
2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 1

Automated Verification of Care Pathways Using
Constraint Programming

Renan Pereira de Figueiredo, João Bosco Ferreira Filho, Flávio R. C. Sousa, Philip Weber, and Ian Litchfield

Abstract—Bad construction of modeled care pathways can lead
to satisfiability problems during the pathway execution. These
problems can ultimately result in medical errors and need to be
checked as formally as possible. Therefore, this study proposes
a set of algorithms using a free open-source library dedicated
to constraint programming allied with a DSL to encode and
verify care pathways, checking four possible problems: states
in deadlock, non-determinism, inaccessible steps and transitions
with logically equivalent guard conditions. We then test our
algorithms in 84 real care pathways used both in hospitals
and surgeries. Using our algorithms, we were able to find 200
problems taking less than 1 second to complete the verification
on most pathways.

Index Terms—Clinical pathway, constraint programming,
data-dependent transition system, DSL, satisfiability problems.

I. INTRODUCTION

The development of new technological resources for the
health sector is reshaping medical practice and expanding
the range of possible treatments. The behavioral variability,
the exponential growth of scientific information, and the
advent of evidence-based medicine [1], [2], have driven health
care stakeholders to search for standardization in treatments,
provided by well-defined care pathways. Among their many
benefits, care pathways reduce possible errors of diagnosis and
improve the quality of service [3], [4], [2].

One way of implementing care pathways is to mirror the
structure of industrial and business processes. These process-
based guidelines assist health professionals with decision
making when treating patients, using best practices, facilitating
communication and sequencing the activities of multidisci-
plinary health care teams [5]. They are increasingly being
used, in the United Kingdom, for example, they were intro-
duced in the early 1990s and are used in combination with
national guidance and local National Health Service policy
to provide appropriate care in a local context [6], [7], and
currently, most health areas in the UK already have a care
pathway approach [8]. In the USA, care pathways were used

R. P. Figueiredo and J. B. Ferreira Filho are with the Group of Computer
Networking, Software Engineering and Systems (GREat), Departament of
Computer, Universidade Federal do Ceará, Fortaleza, Ceará, BR. (email:
renanpdef@gmail.com; bosco@dc.ufc.br)

F. R. C. Sousa is with Teleinformatics Engineering Department
(DETI), Universidade Federal do Ceará, Fortaleza, Ceará, BR. (email:
flaviosousa@ufc.br)

P. Weber is with Aston University, Birmingham, Birmingham, UK. (email:
p.weber1@aston.ac.uk)

I. Litchfield is with University of Birmingham Institute of Applied Health
Research, Birmingham, West Midlands, UK. (email: I.Litchfield@bham.ac.uk)

Manuscript received X X, X; revised X X, X.

in more than 80% of hospitals in the late 1990s [9]. A study by
Lopes and Ramires [10] on the presence of clinical pathways
in Central Europe, states that in some fields of medicine such
as Oncology and Palliative Care, pathways have become the
standard model of care. Medical errors can cost a patient
their life and millions in damages to hospitals. This immense
responsibility in health care processes warrants IT investment
for process automation.

On the one hand, a care pathway can be seen as a busi-
ness process [11], [12], [13], having a structure of a data-
dependent transition system where there are some states as
steps connected by a set of transitions (also called sequences).
Some of these transitions have guard conditions whose logical
operations define which one will be the next step in the
execution. On the other hand, domain experts (doctors, nurses,
etc.) are not aware of some structures present in the syntax
of business process languages such as gateways in BPMN
(Business Process Model and Notation) [14]; medical profes-
sionals in charge of defining pathways just end up drawing
boxes and arrows between them with a condition labeling
these arrows. Considering the importance of the correctness
of these pathways and the fact that specialists will not follow
a formal language to draw them, in this work, we develop a
set of algorithms to check for four basic problems in pathways
that follow the basic structure of boxes and arrows with labels.
We follow the model-driven engineering paradigm [15], using
a DSL (Domain Specific Language) [16] with a Constraint
Programming (CP) Solver [17] to analyze all transitions and
their guard conditions that could present satisfiability prob-
lems. The four possible logical problems we search for are:

• Deadlock. Finding deadlocks will prevent the pathway
execution system getting blocked at any time while treat-
ing a patient;

• Non-determinism. Finding non-determinism will ensure
that there is always one, and only one path to be followed
given the current state, avoiding ambiguity during the
treatment;

• Inaccessible Steps. Finding inaccessible steps prevents
states that will never run in a pathway;

• Equivalent Transitions. Finding transitions with logi-
cally equivalent guard conditions helps to find redundancy
in pathways, avoiding rework;

We take a set of 84 real care pathways to test the algorithms
modeled with specific characteristics by a group of stakehold-
ers. The main contribution of this work is a tool that can help
specialists in the modeling of safer pathways, mainly with
regards to the transitions guard conditions.

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 2

The remainder of this paper is divided as follows. Section
II presents the related work. Section III gives background
and motivation about the structure of the care pathways, the
possible problems that can be found and the computational
tools we used to address them, which are the model-driven
engineering and the constraint programming paradigm. Section
IV contains the actual algorithms to find the problems. Section
V evaluates the algorithms, Section VI concludes the paper,
and Section VII gives thanks.

