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Abstract

This paper is concerned with the regulation problem of discrete time stochastic systems involving

input delays. This problem has attracted resurgent interests in recent years due to its relevance to

networked control systems. The problem is formulated in a fully probabilistic framework and the control

solution is obtained by minimising the Kullback-Leibler Divergence (KLD), as a performance function,

between the actual and desired joint probability density functions of the system dynamics. A closed

form solution for the randomised controller is obtained for stochastic systems that can be described by

arbitrary probability density functions. Furthermore, the analytic solution for a class of linear Gaussian

stochastic systems is obtained. It is shown that the optimal randomised controller for this class of linear

Gaussian stochastic systems is state feedback controller which is modified by an extra linear term that is

related to the lagged and future control inputs. The developed method is demonstrated on a simulation

example and the results are compared with the standard fully probabilistic design control method.
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I. INTRODUCTION

Time delays are inherent to many real-world processes such as process control, and biological

and communication systems. Time delay arises either as a result of inherent delays in the compo-

nents of the system, online sensors data acquisition, or information processing time. It also arises

naturally in networked control systems and distributed and decentralised control where fixed,

varying, and random delays in the communication networks become inevitable. This phenomenon

usually causes sever degradation in the system performance and may even yields instability in

the controlled system. Therefore, the development of control methods and algorithms for systems

with time delays have received paramount attention since the 1960s [Chyung, 1969], [Kojima

and Shijima, 2003], [Pindyck, 1972], [Wang, 1975], [Richard, 2003], [Zhang and Skliar, 2007].

Depending on the type of delay, the nature of the system equations, and the performance

criterion used for optimisation, some progress was made towards the development of the control



solution to these delay systems. For continuous time systems the time delay problems have

mostly been dealt with by the infinite dimension system theory where the controller solution is

given in terms of operator Riccati equations [Delfour, 1986], [Keulen, 1993]. For example, the

optimal linear quadratic regulator solution for linear systems with multiple time delays in the

control input was developed in [Basin and Gonzalez, 2006]. A solution to the H∞ control for

systems with single input delays has been developed in [Tadmor and Mirkin, 2005]. A complete

solution to the H∞ control problem has been developed in [Meinsma and Mirkin, 2005] by

converting the delay problem into a nested sequence of elementary problems.

On the other hand, the rapid development in digital techniques and the emerge of new

fields such as networked control and congestion control have attracted attention to discrete

time systems with delays. One of the well-established approaches for discrete time systems

with delays is the augmentation of the system state where a delay problem is transformed into

a delay free problem [Hongguo Zhao et al,2008], [Tadmor and Mirkin, 2005], [Theodor and

Shaked, 1994]. This approach however, results in higher state dimension and therefore increases

the computational cost which becomes a real obstacle when the system under investigation

involves multiple and large delays. Other more efficient methods for optimal estimation and

control have consequently been seeked and developed. Based on the maximum principle, the

analytic solution for linear, deterministic, discrete time tracking control problem with multiple

delays in the state and control input has been developed in [Wang, 2009]. The solution to the

linear quadratic tracking problem is developed in [Pindyck, 1972] for discrete time systems with

single delay in the control input. Moreover, linear quadratic control of systems with random

network delays is studied in [Nilsson et al, 1998], [Hirano et al, 2005], [Zhang et al, 2005].

However, most of the previously mentioned approaches assume that the system dynamics are

deterministic which is not true for most real-world processes. Real world processes are usually

subjected to several sources of uncertainties including functional uncertainties, random noises and

disturbances introduced by measurement devices and other surrounding environmental conditions

thus, are far from being deterministic. For these systems where high levels of uncertainties

and stochsticity and input and/or state delays occur simultaneously, the derivation of a control

solution becomes even much more challenging. As such, a significant amount of research has

been focusing on developing solutions to the stochastic control problems with delays in the input

and/or the state [Huanshui Zhang et al, 2015], [Larssen, 2002], [Chang, 2011]. Despite this fact

the stochastic problem with delays remains challenging and largely unsolved. In particular, a



general solution that considers the stochastic nature of the system dynamics and the delays in

its input and/or state is still lacking.

This paper develops a general probabilistic framework for the derivation of an optimal con-

troller for systems that are affected by stochastic noise and functional uncertainties and at the

same time have time delays. The proposed framework is based on the utilisation of the Kullback-

Leibler divergence between the joint probability density function (pdf) of the system dynamics

and a predefined desired joint pdf as a cost function. This method is called the fully probabilistic

design method (FPD). The exploitation of the Kulback-Leibler divergence yields to a randomised

controller as opposed to single deterministic estimate of control laws. It also provides a systematic

approach to the consideration of noise and uncertainty in the derivation of the optimal control

law. The FPD method was originally proposed in [Karny, 1996], [Herzallah, 2011] to obtain

a general solution for stochastic systems subject to random inputs and deterministic systems

characterised by functional uncertainty with unknown pdfs. However, the FPD method insists on

zero delay between the input and the system state, therefore, does not provide optimal solutions

for systems with delays. As such, the objective of the current paper is to extend this FPD method

and explain how a randomised controller can be derived when input delays exist. The extended

method will be referred to by Time Delay FPD (TDFPD) method. We start by developing

the general solution for stochastic systems with delays which can be described by arbitrary

probabilistic models. The analytic solution for a class of linear stochastic discrete time systems

with input delays will then be obtained and discussed in details. For this class of systems, the

solution is obtained as a feedback control law, which is linear in the state and whose gain matrix

satisfies a generalised Riccati equation which has its state and control input penalisation specified

by the ideal distributions of the state and control input respectively. The linear state feedback

control law is also modified by an additional linear term that is related to the lagged control

input and future state values.

