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Abstract 

Biodiesels are considered as promising alternatives to fossil diesel. Biodiesels produced from various 

resources can have different fuel properties; hence they do not always comply with the BS EN 14214 

standard. This could lead to engine operation and emission challenges. This thesis aims to optimise 

fuel properties by biodiesel-biodiesel blending in order to improve the fuel properties, combustion and 

emission characteristics. In this study, biodiesels were produced from different resources such as 

sheep fat, chicken fat and waste cooking oils; it was found that they do not comply with the BS EN 

14214 biodiesel standard. Waste cooking oil-sheep fat biodiesels and cottonseed-chicken fat biodiesels 

were blended separately at varying proportions and observed that blends of animal fat biodiesels with 

waste cooking oil or inedible vegetable biodiesels gave promising fuel properties. Waste cooking oil 

biodiesel-sheep fat biodiesel at 60/40 and 50/50 volume fractions meet the BS EN 14214 standard. 

Waste cooking oil biodiesel, sheep fat biodiesel and their blends at 60/40, 50/50 and 30/70 ratios were 

tested in a three cylinder diesel engine and results were compared to fossil diesel. Moreover, effect of 

degree of unsaturation was also investigated. It was found that decreasing degree of unsaturation 

resulted in shortened combustion duration, higher heat release at the pre-mix combustion phase, 

reduced CO and increased NOx emissions. Moreover, 50/50 blend gave the highest in-cylinder 

pressure around 5% higher than respective neat biodiesels. The 50/50 waste cooking oil biodiesel-

sheep fat biodiesel blend gave 3.3% lower CO2, 74% lower CO and 2.5% higher NOx than fossil 

diesel. The engine tests were also conducted using the cottonseed biodiesel, chicken fat biodiesel and 

their blends at 60/40, 50/50 and 30/70 ratios. Cottonseed biodiesel-chicken fat biodiesel blends at 

60/40 and 50/50 ratios gave 4.2% higher in-cylinder pressure than diesel; furthermore, the CO2, CO 

and NO emissions were reduced by 5.8%, 15% and 6.5% compared to fossil diesel respectively. In 

order to further improve the emission characteristics of the biomixture fuels, 2-Butoxyethanol was 

tested as a novel biodiesel additive. Both 50/50 biomixtures doped with the additive (15% by volume) 

led to further increase in in-cylinder pressure and slight decrease in combustion duration by 5% and 2o 

CA, respectively when compared to the same without additive. A 5% increase in the brake specific 

fuel consumption and 2.6% decrease in brake thermal efficiency were observed when additive was 

used. However, 5% reduction in NO gas emission was achieved. In addition, the biomixtures were 

tested in a novel SNCR after-treatment design which reduced the NO emissions of the 50/50 

biomixtures by 6% with distilled water injection and 15% with urea-water solution injection. The 

research study concluded that waste cooking oil biodiesel-sheep fat biodiesel and cottonseed biodiesel-

chicken fat biodiesel blends at 50/50 ratios are recommended for compression ignition engine 

application.  
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Chapter 1 

 

1. INTRODUCTION 

 

1.1. Fossil fuel challenges 

 

The Earth is suffering from climate change. The gradual increase in its surface temperature is causing 

serious problems such as melting polar ice, rising sea levels, drought and climate change (Wang et al., 

2017). Global warming is caused by emissions of greenhouse gases (GHG). Combustion of fossil fuels 

is one of the main sources of GHG emission (Davis et al., 2018). Despite that, petroleum products are 

the commonly used energy source. The World Bank (2017) report that 80.7% of the world’s energy 

was supplied by fossil fuels in 2017. The distribution of sources such as natural gas, crude oil and coal 

was studied by Ritchie and Max, (2019) and given in Figure 1.1. The annual global CO2 emissions 

from fossil fuels were studied by the US Department of Energy and given in Figure 1.2 (Boden et al., 

2015). The total annual CO2 emission was recorded as 9776 million metric tons for overall fossil fuel 

usage in 2013 (Boden et al., 2015). 

 

Figure 1.1: Global primary energy consumption by fossil fuel source, taken from (Ritchie and Max, 

2019). 
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Figure 1.2: Total and individual contributors of annual global fossil fuel carbon emissions, taken from 

(Boden et al., 2015). 

 

Although there is a slightly decreasing trend on fossil fuel consumption, UK still heavily depends on 

fossil fuels as shown in Figure 1.3. The overall fossil fuel consumption of the UK was recorded as 

around 84% in 2016 (The UK Department for Business Energy and Industrial Strategy, 2017).  

 

 

Figure 1.3: Fossil fuel consumption of the UK, taken from (The UK Department for Business Energy 

and Industrial Strategy, 2017). 
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Fossil fuels pose additional problems such as the depletion of petroleum resources and security of 

supply (Gumus et al., 2012). The literature warns about the limited lifetime of the fossil fuel reserves. 

For example, a study conducted in 2017 predicts depletion duration of crude oil, natural gas and coal 

within around 35, 37 and 107 year time, respectively (Senthur Prabu et al., 2017). Although dates are 

just estimates, this type of study highlights the fossil fuel depletion problem.  

Finally, yet importantly, usage of fossil-based petroleum fuels poses danger directly to human health 

(Chen and Lippmann, 2009; Anderson et al., 2012; Ristovski et al., 2012). Fossil fuel combustion in 

diesel engines is identified as one of the greatest contributors to GHG emissions, hence to human 

health (Campbell-Lendrum and Prüss-Ustün, 2019). Lloyd and Cackette (2001) reported the direct 

effect of exhaust gas emissions such as soot and NOx on cancer, cardiovascular and respiratory effects 

on human health. The carbon soot from diesel engine constitutes 73-83% of particulate matter (PM) 

(Tsai et al., 2014). The other pollutants in soot are soluble organic fractions, ash content, trace metals, 

sulphur compounds, and other substances like polycyclic aromatic hydrocarbons (PAHs), and 

polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) (Lin et al., 2005, Lin et al., 2008; 

Chuang et al., 2010; Tsai et al., 2014). The risk of respiratory, cardiovascular and lung cancer diseases 

are increased when humans are exposed to PM and NOx emissions (Lloyd and Cackette, 2001). The 

Health Protection Agency in the UK declared 11900 premature deaths caused by the presence of GHG 

gasses in the breathing atmosphere (Vardoulakis and Heaviside, 2012). To sum up, it is widely 

accepted that alternative solutions should gain more importance to overcome fossil fuel challenges. 