II. RELATED WORK

There are papers in the literature focusing on error detection
in business process models [18], [19], [20], [21], [22], [23],
[24]. Many of these papers try to find errors in the data-
flow, such as missing, redundant or unused data, as can be
seen in [19], [20] and [21]. Also, there has been an effort
to find structural errors as deadlocks and other problems in
workflows [22], [23], [24]. In [22] Kherbouche, Ahmad and
Basson propose an approach to automate the checking of
some structural errors in BPMN process models [14] based
on model checking. BPMN is a standard for process modeling
that provides support for modelling control flow, data flow,
and resource allocation. They map the BPMN process model
to Kripke structures [25] that provide semantics and allow
checking the validity of a specific property holds or not. In our
work, we bring this verification capacity closer to the clinical
pathway domain by abstracting structures that are not familiar
to stakeholders from the medical domain, such as gateways
from the BPMN notation. Our algorithms are ready to check
any process model that uses only boxes as steps and arrows
as transitions between them.

There are also similar studies that analyze clinical pathways.
In [6], the authors present a method for detecting execution
paths in two Business Process models that violate a set of
constraints. They extended BPMN to become more appro-
priate for modelling care pathways, and after, transformed
this extended BPMN to CPN (Couloured Petri Nets) [26],
aiming to simplify the analysis since CPN is normally used
when the process behavior is heavily influenced by the data
to model concurrent systems by analyzing their properties. In
the mentioned work, CPN models are enhanced with logical
constraints to represent potential conflicts. Another similar
approach is the integrated framework developed in [27] which
detects and resolves conflicts in the pathways used for patients
with multimorbidities. They also use BPMN to model the
guidelines that is transformed into an intermediate formal
model for a better analysis, then using a constraint solver
Z3 [28] to check the satisfiability of a set of assertions
expressed in first-order logic, together with the theorem prover
Isabelle [29], a proof assistant which provides a framework
to accommodate logical systems to compute the validity of
logical deductions, to combine treatment plans and check
the correctness of the approach. Both papers have different
objectives than the one presented in this work. The problem
addressed in Weber’s paper is to identify conflicts between
clinical pathways when they are followed concurrently in treat-
ing patients with multiple morbidities. And Bowles’ aims at

TABLE I
FEATURES USED IN RELATED WORKS.

Features Our Work Kherbouche Weber Bowles
Automated verification X X X X
Specific to medical field X O X X
DSL X O O O
CP Solver X O O X
Simplistic and powerful notation X X O O
Straightforward verification X O O O

finding a combination of formalisms able to capture pathways,
highlighting the problems using an event-based approach.

Our approach focuses on the practice, by reading existing
pathways as they are (drawing of boxes and arrows with la-
belled transitions) and calculating the existence of 4 problems,
without requiring a previous formalization of the pathways
in, for example, an event based system. Being closer to the
practice, we are able to validate our approach within a real set
of pathways and actually find modelling errors.

Table I shows the main features present in our work and
which ones are also present in the works of Kherbouche,
Weber and Bowles. We use the letter "X" for applied features
in the work, and the letter "O" when it is not applied.
According to Table I, DSL and Straightforward Verification
are the biggest differentials of our work because they are the
two features of what is not used by any of the other works. The
use of a DSL allows us to make a straightforward verification
of care pathways, which makes the error checking process
easier and faster for modelers.

Therefore, the main contribution of this work is to present
a set of algorithms to verify the bad construction of modeled
care pathways without using well-known approaches that have,
for example, scalability limitations, such as Petri Nets [30].
Besides, it contributes to the use, auditing and management of
care pathways in a more practical way, as we do not consider
verbose process languages to describe pathways, but rather a
simplistic and powerful notation containing only states, tran-
sitions and guards. The verification of these pathways become
straightforward; instead of having to translate pathways from
practice to computer science modeling languages and then
finding the formalism to map to, we simply get the already
existing pathways and give as input to our approach.

III. MATERIAL AND METHODS

A. Care Pathway Structure

In this work, we will consider the most basic way of
defining pathways: boxes and arrows between them; this is
the way that most doctors, specialists use to define their
workflows, see for example the book of knowledge of care
pathways in the UK1. Considering this, we take care pathways
as data-dependent transition systems [31] as can be seen in
Figure 1. They are directed graphs where nodes represent
states that describe some information about a system at a
certain moment of its behavior, and edges model transitions
that specify how the system can evolve from one state to
another.

1https://pathways.nice.org.uk/

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 3

Fig. 1. Meningitis care pathway.

Figure 1 is a representation of a real care pathway where
states are represented by rectangular shapes, the conditional
transitions by the labeled arrows and non-conditional transition
by empty arrows. The thin circle and thick circle represent the
initial and final states respectively. In the studied pathways,
there is only one initial state, but it may have more than one
final state. A state evolves according to a transition relation→,
that can be conditional, as transition C1, or not, as transition
C5. Atomic propositions express simple known facts about the
states of the system under consideration, as "064 = 1", or
"0;2 = 0". The labeling function ! relates a set ! (B) ∈ 2�%
of atomic propositions to any state B (�% is the set of atomic
propositions). ! (B) intuitively stands for exactly those atomic
propositions 0 ∈ �% which are satisfied by state s. Conditional
transitions have an operation as the label, the guard condition
6, a boolean expression composed by a set of operands $
related by operators that could be logical, relational, arithmetic
or a unary operator, i.g., 0=3 (>A (064, 0;2, 8<<), =4D). An
operand is a variable or a constant from an operation that can
have a weight, an integer value that can be assigned as the
value of the operand. The operand can be Numeric, YesOrNo
(Boolean), Choice, or another operation. A Numeric operand
is an integer constant or a variable whose domain is the set
of integers Z. A YesOrNo operand is a Boolean variable with
only two values as its domain that could be 0 and 1, or 0 and
the operand weight. The Choice operand is an integer variable
composed by components called Option. Each Option has a
weight that is added to the variable’s value when chosen by
the doctor. It is important to emphasize that, in the pathways
analyzed, once a variable assumes a value during the pathway
execution, it maintains that same value throughout the entire
execution.