The proposed FPD framework is different and more general to what have already been estab-

lished in the literature. To be more specific, although the method developed in [Huanshui Zhang

et al, 2015] considered stochastic systems, the derived control law in [Huanshui Zhang et al,

2015] is deterministic as opposed to the randomised controller derived in our FPD approach.

Our derived randomised controller provides complete information in the decision making process

where not only a deterministic value of the control signal is estimated, but also the uncertainty

around this estimation. Moreover, the derived solution in our paper is for general nonlinear



systems and is not restricted by the linearity of the system. Additionally, as discussed earlier in

this section, the state augmentation method [Hongguo Zhao et al,2008], [Tadmor and Mirkin,

2005], [Theodor and Shaked, 1994] increases the computational cost when the considered system

has multiple delays. When the considered system is stochastic and has delays, thus needs to be

dealt with using the FPD approach as followed in this paper, the computational problem from

the state augmentation approach becomes more stringent and even unsolvable. This is because

the FPD requires full specification of the joint density of the trajectory of the state and the

control over all times. As such, we follow a different approach that facilitate the derivation of

the required optimal randomised controller for delay systems. However, as will be seen from

further development, since in this approach the derived solution involves time-delay and future

terms in the optimal control law the approximate solution of the TDFPD need to be sought

by iteratively solving the corresponding difference equations involved in the calculation of the

optimal randomised controller.

To re-emphasise, compared with the existing results on the topic, the proposed framework

has three distinct features. Firstly, it is a general probabilistic framework that extends the FPD

approach such that it takes systems delays into consideration when deriving optimal control

laws. In this framework, the system dynamics are completely characterised by their pdfs which

moreover are not assumed to be known apriori, therefore are estimated online. This is opposite to

most of the existing literature, where the system dynamics are described by dynamical equations

which do not provide a complete characterisation for stochastic systems that operate under high

levels of uncertainty and noise. Secondly, both the stochastic nature and delays in the system

dynamics are considered simultaneously, and a randomised controller is obtained. Contrary to

existing deterministic control laws for systems with delays, the obtained randomised controller is

more explorative and provides complete information in the decision making process, therefore is

the natural solution to stochastic and uncertain systems. Thirdly, although an analytic solution of

the proposed method is only feasible for linear Gaussian systems, the solution can be obtained

in a closed form for any linear or nonlinear stochastic system with input delays that can be

described by an arbitrary pdf.

The rest of this article is organised as follows. In Section II we state the objectives of

the proposed TDFPD and demonstrates its general solution. Section III applies the TDFPD

control theory to a class of linear, Gaussian, Stochastic dynamical systems with input delay

and derive the corresponding randomised controller. In addition, it summarises and explains the



numerical solution of the derived randomised controller. Section IV contains some simulation

results to show the effectiveness of the proposed TDFPD controller. The conclusion is provided

in Section V.

II. TDFPD CONTROL PROBLEM FOR STOCHASTIC SYSTEMS WITH INPUT DELAYS

This section will state the control objectives and demonstrate the general solution of the

TDFPD control problem for stochastic systems with input delays that can be described by an

arbitrary probabilistic dynamical model.

A. Control Objectives of the TDFPD Control Problem

Assume that the stochastic system can be represented at each time instant, t by the following

conditional pdf,

s(xt|xt−1, ut, ut−h), (1)

where xt ∈ Rn represents the system state, ut ∈ Rm represents the control input, and h > 0 is a

positive time delay. The initial values x0, ui, i = −h, . . . , 0, are known. In general s(.|.) needs

not to be known and needs not to be constrained by the Gaussian assumption. Note that because

of the stochasticity of the system, the probabilistic description of the system dynamics as given

in (1) provides a complete specification of the present state as a function of the previous state and

present and previous control. For these stochastic systems, the objective of the TDFPD control

problem is to design a randomised controller, c(ut|xt−1, ut−h) that minimises the Kullback-

Leibler divergence between the joint pdf of the closed loop description of the system dynamics,

f(X (t, T)) and the ideal joint pdf If(X (t, T)),

D
(
f|| If

)
≡
∫
f(X (t, T)) ln

(
f(X (t, T))
If(X (t, T))

)
dX (t, T), (2)

where X (t, T) = {xt, . . . , xT , ut, . . . , uT } is the closed loop observed data sequence, and T ≤∞
is a given control horizon. The joint pdf of the closed loop description of the system dynamics

is the most complete probabilistic description of its behaviour. For the stochastic systems with

input delays given in (1), it can be evaluated using the chain rule [Peterka, 1981] as follows,

f(X (t, T)) =
T∏
t=1

s(xt|xt−1, ut, ut−h)c(ut|xt−1, ut−h), (3)

where the pdf s(xt|xt−1, ut, ut−h) describes the dynamics of the observed state vector xt, and

c(ut|xt−1, ut−h) represents the pdf of the required randomised controller as mentioned earlier.



Similarly, the ideal joint pdf of the closed loop data can be factorised as follows,

If(X (t, T)) =
T∏
t=1

Is(xt|xt−1, ut, ut−h)
Ic(ut|xt−1, ut−h). (4)

where the pdf Is(xt|xt−1, ut, ut−h) describes the ideal distribution of the system state vector xt,

and Ic(ut|xt−1, ut−h) represents the ideal pdf of the randomised controller. Given the definitions

of the joint pdf of the closed loop system and the ideal pdf as specified by equations (3)

and (4) respectively, minimisation of (2) can be obtained recursively by introducing the following

definition,

− ln(γ(xt−1)) = min
c(uτ|xτ−1,uτ−h)

T∑
τ=t

∫
f(Xt, . . . ,XT |xt−1)

× ln
(
s(xτ|xτ−1, uτ, uτ−h)c(uτ|xτ−1, uτ−h)
Is(xτ|xτ−1, uτ, uτ−h) Ic(uτ|xτ−1, uτ−h)

)
d(Xt, . . . ,XT), (5)

for arbitrary τ ∈ {1, . . . , T }. Here Xt = (xt, ut), and − ln(γ(xt−1)) is the optimal performance

index. Justification of why the ln function is required here, can be found in Appendix B.

