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Abstract

We study the effects of contagion around the global financial crisis (GFC) and the Euro-
zone crisis periods using German and UK returns, each paired with returns from Central
and East European (CEE) stock markets that recently joined the European Union (EU).
Using bivariate vector error-correction models (VECMs) estimated in GARCH(1,1), we
find strong support for long-run equilibrium conditions. This finding suggests that tests of
tail dependence using differenced VARs may be mis-specified when long-run equilibrium
conditions apply. Past news has more persistence on current volatility in CEE markets than
in the developed markets. Past volatility has more persistence in the developed markets
compared to the CEE markets. The T-V symmetrized Joe—Clayton (T-V SJC) copula out-
performs all other copulas in goodness-of-fit, including, the T-V Gaussian and Student ¢
copulas. This result is supported by a differenced VAR-GARCH (1,1). For CEE and devel-
oped market returns, no more than half of our market pairs exhibit significant increases in
lower tail dependence, under the T-V SJC copula. Given the number of paired compari-
sons, the evidence on joint extreme dependence is weak. As such, CEE stock markets expe-
rienced little contagion effects during the GFC and Eurozone crisis periods, contrary to
prior results. We find that the legal environment negatively impacts financial development,
perhaps causing CEE and the EU markets to be isolated.
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1 Introduction

Over the past two decades or so, academic researchers, practitioners and regulators have
developed renewed interest in low-probability events associated with the dependence struc-
ture of asset returns. Both the global financial crisis (GFC) of 2007-2009 and the Eurozone
crisis of 2010-2018 demonstrate the economic problems associated with financial linkages
and contagion effects.! One interesting area relates to the dependence structure of pairs of
equity market returns around economic shocks or crisis events. Indeed, Erb et al. (1994)
and Longin and Solnik (2001) report that pairs of stock market returns exhibit stronger
correlations during market declines compared to market upturns. A more complete
approach to test for extreme dependence is to decompose the multivariate joint distribution
of stock returns into their marginal distribution functions and a copula part that describes
the dependence structure between the pairs of returns. A copula approach provides more
information regarding dependence in returns than linear correlation, especially when the
joint distribution of the returns is nonelliptical (Patton 2006). Prior studies (Caporale et al.
2014; Mollah et al. 2016) tend to estimate joint dependence using the dynamic conditional
correlation (DCC) of Engle (2002). However, this approach has important econometric
limitations, since the DCC has no testable regularity conditions and asymptotic properties
(Caporin and McAleer 2013). It turns out that the copula approach is a useful way to exam-
ine contagion and spillover effects, especially for stock markets that experience episodes of
crises.

We therefore examine the dependence structure of stock returns for a set of nine Cen-
tral and East European (CEE) stock markets, seven of which are based in economies that
joined the European Union (EU), having satisfied the convergence criteria of the Maas-
tricht Treaty.> By examining the dependence structure during tranquil and crisis periods,
we show how dependence in returns varies under long-run equilibrium conditions for a set
of countries that operate under common economic conditions. Since the EU’s Financial
Services Action Plan of 1999 was designed to achieve full integration of financial mar-
kets, through the harmonization of rules on financial transaction, we predict that these
stock markets are likely to experience strong market integration and contagion effects dur-
ing the crisis periods. Indeed, Kalemli-Ozcan et al. (2010) show that a primary facilitator
of EU integration was the elimination of currency risk such that the introduction of the
euro increased cross-border bilateral bank holdings and transactions by around 40% for
euro area countries. For the accession countries examined in our paper, market integration
implies less home bias, more risk sharing, and a lower cost of capital for firms operat-
ing in the area (see Kwabi et al. 2016). However, Chambet and Gibson (2008) show that
many emerging markets are segmented because they are less open to international trade
and that trade openness positively relates to stock market integration. Furthermore, Wu
(2000) shows that strong intra-regional trade and liberalization are an important source of
contagion effects (see Wu et al. 2003). As such, it is possible that our accession countries

! European leaders declared an end to the Eurozone crisis in August 20, 2018 (Brunsden and Khan 2018).

2 Following the signing of the Treaty of Accession of April 16, 2003, ten countries, including Malta and
Cyprus, joined the EU on May 1, 2004. Five of our nine CEE countries (Czech Republic, Estonia, Hungary,
Poland and Slovenia) that joined on May 1, 2004, belong to the “eight first-wave accession countries.” Bul-
garia and Romania joined the EU in January 1, 2007 (second-wave). Croatia joined in July 1, 2013 in the
third-wave (see https://en.wikipedia.org/wiki/Central_and_Eastern_Europe). We exclude Bulgaria and Lith-
uania because of the shorter history of their MSCI data. Price observations for Latvia and Slovakia are una-
vailable as MSCI data in Datastream. The Russian and Ukrainian stock indices are included as benchmarks.
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may not have achieved the high level of market dependence and integration reported by
some DCC studies (Syllignakis and Kouretas 2011), especially since new evidence indi-
cates that DCC estimates may unreliable predict market dependence and contagion effects
(Caporin and McAleer 2013). Following Chambet and Gibson (2008), we should expect a
lower level of extreme dependence between CEE stock markets paired with the UK stock
market, compared to CEE stock markets paired with the German stock market, perhaps
because the level of UK imports/exports of goods and services to CEE countries is much
lower compared to the level of trade between CEE countries and Germany.? Nevertheless,
the UK and euro area are the dominant sources of external bank finance for CEE coun-
tries, and the UK has the more dominant financial center compared to the German financial
center (Lane and Milesi-Ferretti 2007). Thus, the larger size and higher liquidity level in
the UK stock market might also influence the level of dependence between CEE and UK
stock market returns.

Market integration, however, has important negative effects. They include fewer oppor-
tunities for portfolio diversification, increases in contagion risks and spillover effects (Goe-
tzmann et al. 2005). Increased financial integration and frictionless capital markets can
even undermine a country’s macroeconomic policy (Blanchard and Dell’Ariccia 2010).
Even so, contagion and herding effects do not affect all countries and markets with the
same level of intensity (Donadelli and Paradiso 2014; Dias and Ramos 2014). Overall,
these apparently conflicting economic conditions make CEE markets an interesting case
for testing extreme dependence. Our paper also contributes to the debate on the relative
contribution of country factors, compared to industry factors, in determining the extent of
volatility and diversification opportunities for investors (Heston and Rouwenhorst 1994;
Cavaglia et al. 2000; Bekaert et al. 2009).

This paper makes two main contributions. To the best of our knowledge, this is the first
paper to use bivariate vector error-correction models (VECMs) in GARCH (1,1), hereaf-
ter, VECM-GARCH, in order to extract dynamic conditional correlations (DCCs) as inputs
into time-varying (T-V) copula functions. We predict that the long-run equilibrium prop-
erties of the VECM-GARCH will constrain price movements, causing more dependence
between pairs of markets, compared to the differenced VAR-GARCH (1,1).4 Therefore, we
predict that the VECM-GARCH will exhibit more extreme dependence compared to the
differenced VAR-GARCH. This is because, under the error-correction specification, the
variables will not move too far apart when long-run equilibrium conditions apply (Engle
and Granger 1987). As such, we argue that failure to use a correctly specified VAR may
explain the weak evidence for return dependence reported by Barunik and Vacha (2013),
for CEE stock markets and for stock markets in non-Euro countries (Bartram and Wang
2015), on the assumption that a VECM is the preferred model specification. Further-
more, Bollerslev and Engle (1993) put forward the idea of co-persistence in conditional
variances, where combinations of variables can contain a long-run component in co-per-
sistence that can have a generalized interpretation similar to Engle—Granger cointegration
(Engle and Granger 1987). An error-correction framework is useful in our setting since it
allows us to interpret the short-run and long-run dynamics of stock markets that operate

3 UK exports of goods and services to CEE countries during the 10 years to 2014 are a mere £16 billion,
representing 3% of the region’s imports. German exports to the region are almost 15 times larger. http://
waterbriefing.org/home/company-news/item/8816-uk-ti-leads-drive-to-double-trade-to-central-and-eastern-
europe. Accessed 28 July 2017.

4 For simplicity, we state VECM-GARCH and differenced VAR-GARCH, accordingly.
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in countries that have common macroeconomic policies and common financial market
regulations.” An error-correction framework also improves estimation consistency when
long-run conditions apply. Prior studies tend to estimate DCCs using a differenced VAR-
GARCH, which, in turn, ignores long-run conditions (see Mollah et al. 2016). Syriopoulos
and Roumpis (2009) and Caporale et al. (2014) estimate VECMs and find support for long-
run equilibrium conditions. Caporale et al. (2014), in particular, find support for increases
in the DCCs during the GFC period. An important limitation of both studies is that copula
functions are not estimated. Our estimates focus on sample periods that constitute crisis
and non-crisis periods, since volatility persistence in the underlying GARCH will be less
sensitive to parameter changes and model misspecification (see Lamoureux and Lastrapes
1990), compared to the case of a full sample study.

