indicated that all other multi-exponential fits were
competing. Based on the BICc, the one compartment and three
compartment models were correctly identified but a two com-
partment model was overfitted and found to be best represented
by a tri-exponential fit. No other multi-exponential fits were
found to compete. According to the AICc and BICc, the two
compartment model is wrongly fitted by a tri-exponential fit for
even very high SNR � 100 (Figure 3).

The range of ADAPT orders from (0,0) to (3,3) were also
applied to the PVE models (Table III). With the AICc, a distinct
number of terms were found to be able to distinguish between
two and three compartment models. The two and three com-
partment models were found to be best fitted by ADAPT orders
(1,1) and (3,1) with no other competing order found to be signif-
icant. All other AICc-LERs were found to be >0.5, indicating

that no other fit was significant. The BICc results were found
to be similar (Table IV), although ADAPT(1,1) was found to
be a competing order (BICc-LER = 0.28) for the three com-
partment CSF:WM = 25:75 signal. The one compartment CSF
model was best fitted by ADAPT(1,1) according to the AICc
and ADAPT(1,0) with the BICc. Both list a range of different
orders as the optimum fit, indicating that noise can easily cor-
rupt a one compartment signal. The one compartment signal
was investigated at SNR � 100 and decisively found to be rep-
resented by ADAPT(0,0) (Fig. 4), mathematically equivalent to
the mono-exponential equation.

Comparing the AICc values of the exponential and ADAPT
fitting methods, for the one component signal, the AICc was
lowest with ADAPT, indicating a better fit. However, the op-
timum AICc values are very similar and the RSS values are
of the same order of magnitude (RSS for ADC = 1.2 ×10−5,
ADAPT(0,0) = 1.5 ×10−5, ADAPT(1,1) = 4.0×10−6). For
the three component signals, the tri-exponential fits have much
lower AICc values than ADAPT(3,1). The RSS values are also
two orders of magnitude smaller (i.e RSS for CSF:WM-50:50,
TRI = 4.3 ×10−5, ADAPT(3,1) = 1.0 ×10−4). For the two-
component data, the wrongly identified tri-exponential fit has
a very low RSS value (RSS for TRI = 4.5 ×10−6, suggesting
that the signal is being over fitted. Although the AICc for IVIM
is still lower than ADAPT(1,1) (RSS for IVIM = 1.8 ×10−5,
ADAPT(1,1) = 7.2 ×10−5), the RSS values are of the same
order of magnitude, indicating a similar accuracy of fit.

2) Number of ADAPT Components: The transfer function,
Z-transform, PFD and subsequent inverse Z-transform were
performed on ADAPT(3,1) which was evaluated to be a three
component decay model (Appendix B).

C. SNR and Robustness of Data Simulations

1) Influence of Noise Upon the Tri-Exponential Partial
Volume Effects Model: Using the AICc-LERs, the ability for
the multi-exponential fitting methods (Fig. 3) and the ADAPT
methods (Fig. 4) to detect the number of components was inves-
tigated as a function of varying SNR. In the interest of concision,
the BICc-LER was not considered. The multi-exponential
fitting methods correctly identified the mono-exponential
behavior in the PVE signal CSF:WM 100:0. However, the
LER demonstrates that the optimum fit quickly becomes bi-
exponential below the high SNR of 85. The three compartment
PVE signals are best represented by the tri-exponential fit down
to a SNR of 35 for the CSF:WM of 75:25 and 50:50, and SNR
40 for 25:75. The PVE signal CSF:WM 0:100 is incorrectly
represented by a tri-exponential fit. This however becomes a
bi-exponential fit below below SNR 50. CSF:WM 100:0 is
best represented by the one component ADAPT(0,0) above a
SNR of 75. Below SNR 75 the one component ADAPT(1,0),
is the optimum order. However, ADAPT(2,0) and ADAPT(3,0)
have AICc-LERs < 0.5, indicating significant competing
fitting methods. All three compartment PVE models are best
represented by the three component ADAPT(3,1) down to an
SNR of 45. For CSF:WM 0:100, the optimum order is the
two component model ADAPT(1,1) down to a SNR of 45.
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TABLE III
PARTIAL VOLUME EFFECT MODELS FITTED WITH ADAPT ORDERS AND MULTI-EXPONENTIAL FITTING METHODS-AICC

A range of PVE models, with varying CSF:WM ratios, were investigated. Multi-exponential fitting methods and the ADAPT method were fitted.
The optimum fit was selected by choosing the method with the lowest AICc.

