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Abstract  17 

Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources 18 

underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an 19 

implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, 20 

differences in implementations and in their results complicate the selection and application of 21 

beamformers and may hinder their wider adoption in research and clinical use. Additionally, 22 

combinations of different MEG sensor types (such as magnetometers and planar gradiometers) 23 

and application of preprocessing methods for interference suppression, such as signal space 24 

separation (SSS), can affect the results in different ways for different implementations. So far, a 25 

systematic evaluation of the different implementations has not been performed. Here, we 26 

compared the localization performance of the LCMV beamformer pipelines in four widely used 27 

open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets 28 

both with and without SSS interference suppression. 29 

We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and 30 

iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. 31 

We also investigated the effects of SSS and the combination of the magnetometer and 32 

gradiometer signals. We quantified how localization error and point-spread volume vary with the 33 

signal-to-noise ratio (SNR) in all four toolboxes. 34 

                                                           
1 Former name: Elekta Oy 
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When applied carefully to MEG data with a typical SNR (3–15 dB), all four toolboxes localized the 35 

sources reliably; however, they differed in their sensitivity to preprocessing parameters. As 36 

expected, localizations were highly unreliable at very low SNR, but we found high localization error 37 

also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness 38 

but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to 39 

more accurate localization. 40 

Keywords 41 

MEG, EEG, source modeling, beamformers, LCMV, open-source analysis toolbox.  42 

 43 

  44 
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1. Introduction 45 

MEG (magnetoencephalography) and EEG (electroencephalography) source imaging aims to 46 

identify the spatiotemporal characteristics of neural source currents based on the recorded signals, 47 

electromagnetic forward models and physiologically motivated assumptions about the source 48 

distribution. One well-known method for estimating a small number of focal sources is to model 49 

each of them as a current dipole with fixed location and fixed or changing orientation. The locations 50 

(optionally orientations) and time courses of the dipoles are then collectively estimated (Mosher et 51 

al., 1992; Hämäläinen et al., 1993). Such equivalent dipole models have been widely applied in 52 

basic research (see e.g. Salmelin, 2010) as well as in clinical practice (Bagic et al., 2011a; 2011b; 53 

Burgess et al., 2011). Distributed source imaging estimates source currents distribution across the 54 

whole source space, typically the cortical surface. Examples of linear methods for distributed 55 

source estimation are LORETA (low-resolution brain electromagnetic tomography; Pascual-Marqui 56 

et al., 1994) and MNE (minimum-norm estimation; Hämäläinen and Ilmoniemi, 1994). From 57 

estimated source distributions, one often computes noise-normalized estimates such as dSPM 58 

(dynamic statistical parametric mapping; Dale et al., 2000). Also, various non-linear distributed 59 

inverse methods have been proposed (Wipf et al., 2010; Gramfort et al., 2013b).  60 

While dipole modeling and distributed source imaging estimate source distributions that reconstruct 61 

(the relevant part of) the measurement, beamforming takes an adaptive spatial-filtering approach, 62 

scanning independently each location in a predefined region of interest (ROI) within the source 63 

space without attempting to reconstruct the data. LCMV beamforming can be done in time or 64 

frequency domain; time-domain methods (Van Veen and Buckley, 1988; 1997; Spencer et al., 65 

1992; Sekihara et al., 2006) use covariance matrices whereas frequency domain methods, such as 66 

DICS (Dynamic Imaging of Coherent Sources; Gross et al., 2001), utilizes cross-spectral density 67 

matrices. There are also other variants of beamformer for MEG source imaging, such as SAM 68 

(Synthetic Aperture Magnetometry; Robinson and Vrba, 1998) and SAM-based ERB (Event-related 69 

Beamformer; Cheyne et al., 2007) etc. They differ slightly in covariance computation, forward 70 

model selection, optimal orientation search, and weight normalization of the output power.  71 

The LCMV beamformer estimates the activity for a source at a given location (typically a point 72 

source) while simultaneously suppressing the contributions from all other sources and noise 73 

captured in the data covariance matrix. For evaluation of the spatial distribution of the estimated 74 

source activity, an image is formed by scanning a set of predefined possible source locations and 75 

computing the beamformer output (often power) at each location in the scanning space. When the 76 

scanning is done in a volume grid, the beamformer output is typically presented by superimposing 77 

it onto an anatomical MRI. 78 

There are two main categories of beamformers applied in the MEG/EEG source analysis— vector 79 

type and scalar type. Vector beamformers consider all source orientations while scalar 80 
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beamformers use either a predefined source orientation or they try to find the maximum output 81 

power projection. Spatial resolution of scalar beamformers is higher than that of the vector type 82 

(Vrba and Robinson, 2000; Hillebrand and Barnes, 2003).  83 

Beamformers have been popular in basic MEG research studies (e.g. Hillebrand and Barnes, 84 

2005; Braca et al., 2011; Ishii et al., 2014; van Es and Schoffelen, 2019) as well as in clinical 85 

applications such as in localization of epileptic events (e.g. Mohamed et al., 2013; Van Klink et al., 86 

2017; Youssofzadeh et al., 2018; Hall et al., 2018). Many variants of beamformers are 87 

implemented in several open-source toolboxes and commercial software for MEG/EEG analysis. 88 

Presently, based on citation counts, the most used open-source toolboxes for MEG data analysis 89 

are FieldTrip (Oostenveld et al., 2011), Brainstorm (Tadel et al., 2011), MNE-Python (Gramfort et 90 

al., 2013a) and DAiSS in SPM12 (Litvak et al., 2011). These four toolboxes have an 91 

implementation of an LCMV beamformer, based on the same theoretical framework (van Veen et 92 

al., 1997; Sekihara et al., 2006). Yet, it has been anecdotally reported that these toolboxes may 93 

yield different results for the same data. These differences may arise not only from the core of the 94 

beamformer implementation but also from the previous steps in the analysis pipeline, including 95 

data import, preprocessing, forward model computation, combination of data from different sensor 96 

types, covariance estimation, and regularization method. Beamforming results obtained from the 97 

same toolbox may also differ substantially depending on the applied preprocessing methods; for 98 

example, Signal Space Separation (SSS; Taulu and Kajola 2005) reduces the rank of the data, 99 

which could affect beamformer output unpredictably if not appropriately considered in the 100 

implementation. 101 

In this study, we evaluated the LCMV beamformer pipelines in the four open-source toolboxes and 102 

investigated the reasons for possible inconsistencies, which hinder the wider adoption of 103 

beamformers to research and clinical use where accurate localization of sources is required, e.g., 104 

in pre-surgical evaluation. These issues motivated us to study the conditions in which these 105 

toolboxes succeed and fail to provide systematic results for the same data and to investigate the 106 

underlying reasons. 107 

  108 
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2. Materials and Methods 109 