Intuitively, the behavior of the pathway represented in
Figure 1 can be described as follows. The pathway starts with
Information 1, which forwards the case to the team leader,
which then in Auxiliary Conduct 1 checks the patient’s condi-
tion. At this moment the doctor has to analyze 4 variables:
age, alc, imm and neu. The first three variables represent
aggravating conditions for the patient as, respectively, high
age, alcoholism and immunosuppression, the last variable
"neu" represents the need for neurosurgical treatment. Then
the pathway evolves to one of the four treatments: Treatment
1, the standard treatment, Treatment 2 if there are some aggra-

vating conditions, Treatment 3 if neurosurgical procedures are
necessary and there is no aggravating condition or Treatment
4 if there are some aggravating conditions and the need
for neurosurgical procedures. Each of the four treatments is
connected to another Auxiliary Conduct by a non-conditional
transition. In the Auxiliary Conduct 2 the doctor evaluates the
test results and checks the presence of cranial hypertension
in the patient, represented by the variable hypercranial. If the
patient does not have cranial hypertension, the doctor submits
it to a CSF (Cerebral Spinal Fluid) treatment, the Treatment 5,
and then goes to the final state Information 2 with suggestions
of conduct. Otherwise, the pathway evolves directly into the
final state with another suggestion. Information 2 has more
than one suggestion of conduct that might be used according
to the patient’s condition.

Therefore, this pathway presents nine states, |(| = 9, with
the initial state B0 = Information 1. We have six operations
as guard condition of some transitions in all pathway with
the set of operands $= {age, alc, imm, neu, hypercranial}.
As the set of atomic proposition we have �% = {064 = 0,
064 = 1, 0;2 = 0, 0;2 = 1, 8<< = 0, 8<< = 1, =4D = 0,
=4D = 1, ℎH?4A2A0=80; = 0, ℎH?4A2A0=80; = 1}. Through the
labeling function we can see which atomic propositions must
be satisfied to reach a certain state, i.g. ! ()A40C<4=C 3) =
{{064=0, 0;2=0, 8<<=0, =4D=1}}. It is important to point out
that subsequent states depend on the occurrence of previous
states.

The pathways used as objects of study in this work are
used by a single doctor treating a single patient per time.
Therefore, in this scenario, incorporating parallelism is a
complicating factor, as all operations are sequenced. We can
imagine situations in which concurrency may be important
(e.g., orchestration of surgery by multiple professionals), how-
ever, this was not the reality in the health organizations we had
as partners. We acknowledge this as a possible feature and we
consider it as a possibility of future work.

B. Possible Problems in a Clinical Pathway
We can define the four possible issues addressed in our work

as follows. We assume that: (is the set of states in a pathway;
the semantics of the model only allows a patient to be in one
state at a time; and that the problems refer to a given state
and not to the whole pathway.

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 4

• Deadlock: being)>DC a set of the output transitions of
a state B ∈ (and 6C the guard condition of C ∈)>DC .
∀C ∈)>DC 6C = 0→ B is in deadlock.

• Non-Determinism: being)>DC a set of the output
transitions of a state B ∈ (and 6C the guard condition of
C ∈)>DC . ∃C8 ∧ ∃C 9 ∈)>DC | C8 ≠ C 9 , 6C8 = 6C 9 = 1→ B has
a non-determinism problem. Therefore it is not possible
to resolve the next step.

• Inaccessible Steps: being)8= a set of the input tran-
sitions of a state B ∈ (and 6C the guard condition of
C ∈)8=. 6 ∃C ∈)8= | 6C = 1→ B is inaccessible step.

• Logically Equivalent Sequences: being)>DC a set of
the output transitions of a state B ∈ (and 6C the guard
condition of C ∈)>DC . ∃C8 ∧ ∃C 9 ∈)>DC | C8 ≠ C 9 , 6C8 ≡
6C 9 → C8 ≡ C 9 .

To ease the understanding of these problems, we have
created 4 examples of possible problems using the data-
dependent transition system notation presented in the book by
Baier and Katoen [31], which can be accessed at additional
material 2.

Figure 1 is an example of a well-designed pathway; there
is no problem of non-determinism. If we analyze the labeling
functions of every state, we would check that there is no
equivalent set of propositions in the labeling functions, that
is, there is no set of propositions in which more than one
state can be reached at the same time.

To check for a deadlock, we need to make some obser-
vations. In the example of Figure 1, to know if a deadlock
can occur in a state such as the Auxiliary Conduct 1, we
verify if we can reach at least one of the possible 4 next states
(Treatment 1...4). This verification is done by iterating through
the possible values of the 4 Boolean variables: age, alc, imm
and neu; the possibilities are therefore equal to 24. For this
particular example, we can check that any of the expressions
guarding the treatments can be satisfied for at least one set
of value attribution. To reach Auxiliary Conduct 2, it is only
necessary one of the four treatments (1 to 4) is executed,
as Auxiliary Conduct 2 is not guarded by any expression,
implying that t5, t6, t7 and t8 are resolved to true. In a third
moment, to reach the final state or Treatment 5, we have a new
variable, hypercranial, then, considering the possibility of the
previous state being reached, we have now 32 sets of possible
values for the variables. We can also notice that transitions t9
and t10 contemplate all these possibilities. Therefore, there is
no set of propositions that is not satisfied by at least one of
the guard conditions, that is, there are no deadlocks.

