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ABSTRACT

Morphometric similarity networks (MSNs) estimate organization of the cortex as a

biologically meaningful set of similarities between anatomical features at the macro- and

microstructural level, derived from multiple structural MRI (sMRI) sequences. These networks

are clinically relevant, predicting 40% variance in IQ. However, the sequences required

(T1w, T2w, DWI) to produce these networks are longer acquisitions, less feasible in some

populations. Thus, estimating MSNs using features from T1w sMRI is attractive to clinical and

developmental neuroscience. We studied whether reduced-feature approaches approximate

the original MSN model as a potential tool to investigate brain structure. In a large,

homogenous dataset of healthy young adults (from the Human Connectome Project, HCP),

we extended previous investigations of reduced-feature MSNs by comparing not only

T1w-derived networks, but also additional MSNs generated with fewer MR sequences, to

their full acquisition counterparts. We produce MSNs that are highly similar at the edge level

to those generated with multimodal imaging; however, the nodal topology of the networks

differed. These networks had limited predictive validity of generalized cognitive ability.

Overall, when multimodal imaging is not available or appropriate, T1w-restricted MSN

construction is feasible, provides an appropriate estimate of the MSN, and could be a useful

approach to examine outcomes in future studies.

AUTHOR SUMMARY

We can estimate the higher order organization of cortical gray matter as a connectome

using structural MRI. However, this methodology, termed morphometric similarity, requires

multiple advanced neuroimaging protocols that are unsuitable, unavailable, or intolerable to

certain populations, including children and some clinical groups. In a large, homogenous

dataset of healthy young adults, we estimated these connectomes using three different feature

sets, each extracted from fewer MRI sequences. Even when produced using only T1-weighted

structural MRI scans, these connectomes were broadly similar to those produced with

more complex or numerous MRI sequences. We did not replicate previous findings linking

variation in the morphometric similarity networks (MSNs) to individual differences in

cognitive abilities. We highlight potential reasons for this, including the developmental stage

of the young adult imaging cohort in which our hypotheses were tested, and conclude that

this study provides putative evidence that, in those populations where advanced imaging is

not plausible, MSNs generated from T1-weighted structural MRIs are a promising alternative.
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INTRODUCTION

Cortical gray matter structural covariance networks (SCNs) model the degree to which the

morphology of cortical regions (e.g., cortical thickness or volume) statistically covaries acrossCortical thickness:
Distance between the inner (white
matter/gray matter boundary) and
outer (gray matter/dura boundary)
cortical surfaces at each vertex.

all possible pairs of regions (Alexander-Bloch, Giedd, & Bullmore, 2013; Evans, 2013). These

whole-brain network approaches to morphometry, within a graph theoretic framework, allow

us to investigate additional information beyond univariate approaches to neuroanatomy

(Pagani, Bifone, & Gozzi, 2016). Disruption to the SCN has been explored in a range of

neurological and neuropsychiatric conditions. However, this methodology necessarily gener-

ates group-level networks indexing population-level covariance in neuroanatomy (Alexander-

Bloch, Raznahan, Bullmore, & Giedd, 2013). This limits the ability to quantify system-level

abnormalities within individual patients, who could benefit from stratified diagnosis and prog-

nosis (Zheng, Yao, Xie, Fan, & Hu, 2018).

An alternative approach to investigate the regional covariance structure between multi-

ple morphometric features at an individual level is morphometric similarity networks (MSNs;

Seidlitz et al., 2018). This approach estimates mesoscale organization of the cortex as a bi-

ologically meaningful set of similarities between anatomical features at both the macro- and

the microstructural level (Morgan et al., 2018), including mesoscale morphometry, tissue dif-

fusion properties, and myelination indices. MSNs have been shown to be clinically useful,

predicting ∼40% variance in IQ, as well as biologically meaningful, with edges of the MSN

highly aligned with regional gene coexpression in human data and axonal tract tracing in the

rhesus macaque (Seidlitz et al., 2018). These findings reflect the fact that cortical regions that

are more anatomically similar are likely to be anatomically connected (Goulas, Uylings, &

Hilgetag, 2017; Wei, Scholtens, Turk, & van den Heuvel, 2019). The MSN represents a new

neuroimaging phenotype, which may provide additional, biologically relevant information be-

yond existing network approaches.

MSNs have already been utilized in a small number of clinical studies (characteristics of

these studies, including neuroanatomical features extracted, are listed below in Table 1). For

example, previous studies identified a robust, replicable pattern of differences in morphome-

tric similarity between patients with psychosis compared with controls (Morgan et al., 2018)

and detected dysmaturation of the brain in preterm infants (Galdi et al., 2018). Overall, these

findings suggest that MSNs represent a useful and clinically relevant phenotype.

Multimodal, high-quality MRI sequences are required for these approaches. These may not

be feasible or tolerable for all research settings and/or populations. Existing (legacy) clinical

cohorts often lack advanced imaging. Longer acquisition times for advanced sequences may

reduce image quality, especially in pediatric or clinical applications where noncompliance

and movement are more likely as acquisition time increases (Rosen et al., 2018).