2.1. Datasets 110 

To compare the beamformer implementations, we employed MEG data obtained from simulations, 111 

phantom measurements, and measurements of a healthy volunteer who received auditory, visual, 112 

and somatosensory stimuli. For all human data recordings, informed consent was obtained from all 113 

study subjects in agreement with the approval of the local ethics committee. 114 

2.1.1. MEG systems 115 

All MEG recordings were performed in a magnetically shielded room with a 306-channel MEG 116 

system (either Elekta Neuromag® or TRIUXTM; Megin Oy, Helsinki, Finland), which samples the 117 

magnetic field distribution by 510 coils at distinct locations above the scalp. The coils are 118 

configured into 306 independent channels arranged on 102 triple-sensor elements, each housing a 119 

magnetometer and two perpendicular planar gradiometers. The location of the phantom or 120 

subject’s head relative to the MEG sensor array was determined using four or five head position 121 

indicator (HPI) coils attached to the scalp. A Polhemus Fastrak® system (Colchester, VT, USA) 122 

was used for digitizing three anatomical landmarks (nasion, left and right preauricular points) to 123 

define the head coordinate system. Additionally, the centers of the HPI coils and a set of ~50 124 

additional points defining the scalp were also digitized. The head position in the MEG helmet was 125 

determined at the beginning of each measurement using the ‘single-shot’ HPI procedure, where 126 

the coils are activated briefly, and the coil positions are estimated from the measured signals. The 127 

location and orientation of the head with respect to the helmet can then be calculated since the coil 128 

locations were known both in the head and in the device coordinate systems. After this initial head 129 

position measurement, continuous tracking of head movements (cHPI) was engaged by keeping 130 

the HPI coils activated to track the movement continuously. 131 

2.1.2. Simulated MEG data 132 

To obtain realistic MEG data with known sources, we superimposed simulated sensor signals 133 

based on forward modeling of dipolar sources onto measured resting-state MEG data utilizing a 134 

special in-house simulation software. Structural MRI images, acquired from a healthy adult 135 

volunteer using a 3-tesla MRI scanner (Siemens Trio, Erlangen, Germany), were segmented using 136 

the MRI Segmentation Software of Megin Oy (Helsinki, Finland) and the surface enveloping the 137 

brain compartment was tessellated with triangles (5-mm side length). Using this mesh, a realistic 138 

single-shell volume conductor model was constructed using the Boundary Element Method (BEM; 139 

Hämäläinen and Sarvas, 1989) implemented in the Source modeling software of Megin Oy. We 140 

also segmented the cortical mantle with the FreeSurfer software (Dale et al., 1999; Fischl et al., 141 

1999; Fischl, 2012) for deriving a realistic source space. By using the “ico4” subdivision in MNE-142 
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Python, we obtained a source space comprising 2560 dipoles (average spacing 6.2 mm) in each 143 

hemisphere (Fig. 1a). Out of these, we selected 25 roughly uniformly distributed source locations in 144 

the left hemisphere for the simulations (Fig. 1a). All these points were at least 7.5 mm inwards from 145 

the surface of the volume conductor model. Using the conductor model, source locations and 146 

sensor locations from the resting-state data in MNE-Python, we simulated dipoles at each of the 25 147 

locations – one at a time – with a 10-Hz sinusoid of 200-ms duration (2 cycles). The dipoles were 148 

simulated at eight source amplitudes: 10, 30, 80, 200, 300, 450, 600 and 800 nAm and sensor-149 

level evoked field data were computed. Fig. 1b shows a few of the simulated evoked responses 150 

(whitened with noise) at a single dipole location but at different strengths, illustrating the changes in 151 

the signal-to-noise ratio (SNR). Here ���� is the time point of the SNR estimate, which is defined 152 

later in Section 2.5. 153 

 154 

 155 

Insert Fig.1 about here 156 

 157 

The continuous resting-state MEG data with eyes open was recorded from the same volunteer who 158 

provided the anatomical data, using an Elekta Neuromag® MEG system (at BioMag Laboratory, 159 

Helsinki, Finland). The recording length was 2 minutes, the sampling rate was 1 kHz, and the 160 

acquisition frequency band was 0.1–330 Hz. This recording provided the head position for the 161 

simulations and defined their noise characteristics. MEG and MRI data were co-registered using 162 

the digitized head shape points and the outer skin surface in the segmented MRI. 163 

The simulated sensor-level evoked fields data were superimposed on the unprocessed resting-164 

state recording with inter-trial-interval varying between 1000–1200 ms resulting in ~110 trials 165 

(epochs) in each simulated dataset. The resting-state recording was used both as raw without 166 

preprocessing and after SSS interference suppression. Altogether, we obtained 400 simulated 167 

MEG datasets (25 source locations at 8 dipole amplitudes, all both with the raw and SSS-168 

preprocessed real data). Fig. 2 illustrates the generation of simulated MEG data. 169 

 170 

Insert Fig. 2 about here 171 

2.1.3. Phantom data 172 

We used a commercial MEG phantom (Megin Oy, Helsinki, Finland) which contains 32 dipoles and 173 

4 HPI coils at distinct fixed locations (see Fig 3a–c and TRIUXTM User’s Manual, Megin Oy). The 174 

phantom is based on the triangle construction (Ilmoniemi et al., 1985): an isosceles triangular line 175 
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current generates on its relatively very short side a magnetic field distribution equivalent to that of a 176 

tangential current dipole in a spherical conductor model, provided that the vertex of the triangle and 177 

the origin of the model of a conducting sphere coincide. The phantom data were recorded from 8 178 

dipoles, excited one by one, using a 306-channel TRIUXTM system (at Aston University, 179 

Birmingham, UK). The distance from the phantom origin was 64 mm for dipoles 5 and 9 (the 180 

shallowest), 54 mm for dipoles 6 and 10, 44 mm for dipoles 7 and 11, and 34 mm for dipoles 8 and 181 

12 (the deepest; see Fig 3c). The phantom was first kept stationary inside the MEG helmet and 182 

continuous MEG data were recorded with 1-kHz sampling rate for three dipole amplitudes (20, 200 183 

and 1000 nAm); one dipole at a time was excited with a 20-Hz sinusoidal current for 500 ms, 184 

followed by 500 ms of inactivity. The recordings were repeated with the 200-nAm dipole strength 185 

while moving the phantom continuously to mimic head movements inside the MEG helmet. The 186 

experimenter made sequences of continuous random rotational and translational movements by 187 

holding the phantom rod and keeping the phantom (hemispheric structure) inside the helmet, 188 

followed by periods without movement; see the movements in Fig. 3e and Suppl. Fig. 2 for all 189 

movement parameters.  190 

 191 

Insert Fig. 3 about here 192 

 193 

2.1.4. Human MEG data 194 

We recorded MEG evoked responses from the same volunteer whose MRI and spontaneous MEG 195 

data were utilized in the simulations. These human data were recorded using a 306-channel Elekta 196 

