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Abstract: This paper reviews current developments and discusses some critical issues with obstacle 
detection systems for automated vehicles. The concept of autonomous driving is the driver towards 
future mobility. Obstacle detection systems play a crucial role in implementing and deploying 
autonomous driving on our roads and city streets. The current review looks at technology and 
existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, 
vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number 
of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in 
the presence of smooths surfaces, in situations where emergency service vehicles need to be detected 
and recognised, and in situations where potholes need to be observed and measured. It is suggested 
that combining different technologies for obstacle detection gives a more accurate representation of 
the driving environment. In particular, when looking at technological solutions for obstacle 
detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban 
areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, 
the current developments appear to be not sophisticated enough to guarantee 100% precision and 
accuracy, hence further valiant effort is needed. 

Keywords: automated vehicles; review; obstacle detection; urban areas; technology; weather 
conditions 

 

1. Introduction 

According to the World Health Organisation, in 2015, there was a total of 1.25 million traffic 
accidents, 270,000 people fatalities, resulting in over 700 life losses each day on average [1]. It was 
reported that over 90% of crashes were based on driver error [2]. To improve this situation, 
governments, car manufacturers and municipal departments have considered a large amount of 
investment to support the development of various technological solutions, including autonomous 
driving and cognitive robotics, where around 1 billion euros have already been invested by EU 
agencies [3].  

In 2009, companies like Google and Uber, together with traditional car manufacturers like BMW 
and FORD, developed and piloted the first self-driving car prototype, which was tested in 4 states in 
the US [4]. Since then, this type of technology has evolved, and, currently, there are 33 states in the 
US where specific regulations related to autonomous driving have been introduced. In addition, the 
Victoria Transport Policy Institute has predicted that this technology will be widely used after the 
2040s and 2050s [5]. In 2014, the Society of Automotive Engineers (SAE) proposed some operational 
requirements for autonomous (also called unmanned) driving (Figure 1). SAE defined six levels in 
this field, where for levels 0–2 human drivers still monitor the driving environment and operating 
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conditions. Whilst for levels 3–5, a fully automated driving system is proposed to replace completely 
the function of human drivers [5]. 

  

Figure 1. Autonomous vehicle (AV) levels of automation by SAE 2014 [5]. 

With the continuous development of the highways, roads, city streets and expressways, 
increasing efforts have been devoted to developing an obstacle detection system for vehicles [6]. 
Current developments suggest that such a system now integrates functions of identifying positions, 
distance measurement, and automated braking when a potential risk of failure and collision is 
detected.  

The Advanced Driver Assistance Systems (ADAS) have been invented, which include an 
intelligent computing unit that provides an accurate image of the driving environment. Other 
components of ADAS include adaptive cruise control, parking assistance, and lane-keeping 
assistance. Through ADAS, autonomous driving will be possible. The system will fully replace 
human drivers, improve road efficiency, increase traffic safety and ameliorate the traveller’s 
experience.  

The main focus of this work is to discuss current developments and existing technologies for 
obstacle detection that can make autonomous driving possible in the near future. A thorough review 
of different technical and technological solutions is offered, followed by discussions on certain 
advances and limitations of existing systems, including visual cameras, LIDAR, RADAR, SONAR 
and IR. Discussions on how different technologies perform in different situations during daytime or 
at night and when dealing with, e.g., shadows, colours, and reflections from smooth surfaces, are also 
presented.  

The key takeaways from this review include 

• Radar: Performs mapping at medium to long range. Better than cameras and LIDAR in the worse 
weather possible, but lacks the fine resolution required for object identification. 

• LIDAR: Provides 360-degree high-resolution mapping, from short to long range. Limited by 
harsh environments with low reflective targets. 

• Ultrasound: Low cost and shows good performance in short-range measurement. Suitable for 
parking assistant in parking lots due to its fast response in a relatively short range. 

• Camera: Provides a complete picture of the environment in a variety of situations, as well as 
able to accurately read road signals and colour buttons, but are limited by the visibility 
conditions within the driving environment. 

• Infrared (IR): Gives excellent support for night vision among all sensors. LIDAR can also be 
used during night time because of its capabilities to work in low-visibility environments. 
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• Combining different technologies gives a more accurate detection, surveillance and recognition 
of the driving environment and all surroundings, including vehicle and pedestrian, lane and 
other objects; but, still, further effort is required to develop more precise sensor fusion systems. 

• Data collected from different technologies is not homogeneous; as a result, a sophisticated data 
fusion mechanism is needed for accurate data analytics. 

• In both extreme weather conditions (rain, snow, fog) and some specific situations in urban 
areas, although quite advanced, the current technological developments are not sophisticated 
enough to guarantee 100% precision and accuracy of obstacle detection. Hence, further work is 
needed. 

The rest of this paper is organised as follows: In Section 2, the purpose of obstacle detection 
systems in automated vehicles is discussed. Section 3 looks at technologies and existing systems for 
obstacle detection like LIDAR, RADAR, vision camera, and ultrasonic sensors. Combining different 
technologies is also discussed, followed by an application of different technological solutions for 
accurate detection and measurement of objects and obstacles in day time or at night. Critical 
questions about data collection, data fusion, and data processing are also discussed. Section 4 reviews 
challenges with obstacle detection when dealing with shadows, colours and in extreme weather 
conditions. Section 5 extends the review by looking at several specific situations in urban areas (e.g., 
exhaust, reflections from smooth surfaces, paying attention when opening the door) that require 
particular attention. Section 6 offers conclusions followed by avenues for future work presented in 
Section 7. 

2. The Purpose of Obstacle Detection System 

Human beings spend more time on daily driving than ever before. With the higher density of 
cars on the roads and city streets, it is sometimes difficult for the human drivers to distinguish 
immediately and clearly identify static and moving objects and obstacles like trollies, buggies, 
pedestrians, bicycles, and cyclists. Consequently, reliable obstacle detection systems are needed to 
operate in real-time to detect any potential risk of collision and signal so that evasive reaction can 
take place [7]. 

