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Abstract: Given the great potential of porous carrier-based drug delivery for stabilising the amorphous
form of drugs and enhancing dissolution profiles, this work is focussed on the synthesis and application
of carbon onion or onion-like carbon (OLC) as a porous carrier for oral amorphous drug delivery,
using paracetamol (PA) and ibuprofen (IBU) as model drugs. Annealing of nanodiamonds at
1100 ◦C produced OLC with a diamond core that exhibited low cytotoxicity on Caco-2 cells. Solution
adsorption followed by centrifugation was used for drug loading and results indicated that the initial
concentration of drug in the loading solution needs to be kept below 11.5% PA and 20.7% IBU to
achieve complete amorphous loading. Also, no chemical interactions between the drug and OLC
could be detected, indicating the safety of loading into OLC without changing the chemical nature of
the drug. Drug release was complete in the presence of sodium dodecyl sulphate (SDS) and was faster
compared to the pure crystalline drug, indicating the potential of OLC as an amorphous drug carrier.
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1. Introduction

Poor solubility and dissolution of drugs have necessitated the formulation of drugs with more
than the required dose, leading to economic wastage and an increased risk of toxicity [1,2]. Hence, it is
very important for pharmaceutical scientists to develop effective techniques to improve the solubility
and dissolution behaviour of poorly water-soluble drugs.

Several studies have been performed to enhance solubility of drugs and, in recent years, adsorption
of drugs onto porous materials/adsorbents to produce stabilised amorphous drugs has attracted
increasing interest [3–5]. Unlike crystalline forms that have a long range molecular order, amorphous
forms of drugs lack three-dimensional molecular order, resulting in higher solubility,. However,
amorphous forms have poor stability and often tend to convert back to crystalline forms, which is
a major obstacle to formulation [6]. Loading of drugs into the pores of a carrier via adsorption restricts
the crystallisation of the drug, resulting in a stable amorphous form. In addition to stabilisation,
adsorption of drugs onto porous carrier increases the effective surface area of the drug that is
in contact with the dissolution media, resulting in higher solubility [7,8]. Various inorganic and
organic nanocarriers with suitable porosity were investigated. From organic nanocarriers, cubosomes,
hexosomes and spongosomes are interesting and offer high internal channels and porosity to load with
amorphous drugs [9].
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Recently, carbon-based materials with aggregate created porosity, such as nanodiamonds (NDs,
often obtained using detonation processes with TNT in a closed chamber offering oxygen-deficient
atmosphere and narrow particle distribution), fullerenes, and carbon nanotubes (CNTs), have been
studied as potential drug carriers via physical adsorption [10–12]; however, the application of these
materials in drug delivery is often associated with limitations, such as: 1) requirement of incorporating
functional groups in NDs to improve the interaction between the drug and ND [10,13,14]; 2) complicated
synthesis of fullerenes with very low purity and yield [15,16]; and 3) toxicity concerns about CNTs [17].

Carbon onion or onion-like carbon (OLC) can overcome the aforementioned limitations by its
ability to facilitate stronger π-π interactions between the aromatic groups of the drug and the graphene
rings of OLC [18–20], without the need of functionalisation. In addition, OLC can be prepared in
large quantities via annealing of NDs and there are no reports indicating any significant toxicity
of OLC [21–23]. Also, OLC undergoes aggregation, resulting in aggregate created mesoporosity
with some microporosity [18,21]. The developed porosity of OLC aggregates and the possible π-π
interactions can be advantageous for drug adsorption; therefore, exploring the potential of OLC as
a carrier for amorphous drug delivery is of great interest and several studies already demonstrated
promising properties for biological and biomedical applications [24–30].

Annealing of NDs at high temperatures (>1300 ◦C) is the most widely reported method for the
synthesis of OLC. However, such high temperature annealing poses a risk of formation of graphitic
ribbons and other bulk graphitic structures, which adversely affects the synthesis of OLC, especially
for synthesis under a controlled gaseous atmosphere instead of vacuum [21,31,32]. To overcome the
disadvantages, such as high energy consumption and formation of large graphitic particles, OLC were
synthesised by annealing NDs at 1100 ◦C in this study; according to previous studies [21,31,32], thermal
annealing at such temperatures does not induce the formation of large graphitic structures, such as
graphitic ribbons. Paracetamol (PA) and ibuprofen (IBU) were used as model drugs to investigate the
adsorption of drugs onto OLC.