Neuromag® system (at BioMag Laboratory, Helsinki, Finland). During the MEG acquisition, the 197 

subject was receiving a random sequence of visual (a checkerboard pattern in one of the four 198 

quadrants of the visual field), somatosensory (electric stimulation of the median nerve at the 199 

left/right wrist at the motor threshold) and auditory (1-kHz 50-ms tone pips to the left/right ear) 200 

stimuli with an interstimulus interval of ~500 ms. The Presentation software (Neurobehavioral 201 

Systems, Inc., Albany, CA, USA) was used to produce the stimuli. 202 

2.2. Preprocessing 203 

The datasets were analyzed in two ways: 1) omitting bad channels from the analysis, without 204 

applying SSS preprocessing, and 2) applying SSS-based preprocessing methods (SSS/tSSS) to 205 

reduce magnetic interference and perform movement compensation for moving phantom data. The 206 

SSS-based preprocessing and movement compensation were performed in MaxFilterTM software 207 

(version 2.2; Megin Oy, Helsinki, Finland). After that, the continuous data were bandpass filtered 208 

(passband indicated for each dataset later in the text) followed by the removing of the dc. Then the 209 
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data were epoched to trials around each stimulus. We applied an automatic trial rejection 210 

technique based on the maximum variance across all channels, rejecting trials that had variance 211 

higher than the 98th percentile of the maximum or lower than the 2nd percentile (see Suppl. Fig. 4). 212 

This method is available as an optional preprocessing step in FieldTrip, and the same 213 

implementation was applied in the other toolboxes. For each dataset, the covariance matrices 214 

(data or noise) were calculated over each trial and normalized by the total number of samples 215 

across the trials:  216 

    � =  ∑ 	
�
�
��         (1) 217 

where � is the resulting data or noise covariance, � is the total number of good trials after 218 

covariance-based trial rejection, �� is the covariance matrix of ��� trial and �� is the total number of 219 

samples used in computing all �� matrices. Below we describe the detailed preprocessing steps for 220 

all datasets. 221 

2.2.1. Simulated data 222 

In each toolbox, the raw data with just bad channels removed or SSS-preprocessed continuous 223 

data were filtered using a zero-phase filter with a passband of 2–40 Hz. The filtered data were 224 

epoched into windows from –200 to +200 ms relative to the start of the source activity. The bad 225 

epochs were removed using the variance-based automatic trial rejection technique, resulting in 226 

~100 epochs. Then using Eq (1), the noise and data covariance matrices were estimated from 227 

these epochs for the time windows of –200 to –20 ms and 20 to 200 ms, respectively.  228 

2.2.2. Phantom data 229 

All 32 datasets (static: 3 dipole strengths and 8 dipole locations; moving: 1 dipole strength and 8 230 

dipole locations) were analyzed both without and with SSS-preprocessing. We applied SSS on 231 

static phantom data to remove external interference. On moving-phantom data, combined temporal 232 

SSS and movement compensation (tSSS_mc) were applied for suppressing external and 233 

movement-related interference and for transforming the data from the continuously estimated 234 

positions into a static reference position (Taulu and Kajola 2005; Nenonen et al., 2012). Then in 235 

each toolbox the continuous data were filtered to 2–40 Hz using a zero-phase bandpass filter, and 236 

the filtered data were epoched from –500 to +500 ms with respect to stimulus triggers. Bad epochs 237 

were removed using the automated method based on maximum variance, yielding ~100 epochs for 238 

each dataset. The noise and data covariance matrices were estimated using Eq (1) in each toolbox 239 

for the time windows of –500 to –50 ms and 50 to 500 ms, respectively.  240 



9 

 

2.2.3. Human MEG data 241 

Both the unprocessed raw data and the data preprocessed with tSSS were filtered to 1–95 Hz 242 

using a zero-phase bandpass filter in each toolbox. The trials with somatosensory stimuli (SEF) 243 

were epoched between –100 to –10 and 10 to 100 ms for estimating the noise and data 244 

covariances, respectively. The corresponding time windows for the auditory-stimulus trials (AEF) 245 

were –150 to –20 and 20 to 150 ms, and for the visual stimulus trials (VEF) –200 to –50 and 50 to 246 

200 ms, respectively. Trials contaminated by excessive eye blinks (EOG > 250 μV) or by excessive 247 

magnetic signals (MEG > 5000 fT or 3000 fT/cm) were removed with the variance-based 248 

automated trial removal technique. Before covariance computation, baseline correction by the time 249 

window before the stimulus was applied on each trial. The covariance matrices were estimated 250 

independently in each toolbox, using Eq (1). 251 

Since the actual source locations associated with the evoked fields are not precisely known, we 252 

defined reference locations using conventional dipole fitting in the Source Modelling Software of 253 

Megin Oy (Helsinki, Finland). A single equivalent dipole was used to represent SEF and VEF 254 

sources, and one dipole per hemisphere was used for AEF (see Suppl. Fig. 3). The dipole fitting 255 

was performed at the time point of the maximum RMS value across all planar gradiometer 256 

channels (global field power) of the average response amplitude. 257 

2.2.4. Forward model 258 

For the beamformer scan of simulated data, we used the default or the most commonly used 259 

forward model of each toolbox: a single-compartment BEM model in MNE-Python, a single-shell 260 

corrected-sphere model (Nolte, 2003) in FieldTrip, a single-shell corrected sphere model (Nolte, 261 

2003) through inverse normalization of template meshes (Mattout et al., 2007) in DAiSS (SPM12), 262 

and the overlapping-spheres (Huang et al., 1999) model in Brainstorm. The former three packages 263 

utilize inner skull for defining the boundary of the models. For constructing the models for the 264 

forward solutions, the segmentation of MRI images was performed in FreeSurfer for MNE-Python 265 

and Brainstorm while FieldTrip and SPM12 used the SPM segmentation procedure. In MNE-266 

Python, FieldTrip and SPM12, a volumetric source space was represented by a rectangular grid 267 

with 5-mm resolution enclosed by the conductor models in these packages while Brainstorm uses 268 

a rectangular grid with the same resolution enclosed by the brain surface. Since each toolbox 269 

prepares a head model and source space using slightly different methods, these models may differ 270 

from each other. Fig. 4 shows the small discrepancies in the boundary of source spaces used by 271 

the three packages. These discrepancies may result in a small shift between the positions and 272 

number of the scanning points in these toolboxes. Forward solutions were computed separately in 273 

each toolbox using the head model, the volumetric grid sources, and sensor information from the 274 