Estimating MSNs using a single T1w 3-D anatomical MRI is appealing for clinical and de-

velopmental neuroscience (Batalle, Edwards, & O’Muircheartaigh, 2018). Seidlitz et al. (2018)

and Li et al. (2017) estimated morphometric similarity in this way and found that network edge

weights were similar to multimodal MSNs (r = 0.68; Seidlitz et al., 2018), with good test-retest

reliability in terms of network topology (ICC = 0.60; Li et al., 2017). Using only T1w MRI it

is possible to identify patterns of morphometric similarity that classify autism spectrum disor-

der (Zheng et al., 2019), Alzheimer’s disease, and mild cognitive impairment (Zheng et al.,

2018) from controls, albeit with reduced estimation precision, and greater standard deviation

of edge-level weights across participants (Seidlitz et al., 2018). This method also identified

a spatial pattern of anatomical disruptions associated with regional gene expression, findings
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Table 1. Characteristics of previous studies utilizing morphometric similarity networks to investi-
gate cortical organization

Study Population MRI acquisitions MSN feature set

Seidlitz et al. (2018) Typically developing
adolescents

Multiparametric
mapping sequence
and DWI

FA, MD, MT, GM, SA,
CT, GC, MC, CI, FI
(Reduced-feature MSN;
CT, SA, GM, GC, MC)

Morgan et al. (2018) Schizophrenia or nonaffective
psychotic disorders

T1w MRI and DWI GM, SA, CT, GC, MC,
FA, MD

Galdi et al. (2018) Term and preterm neonates T1w MRI, T2w MRI,
and DWI

GM, T1/T2 ratio, FA,
MD, RD, AD, VISO,
IVF, ODI

Seidlitz et al. (2019) Neurodevelopmental
disorders of known
genetic origin

T1w MRI CT, SA, GM, MC, GC

Li et al. (2017) Healthy adults T1w MRI Vertices, GM, SA, CT,
SD-CT, MC, GC, CI, FI

Zheng et al. (2018) Mild cognitive impairment
and Alzheimer’s disease

T1w MRI CT, SA, GM, LGI, sulcul
depth, gyrus height

Zheng et al. (2019) Autism spectrum disorders T1w MRI CT, SA, GM, LGI, sulcul
depth, gyrus height, MC

Note. FA = fractional anisotropy, MD = mean diffusivity, MT = magnetization transfer, GM = gray
Fractional anisotropy:
Scalar measuring the degree of
directional restriction of water
molecule diffusion.

Mean diffusivity:
Average diffusion motion of water
molecules independent of
directionality.

matter volume, SA = surface area, CT = cortical thickness, GC = Gaussian curvature, MC = mean

Gaussian curvature:
The product of the two principal
curvatures at every vertex of the
surface, indicating local curvature.

curvature, CI = curvature index, FI = folding index, RD = radial diffusivity, AD = axial diffusivity,

Mean curvature:
The mean of the two principal
curvatures at every vertex, indicating
local folding.

Curvature index:
Integrating across all regions of
positive Gaussian curvature and
dividing by 4π.

Folding index:
Integral of the product of the
maximum principal curvature and
the difference between maximum
and minimum curvature.

VISO = isotropic volume fraction, IVF = intracellular volume fraction, ODI = orientation dispersion
index, vertices = number of vertices, SD-CT = standard deviation of cortical thickness, LGI = local
gyrification index.

consistent with a transcriptional vulnerability model of neurodevelopmental disorders (Seidlitz

et al., 2019). Characteristics of these studies, including neuroanatomical features extracted,

are listed below in Table 1. However, existing studies provide limited assessment of reliability,

consistency with group networks, biological validity, and predictive ability.

The current study aimed to determine whether reduced-feature approaches approximate

the original MSN model. We extended previous investigations of reduced-feature MSNs by

comparing not only T1w-derived networks, but also additional MSN models, each using fewer

metrics from a reduced number of MRI acquisitions.

We predicted that for each measure of reliability/replicability, performance would be

ordered hierarchically with MSNs generated with the greatest number of features outperform-

ing those generated with fewer. We also predicted that between-model comparisons would

suggest that the models themselves were highly similar. In line with previous work (Seidlitz

et al., 2018), we predicted that there would be an association between cognition and MSN

organization and that this would generalize to a novel cognitive domain, specifically executive

functioning.Executive functions:
A collection of top-down control
processes that allow an individual to
be adaptive to novel situations in their
environment.

METHODS

Participants: HCP Data

The current study uses open-access, 3T MRI data provided by the Human Connectome Project

(Van Essen et al., 2013), shared via ConnectomeDB (https://db.humanconnectome.org) under

theHCP 1200 andHCP test-retest release. Favorable ethical approval for the secondary analysis

of this data was granted by the Aston University ethics panel.
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HCP 1200 release. The HCP 1200 release contains data from n = 1, 206 subjects (550 males,

656 females). Subjects are grouped into age bins from 22–25 to 36+ (median age = 26–30).