 

1.2. Sustainable energy sources 

 

The European Union set targets to reduce harmful exhaust gas emissions by 24% and 32% lower than 

the 1990 level with the utilisation of alternative energy sources by 2020 and 2030 respectively 

(European Parliament, 2009, 2015; European Commision, 2014). More specifically, 10% biodiesel 

requirement for transport fuels by 2020 was imposed on member countries (Forte et al., 2018). The 

Department for Transport UK also sets a minimum target of 12.4% biofuel volume fraction in 

transport fuels by 2032 (Norman, 2018). Overall, bioenergy demand is also estimated to increase in 

accordance with the restricted emission regulations and targets (Department of Energy and Climate 

Change, 2012). According to the International Renewable Energy Agency (2017), renewables are the 

best way of CO2 reduction as they can reduce the global CO2 prediction for 2050 by 44% Figure 1.4. 

Therefore, some countries also encourage the renewable energy utilisation (by means of tax benefits, 

incentives and grants) to meet the emission targets (Igobo, 2015).  
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Figure 1.4: Primary CO2 emission reduction potentials by technology, adapted from (©International 

Renewable Energy Agency, 2017). 

 

According to the latest data provided by the International Energy Agency (2019), renewables 

contribute 25% and 32% of the total electricity production of the world and UK, respectively. 

Bioenergy, hydro, wind, geothermal and solar were the main renewable energy sources reported 

worldwide with contributions of 2%, 16%, 4%, 0.04% and 2% respectively. According to Kumar and 

Sharma (2011), biofuel production will increase significantly in the future, thus various feedstock shall 

be investigated to replace fossil fuels in the long term. 

 

1.3. Biodiesel produced from waste resources 

 

Biofuels are a promising source of alternative energy for replacing fossil fuels because of several 

advantages. They; (i) are biodegradable, (ii) are sustainable, (iii) produced from any organic 

substances including wastes, (iv) reduce exhaust gases such as HC, CO and smoke, (v) have the 

potential to help in waste disposal, (vi) are used in different applications like vehicle fuel, heating, 

electricity production, etc. Moreover, The presence of oxygen content of biofuels typically yields more 

efficient combustion than diesel (Baskar and Senthilkumar, 2016). Biofuels can be found in all three 

phases referring to liquid, solid and gas. The liquid phase attracts the most attention due to several 

advantages, such as high energy content per unit volume, and better storage and distribution 

opportunities. These resources are generally obtained from vegetables, animals and waste components. 

By nature, oils are in the liquid phase and this property makes them the easiest candidates for the 

chemical processes like transesterification and water emulsion. Solid fats are typically exposed to the 
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rendering process to convert into the liquid phase. Similarly, solid waste resources can be converted 

into a liquid by pyrolysis technique (Hossain and Davies, 2013).  

Edible/non-edible vegetable oils, waste cooking oils (WCO), animal fats and algae oils are the most 

popular biofuel examples. Although neat oils of the mentioned feedstock can be utilised directly (i.e. 

in a diesel engine), their fuel properties can also be upgraded by some applications. To illustrate, 

feedstock can be transesterified to produce biodiesel and/or emulsified with water. Bio-alcohols such 

as bio-ethanol and bio-butanol are also utilised as bioenergy sources. They are typically produced 

from sugar cane, grains and corn. Bioethanol mainly finds application in spark ignition engines for 

replacing gasoline (Escobar et al., 2009). For example, bioethanol has a high self-ignition temperature 

and latent heat of vaporisation, low calorific value and cetane number (Escobar et al., 2009). In 

contrast, biodiesel and neat oils (and their blends with Alcohols to some extent) are all applicable for 

compression ignition engines (Escobar et al., 2009).  

Land usage problems and food challenges have fostered a growing interest in waste-derived biofuels 

such as animal fats, waste cooking oils and inedible vegetable oils (Sander et al., 2018). Animal fats 

and used cooking oil are considered as wastes and disposal of those substances is subject to certain 

procedures in the EU and UK (Environment Agency, 2015). According to the Quality Protocol, which 

is a joint initiative between the Environment Agency and, Waste and Resources Action Programme 

(applies to England, Wales, and Northern Ireland), animal waste and waste cooking oil feedstock can 

be regarded as fully recovered if they are converted into biodiesel in a suitable way (Environment 

Agency, 2015). This makes the mentioned feedstock interesting for biodiesel production.  

Oil and fat feedstock (triglycerides) can be converted into biodiesel (fatty acid methyl ester) by 

transesterification technique to improve the fuel properties (Meher et al., 2006). Pyrolysis (thermal 

cracking) and emulsification are the other ways to upgrade fuel properties (Ma and Hanna, 1999; 

Melo-Espinosa et al., 2015). By far, biodiesel is considered the most promising technique in terms of 

energy efficiency and overall enhancement of fuel properties (Salamanca et al., 2012). By converting 

organic feedstock (triglycerides) into biodiesel (methyl esters) (see Figure 1.5), it is also expected to 

observe better performance and fewer emissions from the engine operation (Öner and Altun, 2009; 

Behçet, 2011). Accordingly, biodiesel occupies the bigger portion of the renewable energy supply 

among the mentioned techniques. According to the UK Department for Transport (2018), biodiesel 

shared 47% of the renewable fuel supply in 2018. Its inherent properties, biodegradability, carbon 

neutrality, environmental attributes and applicability to diesel engines (without any major 

modifications) make waste derived biodiesels viable alternative fuels (Özener et al., 2014). The 

literature agrees that waste biodiesels can be one of the sustainable alternatives of fossil diesel and 

reduce major GHG emissions (Sakthivel et al., 2018).  
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Although biodiesel has promising properties, the chemical structures of biodiesel and petroleum diesel 

are different. Biodiesel is composed of various Fatty Acid Methyl Esters (FAME) which are long 

carbon chains, whereas fossil diesel has aromatics compounds. This difference creates variations on 

fuel properties and engine operation i.e. engine performance, combustion characteristics and exhaust 

gas emissions. Thus, any biodiesel to be used in the diesel engine has to fulfil the British and European 

standard BS EN 14214. However, it is not easy to produce biodiesel which satisfies this norm. Note 

that biodiesel properties highly depend on the feedstock. Hence, fulfilling the standard could be harder 

for specific feedstock. For example, biodiesels derived from WCO could have high unsaturation which 

reduces resistance to oxidation and cause early degradation (Refaat, 2009). Another drawback of 

biodiesels is increased NOx emissions as a result of increased combustion temperature due to better 

combustion (Thangaraja et al., 2016). Although PM, HC, CO and CO2 emissions can be significantly 

reduced by biodiesel, numerous studies addressed increased NOx emission for the 100% biodiesel 

application on unmodified diesel engines (Hoekman and Robbins, 2012; Mofijur et al., 2013; Palash et 

al., 2013). Other technical issues associated with the neat biodiesel could be: (i) starting the engine in 

cold weather, (ii) sticking and clogging of fuel injector holes, fuel filters, and inlet/exhaust valves, and 

(iii) compatibility of fuel supply pipe materials with the biodiesel (Bhale et al., 2009; Verma et al., 

2016; Datta and Mandal, 2017).  