TABLE IV
PARTIAL VOLUME EFFECT MODELS FITTED WITH ADAPT ORDERS AND MULTI-EXPONENTIAL FITTING METHODS-BICC

The optimum fitting method for the PVE models (SNR � 50) was also selected by choosing the method with the lowest BICc.

Fig. 3. Using the AICc-LERs, the ability for the multi-exponential fitting methods to detect the number of components in the PVE models was
investigated as a function of varying SNR. An AICc-LER < 0.5 indicates a competing model that needs to be considered. An AICc-LER > 2 indicates
a competing model that ‘definitely’ does not need to be considered.
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Fig. 4. Using the AICc-LERs, the ability for the ADAPT method to detect the number of components in the partial volume effect models was
investigated as a function of varying SNR.

Fig. 5. Example case of the ADAPT method applied to in vivo DWI axial
slices. (a) DWI slice of volunteer where b value=0 s/mm2. (b) DWI slice
of patient with enlarged ventricles where b value=0 s/mm2. (c) ADAPT
applied to volunteer slice and the corresponding number of detected
components are displayed. (d) ADAPT applied to patient slice.

Below this value the one component models and ADAPT (2,0),
another two component model, begin to show significance.

D. ADAPT Components Applied to In Vivo Data
Acquisition

The ADAPT method was applied to a DWI axial slice of
both a volunteer and a patient case (Fig. 5). Three ADAPT
components are observed as a white line along the boundary of
the ventricles for the volunteer case (Fig. 5c). Such clusters of
high order behavior could be caused by partial volume effects.

Fig. 6. The relationship between the ADAPT(1,1) coefficients and the
IVIM parameters was investigated. (a) Effects on the diffusion signal
when only IVIM-D is varied and the other two IVIM parameters are
fixed. (b) Only IVIM-f varied. (c) Only IVIM-D∗ varied. (d) Linear rela-
tionship between IVIM-D and ADAPT(1,1)-β0 . (e) Between IVIM-f and
ADAPT(1,1)-α1 . (f) Between IVIM-D∗ and ADAPT(1,1)-β1 .

Few voxels exhibit one-component behavior in the ventricles
of the volunteer. This could be due to the limited size of the
ventricles. A patient case was considered in which the ventricles
were enlarged. Large clusters of one component behavior were
observed (Fig. 5d).
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Fig. 7. Coefficient of Variation calculated for the optimum ADAPT and multi-exponential fitting methods for each of the PVE models (SNR � 50)
considered.

E. ADAPT(1,1) Coefficient Study With Data Simulations

The relationship between the ADAPT α and β coefficients,
created as a result of minimizing (2), and the IVIM f, D and
D∗ parameters were investigated (Fig. 6). If IVIM-f and IVIM-
D∗ are fixed and only IVIM-D is varied for simulated data,
the gradient of the detected diffusion signal can be observed to
increase with an increasing IVIM-D value (Fig. 6a). An increase
in the gradient of the signal would also increase the value of the
ADAPT-β coefficients and result in a directly linear relationship
between the IVIM-D and ADAPT(1,1)-β0 with R2 = 1(Fig. 6d).
When IVIM-f and IVIM-D are fixed, increases in IVIM-D∗

result in a subtle increase in the gradient at the low b-values
(Fig. 6c). Such behaviour results in a linear correlation between
IVIM-D∗ and the higher order ADAPT(1,1)- β1 coefficient with
R2 = 0.99 (Fig. 6f). When IVIM-D and IVIM-D∗ are fixed
and only IVIM-f is varied, an increase in IVIM-f results in an
increase in the curvature of the bi-exponential signal and the
prevalence of the second component (Fig. 6b). Consequently a
linear relationship is found between IVIM-f and ADAPT(1,1)-
α1 with R2 = 0.99 (Fig. 6e).

The coefficients of ADAPT and the multi-exponential fit-
ting methods were investigated for the PVE models (SNR �
50) (Fig. 7). For the one compartment model, the optimum
mono-exponential fitting method and ADAPT(1,0) were con-
sidered. ADAPT(0,0) was also considered due to being math-
ematically equivalent to the mono-exponential equation. The
CV was found to be 0.4% for the mono-exponential ADC and
0.2% for ADAPT(0,0)-β0 . Both have a CV < 1% indicating
that both fitting methods are robust for fitting one compartment
data. For ADAPT(1,0), β0 had a CV of 0.6% and α1 2735.7%.
The β0 coefficients from ADAPT(0,0) and ADAPT(1,0) had
a percentage variation of 0.0002%. Given the similarity in β0
coefficients and the high CV for ADAPT(1,0)-α1 , it can be
theorized that the additional parameter in the one component
ADAPT(1,0) is a consequence of the noise added to the signal.
For the three compartment models, the optimum fitting meth-
ods, ADAPT(3,1) and the tri-exponential fit were compared.