The inaccessible step problem takes a different approach.
It is possible to detect an inaccessible step problem through
a contradiction in the guard condition causing the label-
ing function to return an empty set, for example: making
a small change in the guard condition of transition t3 to
and(not(or(age, alc, imm, neu)), neu) we get a new label-
ing function of Treatment 3 which returns an empty set,
! ()A40C<4=C3) = ∅, that is, there is no set of propositions
satisfying the guarding condition of t3, since it is not possible

2https://docs.google.com/document/d/10kkocFouHZsSTihf85vxR53-
UAIb12iDMyyHzUzhJsA/edit?usp=sharing

to have the variable neu to be false and true at the same time.
Meningitis pathway has no inaccessible step problem.

Now, we look at the problem of logically equivalent transi-
tions, which generates a situation of non-determinism. In the
pathway of Figure 1 there is also no state with this problem.
For a non-determinism to occur, we would have to have the
following situation. Suppose 6C1 = and(not(age), not(alc),
not(imm), neu) and we have 6C3 = and(not(or(age, alc, imm)),
neu), then 6C1 ≡ 6C3 and ! ()A40C<4=C1) = ! ()A40C<4=C3)
= {{064=0, 0;2=0, 8<<=0, =4D=1}}. Whenever the guarding
condition from one of this transitions is satisfied, the other
one is satisfied as well. Therefore we have C1 ≡ C3, causing the
state Auxiliary Conduct 1 to have a non-determinism problem.

Although the problem of logically equivalent transitions is
a problem of non-determinism, it is interesting to analyze it
separately because it is a more aggravating situation. Detecting
logically equivalent transitions separately is important because
it is the worst case of a non-determinism problem. Non-
determinism may or may not occur, it will depend on the
values that the variables in the guard will assume; however
if there are equivalent transitions, there will always be non-
determinism, regardless of the values assumed by variables.
Detecting this situation separately allows for earlier correction
by modelers.

The 4 specific problems were motivated by a high-level
manual analysis of existing pathways at partner hospitals.
However, there may exist other possible problems, such as the
existence of cycles. Cycles may sometimes cause pathways to
get stuck and execute continuously without ever reaching a
final state. Detecting cycles can be challenging and should
be considered as the next step for our solution. Although we
recognize it may occur, we have not found any cycles in the
pathways used in this work during our manual inspection.

C. Model-Driven Engineering and Constraint Programming

Model-Driven Engineering (MDE) is a software develop-
ment methodology that creates domain models, combining
domain-specific modeling languages (DSML) with transfor-
mation engines and generators. These models help to un-
derstand complex systems and obtain results through a low
level of abstraction improving the maintenance and evolution
of the system [32]. For this work the care pathways were
modeled using a DSL [16] developed by a multidisciplinary
team of medical professionals and computer scientists with
the Eclipse Modeling Framework to generalize the clinical
pathway structure, modeling it with all its elements and flow
conditions to ease the analysis process; its abstract syntax (i.e.,
metamodel) is close to a business process and can be found
at github3.

Constraint Programming represents a real-world problem
in terms of decision variables and constraints, and find an
assignment to all the variables that satisfies the constraints. In
this work, we use the CP Solver named Choco Solver [33]. It
is a free and open-source satisfaction problem solver, easy to
use, extend and integrate to other software. The key component
from Choco is Choco model. It should be the first instruction,

3https://github.com/CarePathwayModeler/pathwayMetamodel.git

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 5

before any other modeling instructions, as it is needed to
declare variables and constraints. IntVar and BoolVar are types
of variables. An IntVar is an integer variable whose domain is
a set of integers, that could be bound through an interval of
two integer numbers or enumerated. A BoolVar is a boolean
variable, a specific IntVar that take their value in [0, 1]. The
Constraints are restrictions over variables as a logic formula
that must be satisfied to get a feasible solution. A solution to
a problem is the assignment of values to variables verifying
all the constraints.

IV. ALGORITHMS

The goal of this study is to develop a service to find
possible logical problems in the structure of a care pathway.
Considering this, this study aims at answering the following
research questions: How to find,
• deadlock in a clinical pathway?
• non-determinism in a clinical pathway?
• inaccessible steps in the pathway?
• logically equivalent sequences in the pathway?
Based on these research questions, we developed a set of

algorithms to verify the logical problems in clinical pathways
with the use of MDE integrated with Choco Solver. There are
four main functions, each one aiming at verifying one of the
four problems. The subtopics below explain the behavior of
these algorithms as well as the use of Choco to perform this
verification. The algorithms are implemented and available at
github4.

The 4 algorithms were developed to follow the set of care
pathways states with their respective transitions to create a set
of constraints. Thus, we build the satisfiability problems to
be solved by Choco Solver. According to Choco’s developers
and our understanding after analysing choco’s code, choco is
commonly used to solve NP-Hard problems and has exponen-
tial time complexity. This makes all our algorithms to have
exponential complexity at the worst case.

A. Logical Structure

Before understanding the algorithms we should understand
how each state from a pathway is represented logically. Figure
2 and Table II show how the pathway states are logically
structured for the set of algorithms. Notice that states, tran-
sitions and guard conditions are created as a Choco BoolVar.
Each transition is true if and only if its guarding condition is
satisfied. A state is true (or accessible) if and only if its input
transition and the previous state were also satisfied. We can
also see that the problems in a state are represented as a set
of constraints.