The definition in Equation (5) leads to the recursive formula for the cost function specified in

the following theorem. This recursive formula will be used later for the derivation of the optimal

randomised controller.

Theorem 1: Using the definition given in (5), the minimisation of the Kullback-Leibler diver-

gence (2) can be performed recursively to give the following recurrence functional equation

− ln(γ(xt−1)) = min
c(ut|xt−1,ut−h)

∫
s(xt|xt−1, ut, ut−h)c(ut|xt−1, ut−h)[

ln
(
s(xt|xt−1, ut, ut−h)c(ut|xt−1, ut−h)
Is(xt|xt−1, ut, ut−h) Ic(ut|xt−1, ut−h)

)
︸ ︷︷ ︸

≡partial cost =⇒ U(xt, ut)

− ln(γ(xt))︸ ︷︷ ︸
−

∫
s(xt+h|xt+h−1, ut+h, ut)c(ut+h|xt+h−1, ut) ln(γ(xt+h))d(xt+h, ut+h)︸ ︷︷ ︸

optimal cost-to-go

δ(t+ h)

]
d(xt, ut),

(6)

where,

δ(t+ h) =

 0, t = T − h, T − h+ 1, . . .

1, t = 0, 1, 2, T − h− 1.
(7)

Proof: The proof is given in Appendix A.



B. Solution to the TDFPD Control Problem

The general solution of the optimisation of the TDFPD control problem as obtained from
the minimisation of the cost-to-go function with respect to control law, c(ut|xt−1, ut−h) can be
shown to be given by the following theorem.
Theorem 2: The pdf of the optimal randomised controller minimising the cost–to–go function (6)
subject to the conditional distribution of the stochastic system, s(xt|xt−1, ut, ut−h) is given by,

c∗(ut|xt−1, ut−h) =

Ic(ut|xt−1, ut−h) exp
[
− β1(.) − β2(.) −

∫
c(ut+h|xt+h−1, ut)β3(.)δ(t+ h)dut+h

]
γ(xt−1)

,

(8)

where,

γ(xt−1) =

∫
Ic(ut|xt−1, ut−h) exp

[
− β1(ut, xt−1, ut−h) − β2(ut, xt−1, ut−h)

−

∫
c(ut+h|xt+h−1, ut)β3(ut+h, xt+h−1, ut)δ(t+ h)dut+h

]
dut,

β1(ut, xt−1, ut−h) =

∫
s(xt|xt−1, ut, ut−h)

[
ln
s(xt|xt−1, ut, ut−h)
Is(xt|xt−1, ut, ut−h)

]
dxt,

β2(ut, xt−1, ut−h) = −

∫
s(xt|xt−1, ut, ut−h) ln(γ(xt))dxt,

β3(ut+h, xt+h−1, ut) = −

∫
s(xt|xt−1, ut, ut−h)s(xt+h|xt+h−1, ut+h, ut) ln(γ(xt+h))d(xt, xt+h),

(9)

Proof: This proposition can be proven by adapting the proof of Proposition 2 in [Karny, 2006].

Remark 1: To re-emphasise, the solution to the TDFPD as specified in Theorem 1 does not

assume any specific form on the generative probabilistic model of the system dynamics. It

provides a general solution for any stochastic system with input delays that can be described by

an arbitrary pdf.

III. LINEAR GAUSSIAN STOCHASTIC SYSTEMS WITH INPUT DELAYS

The theory developed in the previous section is applied here to a class of linear, Gaussian,

Stochastic dynamical systems with input delay,

xt = Ãxt−1 + B̃ut + B̃1ut−h + ε̃t, (10)

Where Ã is the system state matrix, B̃ is the control input matrix, B̃1 is the matrix of the

delayed control input, and ε̃t is a zero mean Gaussian noise with covariance Σ̃. The parameters



of the stochastic model (10) are not known in general, thus need to be estimated. However,

since the current value of the system state is affected by noise, its value cannot be completely

specified by the current and previous control and previous state values. Therefore, the generative

probabilistic model of the stochastic model (10) can be estimated on-line using observed data

from the stochastic system dynamics to describe the probabilistic evolution of the system state.

The estimation process of the generative probabilistic model will be discussed in Section III-A.

There, it will be shown that the generative probabilistic model of the class of linear stochastic

systems given in (10) can be estimated by a Gaussian pdf,

s(xt|xt−1, ut, ut−h) = Nxt(µt, Σ),

µt = Axt−1 + But + B1ut−h, (11)

where Nxt represents the Gaussian pdf of xt. In addition, A, B, B1 and Σ are the estimates of

the matrices Ã, B̃, B̃1 and Σ̃ respectively.

The following sections will discuss the development of the analytic solution for the stochastic

linear Gaussian system defined in (11) such that its state is regulated around zero, but first we

discuss the estimation process of the pdf of the state of the system.