The emphasis has been gradually transferred from manual control of mechanical systems to 
software/computing units for decision-making, where operation systems can manipulate the whole 
vehicle by itself. With the more complexity of the driving surroundings, the vehicle must be equipped 
with more detecting and analysing modules to achieve smooth and safe autonomous driving. 
Currently, the most advanced cars may have more sensors and software on them than a fighter 
airplane [8], but they still cannot guarantee safety on the road. That is why it is critical to ensure a 
precise obstacle detection mechanism [9] is in place that can easily detect static and moving objects 
that may present risks of crash and impact when driving.  

There are two methods to consider: active and passive. Generally speaking, the active method 
refers to sensors with laser sender and receiver, such as RADAR/LIDAR or ultrasound. The frequency 
and direction can be controlled and manipulated by the system itself or the driver. In contrast, the 
passive method is based on passive scene measurements, like cameras. [7] The detection system has 
to respond according to what is captured and received through camera images but no choice to select 
what object or where to scan.  

Reliable obstacle detection systems must handle a huge amount of information and data, which 
is collected and processed in real-time. For this to happen, an “active” approach (Figure 2) is 
employed and implemented. Specifically, an active approach refers to an autonomous system having 
the ability for intelligent decision-making in regards to image capturing and data acquisition [3]. 
Here, the primary functions are road detection as well as obstacle detection [10]. Generally speaking, 
the processes include perceiving information via sensors, estimating and evaluating the risk, and 
finally providing feedback to the driver for further actions, if required [9]. 

For the human visual system, the eyes move, and the visual sensitivity is extremely high [3]. The 
image captured by human eye when perceiving the world can contain several GB of information with 
a single blink if converted from an abstract scale into a computing number for easier comparison, 
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while the latest generation obstacle detection system is only able to deal with MB data in a short 
period. In urban areas, there would be around 300 million points in each square kilometre in a 3D 
point cloud, which is regarded as too bulky for internal storage [11,12]. 

 

Figure 2. An active approach involving multiple layers for information filtering, processing, 
modelling [3]. 

Through data collection, data fusion and data processing, the estimation of time before impact 
with another object can be calculated and shown on a screen. When this system “thinks” that there is 
a possibility of a crash, and the distance to static or moving objects is too close, an alarm informs the 
driver to slow down or bypass. According to SAE, the first 3 levels, so-called semi-autonomous 
vehicles, require a human driver to interact with a computing system, which serves as a back-up in 
case there is some failure of the software. So here, there is a state of “disengagement”, which includes 
a switch mode [11]. Additionally, in extreme situations, when there is no response from the driver 
towards the warning message, this mode is to take action and activate the brakes automatically so 
that a possible collision with another vehicle and or object can be avoided. 

3. Technology and Existing Systems 

3.1. Background 

Like human drivers, the autonomous vehicles (AVs) have to ensure a continuous observation of 
the driving environment and all surroundings [13]. Five key elements are involved: the obstacle, the 
road, the ego-vehicle, the environment, and the driver [9]. Amongst these, the obstacle with its 
different properties—size, shape, weight, material, frequency of appearance—is the most significant 
element to focus on. To provide AVs with the abilities to detect an obstacle and obtain information 
about its properties, sensors are integrated and installed in and around the vehicle.  

Recently, some vehicle manufacturers already have made some progress on this front. For 
example, the pilot assist system by VOLVO, which consists of cameras and RADAR, gives warnings 
and auto-steering turning when a critical situation occurs. BMW has demonstrated pedestrian alert, 
lane-departure warning and lane-change warning, which are all components of obstacle detection 
technology; please see the Daimler-Benz VIsion Technology Application project (VITA). Other 
components of safety-related systems involve the anti-lock braking system (ABS), electronic stability 
control (ESC), and latest emergency brake automation (AEB) [9]. The general requirement for these 
systems is for them to be simple, reliable and accurate enough in terms of real-time data processing 
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[12]. Table 1 shows luxury commercial vehicles of different brands equipped with autonomous 
support functions. It appears that autonomous freeway driving, semi-autonomous parking and 
braking are the most common functions amongst these brands. The autonomous lane-change 
function is only available in Tesla Model S. 

Table 1. Luxury-brand vehicles with autonomous functions available [13]. 

Vehicles 
Autonomous 

Freeway Driving 
Autonomous 
Lane Change 

Semi-
Autonomous 

Parking 

Semi-
Autonomous 

Braking 
BMW750i xDrive (BMW,2017; Sherman, 2016) √  √ √ 

Ford (high-end production vehicles) (Company, 2014) √  √ √ 
2015 Infiniti Q50S (Sherman, 2016) √   √ 

Lexus RX (Lexus, 2017)   √ √ 
Mercedes-Benz E and S-class(Sherman, 2016; 

Mercedes-Benz, 2013; Ulrich, 2014; Tingwall, 2013; 
Vanderbilt, 2012) 

√  √ √ 

Otto Semi-Trucks(Stewart, 2016) √   √ 
Renault GT Nav(Renault, 2017)   √ √ 

Tesla, Model S (Golson, 2016; Sherman, 2016) √ √ √ √ 
Volvo XC90(Volvo, 2106) √  √ √ 

3.2. RADAR/LIDAR 

In addition to the traditional image-based 3D modelling technology using cameras, there is an 
obstacle detection technology with remote sensors and fast-capture image functions using laser [14]. 
To achieve the obstacle detection function, hardware and software must work closely with each other. 
The combination of RADAR (radio detection and ranging) and LIDAR (light detection and ranging) 
can capture images and transfer them through electrical interfaces. Then an in-vehicle micro-
computer will process the information acquired and analyse the data. Afterwards, all signals and 
images will be displayed on the dashboard for the driver to utilise.  

Distance detection is one of the major functions of LIDAR. By measuring the travelling time of 
light pulse between the sender and photodetector after reflection of the target surface, the distance 
refers to d = 𝑣 ∗  𝑡  /2 (d, v, and t represent distance, light velocity and time between journey, 
respectively). With this function, LIDAR traditionally serves to obtain 3D geometry of objects, in 
fields of civil-engineering, architecture, and current autonomous driving applications [15]. 

As for trains, in order to achieve obstacle detection, different types of sensors have been used, 
e.g., video cameras (optical passive), LIDAR (optical active) and RADAR (electromagnetic active). 
Initially, several conditions of the train, like its position on the track or driving speed, can be obtained 
by virtual sensors. A computer system unit will process the information captured by the sensors and 
then give a warning to the train driver in case there is a potential obstacle detected ahead. As a result, 
such a function can cause automatic braking or simply give a warning by sound to the driver [16]. 