The algorithms to detect deadlock, non-determinism, and
logically equivalent sequences analyze each pathway state
and verify if the state presents irregularities, considering only
the set of output transitions from the state, checking their
guard conditions. That is, each state and its set of output
transitions are analyzed individually. The inaccessible step de-
tection algorithm performs a depth-first search in the pathway,

4https://github.com/carepathways/Pathway-Verification.git

Fig. 2. Simple pathway representation.

TABLE II
LOGICAL REPRESENTATION OF FIGURE 2

Pathway Objects Logical Representation
State B BoolVar B | B = [0, 1]

Transition C BoolVar C | C = [0, 1]
Guard Condition 6 BoolVar 6 | 6 = [0, 1]

C8 C8 ⇐⇒ 68

B2 B2 ⇐⇒ C1 ∧ B1
B3 B3 ⇐⇒ C2 ∧ B1
B4 B4 ⇐⇒ C3 ∧ B1

B1 in Deadlock C1 + C2 + C3 = 0
B1 with Non-Determinism C1 + C2 + C3 ≥ 2

B1 with Equivalent Sequences ∀C1C2 , C1 + C2 ≠ 1
∨ ∀C1C3 , C1 + C3 ≠ 1
∨ ∀C2C3 , C2 + C3 ≠ 1

constructing multiple paths with the initial state as its first
element.

B. Transform Transitions to BoolVars

All four algorithms use a method to transform a list of
transitions into a list of BoolVar named SEQUENCELIST-
TOBOOLVARLIST. It gets as input a set of transitions and
a Choco model <, runs over every transition in the set,
transforms each of them to BoolVar, inserts them in a set of
BoolVar and returns it.

To accomplish this transformation, we should first transform
each operand into an integer variable (IntVar) or Boolean
variable (BoolVar) of Choco, and store them in two sets,
+8 and +1 , for IntVars and BolVars respectively. We check
every operand in an operation, verifying if they are Numeric,
Boolean or Choice. We create an IntVar with an enumerated
domain for each numeric operand with no default value. If the
numeric operand already has a declared value, it is no longer
a variable, so the IntVar is created as a constant with the same
value of the operand as its domain. To transform the Boolean
operands it is necessary to check the operator. If the operator
is arithmetic, we describe the operand as an IntVar enumerated
with 0 and the operand’s weight. Otherwise, it is described as
a BoolVar whose domain is 0 and 1. For Choice operands,
we create an enumerated IntVar whose domain includes 0, the
set of possible weights attributed to Choice Options, and the
possible combinations of their sums.

After transforming the operands into IntVar and BoolVar, we
have to transform the operations themselves. We analyze the
existing operators in operations to transform a transition in a
BoolVar reified with constraints created using the BoolVars
and IntVars from +1 and +8 sets. Therefore we create the
corresponding constraints according to the operators using a
method named ARITHM from Choco model, a method to create

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 6

constraints. E.g., representing the AND logic between two
BoolVars we have to create a new BoolVar 1 that only be true
if the sum of those two BoolVars is 2 since a BoolVar can only
be 0 or 1, and we call it a Boolvar reified with a AND logic
constraint. We use the same logic for other logical operators. A
relational operation works similarly. An EQUALITY operation
will only be a BoolVar reified as equality of two IntVars. The
unary operation may be an AFFIRMATION of a BoolVar A,
setting a new BoolVar � to 1 if A is 1 too, or a NEGATION,
setting � to 1 if the older BoolVar A is 0. For arithmetic
operations we use IntVar methods to calculate these operations
and create another IntVar with all possible results as its
domain, i.e. for a MULTIPLICATION operation of two IntVars
is generated a new IntVar whose domain is the set of all
possible results of this multiplication. Every constraint can
be posted on the Choco model < or reified to a new BoolVar
that can be a representation of a transition constrained by its
operation.

C. Finding Deadlock, Non-Determinism, and Logical Equiv-
alence

Algorithm 1 is suited for finding a situation in which a state
is in deadlock. First of all, in line 2, the algorithm iterates over
the size of the map "B with the pathway states as key and
their respective output transitions as values. In lines 3 to 5
the Choco model is instantiated, we get a set of transitions
)>DC from the set of map values and we use the function
SEQUENCELISTTOBOOLVARLIST to convert)>DC to a set of
BoolVar �. We then iterate over all BoolVar 1 in �, setting 1
to 0 (false) and post it as the constraint on the Choco model. In
line 8 we get the Solver, an object obtained from Choco model
in charge of alternating constraint-propagation with search and
learning to compute solutions. In line 9 and 10 we get the
origin state of the transitions by the keys set from map "B and
add it to map "A as a key with the set of possible deadlock
cases get by function FINDALLSOLUTIONS, a method from
the Solver used to attempt to find all solutions of the declared
satisfaction problem. Finally, we return "A with the states and
their respective deadlock cases.

Algorithm 1 findDeadlockSolutions ("B)
Input: A map of states with the sets of their respective output transitions "B .
Output: A map "A of states with the deadlock case for each state.
1: "A ← ∅
2: for 8 ← 0 to SIZE ("B) do
3: <← MODEL ()
4:)>DC ← VALUES ("B) [8]
5: � ← SEQUENCELISTTOBOOLVARLIST (<,)>DC)
6: for all 1 ∈ � do
7: Post ARITHM (1 = 0)
8: B>;E4A ← GETSOLVER (<)
9: B ← KEYS ("B) [8]

10: "A ← "A ∪ {B, FINDALLSOLUTIONS (B>;E4A) }
11: return "A

The algorithm used to find states with non-determinism
problem works in the same way as deadlock algorithm. It starts
by iterating over the size of the map "B , instantiates the Choco
model, gets a set of transitions)>DC from the map values and
transform it to a set of BoolVar �. The main difference is in
the constraints created where we take two BoolVars from �,

10 and 11, and set both to true as constraint on Choco model
(ARITHM(10 + 11 = 2)). Then we add it to a map "A with the
state and a case that present a non-determinism problem.