While n = 1, 206 subjects provided behavioral data, only 1,113 subjects had MRI data avail-

able. These were the subjects for which data were accessed and downloaded from Connec-

tomeDB for the current study.

HCP test-retest release. For 46 subjects from the HCP 1200 release, a second retest dataset is

available to assess test-retest reliability of analyses. These second MRI visits occurred within

time bins from 1–2 months to 11 months post initial scanning session. The median retest-

interval bin was 5 months. Of these subjects, 45 had available MRI data, and these were the

subjects used for subsequent analyses.

Methods

Data quality control. Subjects were selected for inclusion if, in the 1,200-subject HCP release,

they had T1w (0.7 mm isotropic), T2w (0.7 mm isotropic), and diffusion data uploaded. This

led to exclusion of n = 76 cases.

Also, utilizing QC data shared by the Human Connectome Project, any data labeled with

QC issue code B (which flags cases as having focal segmentation and surface errors when the

corresponding FreeSurfer outputs were checked) were further excluded from the current study

(n = 33). The final dataset consisted of n = 1, 004 subjects. In the test-retest cohort, only one

subject was excluded as flagged with QC issue code B by the Human Connectome Project.

MRI processing. The current study utilizes data shared in preprocessed format, including the

output of the HCP FreeSurfer pipeline (Fischl et al., 2002; Glasser et al., 2013; Jenkinson,

Bannister, Brady, & Smith, 2002; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),

processed DWI (gradient nonlinearity, eddy current, and EPI distortion corrected; Andersson,

Skare, & Ashburner, 2003; Andersson & Sotiropoulos, 2015, 2016), and calculated T1/T2w

ratio myelin maps (Glasser & Van Essen, 2011). For further details of HCP processing pipelines

see Glasser et al. (2013).

Once cases were selected, measures indexing the underlying neuroanatomical structure

were derived from multiple imaging modalities (see Table 2). Seidlitz et al. (2018) leverage

near-identical MRI-derived metrics for the construction of the MSN network. However, we are

using the T1/T2 ratio as a proxy for myelin content, rather than the magnetization transfer scan

used by Seidlitz et al. (2018). The rationale for this modification was both pragmatic and clin-

ically driven; (a) the T1/T2w ratio maps are already implemented by the Human Connectome

Project and thus these data are available for use with the rest of the high-quality HCP acquisi-

tion data; and (b) in clinical populations, for which the methods may provide greatest benefit,

multiparameter mapping MRI sequences may not be acquired as part of a clinical protocol,

whereas T1w and T2w sequences are.

Preprocessed DWI (1.25 mm isotropic, b = 1, 000) in T1w space were fitted to a tensor

model using FMRIB’s “dtifit” function, and the subsequent FA and MD maps were mapped to

the individual subject’s FreeSurfer-generated surface model in MNI space, using the connec-

tomeworkbench (Marcus et al., 2011) function “volume-to-surface-mapping.”These, and theTw1/

T2w ratio myelin maps, were parcellated based on the Desikan-Killiany atlas (Desikan et al.,

2006), by generating a dense-cifti (using the “cifti-create-dense-from-template” function) and

parcellating the output (using “cifti-parcellate”). FreeSurfer metrics were also extracted for each

parcellated region using the “aparcstats2table” function.
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Table 2. Morphometric measures and the modality of MRI from which they were derived

Modality Metrics

T1w Cortical thickness (CT), surface area (SA), mean (extrinsic) curvature
(MC), Gaussian (intrinsic) curvature (GC), folding index (FI), curvature
index (CI), and gray matter volume (GM)

T2w Myelination (T1/T2w ratio)

DWI Fractional anisotropy (FA), mean diffusivity (MD)

MSN construction. To generate MSNs we apply the methods of Seidlitz et al. (2018) to the

HCP data. The Desikan-Killiany atlas was mapped to the individual subjects with a surface-

based registration, using the FreeSurfer pipeline. The Desikan-Killiany atlas regions of interest

(ROIs) were used as the nodes for all network construction.

Morphometric features (parcellated to the Desikan-Killiany atlas) for each participant can

be expressed as a set of n vectors of length 10, with each vector as a different anatomical region

(n = 68), and each element of the vector a different morphometric measure. However, these

features are not all measured at the same magnitude of scale. For instance, volume (mm3) is

measured at the order of 103, whereas folding index is measured to the order of 101. Thus,Folding index:
Integral of the product of the
maximum principal curvature and
the difference between maximum
and minimum curvature.

to normalize within this length 10 vector, each of these morphometric features is normalized

across the 68 regions, using Z-scores (demeaned and SD scaled). This brings the measures

across the feature vector into a comparable range.