MEG data. 275 
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  276 

Insert Fig. 4 about here 277 

 278 

For phantom data, a homogeneous spherical volume conductor model was defined in each toolbox 279 

with the origin at the head coordinate system origin. An equidistant rectangular source-point grid 280 

with 5-mm resolution was placed inside the upper half of a sphere covering all 32 dipoles of the 281 

phantom; see Fig. 3d. Forward solutions for these grids were computed independently in each 282 

toolbox. For human MEG data, the head models and the source space were defined in the same 283 

way as for the beamformer scanning of the simulated data.  284 

2.3. LCMV beamformer 285 

The linearly constrained minimum-variance (LCMV) beamformer is a spatial filter that relates the 286 

magnetic field measured outside the head to the underlying neural activities using the covariance 287 

of measured signals and models of source activity and signal transfer between the source and the 288 

sensor (Spencer et al., 1992; van Veen et al. 1997; Robinson and Vrba, 1998). The spatial filter 289 

weights are computed for each location in the region of interest (ROI).  290 

Let x be an � × 1 signal vector of MEG data measured with � sensors, and � is the number of 291 

grid points in the ROI with grid locations r�, �j = 1, … , � . Then the source !"#$% at any location #$ 292 

can be estimated as weighted combination of the measurement x as 293 

!�#$ = &'�#$ (         (2) 294 

where the � × 3 matrix &"#$% is known as spatial filter for a source at location #$. This type of 295 

spatial filter provides a vector type beamformer by separately estimating the activity for three 296 

orthogonal source orientations, corresponding to the three columns of the matrix. According to Eqs 297 

16–23 in van Veen et al. (1997), the spatial filter &"#$% for vector beamformer is defined as  298 

&"#$% = *+'"#$%,-.+"#$%/-. +'"#$%,-.       (3) 299 

Here +"#$% is the � × 3 local leadfield matrix that defines the contribution of a dipole source at 300 

location #$ in the measured data x, and , is the covariance matrix computed from the measured 301 

data samples. To perform source localization using LCMV, the output variance (or output source 302 

power) Var *!"r�%/ is estimated at each point in the source space (see Eq (24) in van Veen et al., 303 

1997), resulting in 304 

  Var2 *!"#$%/ = Trace6+'"#$%,-.+"#$%7-.
      (4) 305 
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Usually, the measured signal is contaminated by non-uniformly distributed noise and therefore the 306 

estimated signal variance is often normalized with projected noise variance ,8 calculated over 307 

some baseline data (noise). Such normalized estimate is called Neural Activity Index (NAI; van 308 

Veen et al., 1997) and can be expressed as 309 

  NAI"r�% = Trace <6+'"#$%,-.+"#$%7-.= /Trace <6+'"#$%,8-.+"#$%7-.=   (5) 310 

Scanning over all the locations in the region of interest in source space transforms the MEG data 311 

from a given measurement into an NAI map.  312 

In contrast to a vector beamformer, a scalar beamformer (Sekihara and Scholz, 1996; Robinson 313 

and Vrba, 1998) uses constant source orientation that is either pre-fixed or optimized from the 314 

input data by finding the orientation that maximizes the output source power at each target 315 

location. Besides simplifying the output, the optimal-orientation scalar beamformer enhances the 316 

output SNR compared to the vector beamformer (Robinson and Vrba, 1998; Sekihara et al., 2004). 317 

The optimal orientation η@AB"#$%, for location #$ can be determined by generalized eigenvalue 318 

decomposition (Sekihara et al., 2004) using Rayleigh–Ritz formulation as 319 

  η@AB"r�% = υDE8F+'"#$%,-G+"#$%, +'"#$%,-.+"#$%H     (6) 320 

where υDE8 indicates the eigenvector corresponding to the smallest generalized eigenvalue of the 321 

matrices enclosed in Eq (6) curly braces. For further details, see Eq (4.44) and Section 13.3 in 322 

Sekihara and Nagarajan (2008). 323 

Denoting IJKLM"#$% = +"#$%N@AB"#$% instead of +"#$%, the weight matrix in Eq (3) becomes � × 1 324 

weight vector O"#$%, 325 

P"#$% = QIJKLM' "#$%,-.IJKLM"#$%R-. IJKLM' "#$%,-.      (7) 326 

Using IJKLM"r�% in Eq (5), we find the estimate (NAI) of a scalar LCMV beamformer as 327 

�ST"#$% = IJKLM' "#$%,8-.IJKLM"#$% IJKLM' "#$%,-.IJKLM"#$%U      (8) 328 

When the data covariance matrix is estimated from a sufficiently large number of samples and it 329 

has full rank, Eq (8) provides the maximum spatial resolution (Lin et al., 2008; Sekihara and 330 

Nagarajan, 2008). According to van Veen and colleagues (1997), the number of samples for 331 

covariance estimation should be at least three times the number of sensors. Thus, sometimes, the 332 

amount of available data may be insufficient to obtain a good estimate of the covariance matrices. 333 

In addition, pre-processing methods such as signal-space projection (SSP) or signal-space 334 

separation (SSS) reduce the rank of the data, which impacts the matrix inversions in Eq (8). These 335 

problems can be mitigated using Tikhonov regularization (Tikhonov, 1963) by replacing matrix ,-. 336 

by its regularized version �, + λX -. in Eqs (3–8) where λ is called the regularization parameter. 337 
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All tested toolboxes set the λ with respect to the mean data variance, using ratio 0.05 as default: 338 

λ = 0.05 × Trace�, /M. 339 

If the data are not full rank, also the noise covariance matrix ,8 needs to be regularized. 340 

 341 

2.4. Differences between the beamformer pipelines 342 

Though all the four toolboxes evaluated here use the same theoretical framework of the LCMV 343 

beamformer, there are several implementation differences which might affect the exact outcome of 344 

a beamformer analysis pipeline. Many of these differences pertain to specific handling of the data 345 

prior to the estimation of the spatial filters, or to specific ways of (post)processing the beamformer 346 

output. Some of the toolbox-specific features reflect the characteristics of the MEG system around 347 

which the toolbox has evolved. Importantly, some of these differences are sensitive to input SNR, 348 

and they can lead to differences in the results. Table 1 lists the main characteristics and settings of 349 

the four toolboxes used in this study. We used the default settings of each toolbox (general 350 

practice) for steps before beamforming but set the actual beamforming steps as similar as possible 351 

across the toolboxes to be able to meaningfully compare the results. 352 

Insert Table 1 about here 353 

All toolboxes import data using either Matlab or Python import functions of the MNE software 354 

(Gramfort et al., 2014) but represent the data internally either in T or fT (magnetometer) and T/m or 355 

fT/mm (gradiometer); see Suppl. Fig. 5. Default filtering approaches across toolboxes change the 356 

numeric values, so the linear correlation between the same channels across toolboxes deviates 357 

from the identity line; see Suppl. Fig. 6. The default head model is also different across toolboxes; 358 

see Section 2.2.4. The single-shell BEM and single-shell corrected sphere model (the “Nolte 359 

model”) are approximately as accurate but produce slightly different results (Stenroos et al., 2014).  360 

For MEG–MRI co-registration, there are several approaches available across these toolboxes such 361 

as an interactive method using fiducial or/and digitization points defining the head surface, using 362 

automated point cloud registration methods e.g., the iterative closest point (ICP) algorithm. Despite 363 

using the same source-space specifications (rectangular grid with 5-mm resolution), differences in 364 

head models and/or co-registration methods change the forward model across toolboxes; see 365 