A. Conditional Distribution of the System State

As discussed in Section III, the generative probabilistic model of the system state, s(xt|xt−1, ut, ut−h)

is unknown in reality and hence needs to be estimated. The estimation process of this probabilistic

generative model is based on the use of linear optimisation methods to estimate the parameters of

this model as given in equation (11), represented in the A, B, B1, and Σ matrices. The parameters

can be estimated online where their estimates are updated at each time instant, t when a new

measurement of the state value becomes available. In particular, given a new observation of the

system state xt and the prior knowledge of linear dynamics, the required model can be written

as follows,

xt =
[
A B B1

]
xt−1

ut

ut−h

 ,
= ΘΦt, (12)



where Φt = [xt−1 ut ut−h]
T , and Θ = [A B B1]. Having formulated Equation (12), all observed

data up to time t is used in the estimation process in order to guarantee accurate estimation of

the parameters Θ. To be more specific the observed values of the state xt and input vector Φt are

retained up to time t (i.e xt = [x0, . . . , xt] and Φt = [Φ0, . . . , Φt]) and used in the optimisation

process. Here, xt will have dimension n×N, and Φt will have dimension (n+ 2m)×N, with

N being the number of observations up to time t. Then to be able to invert the problem and

find the estimated parameters, Θ both sides of the above equation are multiplied by ΦT
t ,

xtΦ
T
t = ΘΦtΦ

T
t . (13)

The matrix ΦtΦ
T
t in equation (13) is a square matrix of dimension (n + 2m) × (n + 2m).

Provided it is nonsingular we may invert it to obtain the required estimates of the parameters,

Θ,

xtΦ
†
t = Θ, (14)

where Φ†t is an N× (n+ 2m) matrix known as the pseudo-inverse of Φt and is given by,

Φ†t = Φ
T
t (ΦtΦ

T
t )

−1. (15)

Remark 2: As can be seen from the above discussion Φt is, in general, a non-square matrix.

Therefore Φt does not itself have a true inverse. Thus, the introduction of the pseudo inverse

matrix in the optimisation process is necessary. On the other hand, as can be seen from Equa-

tion (15), the pseudo inverse matrix does have the property that ΦtΦ
†
t = I where I is the

identity matrix. However, note that ΦtΦ
†
t 6= I in general. If the matrix ΦtΦ

T
t is singular then

Equation (13) does not have a unique solution. In this case, if the pseudo inverse is defined as,

Φ†t = lim
ι→0ΦT

t (ΦtΦ
T
t + ιI)

−1, (16)

then, the limit can be shown to be always exist and that the limiting value guarantees the optimal

solution of Equation (13).

Following the estimation of these parameters, the conditional distribution of the system state

can be shown to be given by a Gaussian distribution as follows,

s(xt|xt−1, ut, ut−h) = N (Axt−1 + But + B1ut−h, Σ), (17)

where Axt−1 + But + B1ut−h is simply the mean of the state evaluated based on the estimated

parameters, A, B and B1 of their corresponding actual values Ã, B̃ and B̃1 respectively. In

addition, Σ is the global covariance matrix of the residual error, εt between the actual and

estimated states, Σ = E{(xt − [Axt−1 + But + B1ut−h])(xt − [Axt−1 + But + B1ut−h])
T }.



B. Analytic solution to the Linear Gaussian TDFPD

Within the FPD control framework, the control objective can be achieved through the specifica-

tion of the appropriate parameters of the ideal distribution that will realise the desired objectives

of the control problem. Therefore, the solution in this section will, without any loss of generality,

be demonstrated on regulating the state of the stochastic system where the system is initially

in state x0 and the aim of control is to return the system state to the origin. Thus, given this

control objective, for the stochastic system defined in Equation (11), the ideal distribution of the

system state is assumed to be given by,

Is(xt|xt−1, ut, ut−h) = Nxt(0, Σ). (18)

The zero mean of the ideal distribution reflects the realistic objective of the regulation problem

of reaching zero state values and the covariance determines the spread of the state values around

zero.

Remark 3: This papers develops the control solution of the time delay control problem for a

class of stochastic systems where the noise affecting the system does not depend on the state

or control inputs. For this class of systems where the noise affecting the system is independent

of the input and/or state, the spread of the state values around the origin will be specified by

the covariance of innovations Σ and cannot be made smaller. Therefore, we assume that the

desired state covariance is equal to the process noise covariance. For other classes of stochastic

systems where the noise affecting the system is dependent on the state or input values, the

covariance of the ideal distribution can be specified to be different than the covariance of the

system innovations with the aim of designing controllers that reduce the effect of the noise on

the dynamics of the system. This has been addressed in our recent work on the development of

FPD control methods for stochastic systems with multiplicative noise [Zhou et al, 2019].

Similarly, the ideal distribution of the randomised controller is also assumed to be Gaussian,

Ic(ut|xt−1, ut−h) = Nut(0, Γ), (19)

where Γ determines the admissible range of optimal control inputs. To re-emphasise, the ideal

distribution of the randomised controller Ic(ut|xt−1, ut−h) specifies the admissible range of

optimal control inputs only. It is not used in the selection process of the optimal control input.

Optimal control inputs are selected using the distribution of the optimised randomised controller,

c(ut|xt−1, ut−h) which as will be seen from further development is a state feedback controller

whose gain matrix satisfies a generalised Riccati equation.



Following the above definitions of the pdfs of the system state, its ideal distribution and the

ideal distribution of the randomised controller, the derivation of optimal randomised control laws

can then be obtained through the evaluation of the optimal performance index, − ln(γ(xt−1)).

This in turn requires the calculation of β1(.), β2(.), β3(.) and γ(xt−1) as defined by Equation (9).

The aforementioned, leads to the following theorem.