2. Materials and Methods

2.1. Materials

Nanodiamond (ND) powder (particle size <10 nm, purity ≥97%) and paracetamol powder (purity
98–102%) were purchased from Sigma-Aldrich (Gillingham, UK). Ibuprofen powder (purity 99%) was
purchased from Discovery Fine Chemicals (Wimborne, UK). Ethanol, dimethyl sulfoxide, sodium
dodecyl sulphate, sodium dihydrogen phosphate and disodium hydrogen phosphate were purchased
from Fisher Scientific (Loughborough, UK). Caco-2 cells were purchased from ATCC. Dulbecco’s
Modified Eagles Medium (DMEM, with 4500 mg/L glucose, L-glutamine, sodium pyruvate, sodium
bicarbonate, amino acids and vitamins), foetal bovine serum, trypsin-EDTA solution, anti-mycotic
solution (with 10,000 units penicillin, 10 mg streptomycin and 25 µg amphotericin B per mL),
Hank’s balanced salt solution, MTT dye, phosphate buffered saline, trypan blue were purchased
from Sigma-Aldrich.

2.2. Preparation of Carbon Onions from Thermal Annealing of Detonation Nanodiamonds

Nanodiamond powder (100 mg) was placed in a quartz crucible and thermally annealed to 1100 ◦C
at a heating rate of 5 ◦C/min in a carbolite TZF furnace, under a flowing nitrogen atmosphere. The
sample was held for 0.5 h at temperatures of 350 and 700 ◦C, to remove adsorbed water molecules and
acidic groups, respectively [14], and was then held for 2 h at 1100 ◦C. After the thermal treatment, the
annealed sample was allowed to cool down to room temperature under nitrogen atmosphere and was
referred to as carbon onion or onion-like carbon (OLC).
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2.3. Physico-Chemical Characterisation

Scanning electron microscopy (SEM) images were recorded with an XL30 ESEM-FEG (Philips,
Amsterdam, The Netherlands) at an acceleration voltage of 10 kV.

High-resolution transmission electron microscope (HRTEM) images were recorded using a 2010F
microscope (JEOL, Welwyn Garden City, UK) operating at 200 kV and using an Ultrascan 4K camera
(Gatan, Pleasanton, CA, USA). Prior to analysis, the sample powders were suspended in ethanol and
sonicated for 1 hour to separate agglomerates. Five µL of the suspension was allowed to dry onto
a lacey carbon grid.

Raman spectroscopy was used to investigate the transformation of ND to OLC (graphitisation).
Spectra were measured on an InVia Raman microscope (Renishaw, Wotton-under-Edg, UK) equipped
with a 532 nm excitation source. The acquisition time was 10 seconds and 3 accumulations were
recorded. The peak positions and peak full width at half maximum (FWHM) were determined by
fitting spectra with a Gaussian line shape using Origin software (OriginLab, Northampton, MA, USA).

The surface chemical composition and sp3/sp2 bonding ratio was determined by X-ray
photoelectron spectroscopy (XPS) using an ESCALAB 250 electron spectrometer (Fisher Scientific,
Loughborough, UK). Analysis conditions include X-ray source with excitation energy of 15 KeV,
pass energy of 20 eV with a step size of 0.1 eV, dwell time of 50 ms and X-ray spot size of 500 µm.
The samples were placed on an adhesive copper plate at a chamber pressure of 5 × 10−10 mbar during
the analysis. X-ray excited Auger peaks (C KLL) at higher binding energy were analysed to obtain
carbon phase information.

Particle size analysis of OLC was performed using HELOS/BR Laser diffractometer (Sympatec
GmbH, Ausburg, Germany). 0.5% (w/v) OLC suspension was prepared in ethanol and was analysed
for particle size in the measuring range of 0.1 to 500 µm.

2.4. Cytotoxicity Assay

In vitro cytotoxicity studies of OLC were performed with human colon carcinoma cells (Caco-2
Cells) that were grown in DMEM supplemented with 10% FBS, 1% L-glutamine and 1% antimycotic
solution. Cells between passages 100 and 120 were used in the experiments. Cell suspension of
104 cells/mL was added to 96 well plates at 100 µL per well and incubated for 24 h. The medium was
then replaced with medium containing different concentrations of OLC (10-800 µg/mL) at 100 µL/well
and incubated for further 24 h. Caco-2 cells without OLC added was used as a control. After 24 h of
incubation, the medium was removed and the cells were washed with PBS to remove any adhered
OLC particles. One hundred µL of fresh medium and 20 µL of 5 mg/mL MTT in PBS solution was
added to each well and incubated for 4 h. To determine the cell viability, MTT containing medium was
replaced with 100 µL DMSO and the absorbance of the resulting formazan solution was determined at
492 nm on a SynergyTM HT microplate reader (Bio-Rad, Hercules, CA, USA).