In general, the ADAPT(3,1) coefficients have a lower CV than
the tri-exponential parameters. α2 and α3 have a higher CV
than the TRI-fCSF and fWM parameters for the CSF:WM =
50:50 case, but the CV is still less than 6.1%. For the CSF:WM
= 25:75 case, the TRI-fCSF has a CV of 13.2% significantly
higher than any of the other parameters associated with three
compartments. For the two compartment model, ADAPT(1,1)
was compared against both the bi- and tri- exponential fitting
methods. Although selected as the optimum multi-exponential
fit, it is evident that the tri-exponential is the incorrect fit as
the CV of TRI-fCSF is 193.0%. Comparing the ADAPT(1,1)
coefficients to the IVIM parameters, β0 , β1 , and α1 had CVs
of 0.4%, 2.8% and 0.8% respectively. IVIM-D, IVIM-D∗ and
IVIM-F were 0.3%, 2.2% and 2.9%. Both methods possessed
low CVs for their parameters indicating that ADAPT(1,1) and
IVIM are both robust fitting methods for two compartment
signals.

F. ADAPT(1,1) Coefficient Study With In Vivo Data

The ADAPT(1,1)-β0 (Fig. 8b), α1 (Fig. 8d) and β1 (Fig. 8f)
coefficients for an in vivo axial slice of a patient brain scan were
correlated on a pixel-wise basis with the IVIM-D (Fig. 8a),
IVIM-f (Fig. 8c) and IVIM-D∗ (Fig. 8e) parameters respec-
tively. Upon visual inspection, the IVIM-D and ADAPT(1,1)-
β0 parametric maps appear similar with the calibration bars also
showing comparable scales. Furthermore, when the voxels with
ADAPT(1,1) as their optimum order were selected (n = 6002),
ρ = 0.708 (P < 0.001) was obtained, indicating a strong rela-
tionship between IVIM-D and ADAPT(1,1)-β0 . However, the
edges of the ventricles appear to be affected by partial volume
effects more in the IVIM maps than the ADAPT maps. IVIM-
D∗ and ADAPT(1,1)-β1 were found to have a ρ = 0.741 (P <
0.001), also indicating a strong relationship. The CPU run time
of the IVIM fit for one slice was averaged over 10 iterations and
found to be 575.0 ± 3.1 seconds. Comparatively the CPU run
time of ADAPT method was just 23.2 ± 0.1 seconds.
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Fig. 8. Parametric maps of Axial brain slice of patient with en-
larged ventricles. (a) IVIM-D (mm2/s). (b) ADAPT(1,1)-β0 . (c) IVIM-f.
(d) ADAPT(1,1)-α1 . (e) IVIM-D∗ (mm2/s). (f)ADAPT(1,1)-β1 .

TABLE V
OPTIMUM FITTING METHODS APPLIED TO IN VIVO ROIS-

PARAMETER COEFFICIENT OF VARIATION (CV)

ROIs were drawn within the WM and CSF on the patient axial slice
(Fig. 5b). The parameter values for the optimum methods were calculated.

The CV was calculated from the average coefficient values
calculated from ROIs within the CSF and WM (Table V). For the
one compartment CSF, ADAPT(0,0)-β0 was almost identical to
the ADC value and the CV > 1.5%. For the two compartment
WM, ADAPT(1,1)-β0 was found to be the same order of mag-
nitude as IVIM-D although the CV of IVIM-D was found to be
just 4.6% compared to 10.7% for β0 . However, ADAPT(1,1)-
α1 has a lower CV than IVIM-f 16.7% compared to 18.2%.
ADAPT(1,1)-β1 has a significantly lower CV than IVIM-D∗,
25.0% compared to 78.7%.