The broad aim of this research is to obtain high-quality biodiesel-biodiesel blends from waste and/or 

inedible vegetable oil feedstock. By this means, waste disposal can be supported, biodiesel challenges 

can be minimised and lower exhaust gas emissions can be achieved. Pros and cons of biodiesel 

candidates will be determined in terms of fuel properties. Next, biodiesels will be blended with each 

Triglyceride  

(feedstock) 

Catalyst  

(typically KOH or NaOH) 

 

Glycerol Fatty Acid 

Methyl Esters  

(Biodiesel) 

Figure 1.5: Transesterification process i.e. converting feedstock into biodiesel. 

Transesterification 
Alcohol  

(typically methanol or ethanol) 
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other in a way that poor fuel properties of a particular biodiesel will be upgraded. Ultimately, 

biodiesel-biodiesel blends (biomixtures) will be produced with optimised fuel properties to improve 

fuel combustion and reduce exhaust gas emissions. In addition, further exhaust emission reduction 

(especially the NOx) will be examined with fuel additive and after-treatment system. 

 

1.4. Thesis outline and structure 

 

This PhD thesis is composed of 8 chapters. Brief outlines of each chapter are given below: 

Chapter 1: The first chapter describes the world’s fossil fuel utilisation and associated negative aspects 

such as fossil fuel depletion, environmental issues and health problems. The potential renewable 

energy sources were also outlined with emphasis on bioenergy. Waste-derived biodiesels are outlined 

as promising energy sources to replace fossil diesel. Some challenges with biodiesel utilisation, are 

briefly explained and the broad aim of the thesis is introduced.  

Chapter 2: A critical literature review summarises the current knowledge and outcomes in the research 

field of various biodiesel feedstock. Literature is reviewed in detail regarding fuel properties of 

biodiesel obtained from waste resources (i.e. animal fats, waste cooking oil) and inedible vegetable 

oils. The engine test results of the mentioned biodiesels are also reviewed to understand the pros and 

cons of animal fat biodiesel compared to waste cooking oil and inedible vegetable biodiesels. Articles 

about biodiesel-biodiesel blending are also reviewed. Moreover, engine modifications and 

aftertreatment systems are outlined with an emphasis on engine performance improvement and/or 

NOx reduction. Finally, the promising research gaps are defined and the aims and objectives are 

introduced. 

Chapter 3: The methodology of the study is introduced in this chapter. The biodiesel production 

principle and procedure used for this study are explained. Fuel characterisation methods are explained 

with reference to British and European standard, BS EN 14214. The experimental facilities used to 

conduct this research are described. The analytical methods used to convert measured raw data into 

significant results are also described. 

Chapter 4: The fuel property optimisation of waste biodiesels is studied by the blending technique.   

Sheep fat biodiesel and waste cooking oil biodiesel are blended at different fractions to investigate any 

improvements in fuel properties, engine performance, combustion and exhaust emission. In addition, 

the effects of biodiesel degree of unsaturation are investigated in the biomixture engine results. 

Chapter 5: Poor fuel properties of chicken biodiesel were upgraded by the blending technique. The 

fuel properties of chicken biodiesel-cottonseed biodiesel biomixtures are analysed at different volume 
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fractions; and tested in a diesel engine for the scope of improved combustion and reduced CO-CO2 

emissions.  

Chapter 6: 2-Butoxyethanol is investigated as a biodiesel additive. The popular biodiesels in the UK 

(waste cooking oil biodiesel and rapeseed biodiesels) and the 50/50 fractions of the biomixtures 

investigated in chapters 4 and 5 are doped with the 2-Butoxyethanol additive and tested. NO emission 

reductions of biodiesels are investigated in the presence of the additive which had an ether structure 

with an alcohol branch. 

Chapter 7: An after-treatment system, a combination of Selective Catalytic Reduction (SCR) and 

Selective Non-Catalytic Reduction (SNCR) technique, is investigated with the biomixtures. Three 

after-treatment designs are compared through CFD software in terms of turbulence intensity and 

particle residence time. Then the selected design manufactured and tested for reducing the NOx 

penalty of biodiesels. 

Chapter 8: The final chapter summarises the important results of the research and the extent to which 

the main aims and objectives are met. The recommendations from the research and future work 

potentials are also addressed.   

 

1.5. Aims and objectives of this thesis  

 

The overall aim of this thesis is to blend two different biodiesels in accordance with their fuel 

properties for enhancing the engine performance, combustion characteristics and exhaust emissions. 

Biodiesels should comply with the BS EN 14214 standard, and must reduce harmful exhaust gas 

emissions when compared to fossil diesel. One emerging option being pursued is blending of highly 

chemically-saturated biodiesels with relatively chemically-unsaturated biodiesels to optimise the 

overall fuel properties. Additionally, novel fuel additive and exhaust aftertreatment design are 

examined with an emphasis on biodiesel NOx penalty.  

The objectives of the study are: 

1. To understand feedstock of biodiesel-biodiesel blends by a detailed literature review in terms 

of biodiesel fuel properties, and their combustion and emission characteristics results in the 

compression ignition engines. 

2. To produce biodiesel-biodiesel blends (biomixtures) in order to identify promising volume 

ratios which meets BS EN 14214 biodiesel standard. Moreover, to understand the effect of 

biodiesel degree of unsaturation on engine test results. 
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3. To assess the combustion and emission characteristics of the produced biomixtures in a CI 

engine and determine promising biodiesel-biodiesel blends (biomixtures) which improves 

combustion characteristics and reduces harmful exhaust emissions. 