Light laser has higher energy, higher frequency and shorter wavelength than radio waves, which 
gives a better reflection rate in non-metallic material [15]. It can operate with a wider range of 
electromagnetic spectrum such as ultraviolet, visible and infrared regions [17]. 

LIDAR on vehicles can be divided into two categories: short-distance LIDAR and two-
dimensionally scanning long-distance LIDAR.  

The remote 3D LIDAR sensing system calculates the target position according to the process as 
below [18]: 

i. Filtering: A pre-processing step to separate non-ground objects from ground information, which 
can reduce the data size and shorten the calculation time afterwards.  

ii. Data structuring: The geometry information about objects detected is encoded with X, Y, Z 
coordinates, and then fit into grids [14]. 

iii. Segmentation: Point Cloud Library (PCL), an open-source software with VC++ language [19], 
can create clusters based on the Euclidean algorithm.  
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iv. Cluster detection: With the aid of statistical means and histograms, the target cluster would be 
separated by visualization software from the other clusters (due to its nature, this process can 
be quite complicated and time-consuming). 

v. Detection with software: Terrasolid finally utilizes a progressive densification algorithm to 
classify and label the target category and other objects; for example, in the case of 
Anandakumar’s research, detecting buildings from the background together with plants. 

LIDAR has several advantages: accurate, wide field of range, long-distance range, irrelevant to 
different light conditions [20]. However, compared to RADAR, LIDAR performs less satisfyingly in 
rainy or snowy climates [17]. 

The typical LIDAR sensor for autonomous driving is Velodyne 64 (incorporating 64 laser diodes 
and spinning at up to 15Hz, it can achieve the coverage for 360 degrees in a horizontal direction and 
26.8 degrees in a vertical direction) [21]. The sensor feedback is the cloud information with X, Y, Z 
coordinates of the point.  

RADAR can “see” over 150 meters in bad weather like foggy or rainy conditions, while the 
human drivers can only detect around 10 meters in these conditions [17]. 

Mapping the surroundings properly is key for accurate path planning and precise obstacle 
detection for autonomous vehicles. Two RADARs installed on the rear bumper could help to observe 
a blind spot when driving [22]. The blind spot locates in the rear left/right corner (Figure 3), an area 
which the driver cannot observe with either the external or internal reflection mirror. Usually, drivers 
have to turn their head in 90 degrees and give a glance to check and guarantee that there is no vehicle 
on the side in order to avoid this issue when changing lanes. However, for this 1-second, the driver 
will lose vision in the front direction, which is around 30-meter-blind driving if the velocity is about 
100 km/h. A longitudinal detective RADAR sensor could provide 130-degree horizontal viewing and 
an 180-degree vertical viewing angle, with 30 meters of coverage [22]. 

 

Figure 3. Bird-view of tracking pathway and blind area layout [22]. 

Line Frequency Modulated Continuous Wave (LFMCW) millimetre waver RADAR has the 
middle range of coverage, from 0.5 to 45 m, which is suitable for blind-spot warning systems (BSW) 
[22]. Speed of target vehicle and the relative distance between two cars need to be calculated for 
correct timing of an alarm to give warning in time for the driver to intervene if needed to avoid 
collision. In principle, there are two alarm levels: 

1st level: A light-on LED near the external mirror, indicating there is a vehicle in rear/side 
position (Figure 4) 

2nd level: Buzzer sounds when too close to the target car. 
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Figure 4. Photo when 1st alarm level is applied (LED on) [22]. 

3.3. Vision Cameras 

One of the most widely used methods for observing the surroundings is via digital camera 
imaging. In the beginning, only one camera was utilized to create the image, but because the dark 
region or reflection in the photo is hard to distinguish, the quality of the object cannot be extracted 
very clearly [12]. It is hard to reflect the real situation of 3D scenes using a 2D picture, neither are we 
able to determine the distance to the targeted object. As a result, two digital cameras on each side of 
the vehicle are installed, and with the combination of those images at the same time, a 3D point cloud 
can be created and calculated using epipolar geometry to achieve a three-dimensional space. It is not 
easy to extract 3D details from a classical image during real-time object detection [12]. 

The static obstacles can be detected by depth maps through calculation from multiple 
consecutive images captured by monocular cameras. By using this system, a precise visual odometry 
estimation can be replaced by wheel odometry [7]. Compared to a LASER detector, video cameras 
have the advantages of being low-cost and more flexible. More importantly, they provide rich 
contextual information similar to human visual capture [6]. That is the main reason for video cameras 
being widely utilized in traffic surveillance, control, and analysis. The main purpose of this 
technology is to make the most of current car manufacturing, which is able to afford certain 
improvements in software while adding nothing to the hardware, and meanwhile being able to detect 
static objects like parked cars and signals on streets with a distance-estimating function [7]. Although 
this approach can utilize current monocular cameras to achieve accurate obstacle detection, it still has 
some limitations. Only static obstacles in short distances can be detected successfully [7]. 

Due to variations of colour, shape, size and sidetrack, a single view camera cannot figure the 
obstacle out very accurately [10]. Figure 5 shows a simulation map drawn by a combination of real-
time GPS images and several cameras/sensors through a complex calculation process. The estimated 
pathway of each vehicle is simulated clearly. To obtain an accurate image of the surroundings, drivers 
still rely on the support of an intelligent interaction network system. It is now important that a reliable 
system on the vehicle can map the surroundings so that the path planning and obstacle detection can 
be done and ensured by the vehicle itself [7]. 

 

Figure 5. A system simulation of real-time traffic current and allocation (by Chris Urmson). 
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Cameras are low-cost, low-space devices that provide accurate information of the surroundings 
Cameras work in different weather conditions. Usually, one camera on the front of the vehicle and 
one camera on the rear can cover 360-degrees of the surroundings, tracking other vehicles more 
effectively when entering a curve, for example. This surpasses the laser-based detection methods [17]. 
By involving the fisheye camera, the number of cameras required for observation can be minimized. 
Every camera has a nominal 185-degree FOV and is able to send 12.5 frames per second (fps) to the 
processing computer. 