Under VECM-GARCH, we find strong support for long-run equilibrium conditions,
especially for pairs of CEE and UK market returns, during the Eurozone crisis period.®
We attribute the strong support for the long-run conditions of the Eurozone crisis period
to the increase in global and Euro-area financial flows, since the end of the GFC (see ECB
2012). We also take the view that during the Eurozone crisis period, CEE, UK and German
investors attributed more certainty and stability to UK economic conditions than economic
conditions in Germany, perhaps, reflecting a weaker connection between the UK and the
Eurozone crisis. This would increase financial flows to the UK market.” We find that EU
membership does not necessarily imply the presence of long-run equilibrium conditions.
For example, German and UK stock markets have no long-run equilibrium relationship
with the Czech Republic stock market, nor do the Slovenian and German stock markets
have long-run equilibrium relations. Indeed, both the Czech Republic and Slovenia joined
the EU during the first wave. Even so, this has not facilitated the presence of long-run
conditions with the developed markets. In contrast, both the Croatian and Russian markets
have long-run equilibrium conditions with the German and the UK stock markets during
the non-crisis period, even if Croatia and Russia are non-EU members. These findings sug-
gest that common financial regulation and economic policies alone are insufficient to bring
about long-run equilibrium relationships across financial markets.

Our second main contribution is to establish the time-varying symmetrized Joe—Clayton
(T-V SJC) copula as the best function to describe the dependence structure of CEE and the
developed market returns. Related work favors the Student ¢ copula over other copulas, such
as the Gaussian copula (Breymann et al. 2003; Jondeau and Rockinger 2006). The T-V SJC
copula allows tail dependence to determine the presence or absence of asymmetry. This

5 The Maastricht Treaty criteria do not apply to stock market conditions. The treaty requires convergence
in price stability (nominal inflation), exchange rate stability, durable convergence of long-term interest rates
and sustainability on certain fiscal measures. However, the EU’s Financial Services Action Plan of 1999
aims to harmonize rules on securities, banking, insurance, mortgages and other financial transactions. We
argue that satisfying both requirements would imply stronger stock market interdependence.

6 Although different in specification, many econometricians interpret the Engle-Granger, Johansen coin-
tegration tests and the f-ratio of the error-correction model (ECM) as measures of long-run equilibrium
conditions (see Banerjee et al. 1998).

7 The GFC has its source in the US subprime credit market, whereas the Eurozone Crisis has its source in
Portugal, Italy, Ireland, Greece and Spain (Frieden and Walter 2017). We do not treat Portugal, Italy, Ire-
land, Greece and Spain as sources of contagion since they have relative small stock markets and economic
links with the CEE countries. Germany dominates the UK in terms of its economic association with the
Eurozone Crisis and economic links with CEE countries. Therefore, we treat Germany as the main econ-
omy to carry the cost of the Eurozone Crisis. However, the UK dominates Germany as a financial centre
and as an important source of contagion during the GFC.
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limits an important weakness of the basic Joe—Clayton copula when determining upper and
lower tail dependence (Patton 2006). Since Fantazzini (2009) shows that marginal and cop-
ula misspecifications can lead to biases in skewness and volatility estimates, we estimate
four copula functions under both the VECM-GARCH and the differenced VAR-GARCH.
Using the T-V SJC copula, we find weak evidence that joint negative extremes dominate
joint positive extremes. This finding holds across both the VECM-GARCH and the dif-
ferenced VAR-GARCH specifications. Using CEE and UK returns, no more than five of
our ten market pairs exhibit significant increases in lower tail dependence during the Euro-
zone crisis period (compared to the non-crisis period). For CEE and German returns, no
more than five market pairs exhibit significant increases in lower tail dependence during
the Eurozone crisis period (compared to the GFC period). We also find weaker support for
upper tail dependence.

Overall, our findings are inconsistent with the results of prior DCC studies. Our find-
ings also go against the observation that stock markets tend to decline together, but do not
boom together (Longin and Solnik 2001; Ang and Chen 2002). Given the slow speed of
adjustment to steady-state equilibrium conditions under our VECM-GARCH, we suggest
that this feature may explain the weak result regarding tail dependence. The slow speed of
adjustment to steady-state equilibrium in the VECM-GARCH may also explain the ina-
bility of the VECM-GARCH to outperform the differenced VAR-GARCH in tests of tail
dependency. The T-V SJC outperforms the T-V Student ¢ copula and all other copulas. The
T-V Gaussian and the T-V Student ¢ copula provide poor fit to the data because they lack
the ability to capture tail dependence in heavy-tailed distributions. While long-run equilib-
rium conditions ensure that the variables do not move too far apart, this feature does not
improve the performance of the VECM-GARCH over the VAR-GARCH for our copula
estimates.®

There is an extant body of empirical work on stock market contagion (e.g. Kenourgios
et al. 2011; Mollah et al. 2016; Horvath et al. 2018). These studies report that contagion
effects are more pronounced during crisis periods. A common estimation approach is the
DCC approach of Engle (2002), assuming one or more country sources for contagion
effects.” A new body of work demonstrates that we should not be over-reliant on DCC
estimates to determine the dependence structure of returns. Several econometric issues,
including asymptotic properties and regularity conditions, are unresolved in the DCC set-
ting, thereby making certain econometric inferences unreliable (Caporin and McAleer
2013; Fermanian and Malongo 2018). This means that we should not treat the DCC
approach as an ultimate indicator of contagion effects. As indicated in Embrechts et al.
(2002), copula dependence does not suffer from shortcomings associated with correlation
coefficients. We contribute to the literature by using properly specified VARs to extract
the conditional variances for the copula estimates, in the context of economies that are

8 There are critical econometric issues associated with the use of the differenced (stationary) VAR for DCC
estimation when long-run conditions apply. The stationary properties of DCCs and the finiteness of their
moments also create important econometric problems. These specific issues are unresolved in the literature
(see Caporin and McAleer 2013; Fermanian and Malongo 2018). Caporin and McAleer (2013, p. 116), for
example, state: “most published papers dealing with dynamic correlations simply do not discuss stationary
of the model, the regularity conditions, or the asymptotic properties of the estimators.” Our concern is at a
simpler and more practical level and relates to the problems associated with model misspecification when
they affect estimation consistency.

 Mollah et al. (2016), for example, use the US as the source of contagion for CEE stock markets even
though the economic and trade links of CEE countries with the US are minimal.
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supposed to have reached some level of economic convergence. We find little support for
market dependence, contrary to prior work. Contagion effects are of interest to investors
seeking to exploit diversification opportunities (Boyer et al. 1999; Durante and Jaworski
2010) and policymakers, who implement macroeconomic policies to avert financial crises.
An important economic implication of our results is that EU financial markets have not
achieved the level of integration anticipated under the Financial Services Action Plan of
1999. A practical implication of our results is that investors can still exploit portfolio diver-
sification opportunities in CEE markets. However, CEE capital markets will experience
higher cost of capital compared to developed markets. We find that the legal environment
has a decreasing effect on financial development, perhaps causing CEE and the EU stock
markets to be segmented. Our results are robust against the diagonal BEKK model.

The rest of the paper is organized as follows. Section 2 reviews prior work. Section 3
describes the research methodology and the data set. We present our empirical results in
Sects. 4, 5 and 6. The paper concludes in Sect. 7.

2 Related prior work

Guidi and Ugur (2014) test for cointegration using five South-Eastern European (SEE)
stock markets in terms of German, UK and US returns over the 2000-2013 period. They
find support for cointegration between SEE and German stock markets, and SEE and UK
stock markets, but not between SEE and US stock markets. They provide DCC estimates
for their sample period, but they do not estimate VECMs nor copula functions. Using the
Johansen (1988) technique, Gilmore and McManus (2002) find no support for pair-wise
cointegration between three CEE (Czech Republic, Hungary and Poland) stock markets
and the US market, during the 1995-2001 period. Lucey and Voronkova (2008) find no
support for cointegration using four CEE stock markets (Russia, Hungary, Czech Republic,
Poland) and developed markets, over the 1995-2004.

Syllignakis and Kouretas (2011) find evidence for shifts in the DCC estimates of CEE
and US stocks and CEE and German stocks, during the GFC period. Their results sug-
gest that CEE markets are exposed to external shocks that alter their joint conditional cor-
relations. Voronkova (2004) finds cointegration between three CEE stock markets (Czech
Republic, Hungary, and Poland) and developed stock markets (UK, French, German and
US) as well as evidence for long-run equilibrium relations, using error-correction models
(ECMs).

Using the US as the source of contagion, Mollah et al. (2016) find support for contagion
effects based on fifty-five equity markets, including six of the CEE stock markets used in
our sample. Their DCC estimates suggest that the GFC spread from the US to other mar-
kets, in line with previous results. Pragidis et al. (2015) propose a correction to the DCC to
allow for structural breaks in the correlation dynamics. Using this test, they find no support
for contagion using the 10-year Greek government bond yield. Jawadi et al. (2015) use
smooth transition autoregressive and threshold autoregressive models which capture more
dynamics in the data compared to Pragidis et al.’s (2015) approach. Jawadi et al. (2015)
find that while the US equity market leads the UK, French and German stock markets dur-
ing overlapping trading hours, regional contagion is more pronounced during non-over-
lapping trading hours. Furthermore, they show that jump contagion exhibits asymmetry
and nonlinearities, and varies according to regimes. Anastasopoulos (2018) finds evidence
for contagion in relation to the Greek debt crisis and the devaluation of the Chinese yuan
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of 2015. The yuan devaluation gave rise to more persistence in contagion effects than the
Greek debt crisis. Baharumshah and Wooi (2007) provide evidence to support foreign cur-
rency volatility and asymmetric effects for South Korea and ASEAN-5 currencies during
the Asian Financial Crisis. Using the VECM-GARCH, Syriopoulos and Roumpis (2009)
find evidence for long-run equilibrium conditions using German and US market returns,
each paired with Romanian, Bulgarian, Croatian, Turkish, Cypriot and Greek market
returns. Their approach is closely related to ours but they do not estimate copula functions.