Theorem 5: The randomised optimal controller minimising the optimal cost-to-go function (5)

subject to the pdf of the system dynamics (11) and ideal distributions given by (18) and (19) is

c(ut|xt−1, ut−h) = Nut(νt, Γt), (20)

where

νt = −Ktxt−1 + Lt,

Kt = Γ
−1
t B

T(Σ−1 +Mt)A,

Lt = −Γ−1t B
T

{
(Σ−1 +Mt)B1ut−h + 0.5g

T
t

}
− Γ−1t ρt,

Γt = [Γ−1 + BT(Σ−1 +Mt)B]
−1,

ρt = B
T
1(Mt+hµ̄t+h + 0.5g

T
t+h)δ(t+ h),

µ̄t+h = Axt+h−1 + Bνt+h + B1ut. (21)

In addition,

− ln(γ(xt)) = 0.5(xTtMtxt + gtxt +ωt), (22)

with

Mt−1 = A
T

{
(Σ−1 +Mt) − (Σ−1 +Mt)BΓ

−1
t B

T(Σ−1 +Mt)

}
A, (23)

gt−1 = A
T

{
2(Σ−1 +Mt)B1ut−h + g

T
t − 2(Σ

−1 +Mt)BΓ
−1
t B

T(Σ−1 +Mt)B1ut−h (24)

− (Σ−1 +Mt)BΓ
−1
t B

TgTt − 2(Σ
−1 +Mt)BΓ

−1
t ρt

}
,

ωt−1 = u
T
t−hB

T
1(Σ

−1 +Mt)B1ut−h + tr(MtΣ) + u
T
t−hB

T
1g

T
t +ωt

− uTt−hB
T
1(Σ

−1 +Mt)BΓ
−1
t B

T(Σ−1 +Mt)B1ut−h − 0.25gtBΓ
−1
t B

TgTt − ρtΓ
−1
t ρt

− 2uTt−hB
T
1(Σ

−1 +Mt)BΓ
−1
t (0.5BTgt + ρt) − g

T
tBΓ

−1
t ρt + {νTt+hB

TMt+hµ̄t+h

+ xTt+h−1A
TMt+hµ̄t+h + 0.5ν

T
t+hB

TgTt+h + 0.5x
T
t+h−1A

TgTt+h +ωt+h + tr(Mt+hΣ)}δ(t+ h),

(25)



is the quadratic cost function.

Proof: The proof is given in Appendix B.

Remark 5: Equation (23) is called the generalised discrete time Riccati equation. It is similar

to that obtained for the conventional FPD method. The derivation of Equation (24) is a key

modification to the original conventional FPD. The manifestation of this equation is due to

the existence of the lagged control input in the system equation. Its solution is dependent on

the solution of the Riccati equation (23). Note also that the solution of this equation requires

knowledge of future time terms ρt and time delay terms that are dependent on ut−h.

Remark 6: Compared with the conventional randomised controller in FPD [Karny, 1996], the

mean of the derived randomised controller of the TDFPD method is modified by a linear term,

Lt as can be seen from Equation (21). The introduction of this linear term is the consequence of

the presence of the lagged control input. This additional linear term in the mean of the optimised

control input is also dependent on delayed and future control input values.

As stated in remark 5 and remark 6 the solution of the optimal cost-to-go function as

well as the optimal randomised controller requires knowledge of delayed and future control

input values, thus rendering the problem hard to solve analytically. The work in [Wang, 2009]

introduced an approximation method to obtain the optimal solution of a two point boundary value

problem based on LQ control for tracking control problems. The method is called successive

approximation approach, SAA. It will be adopted in the current paper to find the numerical

solution of the randomised optimal control inputs obtained from the TDFPD method. This

numerical solution to the proposed TDFPD method is discussed in the next section.

C. Numerical Solution to the Linear Gaussian TDFPD

The solution to the TDFPD control problem for linear stochastic systems with input delay (10)

is given in Equation (21). Using this derived randomised controller, the optimally controlled

conditional distribution of the system state conditioned on previous state and control input values

can be obtained as follows,

s(xt|xt−1, ut−h) =

∫
s(xt|xt−1, ut, ut−h)c(ut|xt−1, ut−h)dut (26)

where s(xt|xt−1, ut, ut−h) defined in Equation (11) is the Gaussian distribution of the system

state, and c(ut|xt−1, ut−h) defined in Equation (20) is the optimised randomised controller.



Substituting Equations (11) and (20) in Equation (26) and integrating over ut yields,

s(xt|xt−1, ut−h) = N (x̄t, Σt),

x̄t = [I− BΓ−1t B
T(Σ−1 +Mt)](Axt−1 + B1ut−h) − 0.5Γ

−1
t B

TgTt − Γ
−1
t ρt,

Σt = BΓtB
T + Σ. (27)

The approximate solution of the TDFPD control problem can then be obtained by iteratively

solving the corresponding difference equations involved in the calculation of the optimal ran-

domised controller. This will be done by implementing a slight variation of the SAA proposed

in [Wang, 2009]. This approach is based on iteratively solving a sequence of the corresponding

nonhomogeneous linear equations in the LQ control problem where each sequence is solved as a

standard numerical problem. Following this approach, the future terms in the optimal control law

and corresponding optimality equations are obtained from previous iterations, thus overcoming

the requierment of predicting these future values. For more details about the SAA the readers

are referred to [Wang, 2009]. The following slight variation of the SAA can be readily applied

to the TDFPD control problem for obtaining the approximate solution of the optimal randomised

controller,

1) Let g(0)t−1 = 0, and l = 1.

2) Estimate the pdf of the stochastic model described by (10) as discussed in Section III-A,

3) Solve the Riccati equation, Mt−1 using Equation (23),

4) Obtain the l-th order vector g(l)t−1 using,

g
(l)
t−1 = A

T

{
2(Σ−1 +Mt)B1ut−h + g

(l)T

t − 2(Σ−1 +Mt)BΓ
−1
t B

T(Σ−1 +Mt)B1ut−h

−AT(Σ−1 +Mt)BΓ
−1
t B

Tg
(l)T

t − 2AT(Σ−1 +Mt)BΓ
−1
t ρ

(l−1)
t

}
,

(28)

5) Calculate the mean of the optimal randomised controller using,

νt = −Γ−1t B
T(Σ−1 +Mt)Axt−1 − Γ

−1
t B

T

{
(Σ−1 +Mt)B1ut−h + 0.5g

(l)T

t

}
− Γ−1t ρ

(l−1)
t ,

(29)

6) Apply the mean of the optimal randomised controller to the system represented by Equa-

tion (10) and evaluate its state value,



7) Calculate the value of the performance function using (2),

8) If D
(l)−D(l−1)

D(l) < δ, stop. Here δ is a prespecified precession. Else,

9) Let l = l+ 1 and go to 2).