Using the normalized features, a correlation matrix is generated for each participant, where

each element of the matrix is the correlation between the feature vectors for every possible

pairwise combinations of regions. Because each feature is zero-centered, the resultant distri-

bution of correlation coefficients is normally distributed about zero. This correlation matrix

represents the MSN-estimated connectivity for each participant.

We constructed these networks across three different MSN models. These models were

hierarchically organized, with reduced acquisition complexity from Models A to C below:

(A) MSN (T1w + T1w/T2w ratio + DWI; 10 features (MSN10-feat.)),

(B) MSN (T1w + T1w/T2w ratio; eight features (MSN8-feat.)),

(C) MSN (T1w; seven features (MSN7-feat.))

Model A, hereto referred to as MSN10-feat., is the best approximation of the Seidlitz et al.

(2018) approach, with magnetization transfer replaced with T1w/T2w ratio mapping (Glasser

& Van Essen, 2011) in the current study. Thus, for each participant, three MSNs (one per model)

were estimated.

Demographic and Behavioral Data

Demographic variables were selected from the unrestricted data table accessed via Connec-

tomeDB. These included age bin, sex recorded at birth, and recorded quality control issues.

Behavioral data were also extracted to assess the relationship between the MSNs and both

general cognitive ability (measured with both fluid and crystallized intelligence measures) and

executive functioning. These neuropsychological assessments were conducted contempora-

neously in relation to the MRI scans. Further details of the tasks and measures acquired in the

HCP dataset can be found in Barch et al. (2013).
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General cognitive ability. General cognitive functioning is measured with the Cognitive Func-

tion Composite (CogComp) score (Heaton et al., 2014), derived from the average of the nor-

malized, scaled scores of Fluid and Crystallized cognition measures, then subsequently age

adjusted, and scaled. The Fluid Cognition Composite score is derived by averaging the nor-

malized scores of each of the fluid ability measures in the NIH Toolbox (Flanker, Dimensional

Change Card Sort, Picture Sequence Memory, List Sorting, and Pattern Comparison), while

the Crystallized Cognition Composite score is derived by averaging the normalized scores of

each of the crystallized measures in the NIH Toolbox (Picture Vocabulary and Reading Tests).

Higher Cognitive Function Composite scores indicate higher levels of cognitive functioning.

Executive functioning. Behavioral executive function (EF) measures were selected based on an

evidence-based, three-factor model of executive function (Karr et al., 2018); measures selected

from the HCP cognitive battery to model EF were the same as previous studies of EF utilizing

the HCP data (Lerman-Sinkoff et al., 2017; Nomi et al., 2017). These tests assessed multiple

cognitive aspects of executive functioning, including cognitive flexibility/shifting (Dimensional

Change Card Sort Test; Zelazo, 2006; Zelazo et al., 2014), inhibition (Flanker Inhibitory Control

and Attention Task; Zelazo et al., 2014), and working memory (List Sorting Task; Tulsky et al.,

2013). Age-adjusted scores were used for all behavioral data.

Since we have only one neuropsychological measure per subdomain of EF and there is

therefore potential risk of measurement error, a principal component analysis (using the

“prcomp” function in the R stats base package; R Core Team, 2016) was used to find a common

EF component across all three EF measures. This produced a single principal component with

an eigenvalue above 1, upon which all measures positively loaded onto, and thus this com-

ponent was used as a summary score of EF (see the Supporting Information for further details).

Higher summary EF scores reflect greater EF functioning.

Statistical Comparison

When comparing weighted networks produced by each model, we use multiple metrics to

assess the (dis)similarity of the subsequent covariance matrices.

To reduce the number of comparisons and, based on our premise that the MSN10-feat. is the

most precise estimation of the MSN network (as shown by Seidlitz et al., 2018), all intermodel

comparisons were done in a hierarchical fashion in comparison to this “gold-standard” net-

work. That is to say that model MSN10-feat. was compared with the MSN8-feat. and then the

MSN10-feat. was subsequently compared with the MSN7-feat..

To test differences in the topological organization of the networks produced by each model,

we calculate average nodal strength for each graph. Nodal strength is the magnitude of struc-

tural covariance for each node; that is, the sum of the connectivity weights of all edges con-

nected to node i (Fornito, Zalesky, & Bullmore, 2016). We did not normalize this measure

based on number of edges as we averaged the nodal measures over the graph, where the num-

ber of edges was consistent across models because of density thresholding. This metric was

calculated per subject, per density for each MSN model. For each comparison, we calculate

the difference in distributions of graph strength using a paired t test. Because of the large num-

ber of comparisons (across densities, and contrasts) we do not report p values, but instead

report the effect sizes for comparisons.

We also calculate the Pearson correlation coefficient between all edge weights for both

models (as per Seidlitz et al., 2018), and also specifically between all nonzero edge weights
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(those elements where a zero is present in the correlation matrix for each model are excluded).