2.5. Preparation of Drug Loaded Carbon Onion and Determination of Drug Loading Efficiency

Solution adsorption is a commonly used method for drug loading in to a porous carrier, where
the carrier is immersed in a saturated drug solution for a specific duration [33]. Drug loadings were
performed using three different drug concentrations (concentrations of 50, 100, 150 mg of PA per mL of
ethanol and concentrations of 300, 500 and 698 mg of IBU per mL of ethanol). 100 mg of OLC was
added to 10 mL of drug solution and was allowed to undergo stirring (100 rpm) at 20 ◦C for 1 hour.
The dispersion was centrifuged at 1500 rpm and the supernatant was collected for further analysis.
The sediment was allowed to dry in an oven at 40 ◦C for 24 h. Details of drug loading method were
described in our previous work [34].

Drug loading efficiency was determined by UV spectroscopy (Jenway, Stone, UK). Fifty mg of
drug loaded carbon onion (drug/OLC) complex was added to 50 mL of ethanol and was stirred for
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24 h at 25 ◦C. The solution was filtered and the concentration of the drug in the filtrate was determined.
Loading efficiency of OLC was calculated using Equation (1):

Loading efficiency (%) = (weight of the drug in complex / weight of complex) × 100 (1)

2.6. Characterisation of Drug Loaded Carbon Onion Complex

To investigate the solid state characteristics of the drug in drug/OLC complex, XRD patterns were
recorded on a D8 ADVANCE diffractometer (Bruker, Billerica, MA, USA) in the angular range of 10◦ to
50◦ (2θ) with a step size of 0.02◦, using a Cu–Kα source operated at 30 kV and 30 mA.

The presence of crystalline drug can be detected from the melting peak of DSC curves. DSC
analysis was performed using a Q100 DSC (TA Instruments, Leatherhead, UK). Sample (2–3 mg)
was transferred to a Tzero aluminium pan and temperature scan was performed at a heating rate of
10 ◦C/min under nitrogen gas.

FTIR was used to investigate the surface chemistry of OLC and to identify possible interactions
between the drug and OLC. Studies were performed using a Nicolet iS5 spectrometer (Fisher Scientific,
Loughborough, UK) equipped with an iD5 ATR accessory with a laminated diamond crystal at an angle
of incidence of 42◦. The spectra were obtained in the range of 500–4000 cm−1 (wavenumber) at a spatial
resolution of 4 cm−1 and were an average of 16 scans.

The porosity of the carrier before and after drug loading was investigated by nitrogen adsorption
technique using a Micrometrics Accelerated Surface Area and Porosimetry (ASAP) 2420 system
(Micrometrics, Norcross, GA, USA). Adsorption-desorption isotherms were obtained at 77 K in the
relative pressure range between 0.01 and 0.9. Prior to analysis, all samples were degassed at 40 ◦C
for 24 h. Pore size distribution was computed with the ASAP 2420 software using non-local density
functional theory (NLDFT) model assuming slit-shaped pores

2.7. Drug Release Studies

Drug release studies were performed at 37 ◦C using a USP Type II dissolution apparatus (Erweka
GmbH, Langen, Germany). Sample powders were filled in hard gelatin capsules (size 000) prior to
analysis and 900 mL of 0.1M sodium phosphate buffer of pH 5.8 and pH 7.2 was used as dissolution
media for paracetamol and ibuprofen, respectively. Dissolution was performed at paddle stirring speed
of 100 rpm with and without 1% w/v sodium dodecyl sulfate (SDS) added to the medium. 5 mL samples
were withdrawn at specific time intervals and replaced with fresh dissolution medium. The withdrawn
samples were filtered using 0.2 µm syringe filters and analysed using UV spectrophotometry (Jenway)
at wavelengths of 257 nm and 264 nm for paracetamol and ibuprofen, respectively.

2.8. Statistical Analysis

Statistical analysis was carried out on the data using GraphPad Prism software (Version 6.0 for
Windows, GraphPad Software, San Diego, CA, USA). Statistically significant differences were denoted
for p values of less than 0.05.

3. Results and Discussion

3.1. Characterisation of Annealed Nanodiamonds

3.1.1. Surface Morphology

SEM pictures (Figure S1) revealed a significant difference in the morphology of OLC compared to
pristine nanodiamonds. OLC showed tightly bound aggregates reaching several micrometers in size,
compared to NDs showing loosely bound agglomerates. The high agglomerating character of NDs
(due to the presence of surface functional groups) results in the formation of OLC aggregates, thereby
leading to aggregate induced porosity [13].
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3.1.2. Surface Characterisation

The Raman spectrum of ND (Figure S2 and Table S1) showed two dominant peaks: one at
1325 cm−1, corresponding to the sp3 diamond bonds (F2g) with a small background of sp2 disorder
peak (D band), and the second at 1595 cm−1, corresponding to sp2 dimer bonds (G band), indicating the
presence of graphitic carbon fragments, characteristic of ND produced from detonation process [35,36].
Additionally, the relative broadening of the diamond peak is typical of nanocrystalline diamonds [31].