As can be seen from the above algorithm, the values of the future time terms are obtained

from the previous iteration of the optimisation process, thus overcoming the requirement of the

prediction of these future terms. This allows the numerical calculation of the randomised optimal

control law and its implementation to stochastic systems with time delays.

IV. NUMERICAL EXAMPLE

Consider the stochastic system (11) with

A =


0.9 0.02 0

0 0.92 0.01

−0.05 −0.52 0.75

 , B =


0

0

0.15

 , B1 =

0

0

0.2

 , (30)

Σ = 0.0001, x0 =


0.2

−0.5

1.0

 . (31)

In order to rigorously test the efficiency of the proposed TDFPD control method, three different

simulations are carried out. In the first two simulations, different time delays are considered,

while in the third simulation the proposed TDFPD is tested when the algorithm assumes a

different time delay, h ′ than the actual time delay, h of the stochastic system.

Simulation 1: In this simulation study, the time delay h is taken to be equal to 10. In addition,

the initial values ui, i = −10, . . . , 0 are all taken to be equal to zero. For comparison purposes

two sets of experiments were conducted. In the first set of experiments, the system is controlled

using the TDFPD control approach for systems with delays as discussed in Section III. In the

second experiment the system is controlled using the conventional FPD without consideration of

time delays [Herzallah, 2011]. For fair comparison, both experiments assume that the system is

initially in state x0 as given in (31) and the objective of their respective randomised controllers

is to bring the state back to zero. As such the ideal distribution of the randomised controllers of

both approaches is taken to be Gaussian with zero mean and Γ = 0.1 covariance. In addition,

the system parameters are assumed to be unknown in both experiments thus estimated online

following the method discussed in Section III-A.



During testing, the optimal control signal, ut is generated at each time instant, t from the

derived randomised controllers of the conventional FPD and the TDFPD approaches. This optimal

control signal is then forwarded to the plant which is specified by the parameters given in

Equations (30) and (31) and the system output, xt is measured. Figure 1, (a)-(c) and (d) shows

histories of the TDFPD and conventional FPD states and control efforts respectively. As can be

seen from the figure, both of the TDFPD and conventional FPD approaches managed to regularise

the state of the system around zero as required. However, a better performance is achieved from

the TDFPD method which shows minimal overshoot compared to the conventional FPD method.

Moreover, the minimum cost-to-go function value is found to be considerably lower from the

TDFPD method compared to that of the conventional FPD method. For the TDFPD controller,

− ln(γ(xt−1)) is found to be 101.772, while for the FPD approach it is equal to 503.4352. This

is expected due to the lack of consideration of the lagged control input in the conventional FPD

method. In the TDFPD method on the other hand the optimal randomised controller is derived

such that the cost of the future control input due to the presence of its lagged value in the

system equations is taken into consideration. This provides better anticipatory planning, thus

consequently improves the performance of the derived optimal control law from the developed

TDFPD method.

Simulation Study 2: In this simulation study, the time delay, h is increased to 30 with all

previous input values, ui, i = −30, . . . , 0 taken to be equal to zero. This study shows that the

proposed TDFPD controller performs better again with a considerably lower minimum cost-to-

go function value, − ln(γ(xt−1)). For TDFPD, − ln(γ(xt−1)) is equal to 101.78, while for the

FPD approach it is equal to 518.891.

Simulation Study 3: This last simulation study tests the proposed TDFPD control method when

it assumes a different time delay, h ′ than the actual time delay, h of the stochastic system. Here

the actual time delay h of the stochastic system is taken to be equal to 10 with all previous

input values ui, i = −10, . . . , 0 being uniformly generated from the interval (0, 1). However,

the proposed TDFPD control is implemented for different time delays to see the effect of the

uncertainty of knowing the actual time delay of the stochastic system on its performance. The

proposed TDFPD is implemented with time delays, h ′ equal to (1, 2, 3, 4, . . . , 20) and the results

are obtained. The value of the minimum cost-to-go function, − ln(γ(xt−1)) versus the assumed

time delay h ′ is shown in Figure 2. The figure shows that when h ′ < h, the value of the minimum

cost-to-go function, − ln(γ(xt−1)) is comparable to that when h ′ = h. This is expected because
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Fig. 1. The state and control inputs of the simulated linear stochastic system with input delay using the FPD and TDFPD

control methods: (a) the first state of the stochastic system from the TDFPD shown in solid red and from the FPD shown in

dashed blue. (b) the second state of the stochastic system from the TDFPD shown in solid red and from the FPD shown in

dashed blue. (c) the third state of the stochastic system from the TDFPD shown in solid red and from the FPD shown in dashed

blue. (d) the control effort from the TDFPD shown in solid red and from the FPD shown in dashed blue.

as can be seen from Equation (21) the controller will start adding corrections through the Lt term

earlier assuming shorter delays in the input and therefore accounting for an earlier delayed input

than the actual delay of the system. However, when h ′ > h, the corrections are added later than

the actual delay of the system, ignoring its effect. Therefore, in this case the minimum cost-to-go

function, − ln(γ(xt−1)) shows larger values compared to that when h ′ = h. In addition, when

h ′ = h ± 3 the minimum cost-to-go function value, − ln(γ(xt−1)) does not show noticeable

variation, with its value continuing to fluctuate around 398.2656 (the value when the time delay

is equal to 10).

if the violation of the assumption is not too much, the result will be very close to the baseline.
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Fig. 2. The effect of the uncertainty in knowing the actual value of the time delay.