A visual navigation system could detect surrounding obstacles and localize the car position 
during self-parking. In a restricted area like a garage, an accurate full-view of the environment is very 
important. This can be achieved by a combination of stereo vision techniques [7], which normally 
include two cameras mounted at a horizontal level [13]. An accurate dense map can be built-up with 
the support of real-time depth map extraction, in the sequence of depth map extraction, obstacle 
extraction, and fusion over several camera frames to obtain an accurate estimation [7]. 

A stereo camera system proposed by Deukhyeon et al. [10] can be used to inform the driver 
about the precise real-time depth measurement between the obstacle behind the vehicle using a 
hierarchical census transform, as well as eliminating the blind points. When the distance and driving 
or pulling-back velocity are known, an intelligent computing system can be used to calculate the 
estimated time before impact, hence such a system can be used in order to prevent and avoid 
accidents. The closer the obstacle detected, the louder the alarm [10]. 

In addition, an infrared radar can be used for an adaptive highway cruise control system for 
normal vehicles. As for a multi-beam infrared radar, the range can reach 150 m with an opening angle 
of around 8 degrees . 

3.4. Sonar/Ultrasound Sensor 

Sound Navigation And Ranging (SONAR) sensing is an alternative for laser sensing in some 
fields, with similar working principles like RADAR. By providing a pulse of sound and listening to 
how long before the echo returns, such as with airplanes and underwater vessels, SONAR is able to 
provide high resolution and long range as well but presents better performance in different light 
conditions. For aircraft equipped with LADAR, the sunlight might be too strong in the sky and cause 
problems when flying towards the sun, leading to an overexposure [23]. while underwater, for 
example, the ocean would absorb the light in red spectrum regions, which may cause worse accuracy 
if using laser sensing.  

The example of a sonar system shown in Figure 6 is made up of a one combined transmitter and 
receiver and another two individual sonar receivers, which can work with low voltage and with 40 
kHz frequency [24]. In a general situation, the sonar system on the vehicle equipped with a vehicle 
plug-in sonar device (Figure 8), can be activated, if the speed is below 10 km/h, to help detect any 
obstacles nearby [25].  
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Figure 6. An illustration of advanced (left) and vehicle plug-in (right) sonar device [25]. 

Because sonar is for near obstacle detection, it works well as a parking assistance system. Due to 
its short coverage range (<2 m) and poor angular resolution in terms of normal sonar sensing [26], 
sonar does not work well for obtaining information about the location and velocity of vehicles on the 
road and motorways. According to Wong’s research, the integration of 6 ultrasonic sensors could 
help to obtain the location and velocity of other vehicles around and behind on the road and 
motorways [22].  

However, SONAR easily “suffers” disruptions in noisy environments. Many sources on the 
road, streets and highways generate noise: horns, engine vibrations or wind sound due to high 
relative velocity. In such noisy environments, laser sensing works better than SONAR and has more 
advantages. Moreover, if trying to enlarge the coverage range, the ping/pulse from the emitter can 
go very loud, which is harmful for citizens and is environmentally unfriendly. Consequently, sonar 
systems should be used in parking lots to detect the obstacles accurately [27]. For better accuracy, the 
sonar sensors in the front and on the rear bumpers should not be covered in snow, ice and/or dirt.  

3.5. Combining Different Technologies 

Through a series of monocular fisheye cameras, Christian Hane et al. were able to detect a wide 
range of the driving environment and observe static obstacles around the vehicle. Compared to 
cameras, LIDAR systems have better accuracy and larger field of view (FOV), as the 3D system for 
environment mapping and 2D system for human detecting. When detecting a human, both geometric 
and motion-based methods are utilized for handling static and moving pedestrians at the same time 
[21]. After a series of eigenvector calculations, the pedestrian can be detected with high efficiency, 
and not occupying too much computer storage and memory resources.  

However, sometimes the laser beams become invalid when the walker is either for too close or 
too far, which is very vital for autonomous driving cars. Moreover, the motion-based detection using 
cameras is sensitive to noise [28,29], so to avoid this situation, other detective sensors should be 
considered [21].  

Wong and Qidwai utilized a combination of 6 sonar and 3 visual cameras to observe the areas 
around a vehicle while on-road. According to the data and images obtained, a fuzzy inference 
generates information about the potential risks of collision [30].  
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S. Budzan and J. Kasprzyk built up an autonomous experimental vehicle by using a visual 
camera and laser scanner to simulate the obstacle detection and recognition process [12]. Otto et al. 
also adopted cameras and RADARs for detecting pedestrians and protecting them by tracking system 
when walking on the streets and crossing the roads [31]. A. Asvadi et al. combined LIDAR and colour 
cameras to generate dense-depth and reflectance maps using the KITTI algorithm for a 
comprehensive understanding of the real world [32]. A multi-sensor detection system applied to the 
railways included the optically passive camera and optically active LIDAR that successfully built up 
a prototype system for up-to-400 m detection range in normal weather, which guaranteed its safety 
for long distances with over 120 km/h speed [16]. For further rail-focused applications, please see [33] 
and [34]. When comparing day and night time, it was proved that the illumination condition has little 
influence on the RADAR detection method, while the camera system had the higher false-positive 
rate, mainly at night [22]. Similarly, LIDAR also tends to work well in the absence of ambient sunlight. 
According to [35–39], LIDAR can work in low visibility environments and is not affected by low light 
conditions. 

When vehicles move at the same speed and in the same direction, there would be interference 
between each laser-based sensor of some sort, which would somehow influence their performance 
[17]. In order to solve this issue, a multi-shot wavelength laser could be generated automatically by 
wavelength adjuster if the receiver obtains two signals in a similar range and it is difficult to 
distinguish them from the host car. Next, the correct distance could be measured by the laser pulses 
of LIDAR on the vehicle [40]. 

It appears that the integration with other wave/pulse-based sensors, such as radar, LIDAR and 
ultrasonic, could enhance the precision of the final result, ensuring a perfect level of correctness and 
accuracy. The sensor selection seems to be highly unified among AV developments and commercial 
luxury vehicles in the market [13]. LIDAR, due to its outstanding capabilities for obstacle detection, 
high solution 3D mapping and accurate distance measurement, is considered as a standard hardware 
in most developments. However, because of its relatively high costs, currently, very few of the mass-
production car manufacturers utilise it. It seems though, in a complex urban traffic condition, the 
integration of vision camera and RADAR is able to meet all requirements of ADAS, which include 
accurate information and good coverage, long–short range, obstacle classification according to their 
colour and size, and correct distance and velocity estimation.  