To find logically equivalent transitions we verify the oper-
ation of two or more transitions with the same output state.
Initially, we get a set of transition)>DC from values of the
map "B and convert it to a set of BoolVar �. We iterate over
all the BoolVars in �, posting as a constraint the sum of two
different BoolVars in � is 1 (ARITHM(11 + 12 = 1)), that is, if
one of them is true the other one has to be false. If there are no
solutions with this constraint it means that these two BoolVars
are logically equivalent, so the transitions represented by these
BoolVar are added in a set of logically equivalent transitions.
In the end, this equivalent transitions set is added to "A with
their respective origin state as key.

D. Finding Inaccessible Steps

Algorithm 2 uses a different approach to find inaccessible
steps. The method gets the set (of all steps in the pathway
and tries to find all the accessible steps, only to prune the set
(, removing all these accessible steps to get a set of unfeasible
steps. First, the sets are initialized: a set (0 to store accessible
steps, + for the steps visited, a set named (C02: in which the
search is performed forming a path, and the set) of transitions
that connect the states from (C02: . All these sets start with
the initial step, except for) . The iteration then cycles through
the stack.

At lines 4 to 6 a Choco model is instantiated, we take the
state B0 from the top of the stack and get the next output
transition to be verified with GETNEXTSEQUENCE(B0, +).
This method adds states not yet visited in + and returns an
unverified transition or null if all output transitions from B0
have already been verified. Getting null as C>DC , we remove
B0 from the (C02: and the last transition from) . Otherwise,
we add C>DC in) , transform) into a set of BoolVars �, and
post in Choco Model the constraints to check if the next step
is accessible by the path built in) (all transitions labels of
) have to be satisfiable). Then we add the next step B1 to (0
if there is at least a solution with these constraints and add it
to the stack if it has at least one output transition, otherwise,
remove the last transition from) . The same is done if there is
no solution to the set of constraints because if the state is not
accessible, it is not necessary to check the subsequent states.
In the end, we use the GETINACESSIBLEELEMENTS function
to remove all accessible steps from (and return the result.

V. EVALUATION

The algorithms seen in Section IV were run on a personal
computer with a quad-core processor Intel Core i7-2670QM
and 8GB RAM. They were tested with a set of 84 real care
pathways already used in over 211,000 patient care services
since October 2017. In the tests performed, we found several
cases of deadlocks (103) and non-determinism (58), and some
cases of inaccessible steps (39). Table III shows 7 pathways
from a total of 84 analyzed in this study; they are ordered
by time spent to search for the four problems. Table III also

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 7

Algorithm 2 findInaccessibleSteps (()
Input: A set (of the pathway states.
Output: A set of inaccessible states (8 .
1: (0 , + , (C02: ← GETINITIALELEMENT (()
2:) ← ∅
3: while (C02: is not empty do
4: <← MODEL ()
5: B0 ← LASTELEMENT ((C02:)
6: C>DC ← GETNEXTSEQUENCE (B0 , +)
7: if C>DC = =D;; then
8: Remove B0 from stack and the last transition from)

9: else
10:) ←) ∪ C>DC
11: � ← SEQUENCELISTTOBOOLVARLIST (<,))
12: for all 1 ∈ � do
13: Post ARITHM (1 = 1)
14: B>;E4A = GETSOLVER (<)
15: if FINDSOLUTION (B>;E4A)) } ≠ =D;; then
16: B1 ← IMPUTSTEP (C>DC)
17: (0 ← (0 ∪ B1
18: Add B1 in stack
19: if OUTPUTSEQUENCES (B1) ≠ =D;; then
20: Add B1 in stack
21: else
22: Remove the last transition from)

23: else
24: Remove the last transition from)

25: (8 ← GETINACCESSIBLEELEMENTS ((, (0)
26: return (8

TABLE III
THE PATHWAYS AND THE FOUND PROBLEMS.

Pathway S Dl ND IS ET RT
Stroke 8 2 0 0 0 792293.07

Pneumonia Influenza 26 0 0 0 0 6801.2
Abdominal Pain 57 2 2 4 0 47.79

Diarrhea 34 0 0 0 0 23.16
Low Back Pain 46 7 9 3 0 19.18

Dermatological Disorders 30 3 3 0 0 18.95
Headache 14 1 1 0 0 15.41

S = Number of States Dl = Deadlock
ND = Non-Determinism IS = Inaccessible Steps
ET = Equivalent Transitions RT = Average runtime in millisecond

lists the number of states and the number of deadlocks, non-
determinism, inaccessible steps and equivalent transitions. See
the full table5.

The last column of Table III shows the average runtime.
These time values were achieved by running the four main
algorithms for each pathway 12 times. We then excluded the
highest and the lowest execution time values and calculate
the average of the 10 remaining values. We use time values
to define the complexity of the pathways. For the sake of
comparison, when the search takes less than 1 millisecond
we named it as a low complexity pathway; more than 1
millisecond but less than 1 second we named it as a medium
complexity pathway; as high complexity if it takes more than
1 second to check for the problems; and as of very high
complexity if more than 1 minute is needed. Table IV shows
the pathways grouped by the level of complexity. The runtime
is less than one second in most cases (97,6%), except for two
pathways (Stroke and Pneumonia Influenza) that have more
complex operations and require more time to run.