Post annealing, the Raman spectrum consists of a broad D band at 1345 cm−1, attributed to an
increase in the sp2 disorder with a background of sp3 diamond, indicating the transformation of
diamond to graphite [37]. This position is also very near the one recorded in previous studies for high
purity OLC [31]. Moreover, the G band situated at 1587cm−1 corresponds to the optical phonon mode
of the E2g symmetry in graphite and is known as the tangential mode for the OLC. The FWHM of G
band decreased after annealing, suggesting the formation of graphitic shells [38–40].

HRTEM images (Figure 1) of ND show a diamond core with a typical lattice spacing of ~ 2 Å
{111} [41], surrounded by amorphous carbon. Images of OLC show the presence of a diamond core
surrounded by 3–5 graphitic shells, with a typical lattice spacing of ~ 3 Å {002} [42], indicating the
transformation of diamond to graphite, further supporting the data from Raman studies.
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Figure 1. Transmission electron micrographs of pristine nanodiamonds (A,B) showing the lattice
spacing of 2.06 Å corresponding to the plane {111} and the surrounding by amorphous carbon, and OLC
(obtained after annealing of ND at 1100 ◦C), (C,D) showing the presence of a diamond core surrounded
by 3-5 graphitic shells and the lattice spacing of 3.06 Å corresponding to the plane {002}.

Furthermore, the electronic microscopic observations of annealed ND do not show any evidence
of any large graphitic structures, such as graphitic ribbons, which corroborates the findings of the
Raman spectrum and is in accordance with the selected annealing conditions [21,31,32].
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3.1.3. Chemical Characterisation

The surface chemistry of ND and OLC was examined using XPS. The spectrum (Figure S3) of ND
contained an intense carbon (C 1s) peak and two weak peaks, corresponding to nitrogen (N 1s) and
oxygen (O 1s), marked at 284, 400, and 532 eV, respectively. Also, a series of CKLL Auger peaks appear
between 1200 and 1270 eV that can provide information about the chemical bonding [43,44]. The atomic
percentage of carbon increased, while the atomic percentage of nitrogen and oxygen decreased post
annealing (Table S2), which could be due to the reduction in the surface dangling bonds, such as –C-H
and –C-O- bonds, during annealing [36].

The relative contents of sp3 and sp2 carbon in the samples were determined by analysing the C-KLL
X-ray excited Auger spectra (Figure S4 and Table S2) with the method used by Jones et al. [45]. The KLL
spectrum was smoothened by Savitzy-Golay with 15 points and differentiated with 9 points [45].
The distance (energy ‘D’) between the maximum of positive excursion and the minimum of negative
excursion of the first differential was determined. Figure S5 shows XRD patterns of PA, indicating
typical diffraction peaks of crystalline PA located at 15.4◦, 18.1◦, 20.3◦, 23.3◦, 24.2◦, and 26.4◦, respectively.
Figure S6 shows XRD patterns of ibuprofen, indicating typical diffraction peaks of crystalline ibuprofen
located at 16.4◦, 17.4◦, 20◦ and 22◦, respectively. As the typical XRD patterns for both drugs studied
are located at the 2θ ranging from 10 to 40◦, the XRD diffraction presented in Section 3.4 is also shown
in the same 2θ range for comparison purpose.

Post-annealing, the D value was found to increase, indicating an increase in the content of sp2

carbon [46]. Relative contents of sp3 and sp2 carbon were determined from the linear interpolation of
the D value of 13 eV for diamond (100%- sp3) and 22 eV for graphite (100%- sp2). The D value of ND
was found to be 13 eV, despite the presence of sp2 carbon, and the exact reason for this is not clear.
Post annealing, the sp2 content was found to increase to 68%, indicating the conversion of diamond to
graphite, consistent with the results from Raman spectroscopy. OLC also contains 32% of sp3 carbon,
indicating the presence of diamond core, consistent with the results from HRTEM analysis.

3.2. Particle Size Analysis

OLC produced from thermal annealing of NDs, showed an aggregate size in the range of
0.45–21.5 µm (Figure 2 and Table 1).
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Figure 2. Particle volume size distribution of carbon onion obtained from laser diffraction analysis. 
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Figure 2. Particle volume size distribution of carbon onion obtained from laser diffraction analysis.
All samples have a broad particle size distribution in the range of 0.5 to 21.5 µm. This distribution is
slightly bimodal, with two peaks between 1.6 microns and 2 microns and at 3.8 microns and shows
a majority of particles with a size between 1 and 5 µm.
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Table 1. Particle size characteristics of carbon onions obtained from laser diffraction analysis.

Material X10a (µm) X50b (µm) X90c (µm) Volume Mean
Diameter (µm) Span

Carbon onion 0.88 ± 0.0 2.2 ± 0.0 7.45 ± 0.02 3.37 ± 0.01 2.99 ± 0.01
a Particle dimension corresponding to 10% of the cumulative undersize distribution; b Median particle dimension; c

Particle dimension corresponding to 90% of the cumulative undersize distribution.