4. To assess the effectiveness of the 2-Butoxyethanol as biomixture and neat biodiesels additive 

in terms of fuel properties, engine performance, combustion characteristics and exhaust 

emissions characteristics.  

5. To design a new SNCR aftertreatment system for minimising the NOx penalty of biofuels by 

injections of distilled water and urea-water solution separately at the exhaust system. 

6. Recommend on biodiesel-biodiesel mixture(s) for CI engine application with additive or with 

after-treatment system. 
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Chapter 2 

 

2. LITERATURE REVIEW 

 

2.1. Introduction 

 

This chapter presents a review of waste and inedible plant oil feedstock for biodiesel production. Fuel 

properties and engine test results of various biodiesels are also reviewed from the literature. Various 

feedstock and their compression ignition (CI) engine applications are summarised to select the best 

matching feedstock for biodiesel-biodiesel blending. In addition, various engine modifications and 

NOx reduction techniques are also reviewed to optimise the engine performance, combustion 

characteristics and exhaust emissions of CI engines when operated on biodiesel.   

 

2.2. Feedstock for biodiesel production 

 

Biodiesel is a sustainable, environmentally-friendly, energy efficient and biodegradable fuel 

(Salamanca et al., 2012; Masera and Hossain, 2017). The most popular feedstock types found in the 

literature are vegetable oils, waste animal products, waste cooking oils and algae oil. According to the 

type of feedstock, biodiesels can be categorised under three sections which are: first generation (1G), 

second generation (2G) and third generation (3G). The first generation biodiesels are produced from 

edible vegetable oils (Sakthivel et al., 2018) such as sunflower oil (Saba et al., 2016), rapeseed oil 

(Mazanov et al., 2016), rice bran oil (Chhabra et al., 2017), soybean oil (Torres-Rodríguez et al., 

2016) etc. Even though 1G biodiesels are widely available and have a relatively easier conversion 

process, their utilisation as a fuel may affect the food industry and cause an increase in food prices 

(Sakthivel et al., 2018). On the other hand, non-edible oils are categorised as 2G biodiesels (Sakthivel 

et al., 2018). The final category is 3G biodiesels which are mainly produced from algal biomass. Apart 

from the above mentioned feedstock, there are some waste feedstock such as waste animal fats and 

waste cooking oil, which can be used for biodiesel production. Regarding the categorisation of waste 

cooking oils and waste animal fats, there is no consensus in the literature. Some studies categorise 

them as second generation biodiesels (Lee and Lavoie, 2013) and some categorise as third generation 

biodiesels (Sakthivel et al., 2018). No matter which category they are, waste derived biodiesels are 

very important as the sustainable disposal of the converted wastes have achieved along with fuel 

production.  
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2.2.1. Waste animal fats 

Animal fats have been used for different purposes such as heating and lighting since prehistoric times 

(Piaszyk, 2012). Increasing environmental problems like global worming led researchers to investigate 

animal fats as alternative fuel source. Waste animal fats are generally by-products of butchers, 

abattoirs and industrial meat processing companies. Figure 2.1 presents the process of typical animal 

fat feedstock i.e. sheep tallow for biodiesel production. As no edible agents of animal take place in the 

rendering process, it is a sustainable and waste feedstock. Waste animal fats can be obtained from a 

wide variety of sources. For example, tallow can be derived from sheep/lamb (Bhatti et al., 2008), beef 

(Ashraf et al., 2017) and lard (Sander et al., 2018); poultry fat from turkey (Emiroğlu et al., 2018), 

chicken (Ashraf et al., 2017), goose (Sander et al., 2018) and duck (Chung et al., 2009); and oils from 

various fish species (Behçet, 2011). 

 

 

Figure 2.1: Production of animal fat feedstock, adapted from (Adewale et al., 2015). 

 

As shown in Figure 2.1, waste animal fats, trims, and inedible contents of the animals are used for 

tallow production. In the rendering process, animal wastes are cut into small pieces (crushed) with the 

help of crushing equipment. Then smaller materials are heated. Finally, animal fats are squeezed to 

Animal (Sheep/Cattle)
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separate the liquid. Consequently, tallow and remaining meat and bone meal parts are obtained at the 

end of the rendering process (Figure 2.2) (Şen et al., 2018). According to UK Department for 

Transport, (2018), tallow biodiesel accounts for around 2.5% of the UK origin biofuels. 

 

 

Figure 2.2: Industrial facilities for rendering processes (© Mavitec B.V., 2015). 

 

2.2.2. Waste cooking oils 

The utilisation of waste cooking oils does not conflict with food or land usage as they are wastes. This 

type of feedstock can be categorised into two different subgroups. The first subgroup is the remaining 

oils after cooking purpose, also known as yellow grease (Adewale et al., 2015). Depending on the use, 

waste cooking oils may contain some food residuals which may include some meat grease, fish or 

chicken oils. Typically, these feedstock are produced at industrial food suppliers and restaurants. 

Being a waste product along with high availability makes yellow grease waste cooking oil (WCO) a 

cost-effective feedstock for biodiesel production (Mohammadshirazi et al., 2014; Khang et al., 2017). 

The second subgroup, which is also known as brown grease, is the food grease which is collected via 

grease traps (Adewale et al., 2015). Grease traps are placed on the sewer system i.e. after the sink. 

Design of the grease trap separates the grease/oil and water. Brown grease feedstock have free fatty 

acid (FFA) value higher than 15% (Adewale et al., 2015). The relatively high FFA content of brown 

grease make the biodiesel production process more difficult compared to yellow grease feedstock.  

Waste cooking oils from industrial companies are stored at special stations designed to have minimum 

contact with air, moisture and light. This is to prevent oxidation of feedstock (Predojević, 2008). 

Figure 2.3 shows a typical waste cooking oil collection station. According to literature, waste cooking 
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oil made up the largest share at 42% of total biodiesel supply to the UK (UK Department for 

Transport, 2018). 

 

 

Figure 2.3: A typical waste cooking oil collection station (Geograph, 2009). 