Fig. 4. Though there are several approaches to compute data and noise covariances across the 366 

four beamformer implementations, by default they all use the empirical/sample covariance. In 367 

contrast to other toolboxes, Brainstorm eliminates the cross-modality terms from the data and 368 

noise covariance matrices. Also, the regularization parameter ] is calculated and applied 369 
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separately for gradiometers and magnetometers channel sets in Brainstorm therefore, the same 370 

amount of regularization affects differently.  371 

The combination of two MEG sensor types in the MEGIN triple-sensor array causes additional 372 

processing differences in comparison to other MEG systems that employ only axial gradiometers 373 

or only magnetometers. Magnetometers and planar gradiometers have different dynamic ranges 374 

and measurement units, so their combination must be appropriately addressed in source analysis 375 

such as beamforming. For handling the two sensor types in the analysis, different strategies are 376 

used for bringing the channels into the same numerical range. MNE-Python and Brainstorm use 377 

pre-whitening (Engemann et al., 2015; Ilmoniemi and Sarvas, 2019) based on noise covariance 378 

while FieldTrip and SPM12 assume a single sensor type for all the MEG channels. This approach 379 

makes SPM12 to favor magnetometer data (with higher numeric values of magnetometer 380 

channels) and FieldTrip to favor gradiometer data (with higher numeric values of gradiometer 381 

channels). However, users of FieldTrip and SPM12 usually employ only one channel type of the 382 

triple-sensor array for beamforming (most commonly, the gradiometers). Due to the presence of 383 

two different sensor types in the MEGIN systems and the potential use of SSS methods, the 384 

eigenspectra of data from these systems can be idiosyncratic (see Suppl. Fig. 7) and differ from 385 

the single-sensor type MEG systems. Rank deficiency and related phenomena are potential 386 

sources of beamforming failures with data that have been cleaned with a method such as SSS. 387 

Rank deficiency affects also other MEG sensor arrays using only magnetometers or axial 388 

gradiometers when the data are pre-processed with interference suppression methods such as 389 

SSP and (t)SSS. 390 

Previous studies have shown that the scalar beamformer yields twofold higher output SNR 391 

compared to the vector-type beamformer, if the source orientation for the scalar beamformer has 392 

been optimized according to Eq 6 (Vrba and Robinson, 2000; Sekihara et al., 2004). Most of the 393 

beamformer analysis toolboxes have an implementation of optimal-orientation scalar beamformer. 394 

In this study, we used the scalar beamformer in MNE-Python, FieldTrip, and SPM12 but a vector-395 

beamformer in Brainstorm since the orientation optimization was not available. To keep the output 396 

dimensionality the same across the toolboxes, we linearly summed the three-dimensional NAI 397 

values at each source location. The general analysis pipeline used in this study is illustrated in Fig. 398 

5. 399 

 Insert Fig. 5 about here 400 

 401 

2.5. Metrics used in comparison  402 
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In this study, a single focal source could be assumed to underlie the simulated/measured data. In 403 

such studies, accurate localization of the source is typically desired. We calculated two metrics for 404 

comparing the characteristics of the LCMV beamformer results from the four toolboxes: localization 405 

error, and point spread volume. We also analyzed their dependence on input signal-to-noise ratio. 406 

Localization Error (LE): True source locations were known for the simulated and phantom MEG 407 

data and served as reference locations in the comparisons. Since the exact source locations for 408 

the human subject MEG data were unknown, we applied the location of a single current dipole as a 409 

reference location (see Section 2.1.4 “Human MEG data”). The Source Modelling Software (Megin 410 

Oy, Helsinki, Finland) was used to fit a single dipole for each evoked-response category at the time 411 

point around the peak of the average response providing the maximum goodness-of-fit value. The 412 

beamformer localization error is computed as the Euclidean distance between the estimated and 413 

reference source locations.  414 

Point-Spread Volume (PSV): An ideal spatial filter should provide a unit response at the actual 415 

source location and zero response elsewhere. Due to noise and limited spatial selectivity, there is 416 

some filter leakage to the nearby locations, which spreads the estimated variance over a volume. 417 

The focality of the estimated source, also called focal width, depends on several factors such as 418 

the source strength, orientation, and distance from the sensors. PSV measures the focality of an 419 

estimate and is defined as the total volume occupied by the source activity above a threshold 420 

value; thus, a smaller PSV value indicates a more focal source estimate. We fixed the threshold to 421 

50% of the highest NAI in all comparisons. In this study, the volume represented by a single source 422 

in any of the four source spaces (5-mm grid spacing) was 125 mm3. To compute PSV, we 423 

computed the number of active voxels above the threshold and multiplied by the volume of a single 424 

voxel. 425 

Signal-to-Noise ratio (SNR): Beamformer localization error depends on the input SNR, which 426 

varies – among other factors – as a function of source strength and distance of the source from the 427 

sensor array. Therefore, we evaluated beamformer localization errors and PSV as a function of the 428 

input SNR of the evoked field data. 429 

We estimated the SNR for each evoked field MEG dataset in MNE-Python using the estimated 430 

noise covariance ,8 by discarding the smallest near-zero eigenvalues. The data were whitened 431 

using the noise covariance, and the effective number of sensors (rank) was then calculated as 432 

   M^__ = M − Σ         (9) 433 

where � is the number of all MEG channels and Σ is the total number of near-zero eigenvalues bc 434 

of ,8.  435 

Then the input SNR was calculated as:  436 
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 SNRfg  =  10 log.k lm .
nopp ∑ (qG�t nqs. tBuvw

x    (10) 437 

where xq�t  is the signal of kth sensor from the whitened evoked field data, �Dz{ is the time point at 438 

maximum amplitude of whitened data across all channels and M^__ is the number of effective 439 

sensors defined in Eq (9). Since the same data were used in all toolboxes, we used the same input 440 

SNR value for all of them. Fig. 1b compares simulated evoked responses and the changes in SNR 441 

for dipoles at different strengths but at the same location.  442 

 443 

 444 

2.6. Data and code availability 445 

The codes we wrote to conduct these analyses are publicly available under a repository 446 

https://zenodo.org/record/3471758 (DOI: 10.5281/zenodo.3471758). The datasets as well as the 447 

specific versions of the four toolboxes used in the study are available at 448 

https://zenodo.org/record/3233557 (DOI: 10.5281/zenodo.3233557). 449 

  450 
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3. Results 451 

We computed the source localization error (LE) and the point spread volume (PSV) for each NAI 452 

estimate across all datasets from LCMV beamformer in all four toolboxes. We plotted the LE and 453 

PSV as a function of the input SNR computed according to Eq (10). To differentiate the localization 454 

among the implementations, we followed the following color convention: MNE-Python: grey; 455 