The primary particle size of OLC depends on the primary particle size of ND used; however,
the aggregate size depends on various factors, such as annealing temperature and aggregate size of
ND used for the synthesis [47]. Detonation ND usually has a primary particle size of less than 10 nm;
however, the presence of surface functional groups facilitates the formation of tight aggregates of size
20–30 nm, and these primary aggregates form secondary aggregates of 100 nm to a few micrometres in
size. In addition, the presence of van der Waals interactions between these aggregates often leads to the
formation of agglomerates. Therefore, application of these agglomerates of ND as a starting material in
the synthesis of OLC resulted in the production of aggregates of OLC bonded by graphitic layers [14].

3.3. Drug Loading Efficiency

UV results indicated that, with an increase in the drug concentration, a statistically significant
difference was found in the drug loading (p < 0.05 for PA and p < 0.01 for IBU; one-way ANOVA).
Drug loading reached a maximum when the drug concentration in the loading solution reached the
saturation point (Figure 3).
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Figure 3. Effect of initial drug concentration on loading efficiency (stirring speed: 100 rpm; temperature:
20 ◦C; solution volume: 5 mL; OLC dose: 500 mg; contact time: 1 hour). Results are the mean of
triplicate experiments ± SD. Statistically significant differences are noted for p < 0.05 (* p < 0.05,
** p < 0.01, one-way ANOVA and Tukey’s multiple comparison test).

The higher loading efficiency for ibuprofen (IBU) compared to paracetamol (PA) could be attributed
to the higher solubility of IBU in ethanol. Although the loading efficiency was higher, the fraction of
adsorbed to the unadsorbed drug remaining in the initial solution used for OLC loading was lower for
IBU compared to that of PA, which could be due to stronger interactions between IBU and ethanol or
due to saturation of OLC.
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3.4. Solid State Analysis of Drug

Thermal analysis results of PA/OLC complex with different drug loadings were compared
(Figure 4A). In the case of PA/OLC complex, the complex with a drug loading of 15.5% exhibited
a melting peak at 169 ◦C, characteristic of monoclinic Form I paracetamol [48], suggesting the presence
of crystallinity; however, the complex with drug loading ≤11.5% did not show any crystallinity,
which could indicate that saturation has been reached and any loading higher than 11.5% results in
crystallisation of PA.
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Figure 4. (A): DSC curves of carbon onion (OLC) and paracetamol loaded carbon onion (PA/OLC
complex) with different drug loadings. (B): DSC curves of carbon onion (OLC) and ibuprofen-loaded
carbon onion (IBU/OLC complex) with different drug loadings.

Solid state characteristics of IBU/OLC complex with different drug loadings were also compared
and the complex with a drug loading of 31.6% and 36.6% exhibited a melting peak at 74.8 ◦C [49,50],
suggesting the presence of crystallinity; however, the complex with loading 20.7% did not show any
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crystallinity (Figure 4B), which could indicate that saturation has been reached and any loading higher
than 20.7% results in crystallisation of ibuprofen.

The results from DSC were confirmed by X-ray diffraction studies (Figure 5). As mentioned
previously in Section 3.1.3, the XRD diffraction graphs presented in Figure 5 only demonstrate the
data within the 2θ range from 10◦ to 40◦ for comparison purpose. For OLC, there is a negligible broad
graphitic (002) peak at round 2θ = 25.2◦, which comes from the onion-like nanographite. Diamomd
(111) and (220) planes characteristic peaks are located at around 2θ = 43.7◦ and 75.1◦, which are not
shown in the 2θ range selected in Figure 5.
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Figure 5. XRD patterns of carbon onion (OLC) paracetamol-loaded carbon onion (PA/OLC complex)
and ibuprofen-loaded carbon onion (IBU/OLC complex) with different drug loadings.

XRD patterns of PA/OLC complex with a loading of 15.5% showed peaks at 15.4◦, 18.1◦, 20.3◦,
23.3◦, 24.2◦ and 26.4◦(2θ), corresponding to crystalline PA [51]. However, PA/OLC complex with
loadings of 11.5% (Figure 5) and 7.1% (data not shown) did not show any peaks corresponding to
crystalline PA, suggesting that the drug was present completely in an amorphous form.

In the case of IBU loading, the complex with loadings of 31.6% (Figure 5) and 36.6% (data
not shown) showed peaks at 16.4◦, 17.4◦, 20◦ and 22◦ (2θ), corresponding to crystalline IBU [52,53].
However, IBU/OLC complex with a loading of 20.7% did not show any diffraction pattern corresponding
to crystalline IBU. Therefore, all subsequent studies were performed on PA/OLC complex-11.5% and
IBU/OLC complex-20.7% only, which showed no crystallinity in the sample.