 

2.2.3. Inedible vegetable oils 

Some vegetables are not suitable as a food source for both human and animal due to the existence of 

toxic substances and their FFA contents (Adewale et al., 2015). Researchers have investigated the 

feasibility of inedible vegetable oils as biodiesel fuel. Some popular inedible vegetable oils are 

Karanja (Pongamia pinnata pierre) (Hossain and Davies, 2012), Physic nut (Jatropha curcas) (Tiwari 

et al., 2007), Cottonseed (Gossypium hirsutum) (Eevera et al., 2009), Mahua (Madhuca indica) 

(Shameer and Ramesh, 2017), Rubber seed (Hevea brasileinsis) (Ramadhas et al., 2005), Castor bean 

(Ricinus communis) (da Silva César et al., 2010), Yellow oleander (Thevetia peruviana) (Deka and 

Basumatary, 2011), Tobacco (Nicotiana tabacum) (García-Martínez et al., 2017), Sea mango (Cerbera 

odollam) (Ang et al., 2015), Euphorbiaceae, Oleaginous, Brassicacease and Leguminosae (Adewale et 

al., 2015). The utilisation of the mentioned feedstock can be cost-effective especially at the local 

places where the plants grow by themselves due to their availability. Figure 2.4 illustrates pictures of 

some popular inedible vegetables. 
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2.3. Transesterification of triglycerides 

 

Although neat oils (triglycerides) can be used in CI engines, transesterification of triglycerides 

enhances the fuel properties such as viscosity and volatility, which in turn results in better 

performance and fewer emissions on the engine operation (Öner and Altun, 2009; Behçet, 2011). 

Transesterification is a well-known method to produce biodiesel from any organic feedstock. The 

process found in early 1940 for simplyfting the glycerol extracting during soap production (Van 

Gerpen, 2005), later it has been used for biodiesel production. This reversible reaction occurs between 

the triglycerides and alcohol agents in the presence of a catalyst. Methanol and ethanol are the 

commonly used alcohols for the transesterification process (Carvalho et al., 2017; Shu et al., 2018). If 

the transesterification is carried out with the methanol then the product is called Fatty Acid Methyl 

Ester (FAME), similarly, it is called Fatty Acid Ethyl Ester (FAEE) if the alcohol is ethanol. 

According to transesterification stoichiometry, three moles of alcohol react with one mole of 

triglyceride and produce one mole of glycerine and three moles of fatty acid esters in the presence of a 

catalyst Figure 2.5. At the end of the transesterification process, phase separation occurs and two 

liquids are obtained which are fatty acid esters (biodiesel) at the top and glycerine at the bottom. 

 

 

Figure 2.4: Biodiesel (methyl ester) production via transesterification. 
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2.3.1. Pre-treatment 

According to the acid value of a feedstock, pre-treatment of oil might be necessary before the 

transesterification. Literature suggests applying pre-treatment for feedstock having free fatty acid 

content above 2% (Felizardo et al., 2006). Because, the high acidity (FFA content) may lower the 

biodiesel yield and cause soap formation due to the presence of alkali catalyst (Dorado et al., 2002; 

Lam, et al., 2010). Ghadge and Raheman (2005) studied a biodiesel production from madhuca indica 

oil which has high FFA value as 19%. Pre-treatment of the feedstock was conducted using an acid 

catalyst (H2SO4 1% volume/volume) before the transesterification process to reduce the acid value 

below 2 mg KOH/g. Similarly, Ouachab and Tsoutsos (2013) used acid pre-treatment for producing 

biodiesel from olive pomace oil had FFA value as 27%. In their study, pre-treatment process was 

undertaken with the presence of H2SO4. Acid value (AV) and acidity parameters can be calculated by 

using equations 2.1 and 2.2 respectively (Ouachab and Tsoutsos, 2013). 

 

AV (mg KOH/g) =  
Vtitre  Mo  NKOH

m
 

(2.1) 

 

Acidity (%) =
Vtitre  Mo  NKOH

m
 0.1 

(2.2) 

 

Where 𝑉𝑡𝑖𝑡𝑟𝑒 is the volume of titre in millilitre, Mo is the molar mass of the oleic acid (28.2 mg/mole), 

m is the mass of oil in grams and 𝑁𝐾𝑂𝐻 is the concentration of KOH solution in mole/millilitre. 

 

2.3.2. Catalyst 

Catalyst is an important parameter which directly affects the transesterification. Felizardo et al. (2006) 

investigated the effect of methanol to waste frying oil (WFO) ratio on biodiesel production rate at 

different catalyst amounts. According to their study, the best yield of biodiesel observed at 4.2 ratio of 

methanol/WFO with the presence of 0.6 wt% of KOH catalyst. Regarding catalyst types, Leung and 

Guo (2006) examined and compared three different alkaline catalysts, which are namely sodium 

methoxide (CH3ONa), sodium hydroxide (NaOH) and potassium hydroxide (KOH). Taher and Al-

Zuhair (2016) also addressed these three catalyst as most popular catalysts due to their contribution in 

high yield of biodiesel, cost, and relatively low reaction time and temperatures. Although the best 

product yield was obtained with sodium methoxide (CH3ONa), this catalyst was not preferred due to 

the difficulties in the separation process. Use of KOH led to ease of separation and was recommended 

by the authors (Leung and Guo, 2006). The effect of reaction temperature and reaction time on 

transesterification was also investigated (Leung and Guo, 2006). The authors reported that during the 

transesterification of neat canola oil, the best temperature for the highest biodiesel yield of 93 weight% 
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was obtained at 45oC in 60 minutes. On the other hand, the highest yield of 90 weight% was observed 

at 60oC in 20 minutes for the WFO (Leung and Guo, 2006). 

KOH and NaOH are the main conventional catalysts which are used in order to increase the reaction 

speed (Alptekin and Canakci, 2011). However, investigation of new catalysts started with the 

increasing demand for the alternative fuel sector. Moreover, soap formation challenge of KOH and 

NAOH during the transesterification of high FFA triglycerides also encouraged researchers to study 

various catalysts (Marwaha et al., 2018). Mardhiah et al., (2017) derived the heterogeneous catalysts 

under four sub groups as (i) Acid catalyst, (ii) Base catalyst, (iii) Acid-base catalyst and (iv) 

Biocatalysts. For example, Carvalho et al. (2017) conducted the biodiesel production from mucor 

circinelloides biomass by catalysing 12-molybdophosphoric support on alumina (H3PMo/Al2O3) and 

recorded 97% yield. In another study, Marinković et al. (2017) studied the influence of CaO loading 

onto 𝛾-Al2O3 as a catalyst for the transesterification process and obtained 94.3% yield. In addition, 

some enzymes were also used as a catalyst in transesterification. To illustrate, Amini et al. (2017) used 

lipase as a catalyst for the conversion of sweet basil (Ocimum basilicum) into biodiesel with 94.58% 

conversion rate at 47°C. Similarly, Andrade et al. (2017) catalysed the transesterification of 6.1% FFA 

castor oil by Eversa liquid enzyme and obtained 94% yield. Reviewed studies revealed that main 

advantages of the advanced catalysts were to increase the biodiesel production yield (of especially 

high FFA feedstock), to lower the transesterification temperature and time. 

