
Supporting Information for:

Epoxy-Functional Diblock Copolymer Spheres, Worms and Vesicles via Polymerization-Induced Self-Assembly in Mineral Oil

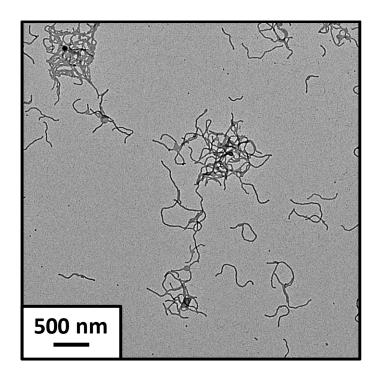

Philip J. Docherty, Chloé Girou, Matthew J. Derry^{†,*} and Steven P. Armes*

Figure S1. TEM image recorded for PSMA₉-PGlyMA₁₀₀ nano-objects.

Figure S2. Variation of the storage modulus (G') and loss modulus (G") for a 30% w/w dispersion of PSMA₉-PGlyMA₇₅ worms in mineral oil during (a) an angular frequency sweep from 0.1 rad s⁻¹ to 100 rad s⁻¹ at 1.0% strain amplitude and (b) a strain sweep from 0.1% to 100% at an angular frequency of 10 rad s⁻¹.

Figure S3. TEM image recorded for PSMA₉-PGlyMA₇₅ nano-objects obtained at room temperature after an oscillatory rheology temperature sweep (from 25 $^{\circ}$ C to 100 $^{\circ}$ C at 2 $^{\circ}$ C min⁻¹).

SAXS Models

The SAXS models used in this study (for spheres, dimers and trimers,¹ worm-like micelles,² and vesicles³) have been reported in detail elsewhere.^{1, 4} The scattering length densities used for the coronal PSMA (ξ_{PSMA}) and core PGlyMA (ξ_{PGlyMA}) blocks were 9.24 x 10¹⁰ cm⁻² and 11.34 x 10¹⁰ cm⁻², respectively, and that for the mineral oil solvent (ξ_{sol}) was 7.63 x 10¹⁰ cm⁻². Throughout the manuscript, the following terms are used and are defined as follows:

 $\varphi_{
m spheres}$ - volume fraction of spheres

 $\varphi_{\mathrm{dimers}}$ - volume fraction of dimers

 φ_{trimers} - volume fraction of trimers

 D_{sphere} - overall diameter of a sphere

(equal to 2*[spherical core radius] + 4*[stabilizer radius of gyration])

 $T_{
m worm}$ - overall worm thickness

(equal to 2*[worm core radius] + 4*[stabilizer radius of gyration])

 L_{worm} - worm length

 $T_{\rm membrane}$ - vesicle membrane thickness

 $D_{
m vesicle}$ - overall vesicle diameter

(equal to 2*[distance from the centre of the vesicle to the centre of the

membrane] + 4*[stabilizer radius of gyration])

 N_{agg} - aggregation number (or number of copolymer chains per

nanoparticle)

Table S1. Summary of fitting parameters and dimensions determined by fitting SAXS patterns recorded for 1.0% w/w dispersions of PSMA₉-PGlyMA_x (S₉-Gly_x) diblock copolymer nanoparticles in mineral oil. Standard deviations for the value of $D_{\rm sphere}$, $T_{\rm worm}$, $T_{\rm membrane}$ and $D_{\rm vesicle}$ are also indicated.

Copolymer composition	Sphere, dimer, trimer model ¹				Worm-like micelle model ²		Vesicle model ³		$N_{ m agg}$
	D _{sphere} (nm)	$oldsymbol{arphi}$ spheres	∅ dimers	Ø trimers	Tworm (nm)	Lworm (nm)	T _{membrane} (nm)	Dvesicle (nm)	- : *65
S ₉ -Gly ₅₀ spheres	17.0 ±	0.62	0.29	0.09	-	-	-	-	321
S ₉ -Gly ₇₅ worms	-	-	-	-	18.0 ± 1.6	262.4	-	-	4085
S ₉ -Gly ₁₅₀ vesicles	-	-	-	-	-	-	16.1 ±	136.6 ± 21.5	25524
S ₉ -Gly ₂₀₀ vesicles	-	-	-	-	-	-	19.6 ±	156.5 ± 36.6	30237

References

- 1. N. J. Warren, O. O. Mykhaylyk, D. Mahmood, A. J. Ryan and S. P. Armes, *Journal of the American Chemical Society*, 2014, **136**, 1023-1033.
- 2. J. S. Pedersen, Journal of Applied Crystallography, 2000, 33, 637-640.
- 3. J. Bang, S. M. Jain, Z. B. Li, T. P. Lodge, J. S. Pedersen, E. Kesselman and Y. Talmon, *Macromolecules*, 2006, **39**, 1199-1208.
- 4. M. J. Derry, L. A. Fielding, N. J. Warren, C. J. Mable, A. J. Smith, O. O. Mykhaylyk and S. P. Armes, *Chemical Science*, 2016, **7**, 5078-5090.