However, because of the symmetric, undirected nature of the correlation matrix, this correla-

tion coefficient may inflate/bias the supposed similarity between the sets of edge weights. Thus

we also employed the Mantel test, which calculates the Pearson correlation on either half of

the off-diagonal elements of the correlation matrix (Mantel, 1967).

To compare the binary networks produced by each model at each density (where edges

retained after thresholding are set to 1 and those excluded are set to 0), we assessed the number

of edges in the reduced model that replicated as a proportion of the fuller model, as per the

following formula:

∑ (xi 6= 0 & yi 6= 0)

∑ (xi 6= 0)
,

where xi and yi represent the correlation matrices estimated from two of the MSN models for

a given subject i.

Second, we calculate these similarity measures between the subject-level network and the

group average network, across all densities and models. This allows the assessment of the inter-

subject reliability of the networks being constructed by each model. Third, we similarly test the

intrasubject reliability of the produced networks, based on test-retest data from a subset of the

overall dataset. Because of the categorical and inaccurate nature of the binned measurement

of time between initial and retest scan, this was not controlled for in this analysis.

In order to assess the functional relevance of these networks, we assess their ability to predict

CogComp and EF scores using a supervised-learning approach, namely partial least squares

(PLS) regression (similar to Seidlitz et al., 2018) using the “plsRglm” package in R (Bertrand &

Maumy-Bertrand, 2018). This multivariate approach finds the optimal low-dimensional rela-

tionship between a high-dimensional set of predictors (in this case the MSN networks) and a

univariate predictor variable (either CogComp or EF). This approach is commonly used when

the number of predictors exceeds the number of observations (Krishnan, Williams, McIntosh,

& Abdi, 2011).

A PLS regression was used to find the maximal low-dimensional covariance between com-

ponents derived from the MSN and cognitive outcomes. The PLS regression was used to de-

compose the predictor variables into latent variables (components) that simultaneously model

the predictors and predict the response variable (Krishnan et al., 2011). The predictor matrix

consisted of either the degree or the strength of each node of the MSN, for each participant.

Using a linear model, the potential confounding effect of age, gender, and age × gender in-

teraction was regressed out of values for nodal degree/strength (but not our cognitive outcome

variable as these were already age-adjusted within the HCP dataset). For each model (at each

threshold), a PLS regression model was fitted between principal components derived from the

resultant predictor matrix (68 × 991) and the outcome variable. This was repeated across 100

instances of ninefold cross-validation.

Cross-validated R2 (R2
CV ), otherwise known as the Q2 statistic (Consonni, Ballabio, &

Todeschini, 2010; Stone, 1974), was used to select the number of components to retain in the

predictor matrix. Q2 was defined as the following:

Q2 = R2
CV = 1 −

PRESS

TSS
= 1 −

∑
n
i=1 (ŷi − yi)

2

∑
n
i=1 (yi − ȳ)2

,

where PRESS is the predictive residual error sum of squares and TSS is the total sum of squares.
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The number of components to retain in the predictive model was selected as the number of

components that resulted in the greatest Q2 value. This was repeated over the cross-validations

and resulted in a count measure of the number of times a model with a given number of com-

ponents was selected. Hence the final model was the given number of components that were

most commonly selected as having the greatest Q2 statistic. Given the model with the retained

number of components, we report the variance explained by the model and the bias corrected

and accelerated bootstrapped (Bastien, Vinzi, & Tenenhaus, 2005) weightings of each predic-

tor. This allows us to assess which brain regions are contributing most to the prediction.

Because of the normal distribution of the cognitive measures (CogComp and EF) data,

there may be an issue of class imbalance for more extreme cases (Torgo, Branco, Ribeiro, &

Pfahringer, 2015). As there are fewer subjects who fall within the tails of the continuous distri-

bution on our cognition measures, the cross-validation approach may lead to training samples

where there are too few extreme cases (those with particularly high/low cognitive abilities) to

learn from. This may result in a model where there is accurate prediction around the mean but

not at the tail ends of the distribution. To ensure the training samples contain subjects from a

stratified sampling approach, we repeated the analyses discretizing the performance on cog-

nitive measures into four discrete bins across the distribution and training a model based on

equally sized, random samples from each bin.

RESULTS

Intermodel Comparisons

Magnitude of morphometric similarity: Graph-level strength. In terms of the topology of the net-

works, global graph strength for each model, across densities, can be seen in Figure 1. This

plot shows the similar trajectories across densities for all models tested; however, the observed

Figure 1. Comparisons of network topology. (A) Graph metrics describing average network strength for each MSNmodel, across all densities.
(B) Effect sizes of differences between (a) MSN10-feat. versus MSN8-feat. and (b) MSN10-feat. versus MSN7-feat. for differing graph metrics, across
densities.
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average graph strength was different between models, with lower strength seen in the MSN

models with greater features. The effect size of differences (estimated with a paired t test) be-

tween MSN10-feat. versus MSN8-feat. and MSN10-feat. versus MSN7-feat. can be also be seen in

Figure 1. Effect sizes (r) were extremely large, especially between MSN10-feat. versus MSN7-feat.