Given the limitations of the DCC model (Caporin and McAleer 2013; Fermanian and
Malongo 2018), it is better to test the dependence structure of returns using both the mar-
ginal and copula part of the distribution. Brechmann et al. (2013) derived Archimedean-
type vine copulas to tests for contagion during the GFC period. They report that bank fail-
ure constitutes a larger component of systemic risk compared to the failure of insurance
firms. Mensah and Premaratne (2017) find support for asymmetric dependence among
Asian banking sector stocks, using copula functions. Poshakwale and Mandal (2017) use a
copula approach to show that Indian stock returns and developed market returns are more
responsive to economic downturns than to economic upturns. Ait-Sahalia et al. (2015) pro-
pose an excitation model where jumps in one region increase the intensity of jumps in that
region as well as other regions of the world. They claim that the US market has more influ-
ence on the jump intensity of other world markets. Su (2017) examines jumps in the con-
text of tail dependence. Chollete et al. (2009) find support for asymmetric dependence in
G5 and Latin American stock returns. Cubillos-Rocha et al. (2019) find support for asym-
metric dependence but mostly during periods of currency appreciations. Kenourgios et al.
(2011) use both the regime-switching Gaussian copula and asymmetric DCCs to test for
dependence between Brazilian, Russian, Indian and Chinese (BRIC) stock markets each
paired with the UK and US markets. They find support for contagion. Their use of the
Gaussian copula function is unlikely to provide the best fit to data, due to the imposition
of symmetry on the joint distribution. Our study extends this work in the context of CEE
markets. We estimate both the bivariate VECM-GARCH and differenced VAR-GARCH
as there may be model misspecification issues in terms of the VAR specification. Further-
more, we estimate four T-V copulas including the commonly used Student ¢ and Gaussian
copulas, but in T-V form.

3 Methodology and data set
3.1 Methodology

Our first methodological application is the Johansen cointegration technique. This tech-
nique enables us to test whether each pair of developed and CEE stock markets is coin-
tegrated over each sub-period. Theory suggests that a pragmatic approach to generate an
error correction model (ECM) is to use a priori information from a static model or autore-
gressive distributed lag (ADL). As such, we estimate the Engle—Granger cointegrating
regression using OLS, equation by equation and incorporate each time series of the residu-
als in a differenced VAR to generate the VECM. This approach is in line with Engle and
Granger (1987) but also recognizes that in the context of developed and developing stock
markets, the rate of adjustment to long-run equilibrium would not be similar for each equa-
tion in the bivariate VECM. As such, we argue against using the same error-correction
term based on Johansen for each VAR, as it may not fully capture variation in the long-run
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adjustment process for each equation. Indeed, Banerjee et al. (1998) and de Boef and Gra-
nato (1999) show that the r-ratio in the ECM has good power against alternative tests for
cointegration. Furthermore, Banerjee et al. (1998, p. 279) argue that the ECM is a spe-
cial case of the Johansen cointegration where “... the cointegrating vectors appear only
in the equation of interest.” We also estimate a differenced VAR as this specification is
commonly used in contagion and DCC studies. Both the VECM and the differenced VAR
are estimated using GARCH which we refer to as VECM-GARCH and differenced VAR-
GARCH, respectively.

Denote Ry, and R,, as the natural logarithms of the stock market indices (in levels) of
each CEE market and a developed stock market, respectively. R;, and R,, are both non-
stationary. The Engle and Granger (1987) cointegrating regressions are

Ry =c + Ry +¢y, (1a)

Ry =c, + 9 R, + &, (1b)

In Egs. (1a) and (1b), ¢, and ¢, are constants and €;, and &,, as the respective residuals. Fol-
lowing Engle and Granger (1987), we use &, and &,, as the error-correction term.'® Thus
ECT,, = €, and ECT,, = €,,. Denote r|, and r,, as the log returns associated with R, and
R,,, respectively. Thus, the pair of mean equations for the bivariate VECM-GARCH, with

(», @) lags is,

p q
Fe= a4 Y b, Y gty + N ECT y + py, (2a)
i=1 i=1

p q
Fy =ay + Z byipTar—p + Z CoigNi—qg T V2ECTy_y + by, (2b)
i=1 i=1
where p,, and p,, are the conditional errors based on the past information sets, Q,,_; and
Q,,_; in Egs. (2a) and (2b), respectively, for country i. A lag is imposed on each error-
correction term as it is customary. We assume the Student z-distribution for the condi-
tional errors since it accommodates heavy-tailed marginals better than normal margins
and improves the quality of the joint distribution, even if the chosen copula is sub-optimal
(Junker and May 2005). y, and y, are predicted to be negative and significant if long-run
equilibrium conditions exist. Since the returns in Egs. (2a) and (2b) are I(0), the inclusion
of ECT|,_, and ECT,,_, in the respective equations should increase estimation consistency.
Furthermore, it is always better to include an error-correction term in a differenced (sta-
tionary) VAR as opposed to excluding it, since in theory, its inclusion causes no harm in
the differenced VAR (Banerjee et al. 1993).
The variance equations of the GARCH(p,q) process corresponding to Egs. (2a) and (2b)
are respectively,

10 The literature adopts different approaches in order to generate the error-correction term. We use the
residuals of the cointegrating regression as suggested by Engle and Granger (1987). Syriopoulos and
Roumpis (2009) appear to generate their error-correction term from the Johansen technique.
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14 q
2 2 1
hy, =@ + Z iy T Z Brihy,—q (3a)
i=1 i=1
P q
2 2 2
1, =0y 4 Y s, Y By, (3b)
i=1 i=1

Here, hi and h%t are the conditional variances of yu;, and u,,, respectively. @, and w,
capture the long-term (average) conditional variances. Also, @; and a, capture past news
(ARCH), whereas f, and f, capture past volatility (GARCH). Certain inequality constraints
must be satisfied for the GARCH(p,q) to be valid (Bollerslev 1986). Thus, in Eq. (3a): (i)
@,20; (i) a;>0; (iii) #,>0; and, (iv) @;+f, < 1. Similar inequality constraints apply to
Eq. (3b).

3.2 Copula estimates for bivariate distributions

The copula approach provides separate estimates of the marginal and dependence struc-
tures of multivariate probability distributions. Using Sklar’s (1959) theorem, there is only
one expression for an n-dimensional C copula with a continuous (X, ... X,) random vector.
Thus,

Fxp,...x,) = C(Fy(x)), ..., Fy(x,)). 4)

In Eq. 4), F, (*), ,FN(*) and F(x,...,*) represent the marginal and joint distribution
functions respectively of x;, x,,..., x,, random variables.

It is well-known that financial asset returns are time-varying, with fat-tails, long mem-
ory and heteroscedasticity. Poon et al. (2004) show that heteroscedasticity is an important
contributing factor to extreme price movement. ARMA-ARCH/GARCH processes are able
to capture these stylized features reasonably well (Bollerslev 1986). GARCH-type pro-
cesses normally assume that the conditional multivariate distribution follows a Gaussian
or Student ¢-distribution. Copula-GARCH models avoid this distributional constraint (Jon-
deau and Rockinger 2006; Patton 2006). They allow the combination of different marginal
distributions in the dependence structure (Dias and Embrechts 2010) and facilitate esti-
mation of T-V higher moments. The copula approach also allows some control over fat-
tailedness and asymmetry. Thus, our copulas are of the GARCH-type, and we use different
copula functions.

Starting with Engle’s (2002) DCC approach, the correlation R, evolves over-time such
that the DCC(1,1) is denoted by,

0, =(—-a-p0+ae,_jé_,+pO,_;. ©))
R, = Q;IQ,Q;I, where Q is the sample covariance of ¢,, , is a square p X ¢ matrix contain-
ing zeros as off-diagonal elements and with diagonal elements of the square root of Q,.

The DCC parameter constraints are the same as those of the univariate GARCH(1,1). We
specify four copula functions below.

3.2.1 Studentt copula

The log likelihood of the Student ¢ copula (see Vogiatzoglou 2016) is written as,
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ES[(R, d, u,) = —Tlog

F@) raT ‘ 6)

T
- Zlog|R| + % 2 ilog(l + —)

=1 i=1

€, is the vector of the transformed standardized residuals that depends on the copula func-
tion. ¢, is defined as ¢, = (t;lulﬁt, 7! (up,[)).t;1 denotes the inverse Student ¢-distribution
using d degrees of freedom and R correlation matrix of ¢,.

3.2.2 Gaussian copula

The Gaussian copula is a dependence function associate with bivariate normality (Patton
2006) and is defined by,

o) &) —(2 - 2

C(u,v|p) = f S ! ex (= 2prs+s drds
P 2(1—p2

= 2my/(1-p2) (1-p) (7a)

-1<p<l1

where @~! denotes the inverse of the standard normal cumulative density function. We fol-
low Patton’s (2006) proposed evolution of p, such that,

P, = A(wp + 8,01 + a— Z o! M,_j )@~ (Vr—,)) (7b)

where A = (1 — e™)(1 + ¢™)~! = tahn(x/2) is a modified logistic transformation to keep
p,, the correlation parameter in the density Gaussian, within (—1,1) at all times. This cop-
ula has 7¥=¢L=0 for correlations less than one (Embrechts et al. 2002), where zV and
7L denote upper and lower tail dependence, respectively. p,_; captures persistence in the
dependence parameter, while the mean of the product of the last ten observations of the
transformed variables, @' ( ) and @~ '(v,_ ;) captures variation in dependence.