3.5. Drug-Carrier Interactions

It is important to consider possible chemical interactions between drugs and OLC, since these
interactions may affect the chemical nature and stability of drugs. FTIR spectra of PA/OLC complex
11.5% and PA/OLC physical mixture containing an equivalent amount of drug as that of the complex
showed peaks corresponding to an NH amide band stretch at 3320 cm−1 and a broad phenolic OH
stretch at 3129 cm−1, similar to that of Pure PA (Figure 6A). Spectra of PA/OLC complex did not show
any significant shift in the existing peaks or new peaks, confirming physical adsorption of PA. Also,
spectra of IBU/OLC complex-20.7% and IBU/OLC physical mixture containing an equivalent amount
of drug as complex showed peaks corresponding to carbonyl CO stretch at 1694 cm−1, similar to pure
IBU, and no new peaks were found, indicating the absence of any chemical interactions (Figure 6B) [54].
Thus, the interaction of drug/OLC is inferred to be through physical adsorption.
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Figure 6. (A): FTIR spectra of paracetamol (PA), carbon onion (OLC), paracetamol-loaded carbon 

onion (PA/OLC complex) and physical mixture of paracetamol and carbon onion (PA/OLC phy mix). 

(B): FTIR spectra of ibuprofen (IBU), carbon onion (OLC), ibuprofen-loaded carbon onion (IBU/OLC 

complex) and physical mixture of ibuprofen and carbon onion (IBU/OLC phy mix). Note that the 

transmittance scale is arbitrary. 
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were found sticking to the surface of the vessel). Similarly, drug release from IBU/OLC complex was 

also incomplete in the absence of SDS; however, this was slightly higher, with 17.4% release in 10 min 

Figure 6. (A): FTIR spectra of paracetamol (PA), carbon onion (OLC), paracetamol-loaded carbon onion
(PA/OLC complex) and physical mixture of paracetamol and carbon onion (PA/OLC phy mix). (B): FTIR
spectra of ibuprofen (IBU), carbon onion (OLC), ibuprofen-loaded carbon onion (IBU/OLC complex)
and physical mixture of ibuprofen and carbon onion (IBU/OLC phy mix). Note that the transmittance
scale is arbitrary.

3.6. In Vitro Drug Release Studies

Release profiles of pure drug and drug/OLC complex in the presence and absence of SDS are
compared in Figure 7. In the absence of SDS, drug release from PA/OLC complex was incomplete,
with only 11.4% release in 10 min and could be due to poor wettability of carbon onion (particles were
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found sticking to the surface of the vessel). Similarly, drug release from IBU/OLC complex was also
incomplete in the absence of SDS; however, this was slightly higher, with 17.4% release in 10 min and
could be attributed to the higher solubility of ibuprofen in the sodium phosphate buffer media. In the
presence of SDS, drug release from PA/OLC complex was complete in 15 min, and was significantly
faster (p < 0.0001, two-way ANOVA) compared to pure PA. Similarly, drug release of IBU/OLC complex
was complete in 30 min in the presence of SDS and was significantly faster (p < 0.0001, two-way
ANOVA) compared to pure crystalline IBU.
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Figure 7. (A): Dissolution profiles of paracetamol (PA) and paracetamol-loaded carbon onion (PA/OLC
complex) determined at pH 5.8. Curves PA-SDS and PA/OLC complex-SDS represent dissolution
profiles determined in media containing 1% SDS. (B): Dissolution profiles of ibuprofen (IBU) and
ibuprofen-loaded carbon onion (IBU/OLC complex) determined at pH 7.2. Curves IBU-SDS and
IBU/OLC complex-SDS represent dissolution profiles determined in media containing 1% SDS.
Statistically significant differences are noted for P < 0.05 (* P < 0.05; *** P < 0.001; **** P < 0.0001,
two-way ANOVA and Bonferroni’s multiple comparison test). Results are the mean of triplicate
experiments ± SD.
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Complete release in the presence of SDS could be due to the increased wettability of OLC particles.
Compared to the pure drug, faster release in drug/OLC complex could be attributed to the amorphous
nature of the drug loaded in complex and higher surface area that is in contact with the dissolution
media, supporting the advantage of using OLC in amorphous drug delivery.

To better understand the kinetics of drug release, drug release profiles obtained in the presence of
SDS for PA and IBU were fitted with the simplified Higuchi model based on Fick’s law of diffusion,
which describes drug release from an insoluble matrix [55,56]. Higuchi square root of time plots for
both drug loaded complexes (Figure 8 and Table 2), display a two-step release, with an initial burst
effect, which could be attributed to the drug release from superficial pores, followed by a slow release,
which could be attributed to the drug release from deeper micropores (Section 3.7).
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Figure 8. Two step regression linear utilising Higuchi’s square root of time plot for drug release from
complex in the presence of SDS. In brackets pH of the dissolution medium. Each point represents the
mean of n = 3 determinations.