Edge weights. Figure 2 shows the intermodel comparisons betweenMSN10-feat. andMSN8-feat.,

and between MSN10-feat. and MSN7-feat.. There is a gradual increase in correlation of edge

weights across densities with the peak mean correlation being found between MSN10-feat.

and MSN8-feat. at a 40% threshold (r(M ± SD) = 0.849 (± 0.025)), with slightly weaker

correlations found between MSN10-feat. and MSN7-feat. (r(M± SD) = 0.736 (± 0.031)). When

considering only the nonzero edge weights (only edge weights remaining after thresholding),

a slightly weaker peak correlation was found for both contrasts at 5% threshold (MSN10-feat.

versus MSN8-feat. r(M ± SD) = 0.738 (± 0.053); MSN10-feat. versus MSN7-feat. r(M ± SD) =

0.670 (± 0.066)). However, as the threshold increased, the dispersion of individual-level non-

zero edge correlation decreases, especially in the MSN10-feat. versus MSN7-feat. contrast.

Figure 2. Violin plot of correlation of edge weights between (A) MSN10-feat. versus MSN8-feat. and (B) MSN10-feat. versus MSN7-feat. Midline
of the box plot component of the violin represents the mean of all correlation coefficients, with the box itself representing the SD of this mean.
Individual data points are also plotted.
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When considering correlation coefficients calculated using the Mantel test, similarly strong

correlations were found between edge weights across all models; however, as predicted, the

MSN10-feat. versusMSN8-feat. weremost similar. At 40% threshold: MSN10-feat. versusMSN8-feat.

Mantel r(M ± SD) = 0.835 (± 0.028); MSN10-feat. versus MSN7-feat. Mantel r(M ± SD) =

0.715 (± 0.034). For the binarized networks, the proportion of edges replicated also peaked

at 40% threshold (MSN10-feat. versus MSN8-feat. proportion of replicated edges = 85%(± 2%);

MSN10-feat. versus MSN7-feat. proportion of replicated edges = 77%(± 2%; Figure 3)).

Intramodel Comparisons

Test-retest reliability of MSN models. We compared the MSN models at the initial scan with

those calculated from test-retest scans acquired between 1 and 11 months after the initial MRI.

All models showed high test-retest reliability of theMSN (correlation of all edge weights at 40%

threshold: MSN10-feat. r(M± SD) = 0.902 (± .032); MSN8-feat. r(M± SD) = 0.881 (± 0.040);

MSN7-feat. r(M ± SD) = 0.857 (± .043)). This high test-retest reliability of networks held

even when networks were binarized. At 40% threshold: MSN10-feat. proportion of replicated

edges = 87%(± 3%); MSN8-feat. proportion of replicated edges = 87%(± 3%); MSN7-feat.

proportion of replicated edges = 86%(± 3%). See Figure 3 for plots.

Similarity with average MSN. For each model, at each threshold, a group-level network was

produced as the mean of the correlation matrices for all subjects. Example correlation matrices

are found in Figure 4. Across all models (MSN10-feat., MSN8-feat., and MSN7-feat.), regardless

Figure 3. Model comparisons across thresholds using (A) Mantel test correlation coefficient and (B) proportion of edges replicated
as measures of model similarities. Midline of the box plot component of the violin represents the mean, while the box itself represents
the SD.
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Figure 4. Examples of the correlationmatrices generated with each MSNmodel. Columns A and B represent MSNs from two random subjects
from the HCP dataset, while the final column represents the group average MSN for each MSN model. All correlation matrices visualized
here represent the MSN thresholded at a density of 40% and are sorted by lobe assignment as defined by the Desikan-Killiany atlas (frontal,
parietal, temporal, occipital, insula, cingulate).

of similarity metric used, the individual-level MSNs were highly similar to the group-mean

network (see Figure 5). Interestingly, the MSN8-feat. model showed greatest correlation between

edge weights. At 40% threshold: MSN10-feat. r(M ± SD) = 0.843 (± 0.032); MSN8-feat. r(M ±

SD) = 0.875 (± 0.029); MSN7-feat. r(M ± SD) = 0.850, (± 0.031). Similar to the intermodel

analyses, correlation peaked at the highest threshold tested (40%) for all models.
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Figure 5. Plots showing MSN similarity (across thresholds, with multiple similarity measures) between (A–C) individual MSNs generated
with test-retest MRI scans and (D–F) individual-level MSNs and the group average MSN network.
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Relationship With Cognitive Scores

Only participants who had available a full dataset comprising the three EF subtests and the

CogComp measure were included in the following analyses (n = 991). For both cognitive

variables, using 100 instances of ninefold cross-validation, the greatest Q2 was found most

frequently when zero components were retained and thus no models were built.