3.2.3 Clayton copula

The log likelihood of the Clayton copula (Vogiatzoglou 2016) is given by,

r 1
‘CClayton(d? ut) = 2 lOg<(1 + d)(ultl'{Zt)_l_d(u]_[d + u;td - 1)_2_d>~ (83)

t=1

This copula function has more left tail than right tail dependence. The evolution of the
Clayton copula takes the form,

7 = A<w+ﬂr,_l +a|u,_j—u2,_,|). (8b)
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3.2.4 Symmetrized Joe—Clayton (SJC) copula

A particular Laplace transformation of the basic Joe—Clayton copula is given by,
Cre(wvltV, 7)) =1- (1= {1 =1 =17 + 1 = A =17 ) = 1}7)VE (9a)

In Eq. (9a), k = 1/log,(2 — 7Y);y = —1/log,(z); 7V € (0, 1); & € (0, 1). The two param-
eters of the Joe—Clayton are ¥ and 7% capture upper and lower tail dependence, respec-
tively. The basic Joe—Clayton copula imposes a degree of asymmetry even when depend-
ence is similar in both tails. On the other hand, the SJC copula allows both upper and lower
tail dependence to range freely from zero to one, such that the extreme tails of the joint dis-
tribution are independent (Patton 2006). Under the SJC copula, tail dependence determines
the presence or absence of dependence and nests the symmetry case when ¥ =17’ (Patton
2006). Thus, the SIC copula is written as,

Cye(u vtV 78) = 0.5[C,c(u vtV e + Coe(1 = u, 1 = vt 2¥) +u+ v - 1].

(9b)
Patton (2006) proposes an evolution for the SJC copula using,
1 10
T[U = A(coU + ﬁUTIL_ll + aUE Z U_j = Vi ) (9¢)
=1
! 10
= A<wL + et + %5 Dty = iy > (9d)
j=1

Patton (2006) shows how upper and low tail dependence can be such that the parameter
A@) = (1 + e™)~!is a logistic regression that keeps 7V =7* within (0,1) at all times. The
SJC copula does not impose symmetry, as is done in the Gaussian copula. The evolution
of tail dependence [Eqs. (9¢) and (9d)] contains the autoregressive terms ﬁUrfil and ﬁerL_ .
and a forcing variable for the absolute mean difference between u,_; — v,_; over the past 10
observations. In effect, the past 10 observations capture the dynamics of upper and lower
tail dependence, in something akin to a restricted ARMA (1,10).

3.3 Dataset

To conduct the analysis, we use daily closing MSCI stock market indices from Data-
Stream. The full sample spans the period July 1, 2003 to August 17, 2018. We use nine
CEE (developing) and two developed stock markets (Germany and the UK). These stock
markets are identified in Table 1. Our choice of CEE stock market indices reflects the avail-
ability of data and the fact that some of the stock markets operate in countries that joined
the EU during the sample period. We include the Russian and Ukrainian stock markets in
the sample, even if they operate in non-EU countries. The non-crisis period spans July 1,
2003 to August 8, 2007. The GFC period spans the period August 9, 2007 to December 31,
2009. We use August 9, 2007, as the start of the GFC since BNP Paribas ceased trading on
that date (see Ahmed et al. 2012). Our Eurozone crisis period begins May 2, 2010 as this
is the date of the first Greek bailout by the European Central Bank and the IMF. European
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leaders declared Monday, August 20, 2018, the end of the Eurozone crisis, which also
coincides with the date of the third bailout program for Greece.!' As such, we use Friday,
August 17, 2018 as the end of the Eurozone crisis. We ignore the sample period January 1,
2010 to May 1, 2010 because it is too short for statistical analysis.

4 Empirical results
4.1 Descriptive statistics and unit root tests

Table 1 shows the descriptive statistics for the market index returns across all three
regimes. The mean log returns are positive during the non-crisis period and are often sig-
nificantly different from zero (p value <0.10). The mean log returns are mostly negative
and insignificant for both crisis periods. The exceptions are Estonia and Ukraine for the
GFC periods, and Ukraine for the Eurozone crisis period. For these stock markets, the
mean log returns are negative and significant (p value >0.10). Skewness is mostly nega-
tive and significant for the non-crisis period. Only Estonia and Slovenia have positive and
significant skewness for the non-crisis period (p value <0.05). Skewness is negative for the
GFC when significant, except for Ukraine where it is positive (p value <0.10). Skewness is
negative and significant for the Eurozone crisis period (p value <0.10), except for Estonia,
where it is insignificant.

Table 1 also shows strong variation in the level of kurtosis across the sub-periods and
across markets. Excess kurtosis is significant (p value <0.10) for all markets. Romanian
stock returns have more kurtosis during the GFC period than at any other period. Hungar-
ian returns have the most kurtosis during the Eurozone crisis period whereas, Ukrainian
returns have the most kurtosis during the non-crisis period. In general, the presence of kur-
tosis provides evidence for volatility clustering and fat-tailedness, making GARCH-type
estimation more appropriate compared to OLS estimation.

As an initial test for volatility clustering (ARCH effects), we estimate the Ljung—Box
(L-Q) statistic using the square of the log returns for up to ten lags. The (L-B)? statistic is
significant (p value <0.10), except for Ukraine (for the non-crisis period), Romania (for the
GFC period) and Hungary (for the Eurozone crisis period). As a further test, we run the log
returns on its first lag with a constant. Table 1 shows that ARCH(1) is present in the returns
of almost all markets.

As a simple test of dependence, we estimate the Kendell = correlation for the log returns.
We use the 7 correlation rather than the Pearson correlation because it is more robust to
outliers and insensitive to nonlinearities. The 7 correlation is commonly used as a bench-
mark against the elliptical copula family, such as the Student ¢ (Dias and Embrechts 2010).
Our results indicate that the correlations are positive and highly significant for all market
pairs (p value <0.01).'> They increase during the GFC period but decrease slightly during
the Eurozone crisis period (compared to the GFC period). The 7 correlations are consist-
ently lowest for Ukraine and highest for Poland. To illustrate, the correlations are lowest
at 7=0.109 and 7=0.164 for Ukrainian-German and Ukrainian-UK returns, respectively,

' Brunsden and Khan (2018), Financial Times. https://www.ft.com/content/aeb930e0-a475-11e8-926a-
7342feSel73f. Accessed 21 June 2019.

12 These and other untabulated results are available from the authors.
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during the non-crisis period. For this same period, the correlations are highest at r=0.297
and 7=0.293 for Polish-German and Polish-UK returns. 7 is higher during the GFC
period but is still lowest for Ukrainian-German and Ukrainian-UK returns at 7=0.165
and 7=0.172, respectively. 7 is still highest for Polish-German and Polish-UK returns at
7=0.502 and 7=0.469, respectively, for the GFC period. It is noteworthy that there are
slightly lower correlations for the Eurozone crisis period (compared to the GFC period).
However, the relative ranks of the correlations of Ukrainian and Polish returns remain
unchanged. The patterns in the correlations are in line with prior work for crisis and tran-
quil periods (Boero et al. 2010). For the non-crisis period, pairs of CEE-UK returns tend to
have higher correlations compared to pairs of CEE-German returns. Conversely, the pairs
of CEE-German returns tend to have higher correlations than pairs of CEE-UK returns,
during the crisis periods. As such, we should expect some variation in return dependence
across the sub-periods.

The Augmented Dickey-Fuller (ADF) statistic cannot reject the null of a unit root in the
(log) level of the univariate returns (with a drift).'® This result is untabulated. The optimal
lag is determined using the Akaike Information Criteria (AIC). Performing the test on the
first difference of each series does not alter the conclusion of a unit root. The unit root
hypothesis also holds with both drift and trend terms included in the equations. Since we
find that each level series contains a unit root, economic shocks have a permanent effect
on the data generating process. The result that the first difference of each level series is
I(0) allows us to test for cointegration (Granger 1986). We do so below, using both the
Johansen technique and the #-ratio of the VECM-GARCH (see below).

4.2 Cointegration results of CEE and developed markets

Since we find that the first difference of the univariate series is stationary, we proceed to
test for cointegration between each pair of CEE and developed stock markets, using the
Johansen technique.'* The optimal lag structure is determined using the AIC after run-
ning an unrestricted VAR(p,q) in levels of up to 20 lags. Since we rely on the stationary
hypothesis (with drift), we incorporate a restricted constant in the Johansen estimation but
exclude a deterministic trend. The Johansen technique requires sequential identification of
the number of cointegrating vectors. The Trace statistic tests the null hypothesis of at most
r cointegrating vectors, whereas the maximum eigenvalue (Amax) statistic tests the null
hypothesis of exactly r cointegrating vectors against an alternative of r+ 1. The critical
values are from MacKinnon et al. (1999).

The statistical results are untabulated but are summarized in Appendix 1. We find weak
support for cointegration. The Hungarian, Polish, and Slovenian stock markets are each
cointegrated with the German stock market during the non-crisis period. Only the Hun-
garian and Slovenian markets are each cointegrated with the UK stock market during the
non-crisis period. The Croatian stock market is cointegrated with both the German and UK

13 Since we assume specific economic regimes for each sub-period, there is no point in testing for structural
breaks. The commonly used Perron (1989) test for structural breaks assumes the break point takes place at a
known date with innovations in the disturbance treated as an ARMA (p, g). Such a test is only useful for the
full sample period.