In addition to LIDAR and RADAR’s good performance on distance measurement, a vision 
camera can obtain more information such as target objects and traffic signals. [41] The majority of 
signals in traffic systems are designed according to drivers’ visual perception, and, here, the idea is 
for cameras to mimic drivers’ visual perception. A clustering approach supports the division function 
for traffic light colours: three circular lenses (green–yellow–red) and a horizontal or vertical structure 
[42]. After detecting the traffic signals, the distance between the approaching car and the traffic 
signals, it can be estimated in the range of 10–115 meters in both day and night [42]. Combined with 
GPS and self-locating systems, the accuracy can be quite good together with an extremely low false 
rate. Furthermore, the deceleration rate can be calculated precisely before the cross-section for the 
purpose of fuel-saving. The accurate performance of this system must be ensured to avoid any serious 
consequences. Needless to say, if the traffic sign STOP has not been distinguished by the system, the 
vehicle may continue to travel, pass the red signal and cause an accident [43,44].  

Sensor characteristics are determined by their functions for observing the driving environment. 
A single type of sensor cannot provide sufficient understanding of the whole driving environment 
and be sufficient for every situation. A multi-sensor solution increases the reliability and accuracy of 
the system [17]. Hence a layout of different sensors is proposed (Figure 7). 
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Figure 7. The close-to-ideal layout of sensors [17]. 

Positioning and installation of sensors include: 

• Rear—single laser sensor: detecting the vehicles in the rear (especially velocity and distance). 
• Front—two independent LIDAR sensors: 45-degree corners, detecting obstacles in curves and 

when turning. 
• Front—two powerful long-range sensors (e.g., vision camera): obtaining a full understanding of 

the environment, like traffic signals, pedestrians and vehicles. During cruise control, over 200 m 
is required to be covered.  

• Front—single infrared camera: for detecting pedestrians during night time. 
• Side—four short-range (20–30 m) RADAR sensors: determining if there is a vehicle in parallel 

and or in the blind corner.  
• Corner—two sonar sensors at the four corners: for detecting obstacles during starting and 

pulling-back ( measuring range less than 2 meters); 
• Inside—GPS, IMU, odometry modules: to obtain the exact location of the car; 
• Inside—computer system: for data fusion, and data processing, output displayed on the control 

panel.  

During the process of data collection and processing, a rule-based decision multi-sensor 
classifier is utilized for giving information about obstacle detection [12]. In the case of data 
redundancy, both the data processing and reaction time slow down. In normal driving, where 
velocity is around 70 mph (112km/h), the data processing cycle time should be no longer than 100 ms 
(sampling frequency is 15Hz; 15 frames per second) [17], then the system is set up to alert the driver 
if an emergency happens in every 2.07-meter driving interval in the highway, which is almost half 
the length compared to a normal car. Consequently, different layers of sensors with overlapping 
functions are required to ensure high accuracy and reliability of the system. For example, if the visual 
camera missed capturing an incoming vehicle, another system like RADAR can take over and act as 
a fail-safe and provide accurate information [43].  

3.6. Data Fusion 

The accurate fusion of data collected from different sources of sensors would largely improve 
the effectiveness of the result of obstacle detection. [12] A multi-sensor industrial detection system is 
presented in [39] that fuses camera and LiDAR detections for a more accurate and robust beacon 
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detection system and showed promising results. For autonomous vehicles, to leverage the strengths 
and drawbacks of different technologies and integrate them in a reliable sensor fusion system, the 
Kalman Filter [45,46] is used as the most popular method to integrate the data together [47,48], and 
find the optimal estimation of the exact position of a car.  

Firstly, it can be used for estimating the position, speed and acceleration. [46] Before providing 
more insight on how it works, three subsystems should be considered (Figure 8): 

• Inertial Measurement Unit (IMU): an electronic device for dynamic measurement for the relative 
position of a vehicle. It can provide high-frequency updates but sometimes with inaccurate 
results due to measurement error [49]. 

• Wheel odometry: to receive data about the wheel speed through a specific sensor to estimate the 
vehicle velocity [50]. 

• Global Positioning System (GPS): the GPS receiver can provide an absolute and exact location, 
although there are issues such as infrequent updates, noise occurrence, the signal being easily 
obstructed by surrounding solid structures, e.g., mountains or buildings [48]. 

 

Figure 8. Three main systems in vehicles to locate a car [46]. 

Briefly speaking, when GPS is unavailable, the database from the previous state would be 
utilized to evaluate the current state, with the assumption of constant acceleration and direction. 
However, the logical principle above is based on the relationship with the internal system when GPS 
signal is accessible, which makes the system to be self-learning and self-trained. For example, when 
the vehicle is inside a tunnel, and the GPS signal is missing, the in-time-position on the navigation 
screen still moves according to how fast it runs and at what angle the steering wheel is operated [48]. 

The quality of identifying the exact vehicle’s position decreases significantly in urban areas due 
to signal loss and malfunctioning of GPS [20]. LIDAR-based localisation combines Simultaneous 
Localization And Mapping (SLAM) and map-based technology. Mostly, the high-definition 3D point 
cloud combined with the LIDAR system could help obtain the vehicle in-time position [20]. Some 
parameters, such as location, speed and direction, are stored in a matrix. The simplified formula is 

XK = A*X K-1 + WK , (WK is error, and might be equivalent to 0), where XK = ൝ 𝑥𝑑𝑥𝑑2𝑥ൡ (here x, dx, 𝑑ଶ𝑥 is 

location, speed, acceleration, respectively, and symbol k refers to the current state, while k-1 indicates 
the previous state [48]. 

Error measurement issue is inevitable in this process. An object recognition technology for 
capturing building corners (Figure 9) can be utilized to eliminate and rectify this error in real-time by 
generating a landmark map with the vehicle localization through visual sensors [51]. Therefore, the 
inaccuracy of data would be eliminated along the driving process.  
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Figure 9. Corner definition in 3D and 2D systems [51]. 