FieldTrip: Lavender; DAiSS (SPM12): Mint; and Brainstorm: coral. 456 

3.1. Simulated MEG data 457 

Localization errors and PSV values were calculated for all simulated datasets and plotted against 458 

the corresponding input SNR. The SNR of all 200 simulated datasets ranged between 0.5 to 25 459 

dB. Fig. 6a shows the variation of localization errors over the range of input SNR for the simulated 460 

dataset. The localization error goes high for all toolboxes for very low SNR (< 3 dB) signals (e.g. < 461 

~80-nAm or deep sources). The localization error within the input SNR range 3–12 dB is stable 462 

and mostly within 15 mm, and SSS preprocessing widens this SNR range of stable performance to 463 

3–15 dB. Unexpectedly, we also found high localization error at high SNR (> 15 dB) for the 464 

toolboxes other than Brainstorm. Fig. 6b plots PSV values against input SNR for raw and SSS-465 

preprocessed simulated data. For the low SNR signals (usually, weak or deep sources), all the four 466 

toolboxes show high PSV values. The spatial resolution is highest for the SNR rage ~3–15 dB. For 467 

the SNR > ~15 dB (usually, strong or superficial sources) these toolboxes also show high PSV. 468 

Fig. 6a–b shows that none of the four toolboxes provides accurate localization for all SNR values 469 

and the spatial resolution of LCMV varies over the range of input SNR.  470 

 471 

Insert Fig. 6 about here 472 

 473 

 474 

3.2. Static and moving phantom MEG data 475 

In the case of phantom data, the background noise is very low and there is a single source 476 

underneath a measurement. Since, both the dipole simulation and beamformer analysis in case of 477 

phantom use a homogeneous sphere model that does not introduce any forward model 478 

inaccuracy, except the possible small co-registration error. All four toolboxes show high localization 479 

accuracy and high resolution for phantom data, if the input SNR is not very low (< ~3 dB). 480 

Corresponding results for the static phantom data are presented in Fig. 7a–b. Fig. 7a indicates the 481 

localization error clear dependency on input SNR, it shows high localization errors at very low SNR 482 

raw data sets. The high error is because of some unfiltered artifacts in raw data which was 483 

removed by SSS. After SSS, the beamformer shows localization error under ~5 mm for all the 484 
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datasets. Fig. 7b shows the beamforming resolution in terms of PSV. The PSV values show a high 485 

spatial resolution for the data with SNR > 5 dB.  486 

 487 

Insert Fig. 7 about here 488 

 489 

In the cases of moving phantom, Fig. 8a shows high localization errors with unprocessed raw data 490 

because of disturbances caused by the movement. The dipole excitation amplitude was 200 nAm, 491 

which is enough to provide a good SNR, but the movement artifacts lower the SNR. The most 492 

superficial dipoles (Dipoles 5 and 9 in Fig. 3c) possess higher SNR but also higher localization 493 

error since they get more significant angular displacement during movement. Because of 494 

differences in implementations and preprocessing parameters listed in Section 2.4, apparent 495 

differences among the estimated localization error can be seen. Overall, MNE-Python shows the 496 

lowest while DAiSS (SPM12) shows the highest localization error with the phantom data with 497 

movement artifact. After applying for spatiotemporal tSSS and movement compensation, the 498 

improved SNR provided significantly better localization accuracies for all the toolboxes. Fig. 8b 499 

shows the PSV for moving phantom data for raw and processed data. The plots indicate 500 

improvement in SNR and spatial resolution after tSSS with movement compensation.  501 

 502 

Insert Fig. 8 about here 503 

 504 

Table 2 lists the mean localization error and PSV for the simulated and static phantom datasets 505 

over three ranges of SNR— 1) very low (less than 3 dB) where all the four implementations show 506 

unreliable localization and the lowest spatial resolution, 2) feasible range (3–15 dB) that covers 507 

most of the research studies where all the four implementations are reliable and robust, and 3) 508 

high SNR (above 15 dB) where the source estimation by Brainstorm is comparatively more robust.  509 

Insert Table 2 about here 510 

3.3. Human subject MEG data  511 

Since the correct source locations for the human evoked field datasets are unknown, we plotted 512 

the localization difference across the four LCMV implementations for each data. These localization 513 

differences were the Cartesian distance between an LCMV-estimated source location and the 514 

corresponding reference dipole location as explained in Section 2.2.3. Fig. 9a shows the plots for 515 

the localization differences against the input SNRs computed using Eq (10) for four visual, two 516 

auditory and two somatosensory evoked-field datasets. The localization differences for both 517 

unprocessed raw and SSS preprocessed data are mostly under 20 mm in each toolbox. The higher 518 
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differences compared to the phantom and simulated dataset could be because of two reasons. 519 

First, the recording might have been comprised by some head movement, which could not be 520 

corrected because of the lack of continuous HPI information. Second, the reference dipole location 521 

may not represent the very same source as estimated by the LCMV beamformer. In contrast to 522 

dipole fitting, beamforming utilizes data from the full covariance window, so some difference 523 

between the estimated localizations is to be expected. For all SSS-preprocessed evoked field 524 

datasets, Fig. 9b shows the estimated locations across the four LCMV implementation and the 525 

corresponding reference dipole locations. For simplifying the visualization, all estimated locations 526 

in a stimulus category are projected onto a single axial slice. All localizations seem to be in the 527 

correct anatomical regions, except the estimated location from right-ear auditory responses by 528 

MNE-Python after SSS-preprocessing (Fig. 9b; red circle). This could be because of high 529 

coherence between left-right auditory responses. After de-selecting the channels close to the right 530 

auditory cortex, the MNE-Python-estimated source location was correctly in the left cortex (Fig. 9b; 531 

green circle). Fig. 9a also shows the improvement in input SNR and also in the source localization 532 

in some cases after SSS pre-preprocessing. Fig. 8 in Supplementary material shows the PSV 533 

values as a function of the input SNR for the evoked-field datasets, demonstrating the spatial 534 

resolution of beamforming. 535 

 536 

Insert Fig. 9 about here 537 

 538 

 539 

 540 

  541 
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4. Discussion  542 

In this study, we compared four widely-used open-source toolboxes for their LCMV beamformer 543 

implementations. While the implementations share the theoretical basis, there are also differences, 544 

which could lead to differing source estimates. There are also several other beamformer variants 545 

(e.g. Huang et al., 2004; Cheyne et al., 2007; Herdman et al. 2018) but an extensive comparison of 546 

all beamformer formulations would be a tedious task; however, most of our findings likely apply to 547 

other formulations such as event-related beamformers, too. 548 

We investigated the localization accuracy and beamformer resolution as a function of the input 549 