To exemplify the problems found, Figure 3 shows a frag-
ment of the Low Back Pain pathway that presents a problem of

5https://docs.google.com/spreadsheets/d/1zJrsYDqnD2tbOKErvq9CYZOa
T5ahnThw4UwQ-lE8UPc/edit?usp=sharing

TABLE IV
PATHWAY COMPLEXITY LEVEL TABLE.

Complexity Level Pathways Nº Percentage (%)
Low 16 19.3

Medium 66 78.3
High 1 1.2

Very High 1 1.2

non-determinism. The Auxiliary Conduct has three transitions,
the transitions t24 and t25 have different operands, stone-
suspicion and stone-present respectively. If both operands
assume the value true (stone-suspicion = 1 and stone-present
= 1), then both transactions are valid (evaluate to true) and
then we have a non-determinism problem, as it would not be
possible to decide which step will be executed next. We can
notice that in this case there is no deadlock problem, since
transition t26 is always true when the other two transitions
are false, stone-suspicion + stone-present = 0.

Fig. 3. A fragment of low back pain care pathway.

Another example that presents problems is the exposed
fracture pathway in Figure 4. It is a small pathway with
only four steps but presenting Deadlock and Non-Determinism
problems. It has two different operands, fract-degree12 and
fract-degree34, and both can assume true or false values at
the same time.

Fig. 4. Exposed fracture care pathway

All the inaccessible steps found are states isolated in the
pathway, not having a set of transitions that connect them to
the initial state. There were no cases of equivalent transitions
in any of the tested pathways. Although it may be interesting
to verify the existence of equivalent transitions, it is a very
specific case of non-determinism with little possibility of an
incident, as it is a very straightforward verification that can be
done at modeling time.

We notice that some of the problems are due to poor defini-
tion of variables. For instance, in Figure 4, instead of defining

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

2168-2194 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2020.2977032, IEEE Journal of
Biomedical and Health Informatics

JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. XX, MONTH XXXX 8

2 boolean variables (fract-degree12 and fract-degree34), the
modeler could have created one single numeric variable for
expressing the degree of the fracture, in this way, we would
avoid the problem of assigning true for both variables.

All the results obtained with the execution of the algorithms
in the set of tested pathways were analyzed manually and
individually. Also, some pathways were redesigned and still
run in real scenarios. Some models were built with deliberate
errors to test the algorithms. However, it is hard to ensure
that there are no more errors from the execution of the
algorithms, as well as no false positives. An induction proof
would be needed to guarantee that given any model as input,
our algorithms would find all the errors. We are aware that
our approach would benefit from such a theoretical proof and
will investigate further in future work.

VI. CONCLUSION AND FUTURE WORK

This work offers a solution for finding possible logical
problems in the structure of a clinical pathway. It contributes
to the audit and management of these pathways, helping in
the process of correction. The algorithms were tested in real
pathways and we were able to find problems and report them
accordingly. We believe that our approach may prevent serious
mistakes that can ultimately affect patient’s treatment.

As future work, we would like to investigate theoretical
proofs in a full theoretical analysis for the correctness and
completeness of our algorithms and also improve their perfor-
mance. We may also address other possible pathway problems,
such as the existence of cycles and data inconsistency caused
by concurrent operations. Finally, we have to embed these
algorithms into the modeling practice, checking in real-time if
a pathway under construction is correct. This allows a quick
fix by the modeler before the pathway goes into use in the
practice.

VII. ACKNOWLEDGMENT

We would like to thank the Brazilian National Scientific and
Technological Development Council (CNPq) for partly fund-
ing this research via scholarship. We would also like to thank
IntMed Software company for providing the care pathways we
analyzed in this work, and doctors from Hapvida’s hospitals
for clarifying questions regarding the pathways used in the
hospitals.

REFERENCES

[1] B. Djulbegovic and G. H. Guyatt, “Progress in evidence-based medicine: a quarter
century on,” The Lancet, vol. 390, no. 10092, pp. 415–423, Jul 2017.

[2] L. Cosgrove, A. F. Shaughnessy, and T. Shaneyfelt, “When is a guideline not a
guideline? the devil is in the details,” BMJ Evidence-Based Medicine, vol. 23,
no. 1, pp. 33–36, 2018. [Online]. Available: https://ebm.bmj.com/content/23/1/33

[3] H. S. G. Caballero, A. Corvò, P. M. Dixit, and M. A. Westenberg, “Visual analytics
for evaluating clinical pathways,” in 2017 IEEE Workshop on Visual Analytics in
Healthcare (VAHC), Oct 2017, pp. 39–46.

[4] J. Shi, Q. Su, and Z. Zhao, “Critical factors for the effectiveness of clinical pathway
in improving care outcomes,” in 2008 International Conference on Service Systems
and Service Management, June 2008, pp. 1–6.

[5] K. Vanhaecht, M. Panella, R. van Zelm, and W. Sermeus, “An overview on the
history and concept of care pathways as complex interventions,” International
Journal of Care Pathways, vol. 14, no. 3, pp. 117–123, 2010. [Online]. Available:
https://doi.org/10.1258/jicp.2010.010019

[6] P. Weber, J. B. F. Filho, B. Bordbar, M. Lee, I. Litchfield, and R. Backman,
“Automated conflict detection between medical care pathways,” Journal of
Software: Evolution and Process, vol. 0, no. 0, p. e1898, 2017. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1898

[7] K. Zander, “Integrated care pathways: Eleven international trends,” Journal of
integrated Care Pathways, vol. 6, no. 3, pp. 101–107, 2002. [Online]. Available:
https://doi.org/10.1177/147322970200600302

[8] CPA, “The effectiveness of care pathways in health and social care,” Centre for
Policy on Ageing - Rapid Reviews, May 2014.