14 We also performed the Johansen tests for the full period. Evidence for cointegration is also weak. Fol-
lowing Lamoureux and Lastrapes (1990), such an analysis is not reliable since the data contains different
regimes of volatility.
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stock markets during the GFC period, even if Croatia only joined the EU in 2013. No other
stock market exhibits cointegration during the GFC period, except for the German-UK
market pair. The Romanian, Slovenian and Ukrainian markets are each cointegrated with
the German stock market during the Eurozone crisis period whereas, the Hungarian and
Slovenian markets are each cointegrated with the UK market during the same period. The
Amax statistic indicates that there is at most one cointegrating vector. A larger number of
cointegrating vectors would have suggested a tighter bound between each pair of variables.

According to the Granger representation theorem, if two or more variables are integrated
of order I(1), then it is possible that they are cointegrated and have an error-correction rep-
resentation, if their difference in levels is I(0). Thus as another cointegration test, we per-
form the Engle—Granger cointegration test on ECT}, = £, and ECT,, = &,,, obtained from
Egs. (1a) and (1b), respectively. This is essentially a unit root test on the residuals, using
the ADF statistic.'> For the CEE and German stock market pairs, for example, there are 18
univariate series per sub-period. The same applies to CEE and UK stock markets. Using
the Engle—Granger test, four (three) of the univariate series confirm cointegration for CEE-
German (CEE-UK) stock markets, during the non-crisis period. The Engle—Granger test
provides stronger support for cointegration during the GFC period. Finally, four (eleven)
univariate series exhibit cointegration for CEE-German (CEE-UK) pairs, during the Euro-
zone crisis period. This evidence indicates that the markets have become more integrated
during the crisis periods, in line with prediction. We proceed to test for long-run relations
using the z-ratios of error-correction terms in each VECM-GARCH.

4.3 VECM-GARCH of CEE and developed markets

Using the AIC, the optimal lag structure for each pair of CEE and developed market returns
is based on the differenced VAR. Since the error-correction term is imposed in the differ-
enced VAR, the VECM-GARCH and differenced VAR-GARCH have the same lag struc-
ture. Between one and four lags apply. However, for some VAR specifications, the optimal
lag is increased or decreased to achieve computation convergence.!® Only the estimates
for the VECM-GARCH are tabulated since the differenced VAR-GARCH only omits the
error-correction term.

We summarize the VECM-GARCH results in Appendix I. The VECM-GARCH pro-
vides much stronger support for long-run equilibrium conditions than the Johansen tech-
nique. Using the VECM-GARCH, fewer market pairs exhibit long-run relations during the
non-crisis period compared to the crisis periods. Up to nine market pairs have long-run
equilibrium conditions for CEE-UK returns during the Eurozone crisis period. While this
is our strongest result, there is a stronger tendency for error-correction conditions to prevail
when we regress the returns of developed markets on CEE market returns. This evidence
provides further justification for using equation by equation error-correction terms. The
t-ratio of the error-correction term therefore provides stronger support for long—run equi-
librium conditions than both the Johansen technique and the Engle—Granger cointegrat-
ing regression. This is in line with previous work (see Banerjee et al. 1998; de Boef and

15 These results are untabulated. Banerjee et al. (1998) show that both the Engle—Granger cointegration and
the Cochrane-Orcutt cointegration tests suffer in finite samples. Banerjee et al. (1998) and de Boef and Gra-
nato (1999) show that the ¢-ratio of the ECM has more power.

16 It must be emphasized that the differences in the values of the AIC for sequential lags are very small. As
such, altering the suggested optimal lag by one or two lags does not affect the results.
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Granato 1999). There is also some tendency for adjustment to long-run equilibrium to be
quicker during the crisis periods. The results are presented in Tables 2, 3 and 4 and sum-
marized in Appendix L.

4.3.1 Non-crisis period and CEE and developed markets

Table 2 shows the VECM-GARCH results for the non-crisis period. Panel A shows that
the Estonian-German and Hungarian-German pairs, have a significant error-correction
coefficient for y, in each case (p value <0.01). The Croatian, Estonian, Polish and Rus-
sian markets also have long-run relations with the German market, based on y, (p value
<0.05). y, therefore, provides stronger support for long-run relations than y, although the y,
for Estonia has the unexpected positive sign. The positive coefficient sign indicates move-
ment away from equilibrium conditions. However, since the same Estonian—-German pair
has opposite signs for ¥, and y, and their coefficients have the same (absolute) magnitude,
there seems to be a cancelling out of the equilibrium conditions across both markets.!”
Under the Johansen technique, only the Hungarian, Polish and Slovenian stock markets
are cointegrated with the German stock market. Thus, the superior performance of the
t-ratio approach is consistent with the arguments in the literature (Banerjee et al.1998; de
Boef and Granato 1999). Hungary and Poland have the largest absolute coefficient value
of —0.017 (p value <0.05) for both y, and y,. This value predicts that 1.70% of the dis-
equilibrium will be dissipated before the start of the next period, with 98.30% remaining.
The t-ratios therefore indicate very slow adjustment to long-run conditions, as represented
by the economically small absolute values of y, and y,, although significant. These small
(absolute) values are in line with those reported by Syriopoulos and Roumpis (2009) for
daily stock returns during the 1998-2007 period.'® The first lag of CEE returns has no
influence on (current) own CEE returns and German current returns. CEE second lag influ-
ences German current returns to a very limited extent, whereas, German first lag and sec-
ond lag (to a limited extent) influence CEE current returns. German first lag returns have
no influence on own current returns. In general, CEE market returns tend to be influenced,
more by German returns than by their own returns, in line with the stronger result for y,,
compared with y;,.

Panel B of Table 2 shows the corresponding results for CEE and UK stock returns.y, is
significant for the Estonian-UK and Hungarian-UK pairs. These same markets have sig-
nificant y, for CEE on German returns. Croatia, Poland, Russia and Slovenia have long-run
relations with UK returns, using y,. The tendency for y, to provide stronger support for
long-run relations corroborates the CEE-German results. For CEE and UK returns, y, is
in the range of —0.005 (p value <0.05) for Estonia to —0.017 (p value <0.01) for Hungary
when significant. y, is in the range of —0.000578 (p value <0.01) for Croatia to —-0.014 (p
value <0.01) for Poland when significant. It is tempting to suggest that the speed of long-
run adjustment is quicker for y,, but the error-correction coefficients are economically very
small.

17" An alternative but simpler explanation for the positive coefficient can be model misspecification and the
presence of structural breaks, not accounted for in our sub-periods.

18 Specifically, Syriopoulos and Roumpis (2009, p. 576) find error-correction coefficients for the Balkan
and developed equity markets of —0.0255 (p value <0.10) for the DAX and of 0.0383 (p value <0.05) for
Romania. They also report a tendency for some #-ratios to be positive.
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Across our VECM-GARCH estimates, the Czech Republic, Romanian and Ukrainian
returns have no long-run equilibrium conditions with neither German nor UK returns (see
Appendix I). In addition, Slovenian and German returns have no long-run equilibrium rela-
tions. Besides these cases, all other market pairs have long-run equilibrium relations in
terms of, either y, or y, or both y,; and y,. Croatia, Russia and Ukraine were non-EU mem-
bers during the non-crisis period. However, both Croatia and Russia exhibit long-run rela-
tions with the developed markets.'” The result for Russian returns might reflect the fact
that Russia has the largest non-EU economy and that the EU is by far the largest foreign
investors in Russia (De Souza 2008). These factors may contribute to the result we find.
Indeed, Lucey and Voronkova (2008) report that the US and German stock markets are
more important sources of spillover effects for the Russian stock market, whereas the Ger-
man and the UK stock markets are more important sources of spillover effects for other
CEE stock markets. We also find that German and UK returns have no long-run relations
even if they are established EU members. Our results suggest that future DCC studies
should place less reliance on the differenced VARSs since they are mis-specified when long-
run conditions apply.2°

4.3.2 Global financial crisis and CEE and developed markets

Panel A of Table 3 shows that for the GFC period, y, is significant for five pairs of CEE
(Croatia, Czech Republic, Poland, Romania, and Russia) and German stock markets (p
value <0.10). y, is positive for the Poland-German pair. y, is significant for five pairs of
CEE (Estonia, Poland, Romania, Slovenia and Ukraine) and German markets. Except for
the Hungary-German and UK-German pairs, at least one error-correction term is signifi-
cant in each VECM-GARCH (see Panel A of Table 3 and Appendix I). Thus, long-run
equilibrium conditions are more common during the GFC period compared to the non-
crisis period. This evidence is in line with the reported tendency for market correlations
to increase during turbulent conditions causing markets to be more integrated. While y,
and y, have opposite signs for Poland, y, is sufficiently large to absorb the positive effect
of y,. We suggest that the German stock market (rather than the Polish stock market) has
stronger influence on adjustment to long-run equilibrium condition. For Romania, both y,
and y, are negative and significant, thereby allowing us to infer long-run adjustment in both
directions. Across the estimates, y, is in the range —0.014 (p value <0.05) for Romania to
—0.035 (p value <0.01) for Croatia (ignoring the positive y, for Poland). y, is in the range of
—0.022 (p value <0.01) for Estonia to —0.060 (p value <0.01) for Poland. The magnitudes
of y, and y, suggest quicker adjustment to long-run equilibrium relative to the non-crisis
period. Similar to the non-crisis period, the first lag of German returns has strong influence
on current CEE returns. Very few own lags of CEE returns influence current CEE returns.
Panel B of Table 3 shows the CEE and UK results for the GFC period. Overall, five y,
and four y, coefficients are significant. Except for Slovenia, at least one error-correction
term is significant in each VECM-GARCH. Unlike CEE and German returns, all the error-
correction coefficients for CEE and UK returns are negative when significant. Both y, and

19 Romania and Croatia joined the EU in January 2007 and July 2013, respectively. Only Croatia has long-
run relations with the developed stock markets.