 

2.3.3. Alcohol to oil ratio 

Experimental studies showed that separation time, biodiesel quality and yield changes with alcohol to 

triglyceride ratio. Taher and Al-Zuhair (2016) stated that the best methanol to oil molar ratio ranges 

between 3:1 and 4:1. Ghadge and Raheman (2005) produced biodiesel from Mahua oil which has high 

Free Fatty Acids (FFA) at 6:1 (0.25 v/v) methanol to oil molar ratio. The study also investigates the 

effect of different methanol to oil ratios at the pre-treatment (esterification) stage. According to results, 

higher methanol to oil ratios resulted in less acid value of oil (Ghadge and Raheman, 2005). Figure 2.6 

shows the relationship between the alcohol to oil molar ratio and product yield. The yield of the 

sunflower biodiesel was increasing with the increasing alcohol to oil molar ratio and the maximum 

yield was achieved at 6:1 ratio (Gerpen, 2005). Similarly, Meher et al. (2006) recorded a 97% yield at 

the 6:1 alcohol to oil ratio in 3 hours. The study even also tested higher ratios such as 9:1, 12:1, 18:1 

and 24:1 but no yield higher than 97% was reported. However, they also noted that higher ratios made 

the transesterification faster i.e. 97% yield was obtained in 30 min with the 24:1 ratio (Meher et al., 

2006). 
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Figure 2.5: Influence of the alcohol to oil ratio on biodiesel yield in transesterification (Gerpen, 2005). 

 

Overall, there is no solid consensus in the literature regarding the alcohol to oil ratio. This can be due 

to different FFA contents and chemistry of feedstock. In the literature, the main importance of the 

alcohol to oil ratio was pointed as the yield of triglyceride conversion into biodiesel. 

 

2.4. Fuel properties of biodiesels 

 

The type of feedstock (triglyceride) has a huge influence on the produced biodiesel. This is because 

triglycerides can be formed of different carbon chains in terms of their length and number of double 

bonds exists in each chain (Schönborn et al., 2009). Therefore, each fatty acid methyl ester (FAME) 

has different fuel properties (Table 2.1). Table 2.1 shows some fuel properties of the commonly found 

FAMEs in biodiesel compositions. Percentages of the FAME compounds in any biodiesel influence 

the overall fuel quality. Hence, GC-MS analysis can be done to determine the types of FAMEs which 

form the biodiesel along with their percentages.  
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Table 2.1: Properties of some fatty acid methyl esters (Schönborn, 2009; British Standard Institution, 2010; Ramírez-Verduzco et al., 2012). 

        (Ramírez-Verduzco et al., 2012)   (Schönborn, 2009)   (British Standard Institution, 2010)     

FAME Name of Formula 

 

Cetane Viscosity density HHV 

 

LHV Carbon Hydrogen Oxygen Melting 

 

Iodine 

 

Molecular 

 

FAME 

  

Number at 40 °C at 20 °C 

   

Content Content Content Point 

 

Value 

 

structure 

          (mm2/s) (g/cm3) (MJ/kg)   (MJ/kg) (m/m %) (m/m %) (m/m %) (°C)   (g/100g)     

C14:0 Myristic acid C15H30O2  
65.4 3.33 0.8665 38.79 

 
36.20 74.35 12.44 13.21 18 

 
0 

 

 

C16:0 Palmitic acid C17H34O2  
73.9 4.37 0.8644 39.56 

 
36.44 n/a 12.56 n/a 32-35 

 
0 

 

 

C16:1 Palmitoleic acid C17H32O2  
53.3 3.59 0.8764 39.3 

 
n/a n/a n/a n/a n/a 

 
95 

 

C18:0 Stearic acid C19H38O2  
82.3 5.59 0.8627 40.18 

 
37.50 n/a 12.73 n/a 37-41 

 
0 

 

 

C18:1 Oleic acid C19H36O2  
61.7 4.6 0.8746 39.93 

 
37.44 76.99 12.2 10.8 -20 

 
86 

 

C18:2 Linoleic acid C19H34O2  
41.1 3.79 0.8865 39.68 

 
37.15 77.43 11.58 10.99 -35 

 
173.2 

 

 

C18:3 Linolenic acid C19H32O2  
20.5 3.11 0.8985 39.43 

 
n/a n/a n/a n/a n/a 

 
261.6 

 
 

C20:0 Arachidic acid C21H42O2   90.8 7 0.8613 40.7   n/a n/a n/a n/a n/a   0 
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Reviews provided in Table 2.1 showed that longer carbon chain lengths result in higher cetane 

number, viscosity, higher heating value (HHV), lower heating value (LHV), carbon content, hydrogen 

content, melting point and iodine number of FAMEs. For example, cetane numbers of C14:0, C16:0, 

C18:0 and C20:0 were provided as 65.4, 73.9, 82.3 and 90.8 respectively (Table 2.1). Moreover, LHV 

values of the C14:0, C16:0 and C18:0  FAMEs were given as 36.2, 36.4 and 37.5 MJ/kg respectively 

(Table 2.1). Oxygen content was the only decreasing fuel property reported with respect to increasing 

carbon chain length. The number of double bonds in the content of FAMEs was another important 

factor as it directly affects the degree of unsaturation. Almost all fuel properties decreased with the 

presence of double bonds. To illustrate, cetane number and viscosity of C18:0 was reduced from 82.3 

to 61.7 and 5.59 mm2/s to 4.6 mm2/s when there was a double bond existing in its structure, C18:1 

Table 2.1. However, higher degree of unsaturation increases oxidation susceptibility of biodiesel 

(Gray, 1978; Sanders, 2003). 