3.7. Shadows and Colours 

Shadows are the main and important feature of the vehicles on streets; by the shadow 
underneath, one would determine the presence and location of cars. The region that is projected on 
the vehicle’s image is called a cast shadow [29]. The illumination condition affects the results 
significantly [52]. Normally in the daytime, in greyscale, the shadows would be distinctly dark and 
others such as road, sky, grass and pedestrian pathways would be brighter, which is easy to 
distinguish, both for naked eye and computer system, especially if they are constantly moving (Figure 
10). That is to say, the cast-shadow pixels are darker than other background colours in channels of 
RGB (red, green and blue) [29,53,54]. So, the most important thing is to successfully remove the 
background. By involving the mean-shift (MS) algorithm, the numbers of segments are well-
recognised and eliminated using pixel grey-scale behaviour [55]. 

Figure 10. Shadow detection images in a computer system and the real world. 

However, one example of the failure modes is that of a small car hidden in the shadow of a huge 
truck so that their shadows are connected to each other; the small car is neglected through the system 
[52]. The richest information from the image captured by the vision camera is colour, which is the 
same scenario as the human eye version. The colour features are analysed in RGB mode (named by 
the three primary colours—red, green and blue). 

For example, vehicle lights and license plates are colour-contextual features for vehicles, while 
traffic lights and speed limitation signals are also obvious to distinguish through colour-matching. 
As an international regulation, both brake and tail lamps should be in red [56], in the hope of 
attracting attention to braking. Given the complex attentional requirement during driving, many 
reports took this failure to detect the brake lamp as the main trigger in collisions [57]. 

Afterwards, YCrCb color space was utilized to convert colour into meaningful information since 
RGB signals are not efficient as a representation for storage and transmission due to the redundancy. 
So this processing can be regarded as a RGB-decoding procedure.  

Fuzzy classifier (FC), with the savings in memory requirement and computational load, can 
perform well in colour classification as well. [58,59] After a combination of left/right images, the depth 
and shape can be evaluated. Among a complex environment, a target object such as rear lamps of 
vehicles can be successfully retrieved [59]. 

During night time, nearly all appearance features work inefficiently, such as edge/symmetry, 
shadow and vehicle colour. However, the integrated lights (like brake lights) are easily captured [60]. 
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Due to insufficient illumination, the night time images always have low contrast and lots of “noise” 
[61,62]. Therefore, the far infrared (FIR) video is utilized together with a normal vision camera to 
detect pedestrians. LIDAR can also be considered as it performs reasonably well in low light 
environments.  

4. Weather and Obstacle Detection 

4.1. Statistics 

An investigation between 36 companies, including OEMs and Tier-1 supplies under the 
authorization of the California Department of Motor Vehicles, showed that in terms of 
disengagement location breakdown, around 50% failure scenarios happened in urban areas, the 
interstate region accounted for 38%, while only 7% occurred on highways. Given that the urban areas 
include most complicated structures, static and dynamic objects like cross-roads, parking lanes, 
sidewalks, zebras, pedestrians and cyclists, much attention should be paid for solving system failures 
in urban areas [11]. 

A UV-disparity based resolution can only create a real-time map of the surroundings on a well-
structured road, such as the highways. However, it does not work well in a complex environment 
like urban areas [63,64]. Interestingly, as stated in [11], according to a database, with a total number 
of 610 disengagement affairs, only around 16% related to cloudy weather, and another 1% to rainy 
and snowy days. Most errors have no connection with bad weather, as 82% of disengagements 
happened in good weather. Consequently, in addition to shadows and reflective surfaces that are still 
difficult to distinguish, the influence from rain (high humidity condition) and snow (possible to be 
highly reflective in the daytime) would be a specific scenario to study [10,11].  

Environmental parameters can be divided into light conditions and different weather 
circumstances, which greatly influence on visibility. It was evaluated that the worse visibility 
conditions in special weather might influence the drivers with threat-related feelings such as fear and 
anxiety [65]. The vehicle must be operated with absolute safety under atmospheric conditions, like 
rain, fog or snow. Considering the powerful capability of laser sensors, it seems to be the most 
suitable hardware for autonomous driving. However, it suffers from a major defect—poor perception 
performance in special weather such as rain, fog and snow [66].  

4.2. Rain 

Both rain and fog are made up of small water droplets. These droplets are likely to act as 
reflectors and generate false alarms during obstacle detection [66]. The laser path and reflection rate 
on material surface changes of LIDAR performs well in rainy environments with rain intensity lower 
than 20 cm difference [15]. Rain is considered as a periodic noise that distorts the image of the object 
captured. By involving an automatic rain removal technique, any coefficient value less than 0.5 is 
replaced by 0, the quality and accuracy of the object captured are both improved significantly. An 
example showing the image of an object captured before and after the removal procedure was 
implemented is given in Figure 11. The difference is apparent [67]. 

 
Figure 11. Before and after implementation of the rain removal procedure. 
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4.3. Fog 

According to S. Hasirlioglu et al.’s research, the relationship between temperature and visibility 
is in inverse proportion during foggy weather [68]. This attenuation refers to the intensity of water 
molecular in fog, while visibility means how far the laser can reach under that circumstance. In lower 
temperatures, the fog causes more loss of the detecting range of the laser sensors [69].  

The Chinese Academy of Social Sciences reported that the issue of haze and fog in northern 
China has become the most serious problem since 1961 [70]. Due to the coal-powered heating systems 
and low standard of vehicle emissions, the visibility was below 50 meters in Harbin during the worst 
periods [71]. Experiments were conducted in both real foggy environments and simulation 
laboratories, which proved that the LADAR and vision cameras experienced difficulty in accurately 
scanning and surveying the driving environment and surroundings to some extent [72]. To improve 
this situation, the alternative for sensing in foggy conditions is the infrared sensor. 

4.4. Snow 

In snowy winters, the sensors of LIDAR/RADAR can be covered by snow during driving. In 
such cases, one should either utilise the camera system behind the window or spin the laser-detector 
in fast angular speed to stop snow collection. Cameras and LIDAR optical sensors are found to 
experience extreme difficulty in snowy weather [26]. The AV car barely stays in one lane if optical 
sensors cannot see key surfaces and mark both the road ahead and the areas around. In addition, an 
accumulation of snow on and along the road can influence the LIDAR beams as “phantom obstacle” 
due to reflections [73], which may lead to the false judgement of the driving environment.  