V. CONCLUSION

This paper studied the design of a randomised controller and optimisation problems for

stochastic discrete time systems with input delay. The general solution of stochastic systems that

can be described by arbitrary distribution functions is derived and a closed form of the optimal

randomised controller is obtained. The derived results are then demonstrated on linear Stochastic

discrete time systems and the analytic solution of the linear optimal randomised controller is

obtained. This obtained results show that the optimal solution for linear stochastic discrete time

systems is different and much more complicated than that of the standard solution of the FPD

control approach without input delay. The obtained solution still involves solving a generalised

Riccati equation, but it also requires the solution of a new vector that takes delayed and future

control values into consideration. In addition, the derived linear optimal randomised controller

is a state feedback controller but with an additional linear term considering delayed and future

inputs. Finally, although the current study considered stochastic systems with single input delay,

the methodology presented in this paper provides a pedagogical methodology for the optimisation

of control inputs for stochastic systems with multiple input and or state delays. Future work will

discuss and demonstrate the extension of the proposed method when the considered control

system has multiple input and or state delays. In addition, although this paper restricts its focus

on systems with fixed time delays, the extension of the proposed solution to random and variable

time delays will also be sought.



APPENDIX

A. Proof of Theorem 1

For the stochastic system with input delay as described by (1), the control input ut regulates

the system by applying the values of ut at the current time t as well as a delayed time moment

t − h. This assumes that the current system state depends not only on the current value of the

control input ut, but also on its values at certain time lag h. As stated earlier, the objective

of the optimal control problem is to find a randomised optimal control input c(ut|xt−1, ut−h),

t ∈ [t0, T ] that minimises the cost-to-go function specified in (5). To consider the effect of the

delayed control input on future state values, the summation given in (5) can be expanded to be

written as follows,

− ln(γ(xt−1)) = min
c(uτ|xτ−1,uτ−h)

[ T∑
τ=t

∫
f(Xτ|xt−1)

× ln
(
s(xτ|xτ−1, uτ, uτ−h)c(uτ|xτ−1, uτ−h)
Is(xτ|xτ−1, uτ, uτ−h) Ic(uτ|xτ−1, uτ−h)

)
+ . . .

+ f(Xt+h|xt−1)
T∑

τ=t+h+1

∫
f(Xτ|xt−1)

× ln
(
s(xτ|xτ−1, uτ, uτ−h)c(uτ|xτ−1, uτ−h)
Is(xτ|xτ−1, uτ, uτ−h) Ic(uτ|xτ−1, uτ−h)

)
d(Xτ)

]
d(Xτ). (32)

The expanded form in (32) explicitly shows the future cost of the lagged control input as

represented by the second summation starting at τ = t+h+1. Using the dynamic programming

principle of optimality, the minimisation of the above equation can be done in two stages. The

first stage considers the control input at time t and the second stage considers the control over



the remaining period. This can be represented mathematically as follows,

− ln(γ(xt−1)) = min
c(ut|xt−1,ut−h)

{
min

c(uτ|xτ−1,uτ−h)
f(Xt|xt−1)

×
[

ln
(
s(xt|xt−1, ut, ut−h)c(ut|xt−1, ut−h)
Is(xt|xt−1, ut, ut−h) Ic(ut|xt−1, ut−h)

)
+

T∑
τ=t+1

∫
f(Xτ|xt−1)

× ln
(
s(xτ|xτ−1, uτ, uτ−h)c(uτ|xτ−1, uτ−h)
Is(xτ|xτ−1, uτ, uτ−h) Ic(uτ|xτ−1, uτ−h)

)
d(Xτ) + . . .

+ f(Xt+h|xt−1)
T∑

τ=t+h+1

∫
f(Xτ|xt−1)

× ln
(
s(xτ|xτ−1, uτ, uτ−h)c(uτ|xτ−1, uτ−h)
Is(xτ|xτ−1, uτ, uτ−h) Ic(uτ|xτ−1, uτ−h)

)
d(Xτ)

]
d(Xt, . . . ,XT)

}
. (33)

Using the definition of the minimum cost to go function given in (5), observing that the last

two terms in the above equation are independent of the optimised control, and noting that the

last term in the above equation is zero when t = T − h, T − h+ 1, . . . Equation (33) simplifies

to give Equation (6). This completes the proof.

B. Proof of Theorem 2

The proof of Theorem 3 can be shown by calculating the various elements that were given in

Theorem 2, Equation (9). The evaluation of β1(ut, xt−1, ut−h) can be obtained as follows,

β1(ut, xt−1, ut−h) =

∫
Nxt(Axt−1 + But + B1ut−h, Σ)

{
− 0.5[xt − (Axt−1 + But + B1ut−h)]

TΣ−1

[xt − (Axt−1 + But + B1ut−h)] + 0.5x
T
tΣ

−1xt

}
dxt,

= 0.5(Axt−1 + But + B1ut−h)
TΣ−1(Axt−1 + But + B1ut−h). (34)

The evaluation of β2(ut, xt−1, ut−h) is based on the assumed quadratic form of − ln(γ(xt))

defined in Equation (22). This quadratic form of the optimal cost-to-go function will be verified

by backward induction, where Mt−1 and gt−1 will be obtained recursively as will be shown

below. With the assumed quadratic form of − ln(γ(xt)) we obtain,

β2(ut, xt−1, ut−h) =

∫
Nxt(Axt−1 + But + B1ut−h, Σ)

{
0.5xTtMtxt + 0.5gtxt + 0.5ωt

}
dxt

= 0.5(Axt−1 + But + B1ut−h)
TMt(Axt−1 + But + B1ut−h) + 0.5tr(MtΣ)

+ 0.5ωt + 0.5gt(Axt−1 + But + B1ut−h). (35)



The evaluation of β3(ut+h, xt+h−1, ut) is also based on the assumed quadratic form of − ln(γ(xt)).