Table 2. Kinetic parameters of drug release from paracetamol and ibuprofen loaded carbon onion
corresponding to a 2-step release with an initial burst effect during 3 to 10 min.

Higuchi Diffusion Two Step

Sample Duration Rate Constant Linear Regression
Coefficient

PA/OLC complex at pH 5.8 3–10 min 46.34 0.999
10–20 min 16.91 0.797

IBU/OLC complex at pH 7.2 3–10 min 48.07 0.94
10–20 min 13.87 0.916

3.7. Porosity Analysis

N2 sorption analysis was performed to understand the changes in the porosity of OLC before and
after drug loading. The adsorption/desorption isotherm (Figure 9) of OLC before and after loading
exhibited a typical type II isotherm and H3 hysteresis loop, corresponding to the presence of aggregate
created porosity.

The pore size distribution (Figure 10) of pure OLC shows the presence of pores in the range of
2–14 nm. The pore size distribution for micropores could not be determined, however the micropore
volume (Table 3) of pure OLC was determined to be 0.03 cm3/g.
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Table 3. Surface areas and pore volumes obtained from nitrogen sorption of carbon onion
(OLC), ibuprofen-loaded carbon onion (IBU/OLC complex) and paracetamol loaded carbon onion
(PA/OLC complex).

Sample Specific Surface Area1

(m2/g)
Total Pore Volume

(cm3/g)
Micro Pore Volume2

(cm3/g)

OLC 293.3 1.2 0.03
PA/OLC complex-11.5% 138.4 0.73 0.002
PA/OLC phy mix-11.5% 210.1 0.86 0.015
IBU/OLC complex-20.7% 46.1 0.27 0
IBU/OLC phy mix-20.7% 65.4 0.38 0

1 Calculated by BET method; 2 Calculated by NLDFT method.
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Figure 9. Nitrogen adsorption/desorption isotherms at 77 K of carbon onion (OLC) before and after 

drug loading showing, (A) paracetamol loaded carbon onion (PA/OLC complex) and physical 
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Figure 9. Nitrogen adsorption/desorption isotherms at 77 K of carbon onion (OLC) before and after
drug loading showing, (A) paracetamol loaded carbon onion (PA/OLC complex) and physical mixture
of paracetamol and carbon onion (PA/OLC phy mix); (B) ibuprofen-loaded carbon onion (IBU/OLC
complex) and physical mixture of ibuprofen and carbon onion (IBU/OLC phy mix).
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Figure 10. Pore size distribution (2–14 nm) calculated using NLDFT slit-shaped pore model of
carbon onion (OLC) before and after drug loading showing- (A) paracetamol-loaded carbon onion
(PA/OLC complex) and physical mixture of paracetamol and carbon onion (PA/OLC phy mix);
(B) ibuprofen-loaded carbon onion (IBU/OLC complex) and physical mixture of ibuprofen and carbon
onion (IBU/OLC phy mix).

For PA/OLC physical mixture, a reduction in surface area and pore volume (Table 3) was observed
but the pore size distribution (Figure 10) was similar to that of OLC, indicating that there was no drug
present in the pores of OLC. However, for IBU/OLC physical mixture, pores in the range of 2–5 nm
completely disappeared and could be due to the adsorption of gaseous IBU on OLC that could be
attributed to the sublimation of IBU during N2 sorption analysis [57].

Post loading, in PA/OLC complex, a reduction in the pore size was observed (Figure 10) in pores
in the range of 2–14 nm and the pore size distribution broadens in the range of 7.5–10.5 nm, suggesting
the adsorption of PA into the pores of OLC. In the case of IBU/OLC complex, pores in the range of
2–5 nm completely disappeared and the pore size distribution broadens for pores in the range of
5–14 nm, which could be due to the reduction of pore size from drug loading
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3.8. Toxicity Studies of Carbon Onion

Toxicity studies of these OLC aggregates were performed on Caco-2 cells to determine the
feasibility of application of OLC in oral drug formulations. The efficiency of uptake of microparticles
is much lower compared to nanoparticles, therefore the risk of toxicity associated with these OLC
aggregates can be much lower.

However, studies have shown uptake of microparticles of size up to 10 µm by intestinal
epithelium [58], suggesting the importance of considering the toxicity of microparticles. Hence,
toxicity of OLC aggregates on Caco-2 cells was investigated by MTT assay.