To solve this issue, during the extreme weather such as heavy fog or snow, the Localizing 
Ground-Penetrating Radar (LGPR) technology can be used, which keeps the vehicle always in its lane 
by inserting some special tubes and a radar sensor under the chassis to generate and receive the 
signals (Figure 12). The pulse of electromagnetic radiation is projected by radar, and reflections of 
signals from underground pre-buried, specially designed tubes are received and calculated 
afterwards by two adopters for keeping central. During this process, the rocks, soils, roots of plants 
and pipes will be not solid enough to block the transferring of signals because they are semi-
transparent towards the radio waves. Until 60 mph velocity, the LGPR demonstrates an in-lane 
accuracy of 4.3 cm on snow-covered roads, whereas GPS with INS demonstrates an accuracy of 35 
cm [74,75].  

 

Figure 12. The concept drawing of LGPR technology [74]. 

In adverse weather conditions, the results vary dramatically as they are heavily dependent on 
the real-time conditions and can hardly be reproduced again within the same environment [66]. In 
order to achieve the most accurate mode for obstacle detection during poor weather, the fusion of all 
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sensing on the vehicle together, including cameras, LIDAR, RADAR and even infrared, should be 
ensured to largely mimic the method of human perception and avoid any accidents due to poor 
visibility [73]. 

5. Obstacle Detection in Urban Areas 

There are many different driving situations and challenging obstacle detection requirements to 
handle in urban areas. 

5.1. Exhaust from Front Vehicle  

Road transport remains a major contributor to air pollution [76–78]. Besides the negative impact 
on the environment, the exhaust from the vehicles may also have a negative effect on the performance 
of the obstacle detection technology. According to H. Guo et al., exhaust can be measured by utilizing 
infrared and ultrasonic sensors; the intensity of transmitted light would change between the laser 
sender and retro-reflector (Figure 13) [79]. Also, during wintertime, the hot exhaust instantly 
condenses into fog and this has a negative impact on the laser scanners’ performance [68]. 

 

Figure 13. The diagram of exhaust measurement using a remote-sensing system. 

An experiment using a smoke machine was conducted, which showed that the glycerol- and oil-
based evaporation weakened the performance range of the LIDAR sensor [68]. Therefore, regardless 
of the variety of sensors being integrated, the autonomous driving system may malfunction because 
of the front vehicle exhaust gases, to some extent. 

Infrared (IR; thermal imaging) proves very useful in smoky environments. As it can be seen in 
Figure 14 [80], before filling the environment with smoke, both normal and infrared cameras can 
capture the people clearly. It is apparent that after filling in the environment with smoke, only IR can 
capture the people and give real-time images. Consequently, in case of excessive exhaust, IR (thermal 
imaging) should be used for front and rear vehicle detection.  
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Figure 14. Comparison between a normal camera and a thermal camera [80]. 

5.2. Reflection from Glass and Smooth Surfaces 

During driving on the roads, sometimes there is an image of a moving car or cyclist reflected in 
the window of buses or in outer mirror walls, which can be misidentified as a real one (Figure 15). 
Because cameras utilize a feature-based approach to distinguish the obstacle by matching colour, 
symmetry and shape with a database, there is a high probability of a false obstacle detection.  

 

 
Figure 15. An example—a reflection of a bus on an outer wall glass [81]. 

The accuracy of obstacle detection would significantly decrease due to strong reflections [81]. 
An infrared beam generated by a sensor will not be reflected by a glass or any other smooth surfaces 
and as a result will not return to the receiver after reflection from extremely smooth surfaces, such as 
glass walls, mirrors and stationary waters on the ground. It is suggested that a 3D LIDAR system 
combined by cameras with a highly accurate range and outstanding angular performance can 
overcome this shortcoming in urban areas [51]. 

5.3. Small Obstacles the Vehicle can Pass-by, Drive on, Over and Through 

A rules-based classification method is used to divide all the obstacles into two categories: small 
obstacles (SOs) and large obstacles (LOs). The dimension of the objects will influence the final results.  
According to Cuong Cao Pham’s research, from the Gaussian distributions, anything lower than 0.3 
m is treated as background, so a special classifier should be applied to detect these objects [82,83]. 
The purpose of obstacle classification is to determine the different risk levels. It is relatively easy to 
detect if there is a big rock on the road. Small bricks and stones are not easy to detect. They can be 
dangerous when a tire passes over it because they can fly and hit another vehicle and/or passengers 
on the sidewalk. That is why it is very important to classify obstacles and decide on what size of 
obstacle should be detected under certain speeds [66]. The current solution is that the sensors/cameras 
mounted on the top of the car scan and observe the area in front and in case of an obstacle (Figure 16) 
[21] and will pick up different parameters, for example, H (height of monitoring scanner), β (the 
angle), b (the horizontal distance from obstacle), and send the information to an on-board computer 
to calculate h (height of obstacle).  
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Figure 16. View of the laser scanner with ground and obstacle [21]. 

In this field, negative obstacles—holes on the streets—require special attention. A major question 
associated with citizens’ complaints refers to bad street quality [84,85]. The pothole is a structural 
failure in asphalt pavement with bowl shape caused by traffic fatigue due to water erosion in the 
underlying soil [86]. The consequences include streets not being safe, lack of comfort, harsh impacts 
and damage on vehicles suspension systems, heavy repair bills, and the like. Currently, both Ford 
and Jaguar Land Rover are working on this application. The aim is for suspension systems to capture 
and provide information about the location and depth of potholes after passing through in order to 
share real-time data with other vehicles, and, as a result, avoid accidents and inform the authorities 
that there is a hole and that there is a need for repair [87]. By involving the pothole detection 
algorithm, vehicles can automatically detect and assess the severity of pothole, via a video recorded 
by fisheye cameras on the rear bumper of the vehicle [88].  