20" As stated before, most prior studies estimate a VAR in differences to generate the conditional correla-
tions (Ahmed et al. 2012). Whether or not the stock returns of countries experience long-run equilibrium
conditions is an empirical matter.
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v, are significant for Czech Republic indicating equilibrium adjustments in both directions.
EU membership does not determine the presence or absence of long-run relations since
Croatia, Russia and Ukraine have long-run relations in at least one regression that includes
UK and German returns (see Appendix I). For these markets, ¥, and y, have values within
similar ranges to those of EU members.

4.3.3 Eurozone crisis period and CEE and developed markets

The results for the Eurozone crisis period are shown in Table 4. Panel A shows that y, is
significant for three CEE (Hungarian, Romanian and Russian) and German market pairs (p
value <0.05); y, is significant for five CEE (Croatian, Czech Republic, Estonian, Hungar-
ian, Russian) and German market pairs (p value <0.05). The Polish, Slovenian and Ukrain-
ian stock markets have no long-run conditions with the German stock market, even if two
of these markets exhibit cointegration using the Johansen technique. For the significant
cases, ¥, is largest (in absolute value) at —0.004 (p value <0.05) for both Hungary and
Romania. y, is largest at —0.006 (p value <0.01) for the Czech Republic. As before, the
magnitudes of y, and y, are economically small. So, it is questionable whether the presence
of long-run relationships can bring about important differences in the copula estimates
based on the conditional variances of the VECM-GARCH and differenced VAR-GARCH.

Panel B shows much stronger support for long-run relations using CEE and UK returns.
v, is significant for four CEE (Croatia, Hungary, Russia and Slovenia) and UK market pairs
(p value <£0.05). y, is negative and significant for all nine CEE and UK market pairs (p
value <0.10). This is our strongest result. y, tends to be larger (in absolute value) than y, in
line with previous results. The VECM-GARCH still outperforms the Johansen technique
since only Hungary and Slovenia are cointegrated, using the Johansen technique. Both y,
and y, are significant for Croatia, Hungary, Russia and Slovenia. The CEE-UK market pairs
provide stronger support for long-run relationships than the CEE-German market pairs,
even if the Eurozone crisis is more strongly associated with Eurozone member states. This
evidence suggests greater rebalancing between CEE and UK investors, perhaps because of
greater stability in the UK stock market as well as higher level of market liquidity.

4.4 Variance equations

ARCH and GARCH effects are stylized features of financial prices. They are particularly
pronounced in high frequency data (Baillie and Bollerslev 1989). They also have important
statistical properties which are conducive to fitting copulas. Bollerslev and Engle (1993),
for example, introduce the idea of co-persistence in conditional variance in a multivariate
setting. Here, combinations of variables can contain a long-run component in co-persis-
tence, which can be generalized in interpretation to cointegration, as in Engle and Granger
(1987).2! If correlations and volatilities are time-varying, they affect the degree of tailed-
ness when fitting copulas. ARCH and GARCH effects can also be viewed as providing
evidence on spillover effects, regardless of the information in fundamentals (Karolyi and
Stulz 1995).

21 Even if the returns of one stock market exhibit persistence variance, it is possible that pairs of stock mar-
kets can exhibit common long-run persistence in their variances (Bollerslev and Engle 1993).

@ Springer



N.L. Joseph et al.

Numerical values of the coefficients of the variance equation are not tabulated, but are
available upon request. For both the VECM-GARCH and differenced VAR-GARCH, the
GARCH is correctly specified for most estimates, since the estimated parameters satisfy
the conditions of @ > 0; @ > 0 f > 0 and @ + f < 1 (Bollerslev 1986). These equality con-
straints are violated only for a very small number of markets. The sum of @ + f is close to
one for both VAR specifications. This suggest an integrated GARCH process (IGARCH)
and the possibility of a unit root. In an IGARCH, there is persistence in variance and cur-
rent information is useful for improving the forecasts of the conditional variance at all hori-
zons (Engle and Bollerslev 1986).

4.4.1 Coefficient of variance equations for CEE and developed markets

Figure 1a, b shows plots of the coefficients of the variance equations [i.e. Egs. (3a) and
(3b)], under the VECM-GARCH and differenced VAR-GARCH. The plots of #,(GARCH)
in the regressions of developed markets on CEE returns [Eq. (3b)] are at the same level for
the VECM-GARCH and differenced VAR-GARCH, and are close to one. This is not the
case for g, in the regressions of CEE returns on developed market returns. g, has a mini-
mum value of 0.882 (p value <0.01) for German returns on CEE returns during the GFC
period (under the VECM-GARCH). f, has a minimum value of 0.705 (p value <0.01) for
UK returns on CEE returns during the non-crisis period. §; varies substantially across mar-
kets, especially during the non-crisis period. For the VECM-GARCH, the minimum value
of g, is 0.219 (0.206) for CEE returns on German returns (CEE returns on UK returns)
during the Eurozone crisis period. Both coefficients are insignificant. In addition, the maxi-
mum (minimum) value of f, is larger (smaller) than the maximum (minimum) value of f,.
Thus f, has a wider range than f,. As such, past volatility has more variability on the cur-
rent volatility of CEE returns compared to its effects on the current volatility of developed
markets. The variance equations of the VAR-GARCH exhibit similar patterns.

Past news has more influence on the current volatility of CEE market returns, compared
to their effects on the current volatility of developed market returns. Figure 1a, b indicates
that even if past volatility has more persistence on current volatility in developed markets,
past news has more persistence in CEE markets. To illustrate, using the VECM-GARCH
and CEE-German returns during the non-crisis period, «; has the largest value of 0.276 (p
value <0.01) for Romania, whereas, a, has the largest value of 0.113 (p value <0.01) for
Ukraine. Similarly, §, has the largest value of 0.971 (p value <0.01) for Slovenia, whereas
p, has the largest value of 0.925 (p value <0.01) for Poland. Although differences in the
coefficient values may be insignificant, they illustrate variation across the types of markets.
Indeed, for non-crisis period, average f, and f, coefficients across the nine CEE markets
are 0.778 and 0.911, respectively. Average a; and a, values are 0.126 and 0.072, respec-
tively. We suggest that the larger values of a; compared to a, may reflect the lower level
of liquidity in CEE markets. For example, liquidity constraints in CEE markets can cause
investors to delay rebalance their portfolios on the immediate arrival of news. This in turn,
may increase the volatility of CEE returns causing f, to have a wider range than f,. Since
we find that average a; and @, values are much small than average f, and f, values, this
result indicates that GARCH is more important in capturing volatility persistence than past
news (see Ding and Granger 1996).

The time invariance measure of the conditional covariances are defined by A, and 4,.
A, is always larger than A,. Figure 1a, b shows that 4, is close to one; 4, is close to zero in
most cases and sometimes insignificant. The larger 4, values suggest that the conditional
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covariances depend more on their past values than on residual innovations. The DCC esti-
mates also vary across markets. They are larger during the crisis periods, in line with prior
work (Braun et al. 1995; Dimitriou et al. 2013). However, we do not dwell too much on the
DCC results due to their limitations.*?

4.4.2 Comparison across VAR specifications and correlated conditional variances

Earlier, we argued that failure to account for long-run conditions would affect estimates of
the conditional variances. To test this prediction, we plot the coefficients of the variance
equations for both the VECM-GARCH and VAR-GARCH. Figure 2a, b shows that the
coefficients are similar under both VAR specifications. The difference in the VAR speci-
fications do not contribute to observable differences in the coefficient values. It appears
therefore that the main advantage of the VECM-GARCH is that it allows us to capture
long-run equilibrium conditions and facilitates an interpretation of long-run and short-run
dynarnics.23 We suggest that the slow speed of adjustment to long-run conditions limits
the ability of the VECM-GARCH to generate variance parameters that are distinguishable
from those of the VAR-GARCH.

A final consideration is whether pairs of large conditional variances are correlated.
While Figs. 1 and 2 provide plots of the DCC estimates, we want to observe the patterns
in the pairs of conditional variances in greater detail. The plots of the conditional vari-
ances, i.e. hi and hg - are not shown. However, using the VECM-GARCH, we observe a
tendency for some observations in the plots to exceed their + 1.96 confidence bands. Over-
shooting is especially strong during the September to October 2008 period. These months
had substantial market upheavals, including the Lehman Brother’s collapse, on Septem-
ber 15, 2008. Pairs of h% ,and hg , co-moved, especially during the crisis periods. The plots
for h%t appear more variable than those of hzt; h% , also appears to lead h% .- In general, the
plots have important features for our copula estimates. We find similar patterns under the
VAR-GARCH.

5 Testing the dependence structure using copulas

This section presents the copula estimates obtained from the VECM-GARCH (see Tables 5
and 6). We focus on the copula estimates from the VECM-GARCH since the idea of
steady-state equilibrium is appealing under this specification. Since we are concerned with
data structure, we use the AIC to determine the goodness-of-fit of the copula functions,
even if it is prone to overfitting.>* This allows us to rank the fit of the copula functions
(Dias and Embrechts 2010). The results are presented below.

22 Using s as the estimate for the centered conditional correlation, Aielli (2008, p. 290) find a positive bias
when s <0 and a negative bias when s> 0.

23 A further advantage of error-correction-type models is that they enhance super consistency of the regres-
sion estimates (see Stock 1987). Granger (1986, p. 226) also argues that error-correction type models
“should produce better short-run forecasts and will certainly produce long-run forecasts that hold together
in economically meaningful ways”.