It is evaluated to give,

β3(ut+h, xt+h−1, ut) =

∫ ∫
Nxt(Axt−1 + But + B1ut−h, Σ)Nxt+h(Axt+h−1 + But+h + B1ut, Σ){

0.5xTt+hMt+hxt+h + 0.5gt+hxt+h + 0.5ωt+h

}
d(xt, xt+h)

= 0.5(Axt+h−1 + But+h + B1ut)
TMt+h(Axt+h−1 + But+h + B1ut)

+ 0.5tr(Mt+hΣ) + 0.5ωt+h + 0.5gt+h(Axt+h−1 + But+h + B1ut),

= uTtB
T
1Mt+hµt+h + 0.5u

T
tB

T
1g

T
t+h + 0.5tr(Mt+hΣ) + 0.5ωt+h + u

T
t+hB

TMt+hµt+h

+ xTt+h−1A
TMt+hµt+h + 0.5u

T
t+hB

TgTt+h + 0.5x
T
t+h−1A

TgTt+h. (36)

The function γ(xt−1) can also be calculated as given in Theorem 2. It is given by,

γ(xt−1) =

∫
Nut(0, Γ) exp

{
− 0.5

([
Axt−1 + But + B1ut−h

]T
Σ−1

[
Axt−1 + But + B1ut−h

]
+

[
Axt−1 + But + B1ut−h

]T
Mt

[
Axt−1 + But + B1ut−h

]
+ gt(Axt−1 + But + B1ut−h)

+ tr(MtΣ) +ωt +

∫
c(ut+h|ut, xt+h)

[
tr(Mt+hΣ) +ωt+h + 2u

T
tB

T
1Mt+hµt+h + u

T
tB

T
1g

T
t+h

+ 2uTt+hB
TMt+hµt+h + 2x

T
t+h−1A

TMt+hµt+h + u
T
t+hB

TgTt+h + x
T
t+h−1A

TgTt+h

]
δ(t+ h)dut+h

)}
dut

= exp
{
− 0.5

(
xTt−1A

T(Σ−1 +Mt)Axt−1 + u
T
t−hB

T
1(Σ

−1 +Mt)B1ut−h

+ 2xTt−1A
T(Σ−1 +Mt)B1ut−h + tr(MtΣ) + x

T
t−1A

TgTt + u
T
t−hB

T
1g

T
t +ωt + {ωt+h + tr(Mt+hΣ)

+ 2νTt+hB
TMt+hµ̄t+h + 2x

T
t+h−1A

TMt+hµ̄t+h + ν
T
t+hB

TgTt+h + x
T
t+h−1A

TgTt+h}δ(t+ h)

)}
+

∫
exp
{
− 0.5

(
uTt [Γ

−1 + BT(Σ−1 +Mt)B]ut

+ 2uTtB
T(Σ−1 +Mt)(Axt−1 + B1ut−h) + u

T
tB

TgTt + 2u
T
t ρt

)}
dut. (37)



Complete the square with respect to ut and integrate yields,

γ(xt−1) = exp
{
− 0.5

(
xTt−1A

T(Σ−1 +Mt)Axt−1 + u
T
t−hB

T
1(Σ

−1 +Mt)B1ut−h

+ 2xTt−1A
T(Σ−1 +Mt)B1ut−h + tr(MtΣ) + x

T
t−1A

TgTt + u
T
t−hB

T
1g

T
t +ωt + {ωt+h

+ tr(Mt+hΣ) + 2ν
T
t+hB

TMt+hµ̄t+h + 2x
T
t+h−1A

TMt+hµ̄t+h + ν
T
t+hB

TgTt+h

+ xTt+h−1A
TgTt+h}δ(t+ h) −

[
BT(Σ−1 +Mt)(Axt−1 + B1ut−h) + 0.5B

TgTt + ρt

]T
× Γ−1t

[
BT(Σ−1 +Mt)(Axt−1 + B1ut−h) + 0.5B

TgTt + ρt

])}
. (38)

Taking the − ln of both sides of the above equation and noting that − ln(γ(xt−1)) = 0.5(xTt−1Mt−1xt−1+

gt−1xt−1 +ωt−1), yield the results given in Equations (23), (24), and (25). To be more specific

equating quadratic, linear and constant terms from the left and right hand sides of the above

equation gives Mt−1, gt−1 and ωt−1 as defined by Equations (23), (24), and (25) respectively.

This proves the claimed quadratic nature of the performance function.

Similarly, the optimal randomised control law can be obtained as specified in Theorem 2.

Using Equations (34), (35), (36) and (38) in Equation (8) of Theorem 2 and simplifying, yields,

c(ut|xt−1, ut−h) = exp
{
− 0.5

(
uTt [Γ

−1 + BT(Σ−1 +Mt)B]ut

+ 2uTtB
T(Σ−1 +Mt)(Axt−1 + B1ut−h) + u

T
tB

TgTt + 2u
T
t ρt

+

[
BT(Σ−1 +Mt)(Axt−1 + B1ut−h) + 0.5B

TgTt + ρt

]T
× Γ−1t

[
BT(Σ−1 +Mt)(Axt−1 + B1ut−h) + 0.5B

TgTt + ρt

])}
(39)

Completing the square in Equation (39) with respect to ut gives the randomised controller defined

in Equation (20) with νt, Γt and ρt as defined in Equation (21).
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