In terms of visual inspection, the potholes (Figure 17) are a sort of elliptical shape, characterised 
by distress region, partially surrounded by dark shadows [89]. By using the image segmentation 
algorithm, the shape and dimension of the distressed region can be estimated to some extent. Still, it 
is difficult to obtain the exact location and depth of potholes in advance without any negative impact 
of driving through them. This is an area for further research as, at the moment, the available obstacle 
detection systems can only “see” the protrusion from a faraway distance [88–90]. 

 

 

Figure 17. Image segmentation of potholes, (a) before algorithm implementation; (b) after algorithm 
implementation; (c) before algorithm implementation; (d) after algorithm implementation; [89]. 
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5.4. Detection of emergence service vehicles 
The emergency service vehicles, such as ambulances, fire trucks, and police cars, [91], can be 

detected according to shape, colour and size [17]. The common physical appearance and coloured 
patterns are the key properties considered to distinguish each vehicle [43]. A sound/alarm generated 
may also be considered, given that for each region, the sounds for ambulance and fire trucks are 
unique and easy to distinguish. Emergency service vehicles approaching can possibly send 
information across, specifying their exact location. This information can be displayed on the 
dashboard of every nearby vehicle to inform and advise if and when any specific actions should be 
taken [91,92].  

To give way to emergency vehicles, some abnormal driving may happen, e.g., passing a red 
signal, driving onto sidewalks or entering the opposite lane, which the ADAS system may evaluate 
as a potential risk of danger and therefore interfere. In such situations, measures should be in place 
to make sure that obstacle detection systems continue to function properly. 

5.5. Opening vehicle’s doors  

Special attention should be paid when opening a vehicle’s doors in urban areas (Figure 18). A 
driving support system should be in place to advise when it is safe to open vehicle doors. The best 
way possible is to keep vehicle doors locked if a potential risk of collision, an incoming object, a 
runner or a cyclist has been detected [93]. The DeepSeeroOP algorithm can possibly be implemented 
to handle this effectively. 

 
Figure 18. A door-opening accident captured by tachograph [92]. 

5.6. Autonomous Vehicle Driving in a Smart City Context  

Smart ICT systems have been implemented in Singapore, Brisbane and Stockholm to reduce 
traffic congestion [94,95]. With the implementation of autonomous vehicle driving (AVD), cities can 
benefit greatly from crash saving, driving time reduction and fuel efficiency [96]. It is predicted that 
the mixture of normal cars with human drivers and AVDs will be extreme chaos on our city streets. 
The AV technology may reach mass production by 2022 or 2025; before that, the policymakers and 
insurance industry need to prepare practical rules and regulations. Since all vehicles will be 
automatically controlled by computers, several systems could be installed and controlled remotely 
in order to improve the existing traffic. For example, a traffic smoothing algorithm [97] to effectively 
assist the traffic flow through a bottleneck or big traffic jam by informing each vehicle about the real-
time situation and providing advice on less congested routes. Moreover, the smart parking decision 
systems [98] can advise on available parking lots as well; in such a case, the system could find another 
location as a backup plan [99].  

The “Integrated Smart Spatial Exploration System” (INSPEX; Figure 19) is developing a 3D map 
with obstacle detection systems, which can be widely utilized in different poor conditions, such as 
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bad weather and/or insufficient illumination [100]. It transfers all the technologies from the ADAS 
system into a portable or wearable facility, combining the LIDAR, RADAR and ultrasonic systems. 
The original purpose of this initiative is to provide a “visual sense” and audio representation of the 
surroundings for blind people and inform them if there is any risk for traffic accidents, injury or 
collusion. This development can be extended to all citizens to protect them from accidents on the city 
streets no matter if they are disabled or not, or if they are pedestrians, cyclists, elderly, youngsters or 
teenagers.  

 
Figure 19. Integrated Smart Spatial Exploration System (INSPEX) demonstrator of individual 
supporting systems. 

6. Conclusion 

The development of a reliable and efficient obstacle detection system is a critical step to 
achieving autonomous driving. This modern concept, called “autonomous-driving”, will also be a 
solution to accidents in urban areas. Autonomous driving is the motivation for increased safety, 
sustainability and improved mobility in the future. 

In this paper, a thorough review of current developments of technologies for obstacle detection 
is presented. The purpose of an obstacle detection system is discussed, followed by an emphasis on 
its importance for preventing accidents on the road and in urban areas. A sophisticated obstacle 
detection system will detect any static and moving (dynamic) object in any driving environment and 
alarm for any potential risk of accidents and collisions. 

The review suggests that, at the moment, individual technologies for obstacle detection 
experience certain limitations and cannot be successfully applied in different situations such as 
during night time, poor weather conditions, in presence of smoke, or when surrounded by smooth 
surfaces generating lots of reflection and the like. In these situations, a combination of deferent 
technologies is required. However, data collected from different technologies like visual cameras, 
LIDAR, RADAR, SONAR, or IR is heterogeneous. The data would need to be processed accurately 
to create a single view; a sophisticated data fusion mechanism is required. Hence there is a need for 
further developments at this front to develop more reliable and accurate sensor fusion systems. 

The future challenge of autonomous driving and sophisticated obstacle detection systems is 
associated with the intimate and delicate integration of this modern concept in a smart city context. 
For this to happen, future work is required.  
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7. Future Work  

In order to achieve the fully automated level on the roads and city streets in the near future, it is 
absolutely important to ensure the accuracy of automatic tracking, object recognition and distance 
measurement. By giving priority control to machines and advanced computer systems, human driver 
error may be avoided to a large extent. Computer-aided vehicles cannot “communicate” with each 
other yet. Further developments at this front are required to make sure vehicles autonomously 
recognise each other on the road, city streets and in urban areas. 

Performance of obstacle detection system in poor weather conditions needs to be further 
improved, and further developments on risk mitigation tactics for data redundancy are expected. In 
addition, better accuracy of obstacle detection is needed when identifying the exact location and 
depth of potholes in advance without any negative impacts during driving; the obstacle detection 
technology is not sophisticated enough to provide the level of accuracy required.  

Furthermore, the security of data, reliable data fusion systems, and proper data management, 
together with cloud storage are critical for further implementation, because there will be tons of GB 
data being transferred simultaneously between vehicles and control centres to achieve real-time 
interaction. If the data is not protected but utilized for some sort of improper purposes, there are risks 
that the whole traffic system will malfunction and collapse. 
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