24 Specifically, we use the AIC, the BIC and the Log-likelihood ratio.
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Panel A. Coefficients of variance equations for CEE and German returns during the non-crisis period
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Fig.1 a VECM-GARCH and VAR-GARCH variance coefficients for CEE and German returns. ARCH(a,),
GARCH(f,) and 4, are the variance coefficients based on regressions of CEE returns on German returns.
ARCH(a,), GARCH(f,) and 4, are based on the regression of German returns on CEE returns. VAR-
GARCH in the panels refers to the differenced VAR-GARCH. Plots of the constants are not shown since
they are economically small. b VECM-GARCH and VAR-GARCH variance coefficients for CEE and UK
returns. ARCH(a;), GARCH($,) and 4, are the variance coefficients based on regressions of CEE returns
on UK returns. ARCH(a,), GARCH(f,) and 4, are based on the regression of UK returns on CEE returns.
VAR-GARCH in the panels refers to the differenced VAR-GARCH. The DCC observations for Ukraine and
Hungary exceed+ 1 in Panels B and C, respectively. These data points are not shown to avoid distortion in
the plots. Plots of the constants are not shown since they are economically small

5.1 Copula estimates using CEE and German returns

Our results for CEE and German returns are

summarized as follows. The T-V SJC cop-

ula dominates all other copula functions, based on the AIC, although performance is
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Panel C. Coefficients of variance equations for CEE and UK returns during the Eurozone Crisis period
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Fig.1 (continued)

similar with T-V Student ¢ copula for the GFC period. The T-V SJC copula generates
very few significant copula coefficients when we apply model selection criteria.

5.1.1 Goodness-of-fit of copulas for CEE and German returns

Table 5 shows the copula estimates for CEE and German returns. The T-V SJC copula
provides the best fit for six market pairs, during the non-crisis period, using the AIC.
The T-V Student ¢ provides the best fit for the remaining market pairs (Table 5, Panel
A). For the GFC period, the performance of the T-V Student ¢ and the T-V SJC copulas
is similar (Panel B). The T-V SJC outperforms the T-V Student ¢ during the Eurozone
crisis period (Panel C). It is worth noting that the AIC always favors the T-V Student ¢
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Fig.2 a Comparison of VECM-GARCH and VAR-GARCH variance coefficients for CEE and German
returns. The figure shows plots of the coefficients of the variance equations. ; and a, are the coefficients of
Hy,—y and p,,_,, respectively. f, and f, are the coefficients of h% ,_, and h% ,_, respectively. VECM and VAR
denote the coefficients for the VECM-GARCH and differenced VAR-GARCH, respectively. A,_VECM and
4,_VAR are the invariance coefficients. DCC_VECM and DCC_VAR are the dynamic conditional cor-
relations for the VECM-GARCH and differenced VAR-GARCH, respectively. Plots of the constants are
not shown since they are economically small. b Comparison of VECM-GARCH and VAR-GARCH vari-
ance coefficients for CEE and UK returns. The figure shows plots of the coefficients of the variance equa-
tions. ; and a, are the coefficients of y,,_; and u,,_,, respectively. f, and p, are the coefficients of h _,and
hzx respectively. VECM and VAR denote the coefficients for the VECM-GARCH and dlfferenced VAR-
GARCH respectively. A,_VECM and 4,_VAR are the invariance coefficients. DCC_VECM and DCC_VAR
are the dynamic conditional correlations for the VECM-GARCH and differenced VAR-GARCH, respec-
tively. The DCC observations for Ukraine and Hungary exceed+1 in Panels B and C, respectively. These
data points are not shown to avoid distortion in the plots. Plots of the constants are not shown since they are
economically small
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Fig.2 (continued)

copula for the pair of German and UK returns. The other copulas perform badly across
the sub-periods. The basic T-V Clayton exclusively displays lower tail dependence
whereas, the Gaussian copula displays symmetric dependence. As none of these features
completely characterize our data (see Table 1), we do not dwell too much on these copu-
las. The VAR-GARCH favors the T-V SJC copula slightly more often than the VECM-
GARCH, perhaps reflecting considerations regarding model specification.

Jondeau and Rockinger (2006) report that the skewed T-V Student ¢ provides a good
or better fit than the Gaussian copula for four major European stock index returns.?
They do not estimate the T-V SJC copula. While the statistical features of our Student
t does not explain its comparable performance with the SJIC copula during the GFC

25 Using high frequency FX rate returns, Breymann et al. (2003) find that the Student 7 copula outperforms
the Gaussian copula. However, Boero et al. (2010) find that the constant SIC copula provides a better fit to
daily exchange rate returns, which is in line with the results for our T-V SJIC copula.
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period (under the VECM-GARCH), the SJIC copula performs better overall. The advan-
tage of the SJC copula is that it allows both upper and lower tail dependence to range
freely from zero to one, such that the extreme tails of the joint distribution are inde-
pendent (Patton 2006). Indeed, the presence of skewness and kurtosis, rules out the Stu-
dent ¢t and Gaussian copulas as good performers.

5.1.2 Degrees of freedom and T-V Student t copula

Ignoring model selection criteria, the persistence parameter, f of the T-V Student ¢ cop-
ula is several times larger than the variation parameter,o (see Table 5).This result holds
across all VAR specifications and sample periods. For instance, for the non-crisis period
(see Table 5, Panel A), the Russian-German market pair has «=0.029 (p value <0.05),
$=0.901 (p value <0.01) with degrees of freedom, v=6.185 (p value <0.01). In contrast,
a=0.013, #=0.987 and v=2.870 (all with p value <0.01) for the same market pair, dur-
ing the GFC period (Table 5, Panel B). Notice also that the increase in § during the GFC
period is associated with a decline in v. We discuss this feature below. Overall, between
seven and nine market pairs have lower o values during both crisis periods, compared to
the non-crisis period. However, the o values are significantly lower during the crisis peri-
ods for no more than two market pairs, using a simple #-test. Similarly, between five and
nine market pairs have higher (more positive) # values during both crisis periods, com-
pared to the non-crisis period. The f values are significantly higher during the crisis peri-
ods for no more than three market pairs. Thus, the evidence for significant decreases in o
during the crisis periods is weak. The evidence for significantly stronger dependence in
during the crisis periods is also weak. These results are weaker, even if we rule in model
selection criteria.

The value of v decreases during the crisis periods compared to the non-crisis period.
The decreases in v are weakly associated with increases in # during the crisis periods.
Decreases in v are more severe for the GFC period compared to the Eurozone crisis period.
However, except for two market pairs (Poland-Germany and Russia-Germany), the lower
v’s during the GFC are insignificant. The differences in the v’s for the non-crisis and Euro-
zone crisis periods are also insignificant. It is useful to note, however, that four market
pairs have significantly larger v’s for Eurozone crisis period compared to the GFC period,
even if the differences in the v’s for non-crisis and Eurozone crisis periods are insignificant.

The patterns in v and f# question what happens to dependence during different economic
regimes. While we have ignored goodness-of-fit in the above test, we suggest that during
crisis periods, greater uncertainty in economic conditions gives rise to heavier tail behavior
than during tranquil periods, to impact both v and f. This argument suggests that there was
less heavy tail behavior during the Eurozone crisis period compared to the GFC period,
assuming that a lower v is reliably associated with more uncertainty and heavier tail behav-
ior. Recall that the multivariate Student r-distribution approaches the Gaussian distribu-
tion for v — + oo, which, in turn, depicts a more symmetric distribution. This consideration
strengthens our interpretation. That is, we argue that a lower (higher) v is associated with
a heavier-tailed (lower tailed) distribution. Indeed, Embrechts et al. (2002) show that the
Student ¢ copula delivers upper tail asymptotic dependence, the strength of which increases
as v decreases, and as the marginal distributions get heavier-tailed. As such, v will be lower
during crisis periods, compared to tranquil periods in line with our results. However, our
results also suggest that upper tail asymptotic dependence, if present, is more pronounced
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during the GFC period compared to the Eurozone crisis period. Perhaps, this reflects the
greater severity of the GFC.

5.1.3 TheT-V Student t copula and the non-crisis and crisis periods

Ignoring model selection criteria, the T-V Student ¢ generates six significant a coefficients
and nine significant f# coefficients, during the non-crisis period (Table 5, Panel A). Fewer
a and p coefficients are significant during the GFC period (Table 5, Panel B). In contrast,
eight « and nine f coefficients are significant during the Eurozone crisis period (Table 5,
Panel C). Thus, for the Eurozone crisis period, CEE and German returns exhibit only a
small increase in the number of significant a coefficients compared to the non-crisis period,
whereas fewer o and f coefficients are significant during the GFC period. Longin and Sol-
nik (2001) report that the correlations in returns are higher during extreme events. How-
ever, we find that persistence parameter (f) is not substantially different across the sub-
periods. Of course, using sub-periods would reduce the power of the T-V Student ¢ copula.
However, our approach is consistent with prior related studies (Patton 2006; Boero et al.
2010), noting also that model misspecification could also adversely affect prior empirical
results. Thus, while we follow prior studies and assume that the GARCH process follows
the Student ¢ distribution (Junker and May 2005), it may not provide the best fit for the
GARCH process (see Sect. 3.1). Poon et al. (2004) also report that volatility clustering can-
not fully explain tail dependence.