Table 2.2 demonstrated the FAME compositions of some famous animal fat, vegetable oil and waste 

cooking oil feedstock. Note that FAME compositions of the same feedstock, analysed by different 

researchers, can be different due to many reasons such as species/origin of the feedstock, biodiesel 

production procedure, biodiesel storage and measurement techniques. 
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Table 2.2: FAME compositions of some animal waste and vegetable oil biodiesels. 

  Feedstock C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 Others Reference 

A
n

im
al

 W
as

te
 

Chicken fat 0.7 20.9 5.4 5.6 40.9 20.5 0.0 6.0 (Supriya et al. 2017) 

Chicken fat 1.3 23.0 5.4 7.0 38.0 27.6 1.7 0.0 (Ashraf et al., 2017) 

Duck fat 0.8 24.2 0.3 n/a 72.5 2.2 n/a 0.0 (Chung et al., 2009) 

Duck fat 0.5 23.4 n/a 5.0 29.4 34.0 3.2 4.5 (Hamdan et al., 2017) 

Goose 0.3 20.5 2.6 5.6 46.4 13.6 0.7 10.3 (Sander et al., 2018) 

Sheep fat 3.0 27.0 2.0 24.1 40.7 2.0 n/a 1.2 (Banković-Ilić et al., 2014) 

Sheep fat 0.8 28.1 0.4 27.2 31.3 1.6 0.6 10.0 (Bhatti et al., 2008) 

Pork lard n/a 28.1 n/a 11.6 38.1 18.8 3.4 0.0 (Mata et al., 2011) 

Pork lard 1.1 19.8 2.0 11.8 44.7 10.9 1.0 8.7 (Sander et al., 2018) 

Sardine Fish oil 7.4 18.7 7.7 2.5 11.5 0.0 3.1 49.1 (Mata et al., 2014) 

Sardine Fish oil 6.8 20.3 6.5 4.3 19.8 2.6 1.6 38.1 (Sakthivel et al., 2014) 

Beef tallow 2.7 25.3 2.0 34.7 29.9 0.8 n/a 4.6 (da Cunha et al., 2009) 

Beef tallow 6.3 28.0 4.7 18.0 41.0 3.3 0.8 0.0 (Ashraf et al., 2017) 

Veal tallow 5.8 23.2 3.2 13.0 37.8 6.3 0.6 10.2 (Sander et al., 2018) 

Turkey fat 0.5 17.9 n/a 6.1 30.1 41.1 3.2 1.1 (Emiroğlu et al., 2018) 

V
eg

et
ab

le
 o

il 

Cottonseed oil 0.8 22.9 0.0 3.1 18.5 54.2 0.5 0.0 (Ramírez-Verduzco et al.,  2012) 

Cottonseed oil 23.4 n/a n/a n/a 22.6 n/a 52.4 1.6 (Alhassan et al., 2014) 

Sunflower 0.1 6.0 0.0 5.9 16.0 71.4 0.6 0.0 (Ramírez-Verduzco et al., 2012) 

Sunflower n/a 6.3 n/a 4.3 80.4 7.7 0.3 1.0 (Moser, 2014) 

Waste cooking oil n/a 10.9 0.6 4.0 38.1 40.5 4.7 1.2 (Moser, 2014) 

Waste cooking oil 1.1 11.5 0.6 4.2 35.2 39.7 6.2 1.4 (Man et al., 2016) 

Waste cooking oil 0.3 7.7 0.5 3.5 32.3 53.3 0.3 2.1 (Ranjan et al., 2018) 
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According to Table 2.2, C18:1 (Oleic acid) and C16:0 (Palmitic acid) were the two main FAME’s 

found in animal fat derived biodiesels with average percentages of 37 and 23 respectively. On the 

other hand, C18:2 (Linoleic acid) and C18:1 (Oleic acid) were found to be the two main FAME’s in 

the content of waste cooking oil biodiesels as 45% and 35% in average respectively. Vegetable oil 

biodiesels were mainly composed of unsaturated FAMEs, thus their iodine values were higher than 

that of animal fat biodiesels.  

Fuel properties of some popular biodiesels derived from animal fats, cottonseed oil and WCO are 

presented in Table 2.3. Literature addresses that HHV of the animal fat based biodiesels are higher 

than vegetable oil and WCO derived biodiesels (Table 2.3). This is because of the higher saturation 

level of the animal fat based biodiesels, meaning a relatively lower amount of polyunsaturated 

FAMEs. Similarly, viscosities and cetane numbers of animal fat based biodiesels are observed higher 

than that of vegetable oils and WCO for the same reason. The literature clearly pointed out high 

percentages of the polyunsaturated FAMEs such as C18:2 and C18:3 in the compositions of vegetable 

oils (Senthur Prabu et al., 2017). This also provides high iodine values for vegetable oil and WCO 

biodiesels. Can (2014) studied waste cooking oils collected from different resources like food factories 

and restaurants. The study reported that biodiesels produced from WCOs have iodine values around 

125 which is higher than the 120 g/ 100g limit declared in BS EN 14214 standard. On the other hand, 

iodine values of animal fat derived biodiesel are reported well below the BS EN 14214 limit. For 

example, Wyatt et al. (2005) stated iodine values of tallow, lard and chicken as 54, 63 and 77 g/ 100g, 

respectively. 
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Table 2.3: Fuel properties of some biodiesels obtained from waste animal fats and vegetable oils including waste cooking oil. 

Feedstock HHV Viscosity Density Cetane Iodine Flash Pour Acid Reference 

  
at 40 °C at 15 °C Number Value Point Point Value 

   (MJ/kg) (mm2/s) (g/cm3) (-) (g/100g) (°C) (°C) (mg KOH/g)   

Beef tallow 41 5.29 0.859 58.2 44 161 14 0.2 (Ashraf et al., 2017) 
Chicken 41.5 5.56 0.887 57.4 38 176 12 0.8 (Ashraf et al., 2017) 
Duck fat n/a 4.363 0.8785 n/a n/a n/a n/a n/a (Hamdan et al., 2017) 
Fish oil 40.1 4.741 0.885 52.6 n/a 114 n/a n/a (Sakthivel et al., 2014) 
Sheep fat n/a 5.98 0.856 59 126 n/a -5 0.65 (Bhatti et al., 2008) 
Turkey fat n/a 4.49 0.886 52.4 91.67 178 4 0.49 (Emiroğlu et al., 2018) 

Cottonseed 37.5 3.75 0.885 52.8 n/a 128 n/a n/a (Venkatesan et al., 2017) 
Cottonseed 41.2 4.07 0.875 54 104.7 455 n/a 0.16 (Talebian-Kiakalaieh et al., 2013) 
Waste cooking oil n/a 4.6 0.871 at 20°C 51 n/a n/a n/a n/a (Man et al., 2016) 
Waste cooking oil 25.8 3.23 0.874 at 27°C n/a n/a 150 n/a n/a (Ranjan et al., 2018) 
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Literature review showed that waste animal fat biodiesels and vegetable oil (including WCO) derived 

biodiesels are very different from each other in terms of their FAME components. This also causes 

significant differences in the crucial fuel properties such as viscosity, HHV, cetane number and iodine 

value. Vegetable oil and WCO biodiesels are typically superior to animal fat biodiesels in terms of 

viscosity and acid value, whereas animal fat biodiesels are better in terms of HHV, cetane number and 

iodine value. 