This suggests that no PLS-derived components of nodal degree, strength, or normalized

strength of the MSN provided greater explanation than the intercept alone. After the stratified

sampling of the training cohort, there was no improvement in the result outlined above; cross-

validation still recommended retention of zero components for all MSN models.

DISCUSSION

The current study is the first to formally investigate the potential for generation of MSNs based

upon a reduced number of neuroanatomical features, dependent on the complexity of the MRI

acquisition sequence. We found that the weighted networks generated from these models are

highly congruent, across a number of similarity measures. We expanded previous assessments

(e.g., Seidlitz et al., 2018, compared five morphometric features to their full MSN10-feat.model)

to include multiple MSN models. Irrespective of the statistical assessments used here, the

between-model similarity was nearly always hierarchical, with greater similarity seen between

MSN10-feat. andMSN8-feat. compared with that betweenMSN10-feat. andMSN7-feat. Weaker sim-

ilarity was found for sparser networks at a much lower density (i.e., 0.05). When edges were

binarized, replication rates remained relatively high, suggesting that the models are sensitive

to the specific edges within the network. Each model displayed high levels of congruence with

the group average network, suggesting that these methods index individual differences from a

relatively consistent mesoscale phenotype of brain structure. Li et al. (2017) found high levels

of test-retest reliability of the T1wMSN, and we replicated this with each of the reduced-feature

MSNs, which seemingly had similar reproducibility in terms of test-retest MRI. This is maybe

unsurprising given that the HCP scan acquisitions are designed for high within-subject repro-

ducibility (Van Essen et al., 2013). However, in terms of average nodal strength, a measure of

the magnitude of morphometric similarity, significant between-model differences with large

effect sizes were found. Specifically, as myelo-architectural features were added to the MSN

model (T1w/T2w ratio, FA, MD), the magnitude of morphometric similarity was reduced and

regions appeared less similar and more differentiated, hence the lower average nodal strength.

This suggests that, despite edge-level congruence, the weighted topology of individual nodes

is different between models. Given that the current and previous studies (i.e., Seidlitz et al.,

2018) utilize these nodal-level metrics to predict functional outcomes, this difference in topol-

ogy means that between-study comparisons of these predictive models, when generated from

different feature sets, is not justified. These differences were investigated with only a single

metric of network topology. Additional metrics (i.e., efficiency/clustering) were less attractive

candidates given that the MSNs do not adhere to typical assumptions of networks (such as

edges representing definitive real connections). Hence, by using strength as a simpler metric

we made fewer assumptions about the underlying neurophysiology of the network.

Interestingly, none of the models tested here showed perfect or even near-perfect concor-

dance across the statistical measures employed. This may be because these models were gen-

erated with fewer features, rather than being specific to the modality of feature being dropped.

Future research could examine this systematically by generating MSNs with 10, 8, and 7 ran-

domly selected features, irrespective of modality of MRI sequence used to derive said feature.
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Each model may also index a different network phenotype. Each MRI acquisition assesses

different neuroanatomical features (e.g., T1w/T2w ratio and DWI specifically index myelo-

architecture of regions while the T1w MRI assesses macroscopic morphology of the cortex).

Thus, when features are systematically removed in this way by removing an imaging modality,

the resultant MSN is likely to represent a different imaging phenotype. Therefore, although each

MSN may be substantially statistically similar, in cases where multimodal imaging is available

or is feasible, the most appropriate MSN model may depend on the research question to be

answered or the clinical population/pathological mechanism under investigation.

The main benefit of reduced MR-acquisition approaches (specifically the MSN7-feat. model)

is the applicability to those populations where multiple MR sequence acquisition is more chal-

lenging or difficult (Batalle et al., 2018). For instance, in clinical populations where research

MRI scans are acquired alongside routine examinations and therefore time is limited, or in de-

velopmental populations where acquisition time needs to be kept at a tolerable level for chil-

dren to ensure compliance with the full MRI protocol and reduce the likelihood of movement

across each of the scans. Another potential application of these models is in legacy clinical

imaging. Routine clinical imaging generates vast quantities of MR data that are not typically

assessed using quantitative methods. Although expert reporting yields the information needed

to inform acute diagnostic requirements, the ability of those scans to predict later outcomes

is largely untested or unsatisfactory. The majority of hospital settings will not have access to

high-resolution, so-called advanced, MRI sequences, or the expertise to analyze such data

quantitatively. Overall, this therefore positions MSNs as a useful in vivo imaging phenotype

for studying both clinical and developmental populations, with the T1w-only model holding

greatest potential to become a widely adopted, automated approach in clinical neurosciences.

A common assumption is that the topological organization of the brain networks (across

multiple MR modalities), as quantified within a graph theoretic framework, captures physi-

ological information relevant to individual differences in cognitive functioning (Bullmore &

Sporns, 2009; Fornito, Zalesky, & Breakspear, 2013; Hahn, Lanzenberger, & Kasper, 2019).