[9] K. Vanhaecht, M. Panella, R. van Zelm, and W. Sermeus, “What about care
pathways?” 01 2011.

[10] J. Lopez and B. Ramirez, “Cost savings through clinical care pathways
in austria, poland, and the slovak republic,” Clinical Social Work and
Health Intervention, vol. 8, no. 2, pp. 38–43, 2017. [Online]. Available:
https://www.clinicalsocialwork.eu/wp-content/uploads/2017/02/08-Lopez.pdf

[11] J. Poelmans, G. Dedene, G. Verheyden, H. Van Der Mussele, S. Viaene, and E. Pe-
ters, “Combining business process and data discovery techniques for analyzing and
improving integrated care pathways,” in Industrial Conference on Data Mining.
Springer, 2010, pp. 505–517.

[12] G. Schrijvers, A. van Hoorn, and N. Huiskes, “The care pathway: concepts and
theories: an introduction,” International journal of integrated care, vol. 12, no.
Special Edition Integrated Care Pathways, 2012.

[13] P. Gooch and A. Roudsari, “Computerization of workflows, guidelines, and care
pathways: a review of implementation challenges for process-oriented health
information systems,” Journal of the American Medical Informatics Association,
vol. 18, no. 6, pp. 738–748, 2011.

[14] OMG®, Business Process Model and Notation (BPMN), Object Management
Group®, January 2011. [Online]. Available: https://www.omg.org/spec/BPMN/2.
0/PDF

[15] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” Computer,
vol. 39, no. 2, pp. 25–31, Feb 2006.

[16] S. Anonsen, “Uml modeling languages and applications,” N. Jardim Nunes,
B. Selic, A. Rodrigues da Silva, and A. Toval Alvarez, Eds. Berlin, Heidelberg:
Springer-Verlag, 2005, ch. Experiences in Modeling for a Domain Specific
Language, pp. 187–197. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2206963.2206984

[17] M. Milano, “Twenty years of constraint programming (cp) research,” Constraints,
vol. 23, no. 2, pp. 155–157, Apr 2018.

[18] M. Hammer, What is Business Process Management? Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 3–16. [Online]. Available: https:
//doi.org/10.1007/978-3-642-45100-3_1

[19] A. Elajeli Rgibi, S. Zhen Yao, and J. Jun Xu, “Dataflow errors detection in business
process model,” Applied Mechanics and Materials, vol. 130-134, 10 2011.

[20] S. v. Stackelberg, S. Putze, J. Mülle, and K. Böhm, “Detecting data-flow errors in
bpmn 2.0,” Open Journal of Information Systems, vol. 1, no. 2, pp. 1–19, 2014.

[21] M. I. Kabbaj, A. Bétari, Z. Bakkoury, and A. Rharbi, “Towards an active help on
detecting data flow errors in business process models.” IJCSA, vol. 12, no. 1, pp.
16–25, 2015.

[22] O. M. Kherbouche, A. Ahmad, and H. Basson, “Detecting structural errors in bpmn
process models,” in 2012 15th International Multitopic Conference (INMIC), Dec
2012, pp. 425–431.

[23] A. Awad and F. Puhlmann, “Structural detection of deadlocks in business process
models,” in Business Information Systems, W. Abramowicz and D. Fensel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 239–250.

[24] T. Maruta, S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda, “A deadlock
detection algorithm for business processes workflow models,” in SMC’98 Con-
ference Proceedings. 1998 IEEE International Conference on Systems, Man, and
Cybernetics (Cat. No.98CH36218), vol. 1, Oct 1998, pp. 611–616 vol.1.

[25] M. Browne, E. Clarke, and O. Grümberg, “Characterizing finite kripke structures
in propositional temporal logic,” Theoretical Computer Science, vol. 59, no. 1,
pp. 115 – 131, 1988. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0304397588900989

[26] P. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st ed. Springer-Verlag Berlin Heidelberg, 2009.

[27] J. Bowles, M. B. Caminati, and S. Cha, “An integrated framework for verifying
multiple care pathways,” in 2017 International Symposium on Theoretical Aspects
of Software Engineering (TASE), Sept 2017, pp. 1–8.

[28] D. R. Cok, D. Déharbe, and T. Weber, “The 2014 SMT competition,” Journal
on Satisfiability, Boolean Modeling and Computation, vol. 9, pp. 207–242, 2014.
[Online]. Available: https://satassociation.org/jsat/index.php/jsat/article/view/122

[29] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, 1st ed. Springer-Verlag Berlin Heidelberg, 2002.

[30] G. Denaro and M. Pezze, “Petri nets and software engineering,” in Advanced
Course on Petri Nets. Springer, 2003, pp. 439–466.

[31] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008.

[32] B. Selic, “The pragmatics of model-driven development,” IEEE Software, vol. 20,
no. 5, pp. 19–25, Sept 2003.

[33] C. Prud’homme, J.-G. Fages, and X. Lorca, Choco Documentation, TASC
- LS2N CNRS UMR 6241, COSLING S.A.S., 2017. [Online]. Available:
http://www.choco-solver.org

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on March 12,2020 at 13:01:19 UTC from IEEE Xplore. Restrictions apply.