IV. DISCUSSION

It has been demonstrated that the number of components in
diffusion-weighted MRI data is determined unreliably by simply
applying multi-exponential fitting methods and then selecting
the optimum fit. The ADAPT method is superior at identifying
multiple components, even when the third component is more
subtle, i.e., PVE model with CSF:WM 75:25. However, the BICc
did detect competing orders, indicating that the third compart-
ment could be difficult to detect for cases where the fraction
of CSF is even more subtle. Although the tri-exponential fitting
methods had lower RSSs than ADAPT(3,1) for the three com-
partment PVE models, the low RSSs is more likely due to the
study being culpable of the inverse crime (see below) and the tri-
exponential fitting method being inherently biased towards the
simulated tri-exponential data. Furthermore, the RSS values for
the optimum ADAPT orders are still low and the model selection
is more robust. It is recommended that if the number of com-
partments in a signal is unknown, the ADAPT method should
be used instead of multi-exponential fitting for model selection.
The ADAPT method also demonstrated that it could correctly
identify the number of components in the bi-exponential signal
across a large range of IVIM parameter values. The SNR analy-
sis demonstrated that ADAPT was more robust at detecting both
one and two compartment signals. ADAPT is a generalization
of exponential models and makes no prior assumptions about
the number of components within the data. Thus ADAPT lends
itself as a potential novel method for the detection of the number
of components in DWI data and potentially for providing more
intricate diffusion biomarkers. The data simulations indicated
that there is a relationship between the IVIM parameters and
ADAPT coefficients. A strong relationship between these two
methods is also evident in the in vivo patient example. Although
the relationship between the IVIM parameters and ADAPT co-
efficients is complex and non-linear in nature, ADAPT presents
the opportunity for complex diffusion biomarkers to be obtained
by making no prior assumptions about the nature of the data nor
does it require any multistep fitting processes. Consequently,
in this study, ADAPT is a much faster fitting method. The in
vivo ROIs showed that ADAPT(1,1) and IVIM had comparable
parameter CVs. However, IVIM-D∗ was considerably higher.
Although this may be due to tissue heterogeneity within the
white matter, the average IVIM-D∗ value is higher than ex-
pected, indicating that ADAPT may be more robust than IVIM
at fitting WM.

Both the ADAPT and multi-exponential fitting methods strug-
gled to correctly identify the number of signal components at
poor SNRs (<45). The addition of noise to the tri-exponential
PVE models resulted in the methods under-fitting the signal.
This was most likely due to noise modulating the true signal
and causing individual components to be mistakenly classified
together. The addition of noise to the mono-exponential fit-
ting method resulted in the over fitting the signal. Although
ADAPT was still able to detect a one component model at
poor SNR, the optimum order, using the AICc, switched from
ADAPT(0,0) to ADAPT(1,0) resulting in an additional param-
eter. Although more robust than the multi-exponential fitting
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methods, the ADAPT method requires further development to
optimize how it handles low SNR data and the inclusion of an
additional component or parameter to account for noise should
be considered.

In general the AICc and BICc selected the same optimum
order, increasing the confidence that the most appropriate order
had been selected. However, a more formal protocol is required
for when the information criterions disagree.

One should note that only one range of clinically relevant
b-values was considered for the data simulated or acquired in
vivo in this study. The number of data points and their magni-
tude could have a significant influence on the performance of
the ADAPT method and the generality of the findings. However,
there is no clear consensus on what optimal b-value sequence
should be used for DWI [30]. As the ADAPT method requires
a discrete approximation of the diffusion signal, there will in-
evitably be a truncation in the approximation which is inherent
to the method. Another limitation of the simulations in this
study was the assumption that diffusion in the CSF exhibits
mono-exponential behavior, consequently the effects of CSF
circulation or pulsatile flow [31] were not considered. However,
the method presented remains a useful test for detecting multiple
components.

As far as the authors are aware, no other diffusion models
with a perfusion fraction exist for simulating data other than the
multi-exponential equations explored. Hence it was not possi-
ble to avoid committing the ‘inverse crime’ (IC) where multi-
exponential equations were used to simulate as well as fit the
data. In order to mitigate the IC, Gaussian noise was added to the
simulated data [32] and a range of different multi-exponential
models were explored. In addition, the ADAPT method is a
different mathematical model and therefore the IC wasn’t com-
mitted with this class of models.

The study only considered DWI data, which averages over
all the directions in which a gradient is applied. Consequently
this method is only able to measure isotropic diffusion compart-
ments. If anisotropic effects, such as fanning or crossing of axon
bundles, were to be investigated, many diffusion weighted im-
ages, with diffusion weighted gradients in different directions,
would be required resulting in Diffusion Tensor Imaging (DTI).
Although multi b-value models are not yet routine in clinical
settings[4], it would be interesting to consider an application of
ADAPT to this technique, in particular investigating anisotropic
effects with further simulations and in vivo studies.