5.1.4 T-V SJC copula and sub-period performance

In this section, we examine the level of tail dependence for each sample period, using the
T-V SIC copula. This is effectively a test of which part of the joint distribution has higher
dynamics and tail dependence. Recall, that the T-V SJC copula is our preferred copula
function based on the AIC. @V and a capture the upper and lower tail dynamics, respec-
tively. Y and B* capture upper and lower dependence, respectively. Ignoring whether or
not the coefficients are significant, Table 5 shows that a* tends to be higher (more positive)
than @V, and f* tends to be lower than Y during the non-crisis and GFC periods. For the
Eurozone crisis period, both a* and B* tend to be lower than aV and Y, respectively. There
is therefore a greater tendency to observe higher dynamics, as well as lower (less positive
or more negative) joint negative dependence (f%) than upper joint dependence (8Y) in each
sub-period. However, the differences between the pairs of a* and a¥, and the pairs of g~
and Y are often insignificant. Indeed, the simple #-test is significant in no more than three
comparisons of a” and aY for any sub-period. Similarly, the r-test is significant in no more
than four comparisons of #- and gV in any sub-period. These results point more towards a
symmetric distribution since fY often equals g* for the same sub-period. Our result con-
trasts with prior work that reports asymmetric dependence is stock returns (Ang and Chen
2002). Jondeau and Rockinger (2006) report however, that while joint negative extremes
create stronger dependence than joint positive extremes, large joint positive and negative
extremes of the same magnitude have the same effect on subsequent correlations. This may
explain some of our results.
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5.1.5 T-V SJC copula and change in dependence across sub-periods

We now compare the performance of the T-V SJC copula across the sub-periods. The focus
is still on the VECM-GARCH. We use the non-crisis period as a benchmark on this occa-
sion. Compared to the non-crisis period, four market pairs have significantly lower Y and
pF values during the GFC period (Table 5, Panels A and B). gY(fF) is significant higher for
three (one) market pairs of the Eurozone crisis period compared to the non-crisis period
(Table 5, Panels A and C). These results provide weak support for increases in asymmetric
dependence during crisis periods compared to the non-crisis period.

We next test for asymmetric dependence between the GFC and Eurozone crisis, since
the severity of the particular crisis may affect the level of dependence. Using the T-V SJC
copula, a’ and a? exhibit no demonstrable differences across the two sub-periods. At best,
three market pairs have significantly higher Y coefficients during the GFC period com-
pared to the Eurozone crisis period. In addition, five market pairs (Croatia, Poland, Roma-
nia, Russia, UK) have significantly higher ¢ during the Eurozone crisis period. This is our
strongest result for lower tail dependence, but the evidence is still weak.

Overall, our results contradict the majority of prior studies that suggest stronger depend-
ence during crisis periods (Gjika and Horvath 2013). Our findings complement Barunik
and Vécha’s (2013) result that CEE and Euro markets are loosely connected.

5.2 Copula estimates using CEE and UK returns

We replicate the above results for CEE and UK markets. The T-V SJC copula still domi-
nates almost all other copulas across the VAR specifications and sub-periods. No more
than five CEE-UK market pairs exhibit significant increases in lower tail dependence
across our comparisons. On the practical side, our results suggest that there are important
opportunities for international portfolio diversification using CEE returns. Below, we focus
on the copula estimates from the VECM-GARCH.

5.2.1 Goodness-of-fit of copulas based on CEE and UK returns

Panel A of Table 6 shows that the T-V SJC copula provides the best fit to six of the nine
market pairs of the non-crisis period. The T-V Student ¢ provides the best fit for the remain-
ing market pairs of the non-crisis period. The T-V SJC copula also outperforms the other
copula functions at other crisis periods, especially for the Eurozone crisis period (see Pan-
els A to C). Under the T-V Student ¢, « is significant for between three and seven market
pairs across the sub-periods, ignoring model selection criteria. f is significant for between
seven and nine market pairs. The Eurozone crisis period contains the largest number of
significant o and f coefficients (Panel C). The better fit of the T-V SJIC copula is associated
with fewer significant coefficients. These results are in line with those of CEE and German
returns.

5.2.2 Degrees of freedom and T-V Student t copula

Similar to the CEE and German results, Table 6 shows that § is several times larger than
the variation coefficient, a. As before, the v parameter is smaller for the crisis periods
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compared to the non-crisis period. The #’s of the GFC period are significantly higher than
those of the non-crisis period in only two comparisons. Conversely, the f’s of the GFC
are significantly lower than those of the non-crisis period in two comparisons. Pair-wise
comparisons of the non-crisis and Eurozone crisis periods generate fewer significant differ-
ences. Ignoring model selection criteria, our best result for the T-V Student ¢ copula, is that
five market pairs exhibit significantly higher § values during the Eurozone crisis, compared
to the non-crisis period. We are still unable to make a meaningful connection between o
and f over the sub-periods.

5.2.3 T-V SJC copula and sub-period performance

We now focus on tail dependence using the T-V SJC copula. Table 6 shows that com-
pared to the non-crisis period, a¥ and BY tend to be higher for the GFC periods (Panels A
and B). Both a and f” tend to be lower for the GFC period. We find the opposite result
in comparisons of the non-crisis and Eurozone crisis periods. The differences between
the pairs of coefficients across sub-periods tend to be insignificant. At best, only five
pair-wise comparisons of g are significantly higher during the Eurozone crisis period
compared to the non-crisis period. As before, the evidence in support of asymmetric
dependence is weak. Three factors may contribute to this result. First, as indicated above,
using a sub-period approach reduces the degree of variability in the data. An alternative
approach would be to estimate the copulas over the full sample period, but prior stud-
ies do not recommend this approach (Lamoureux and Lastrapes 1990), as the underlying
GARCH structure would be affected. Second, tail dependence is more likely to prevail
in markets that are integrated. Finally, Patton (2006) recommends using the average of
the last ten observations to capture variation in tail dependence. This effectively assumes
an ARMA(1,10)-type process. While he considers this approach to be robust, his chosen
lag length is unlikely to be suitable in all settings. While Bartram and Wang (2015) find
support for lower tail dependence, using industry returns, their finding holds mostly for
industries in Euro-area countries. Even if there may be weaknesses in their use of the
Gaussian copula, it appears that support for asymmetric dependence is more pronounced
when markets are integrated. Thus, Cavaglia et al. (2000) and Moerman (2008) argue for
an industry approach rather than a country approach to exploit the diversification benefits
of stock returns across countries.

6 Additional tests and discussion

We perform two additional tests in this section. First, we estimate the (time-varying)
BEKK (Engle and Kroner 1995) to validate our VAR estimates and copula results. We use
the bivariate diagonal BEKK as opposed to the full BEKK, since it does not suffer from
some of the biases of the full BEKK (see Allen and McAleer 2018).%° Second, we estimate

26 Chang and McAleer (2017) show that the full BEKK has no underlying stochastic process, asymptotic
properties or even regularity conditions. The conditional variances of the full BEKK are lower in the left
tail and higher in the right tail of the distribution compared to the conditional variances in the tails of the
diagonal BEKK (Allen and McAleer 2018).
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an IV-GMM model of financial development to assess the impacts of legal and macro-
economic variables on financial development.”’ Bartram and Wang (2015) adopt a related
approach to explain variation in return dependence.

6.1 BEKK estimation

The diagonal BEKK is estimated for both VAR specifications, under the Student ¢ distribu-
tional assumption (as before). These results are not tabulated. The error-correction coeffi-
cients are negative and significant, in line with previous results. Also in line with our previ-
ous results, lagged volatility (GARCH) has larger coefficients than past news. The T-V SJC
copula dominates the T-V Student ¢ in goodness-of fit. We still do not find overwhelming
support for increases or decreases in dependence across our sub-periods.

6.2 Instrumental variable-Generalized Method of Moments (IV-GMM) estimation

Large markets have more informative prices (Wurgler 2000). More informative prices facil-
itate higher liquidity, lower transaction costs and enhance co-movement. Price informative-
ness also facilitates more effective portfolio rebalancing. La Porta et al. (1997) indicate that
legal rights protection predicts differences in ownership structure and financial develop-
ment, being lower in developing countries. The strength of the legal environment (coun-
try-level corporate governance) influences tunnelling and investor behavior (Johnson et al.
2000), particularly around financial crises. Stringent legal systems constrain market activ-
ity, economic progress and innovation (Acharya and Subramanian 2009). Macroeconomic
variables, such as reserves and terms of trade, also predict the severity of crisis events (see,
Frankel and Saravelos 2012). An important test is whether the legal and macroeconomic
environments of CEE countries are so strong to restrict market integration around crisis
events. We test this prediction, using the ratio of market capitalization to GDP (MKCAP_
GDP) as a measure of financial development (see Wurgler 2000). This measure captures
the idea that more competitive markets have better institutions and allocate capital more
effectively. Our test is performed using a set of I[V-GMM regressions. The basic model is,

MKCAPgpp;, = a + Z BcCrisisc;, + Z BLegal,;, + Z B, Control,, ; , + Z 0, Income level,,
c [ m k

+ Z ytearj +g;,.
j

(10)
MKCAP_GDP is the measure of financial development, defined as before. Crisisc;,
denotes the crisis dummy variables. Legal, ; , denotes the legal measure [ of country i in year
t. The legal measures are: i) the Worldwide Governance Indicators (WGIs) of legal meas-
ures as in Kaufmann et al. (2011); and, ii) Quality of Government as in Houge et al. (2012),
which captures the reliability of financial reporting which tends to be higher in countries
with high quality governments. We do not use Djankov et al.’s (2008) Anti-Self-Dealing

27 We thank two anonymous reviewers for suggesting additional tests along these lines. One of the review-
ers suggested that cultural factors may contribute to variation