OLC showed a significant effect (p < 0.0001, one-way ANOVA) on the survival of Caco-2 cells
(Figure 11), with cell survival reduced when exposed to media containing OLC concentrations
≥400 µg/mL; however, the cell viability was still over 75%, suggesting OLC is a safe drug carrier for
oral drug delivery. Since OLC aggregates are insoluble, the chance of internalisation is low, although
synthesis conditions need to be optimised to eliminate the production of aggregates of size <10 µm, to
avoid the possibility of internalisation.
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Figure 11. Cytotoxicity of carbon onion against Caco-2 cells. MTT assay was used to analyse the
survival rate of Caco-2 cells incubated with different concentrations of carbon onion. Statistically
significant differences compared to control (0 µg/mL) are noted for P < 0.05 (** P < 0.01; *** P < 0.001;
**** P < 0.0001, one-way ANOVA and Dunnett’s multiple comparison test). Results are the mean of
triplicate experiments ± SD.

4. Conclusions

The current study investigated the application of carbon onion (OLC) aggregates as drug carriers
using paracetamol and ibuprofen as model drugs. Nanodiamonds were annealed to 1100 ◦C and
OLC aggregates produced exhibited very low cytotoxicity on Caco-2 cells with cell viability over 75%
at all the concentrations tested (10−800 µg/mL). The solution adsorption method was employed for
drug loading and the results demonstrated that loading efficiency increased with an increase in initial
drug concentration, reaching a maximum when the initial drug concentration reached the saturation
point. Results from thermal analysis and diffraction studies suggested that the drug was found to be
completely amorphous in PA/OLC complex and IBU/OLC complex with the loading of 11.5% and
20.7%, respectively, indicating that the concentration of drug in the loading solution needs to be
optimised to achieve complex without any crystalline drug. Drug release kinetics were studied using
USP II dissolution method in sodium phosphate buffer with and without SDS. About 11.4% and 17.1%
of the total loaded PA and IBU, respectively, was released in the absence of SDS; however, this was
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incomplete due to poor wettability of OLC. Complete drug release was achieved in the presence
of SDS and the dissolution rate was higher than that of the pure crystalline drug, establishing that
drug loading was reversible and also faster due to amorphous nature of the drug loaded into OLC.
The maximum initial concentration of drugs in the loading solution to ensure complete amorphous
drug loadings is estimated at 11.5 PA and 20.7 IBU. These results suggest that the development of
carbon onion based drug delivery systems is promising.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/4/281/s1,
Figure S1: Scanning electron microscope pictures showing the morphology of (a) pristine nanodiamonds showing
loosely bound agglomerates and (b) carbon onion showing tightly bound aggregates reaching several micrometers
in size; Figure S2: Raman spectra of ND and OLC showing the F2g peak corresponding to the sp3 diamond
at 1325 cm−1, D band and G band corresponding to sp2 disorder at ~1330 cm−1 and ~1570 cm−1, respectively.
Post annealing, OLC spectra consists of a broad D band in the region 1332–1350 cm−1, attributed to increase in
the sp2 disorder with a background of sp3 diamond, indicating the transformation of diamond to graphite [37];
Figure S3: XPS spectra of pristine nanodiamonds showing an intense carbon peak at 284 eV and two weak
nitrogen and oxygen peaks at 400 and 532 eV, respectively. (a) and carbon onion showing a decrease in intensity
for carbon, oxygen and nitrogen peaks (b). The major peaks are marked for Carbon (C 1s), Nitrogen (N 1s) and
Oxygen (O 1s) present on the surface.; Figure S4: XPS C KLL Auger Spectra (a) and their first derivatives (b) as
compared with pristine nanodiamonds (ND) and carbon onion (OLC). D parameter represents the width between
maximum and minimum excursions of the derivative of Auger spectra. D value was found to increase after
annealing, indicating an increase in the content of sp2 carbon [36]; Figure S5: XRD patterns of PA showing typical
diffraction peaks of crystalline PA (15.4◦, 18.1◦, 20.3◦, 23.3◦, 24.2◦ and 26.4◦(2θ), [51]); Figure S6: XRD patterns of
ibuprofen showing typical diffraction peaks of crystalline IBU (16.4◦, 17.4◦, 20◦ and 22◦ (2θ), [52,53] ); Table S1:
Raman shifts, areal intensities and peak widths obtained from the spectra of ND and OLC determined by fitting
spectra with a Gaussian line shape using Origin software. After annealing, the FWHM of G band decreased,
suggesting the formation of graphitic shells [38–40]; Table S2: The relative atomic contents of carbon, oxygen,
and nitrogen, and the relative atomic contents of different chemical states of carbon determined from XPS analysis.
The atomic percentage of carbon increased, while the atomic percentage of nitrogen and oxygen decreased post
annealing, which could be due to the reduction in the surface dangling bonds, such as –C-H and –C-O- bonds,
during annealing [36]. After annealing, the sp2 content was found to increase to 68%, indicating the conversion of
diamond to graphite and OLC still contains 32% of sp3 carbon, indicating the presence of diamond core.
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