Further investigations are required to understand how the
number of optimum ADAPT components relates to the number
of exponential terms within the signal. The transfer function
requires further rearrangement to enable the inverse Z-transform
solution to be in the form of a summation of multi-exponential
compartments.

V. CONCLUSION

The ADAPT method has shown that it can distinguish be-
tween multi-exponential diffusion data containing different
numbers of components. This is something that cannot be
achieved by applying multi-exponential fitting methods and se-

lecting the optimum fit. Such a novel method allows for the
identification of different components within a diffusion signal.
The relationship between the ADAPT and IVIM parameters
suggest that potential complex diffusion biomarkers can be ob-
tained by making no prior assumptions about the nature of the
data. Whilst ADAPT has been applied to DWI data, it should
find application in other discrete data sets which can be manip-
ulated to be represented as a function of acquisition points.

APPENDIX A
BAYES FACTOR-ASSOCIATED STATISTICS

The Akaike weight, wi indicates the probability of model i
being the optimum model:

wi =
exp

(− 1
2 ΔiAICc

)
∑M

m=1 exp(− 1
2 ΔmAICc)

(13)

Where M is the number of compared models and:

ΔiAICc = AICc (i) − AICcmin (14)

Where AICcmin is the minimum AICc value of all the mod-
els considered. The Akaike weight of all the models summed
together should equal one. The Evidence Ratio ER:

ERi =
wmax

wi
(15)

Where wmax is the Akaike weight of the optimum model.
The LER is provided by taking the log of the ER such that.

LERi = log10 (ERi) (16)

APPENDIX B
DERIVATION OF THE NUMBER OF ADAPT COMPONENTS

ADAPT(1,0) gives:

ln (Sn) = β0 bn + α1 ln (Sn−1) (17)

And the transfer function of ADAPT(1,0) in the Z-domain:

H(z) =
β0z

z − α1
(18)

Performing partial fraction decomposition (PFD) and an In-
verse Z transform:

H(n) = β0 α1
n (19)

Hence ADAPT(1,0) was also evaluated to be a one component
decay model. ADAPT(2,0) gives:

ln (Sn) = β0 bn + α1 ln (Sn−1) + α2 ln (Sn−2) (20)

And the transfer function of ADAPT(2,0) in the Z-domain:

H(z) =
β0z2

z2 − α1 − α2
=

β0z2

(z − r1) (z − r2)
(21)

Where the denominator is factorized such that r1 and r2 are
roots of the quadratic expression. Performing PFD and an In-
verse Z transform:

H(n) = Ar1
n−1 + Br2

n−1 (22)
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Where A and B represent the numerators that would be at-
tained through the PFD. Hence ADAPT(2,0) was also evaluated
to be a two component decay model. ADAPT(2,1) gives:

ln (Sn) = β0 bn + β1bn−1 + α1 ln (Sn−1) + α2 ln (Sn−2)
(23)

And the transfer function of ADAPT(2,1) in the Z-domain:

H(z) =
β0z2 + β1z

z2 − α1 − α2
(24)

Performing PFD and an Inverse Z transform:

H(n) = Cr1
n−1 + Dr2

n−1 (25)

Where r1 and r2 are roots of the quadratic expression in the
denominator of the transfer function and C and D represent
the numerators that would be attained through the PFD. Hence
ADAPT(2,1) was also evaluated to be a two component decay
model. ADAPT(3,1) gives:

ln (Sn) = β0 bn + β1bn−1 + α1 ln (Sn−1)

+ α2 ln (Sn−2) + α3 ln (Sn−3) (26)

And the transfer function of ADAPT(3,1) in the Z-domain:

H(z) =
β0z2 + β1z

z3 − α1z2 − α2z − α3
=

β0z2 + β1z
(z − r1) (z − r2) (z − r3)

(27)
Where the denominator is factorized such that r1 , r2 and r3 are

roots of the cubic expression. Performing PFD and an Inverse Z
transform:

H(n) = Fr1
n−1 + Gr2

n−1 + Hr3
n−1 (28)

Where F, G and H represent the numerators that would be
attained through the PFD. Hence ADAPT(3,1) was evaluated to
be a three component decay model.
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