SNR and compared the results across the LCMV implementations in the four tested toolboxes. In 550 

the absence of background noise and using perfect sphere model, the phantom data showed high 551 

localization accuracy and high spatial resolution if the input SNR >~5 dB. All implementations also 552 

showed high localization accuracy for data recording from a moving phantom after compensating 553 

the movement and applying tSSS. For the simulated datasets with realistic background noise and 554 

imperfect forward model, the localization errors across the LCMV implementations indicated that 555 

the reliability of localization in these implementations depends on the SNR of input data. 556 

Brainstorm (vector beamformer) reliably localized a single source when SNR was above ~3 dB, 557 

including very high SNRs, whereas the other three implementations (scalar beamformer) localized 558 

the source reliably within the SNR range of ~3–15 dB. Small deviations were observed in the 559 

estimated source locations across the implementations even in this SNR range, likely caused by 560 

differences in the pre-processing steps such as filter types, head models, spatial filter and 561 

performing the beamformer scan. For the human evoked-response MEG data, all implementations 562 

localized sources within about 20 mm from each other. 563 

Our results indicate that with the default parameter settings, none of the four implementations 564 

works universally reliable for all datasets and all input SNR values. In the case of low SNR 565 

(typically less than 3 dB), the lower contrast between data and noise covariance may cause the 566 

beamformer scan to provide a flat peak in the output and so the localization error goes high. The 567 

unexpected high localization errors can be observed at some cases of high SNR signals for the 568 

three scalar-type beamformer implementations and significant localization differences between the 569 

toolboxes are notable. The PSV plots show greater spatial resolution for the SNR range ~3–15 dB 570 

whereas low spatial resolution at very low and high SNR. Brainstorm provides reliable localization 571 

above ~3 dB but it also compromises spatial resolution; see Fig. 6–7 and Table 2. The lower 572 

spatial resolution (higher PSV) for the signal with low SNR also agrees with previous studies (Lin et 573 

al., 2008; Hillebrand and Barnes, 2003).  574 

For our simulated data, all toolboxes had a disparity between the forward model used in data 575 

generation model and the model used in beamforming, i.e, the forward model was not perfect. The 576 

width of the source estimate peak depends on both the SNR (van Veen et al., 1997; Vrba and 577 
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Robinson, 2000; Gross et al., 2001; Hillebrand and Barnes, 2003) and also on the type of 578 

beamformer applied (scalar vs. vector). If the SNR is very high, the peak is also very narrow, and 579 

any errors introduced by the forward model will be pronounced, leading to larger localization errors 580 

of this peak. For unconstrained vector beamformers, the peak is comparatively broader (higher 581 

PSV) and there is a smaller chance of missing the peak; this is the case with Brainstorm in our 582 

study. In the following, we discuss the significant steps of the beamformer pipelines, which affect 583 

the localization accuracy and introduce discrepancies among the implementations.  584 

4.1 Preprocessing with SSS 585 

Due to the spatial-filter nature of the beamformer, it can reject external interference and therefore 586 

SSS-based pre-processing for interference suppression may have little effect on the results. Thus, 587 

although the SNR increases as a result of applying SSS, the localization accuracy does not 588 

necessarily improve, which is evident in the localization of the evoked responses (Fig. 9). 589 

However, undetected artifacts, such as a large-amplitude signal jump in a single sensor, may in 590 

SSS processing spread to neighboring channels and subsequently reduce data quality. Therefore, 591 

channels with distinct artifacts should be noted and excluded from beamforming of unprocessed 592 

data or from SSS operations. In addition, trials with large artifacts should be removed based on an 593 

amplitude thresholding or by other means. Furthermore, SSS processing of extremely weak 594 

signals (SNR < ~2 dB) may not improve the SNR for producing smaller localization errors and PSV 595 

values. Hence the data quality should be carefully inspected before and after applying 596 

preprocessing methods such as SSS, and channels or trials with low-quality data (or lower 597 

contrast) should be omitted from the covariance estimation. 598 

4.2. Effect of filtering and artifact-removal methods 599 

All four toolboxes we tested employ either a MATLAB or Python implementation of the same MNE 600 

routines (Gramfort et al. 2014) for reading FIFF data files and thus have internally the exact same 601 

data at the very first stage (see Suppl. Fig. 6). The data import either keeps the data in SI-units (T 602 

for magnetometers and T/m for gradiometers) or rescales the data (fT and fT/mm) before further 603 

processing. The actual pre-processing steps in the pipeline may contribute to differences in the 604 

results. The filtering step is performed to remove frequency components of no interest, such as 605 

slow drifts, from the data. By default, FieldTrip and SPM use an IIR (Butterworth) filter, and MNE-606 

Python uses FIR filters. The power spectra of these filters’ output signals show notable differences 607 

and the output data from these two filters are not identical. Significant variations can be found 608 

between MNE-Python-filtered and FieldTrip/SPM-filtered data. Although SPM12 and FieldTrip use 609 

the same filter implementation, the filtering results are not identical because of numeric differences 610 

caused by different channel units (Suppl. Fig 6). These differences affect the estimated covariance 611 

matrices, which are a crucial ingredient for the spatial-filter computation and finally may contribute 612 

to differences in beamforming results. 613 
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4.3. Effect of SNR on localization accuracy 614 

We reduced the impact of the unknown source depth and strength to a well-defined metrics in 615 

terms of the SNR. We observed that the localization accuracy is poor for very low SNR values, i.e. 616 

below 3 dB. The weaker, as well as the deeper sources, project less power on to the sensor array 617 

and thus show lower SNR; see Eq (10). On the other hand, the LCMV beamformer may also fail to 618 

localize accurately sources that produce very high SNR, likely because the point spread of the 619 

beamformer output becomes narrower than the distance between the scanning grid points. In this 620 

case, the estimate is very focal and a small error in forward solution, introduced e.g. by inaccurate 621 

coregistration, may lead to missing the true source and obtaining nearly equal power estimates at 622 

many source grid locations, increasing the chance of mislocalization. Brainstorm produced a 623 

different outcome at high SNR than the other toolboxes, because the vector beamformer in 624 

Brainstorm has wider spatial peaks and thus the maximum NAI occurs more likely in one of the 625 

source grid locations.  626 

Such high SNRs do not typically occur in human MEG experiments. However, pathological brain 627 

activity may produce high SNR, e.g. the strength of equivalent current dipoles (ECD) for modeling 628 

sources of interictal epileptiform discharges (IIEDs) typically ranges between 50 and 500 nAm 629 

(Bagic et al., 2011a). 630 

4.4. Effect of the head model 631 

Forward modelling requires MEG–MRI co-registration, segmentation of the head MRI and leadfield 632 

computation for the source space. The four beamformer implementations use different 633 

approaches, or similar approaches but with different parameters, which yields slightly different 634 

forward models. From Eqs (3–8), it is evident that beamformers are quite sensitive to the forward 635 

model. Hillebrand and Barnes (2003) showed that the spatial resolution and the localization 636 

accuracy of a beamformer improve with accuracy of the forward model. Dalal and colleagues 637 