We assessed the brain-behavior relationships using the MSN models by comparing the pre-

dictive validity of the three MSN models in relation to general intelligence, with previous re-

search showing that the organization of theMSN network (modeled similarly to theMSN10-feat.)

predicted ∼40% variance in WASI (Wechsler Abbreviated Scale of Intelligence) IQ (Seidlitz

et al., 2018). The current study did not find a relationship with either a measure of general

cognitive functioning or a previously untested domain, executive functioning. Using ninefold

cross-validation, no model (at any density) recommended retention of any PLS components.

An important strength of the current study is our quantitative approach to cross-validation to

confirm the retained number of components; previous studies retained either the single or two

components that explained the greatest amount of variance (Seidlitz et al., 2019; Seidlitz et al.,

2018). This may mean that previous findings are less generalizable to new datasets, explaining

our inability to replicate findings of Seidlitz et al. (2018).

A number of other factors may explain our results. Developmental differences between

our sample (healthy young adult population between the third and fourth decades of life)

and that of Seidlitz et al. (2018) may account for the lack of predictive ability in our work.

Adolescence is a peak period for brain maturation (Gogtay et al., 2004; Sowell et al., 2004),

including establishment of cognitive skills such as executive functions, as studied here. This is

reflected in data from theNIH Toolbox, in which the total cognition composite highlights shows

a greater magnitude of age effects in childhood compared with adulthood (Akshoomoff et al.,

2013; Heaton et al., 2014). Throughout childhood, the regions subsuming these functions are
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reaching structural maturity. Therefore, it is reasonable to believe that it is within the child/

adolescent period where the most variance in these neurocognitive skills can be explained

by structural networks (as seen by the ∼40% variance in IQ explained by the MSN in Seidlitz

et al., 2018).

In the age range that the current study has sampled, the brain should have reached structural

maturity (with only subtle age-related effects) and so there is likely less between-individual

variance in the MSN. Greater congruence between individual MSNs and the group average

MSN in the current study compared with previous adolescent MSNs (correlation of all edge

weights: mean r = 0.60; Seidlitz et al., 2018) supports this contention. Therefore, the limited

variance in the MSN within the age group we studied may mean that there is not enough

variance to relate to cognitive functioning.

While we were not able to replicate previous brain-behavior relationships with the MSN,

given the evidence above, there is an open hypothesis as to whether the MSN is a valuable

tool in independent populations. We therefore propose that the MSN may in fact be a use-

ful phenotype for assessing neuropsychological functioning, but only in populations where

there is sufficient variation in the structure of the brain. This may be populations in the in-

fant/child/adolescent period where structural networks are likely to see greatest variability due

to developmentally mediated change (such as Galdi et al., 2018; and Seidlitz et al., 2018) or

clinical populations where atypical brain structure is seen in the pathophysiology of the disor-

der (such as Seidlitz et al., 2019; Morgan et al., 2018; and Zheng et al., 2019). It may be the

case that these networks hold utility in populations such as these, rather than healthy, matured

populations (where measures of brain structure are likely to heavily regress to the mean).

Our analytic approach may also explain the different findings. Seidlitz et al. (2018) used the

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), whereas we used the NIH

Toolbox Cognition Composite scores (Heaton et al., 2014). The composite score shows high

convergent validity with other Wechsler assessments of general intelligence (with theWechsler

Adult Intelligence Scale [WAIS-IV; Wechsler, 2008] r = 0.89; Heaton et al., 2014; and with

the Wechsler Intelligence Scale for Children [WISC-IV; Wechsler, 2003] r = 0.88; Akshoomoff

et al., 2013), and therefore core data elements will enable future studies to clarify whether the

application of MSNs is relevant to specific measures. We also calculated the MSN at a much

lower spatial scale (68 ROIs) compared with previous work (308 ROIs). This lower spatial res-

olution may result in more regionally specific effects being difficult to detect; however, it may

also have allowed us to detect more subtle effects because of increased power. Yet it is impor-

tant to note that the 308 ROIs are derived by subdividing the 68 ROI atlas used in the current

study into equally sized patches and thus still respect the anatomy of the brain in the same

way. Therefore, it is highly unlikely that this would explain why we did not replicate previous

findings. Future research should replicate the current findings in independent datasets, across

different atlases and at different spatial resolutions.

CONCLUSION

We have demonstrated that when we generate the MSN based on a reduced/limited num-

ber of MR features, we produce correlation matrices that are highly similar to those gen-

erated with multimodal imaging. However, the nodal-level topology differed based on the

number of features. In contrast to previous research, we found that regardless of the num-

ber of features, these networks have limited predictive validity of generalized cognitive ability

scores, although this may be specific to the current age range under study. Overall, this study

provides tentative evidence that in situations where multimodal imaging is not available or
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clinically/developmentally inappropriate, T1w-restricted MSN construction may be an appro-

priate proxy for multimodal MSNs. However, nodal-level topology is likely to be biased based

upon the neuroanatomical feature sets utilized to construct these networks, limiting general-

izability across studies.
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