(2014) reported that co-registration errors contribute greatly to EEG localization inaccuracy, likely 638 

due to their ultimate impact on head-model quality. Chella and colleagues (2019) presented the 639 

dependency of beamformer-based functional connectivity estimates on MEG-MRI co-registration 640 

accuracy. 641 

The increasing inter-toolbox localization differences towards very low and very high input SNR is 642 

also subject to the differences between the head models. Fig. 4 shows the four overlapped source 643 

space boundaries prepared from the same MRI where a slight misalignment among them can be 644 

easily seen. This misalignment affects source space. Such differences in head models and source 645 

spaces contribute differences in forward solutions which further will contribute to differences in 646 

beamforming results across the toolboxes. 647 

4.5. Covariance matrix and regularization 648 
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The data covariance matrix is a key component of the adaptive spatial filter in LCMV beamforming, 649 

and any error in covariance estimation can cause an error in source estimation. We used 5% of the 650 

mean variance of all sensors to regularize data covariance for making its inversion stable in 651 

FieldTrip, DAiSS (SPM12) and MNE-Python. Brainstorm uses a slightly different approach and 652 

applies regularization with 5% of mean variance of gradiometer and magnetometer channel sets 653 

separately and eliminates cross-sensor-type entries from the covariance matrices. As SSS 654 

preprocessing reduces the rank of the data, usually retaining less than 80 non-zero eigenvalues, 655 

the trace of the covariance matrix decreases strongly. At very high SNRs (> 15 dB), overfitting of 656 

the covariance matrix becomes more prominent; the condition number (ratio of the largest and the 657 

smallest eigenvalues) of the covariance matrix becomes very high even after the default 658 

regularization, which can deteriorate the quality of source estimates unless the covariance is 659 

appropriately regularized. Therefore, the seemingly same 5% regularization can have very different 660 

effects before and after SSS; see Suppl. Fig. 7. Thus, the commonly used way of specifying the 661 

regularization level might not be appropriate to produce a good and stable covariance model at 662 

high SNR, and this could be one of the explanations for the anecdotally reported detrimental 663 

effects of SSS on beamforming results.  664 

5. Conclusion 665 

We conclude that with the current versions of LCMV beamformer implementations in the four open-666 

source toolboxes — FieldTrip, DAiSS (SPM12), Brainstorm, and MNE-Python — the localization 667 

accuracy is acceptable (within ~10 mm for a true point source) for most purposes when the input 668 

SNR is ~3–15 dB. Lower or higher SNR may compromise the localization accuracy and spatial 669 

resolution. All toolboxes apply a vector LCMV beamformer as the initial step to find the source 670 

location. FieldTrip, DAiSS (SPM12) and MNE-Python find the optimal source orientation and 671 

produce a scalar beamformer output. Brainstorm yields robust localization for input SNR >5 dB but 672 

it slightly compromises with the spatial resolution. 673 

To extend this useable range, a properly defined scaling strategy such as pre-whitening should be 674 

implemented across the toolboxes. The default regularization is often inadequate and may yield 675 

suboptimal results. Therefore, a data-driven approach for regularization should be adopted to 676 

alleviate problems with low- and high-SNR cases. Our further work will be focusing on optimizing 677 

regularization using a more data-driven approach. 678 
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Table 1. Characteristics of the four beamforming toolboxes. The non-default settings of each 

toolbox are shown in bold. The toolbox version is indicated either by the version number or by the 

download date (yyyymmdd) from GitHub. 

 

 SNR range 

    (dB) 

MNE-

Python 

FieldTrip DAiSS 

(SPM12) 

Brainstorm 

Mean loc. error for 

SSS-pre-processed 

simulated data (mm) 

< 3 24.9 44.9 49.6 26.3 

3–15 6.1 6.3 5.9 9.9 

> 15 9.5 13.3 13.9 12.9 

Mean PSV for SSS-

pre-processed 

simulated data (cm3) 

< 3 84.9 84.9 139.4 101.1 

3–15 4.6 6.8 11.7 14.0 

> 15 19.2 21.0 34.9 39.9 

Mean loc. error for 

SSS-pre-processed 

phantom data (mm) 

< 3 3.6 2.9 3.6 3.8 

3–15 3.3 3.1 2.2 3.4 

> 15 3.7 3.0 2.5 3.5 

Mean PSV for SSS-

pre-processed 

phantom data (cm3) 

< 3 38.0 28.1 34.3 56.5 

3–15 1.8 2.0 4.8 5.8 

> 15 10.1 8.0 11.6 17.5 

Table 2. Mean localization error and mean PSV for simulated and static phantom data over the 

three ranges of signal-to-noise ratio. 



 

Fig. 1. Simulation of evoked responses. a) The 25 simulated dipolar sources (green dots) in the 
source space (grey dots), b) Simulated evoked responses of a dipolar source at five strengths and 
the field patterns corresponding to the peak amplitude (SNR in parenthesis). The dipole was 
located at (–19.2, –71.6, 57.8) mm in head coordinates. 

  



 

Fig. 2. MEG data simulation workflow (details in Suppl. Fig. 1). 

  



 

Fig. 3. The dry phantom. (a) Outer view, (b) cross-section, (c) positions of the employed dipole 
sources, (d) phantom position with respect to the MEG sensor helmet, and (e) position and rotation 
of the phantom during one of the moving-phantom measurements (Dipole 9 activated). 

  



 

Fig. 4. Surfaces that bound the source space used by each toolbox. a) Sagittal, b) coronal, and c) 
axial views of the bounding surfaces in MNE-Python (grey), FieldTrip (lavender), DAiSS (SPM12) 
(mint) and Brainstorm (coral). d) Transparent view of the overlap and differences of the four 
surfaces (color indicates the outermost surface).  

  



 

Fig. 5. The pipeline for constructing an LCMV beamformer for MEG/EEG source estimation. A 
similar pipeline was employed in all four packages.  



 

Fig. 6. Localization error (a) and point-spread volume (b) as a function of input SNR for raw and 
SSS-pre-processed simulated datasets. The markers size indicates the true dipole amplitude. 

 



 

Fig. 7. Localization error (a) and point-spread volume (b) as a function of input SNR for phantom 
data recording in a stable position. The markers size indicates the true dipole amplitude.  

 

 



 

Fig. 8. Localization error (a) and point-spread volume (b) as a function of input SNR for data from 
the moving phantom.  



 

Fig. 9. Source estimates of human MEG data. (a) Localization difference from the reference dipole 
location for raw and tSSS-preprocessed data. (b) Peaks of the beamformer source estimate of 
tSSS-preprocessed data. From left to right: visual stimuli presented to left (triangle) and right 
(square) upper and lower quadrant of the visual field (the two axial slices showing all sources); 
somatosensory stimuli to left (triangle) and right (square) wrist; auditory stimuli to the left (triangle) 
and right (square) ear. Reference dipole locations (yellow and orange circles). 
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