 

2.5. Diesel engine operation using animal fat based biodiesels and blends 

 

Engine performance and exhaust gas emissions characteristics of the compression ignition operated 

with animal fat biodiesels have been reviewed in this section. Studies on biodiesels produced from 

waste fish oils, chicken fat, beef tallow, sheep tallow and skin are reviewed. 

 

2.5.1. Engine performance characteristics 

According to the results of Lin and Li (2009), the exhaust gas temperature of fish oil biodiesel (F100) 

was 18oC (4.7%) lower than diesel at the highest engine speed. Similarly, Behcet et al (2015) stated 

that exhaust gas temperatures of biodiesel blends were comparable to each other i.e. Temperatures of 

C20 and F20 can be assumed as the same and approximately 10oC higher than diesel at almost all 

engine speeds. Furthermore, Godiganur et al (2010) read increased exhaust gas temperatures for F100 

and F20 by 125oC and 32oC, respectively. Table 2.4 and Figure 2.7 summarised the engine 

performance and exhaust emissions of the reviewed animal fat based biodiesels and blends. Note that 

operating conditions were different for each study reviewed in Table 2.4 and Figure 2.7. In this regard, 

although each study can be evaluated individually, care should be taken when making comparisons 

among studies.  
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Table 2.4: Engine performance and exhaust emissions characteristics of animal fat biodiesels 

compared to diesel. 

      Brake  Brake    Exhaust gas emissions Exhaust gas 

Reference Test fuel BTE Torque Power BSFC CO2 CO HC NOx Smoke Temperature 
    (%) (%) (%) (%) (%) (%) (%) (%) (%) (⁰C) 

(Behçet et al., 2015) F20 
 

-3.2 -4.33 8.3 -7.87 -24.4 -53.5 13.77 -16 10 
(Behçet et al., 2015) C20 

 
-1.9 -2.4 5.2 -7.87 -19.8 -20 13.77 -10 10 

(Öner and Altun, 2009) T5 -3 
 

-2.3 6 
 

-14 
 

-20 -16 12 
(Öner and Altun, 2009) T20 -4 

 
-2.3 12 

 
-16 

 
-40 -27 30 

(Öner and Altun, 2009) T50 -5 
 

-4.33 18 
 

-5 
 

-12 -45 -10 
(Öner and Altun, 2009) T100 -7 

 
-9 25 

 
-15 

 
-39 -57 5 

(Lin and Li, 2009) F100 -3 
  

13 
 

-9 
 

14.3 -10 -18 
(Godiganur et al., 2010) F100 -5 

  
20.7 

 
-59 -40 14.3 

 
125 

(Godiganur et al., 2010) F20 1 
  

0 
 

-22 -13.3 4.4 
 

32 
(Şen et al., 2018) C20 1.3 1.4 

 
-3.8 -1 -55 -24 2.7 -8.9 

 (Şen et al., 2018) C50 0.8 1.5 
 

1.9 -3.9 -50 -12 3.3 -6.7 
 (Srinivasan et al., 2017) S30 0 

  
5 

 
-25 

 
12 

  (Sakthivel et al., 2014) F100 -12    13 -33.7 -26.2 -5.2   
(Jayaprabakar et al., 2019) SS20 -6.7   4 8.3 33 -30   12.5 -71.4   

F100: fish oil methyl ester, C20: Chicken biodiesel 20% + diesel 80%, T100: Tallow biodiesel, S30: Sheep biodiesel 30% + diesel 70%,  
SS20: Sheep skin biodiesel 20% + diesel 80% 

 

(a) 

 

(b) 

 

Figure 2.6: Changes in (a) engine performance and (b) exhaust emissions characteristics of animal fat 

biodiesels compared to diesel. 

 

 In Lin and Li’s study ( 2009), brake specific fuel consumption (BSFC) of fish biodiesel (F100) was 

recorded 12.9% higher than the diesel and 3% lower than W100 (not presented in Table 2.4). Likely, 

Godiganur et al (2010) stated that BSFC for F100 was 20.7% higher than the diesel at full load. 

Similarly, Behcet et al (2015) found 8.3% increased BSFC for F20. The increase in BSFC can be 

related to the energy content of the fish biodiesel, which requires higher fuel to be burned to produce 

the same power output with diesel (Emiroğlu et al., 2018). This fact also negatively influences the 

Brake Thermal Efficiency (BTE). Literature tabulated in Table 2.4 also stated reduced BTE in the 

range of 3- 12% with biodiesels. In contrast, Godiganur (2010) reported an increasing BTE for one of 

tested biofuel blend which was B20. It was 1 % higher than the diesel whereas other blends having 

higher biodiesel ratio provided lower BTE than diesel. This increasing BTE can be attributed to 80% 

diesel in the blend. Likely, Sen et al (2018) reported slightly improved BTE by 1.3% and 0.8% for 



 

25 

 

C20 and C50 biodiesels. However, these results were also contradicting with their BSFC value for 

C50 as reported 1.9% higher than diesel. This may be due to the operating condition of the particular 

experiments. 

  

2.5.2. Exhaust gas emissions characteristics 

2.5.2.1. NOx emissions of animal fat based biodiesels 

NOx gases are very harmful both to the environment and human health. In the human body, lungs are 

the organs affected by the NOx. The NOx combines with the water vapour they form nitric acids in the 

human lungs which cause respiratory disease (Behçet et al., 2015). 

Literature showed that fish biodiesel and its diesel blend increased the NOx emission in the range of 

4% to 14.3% (Table 2.4 and Figure 2.7). Behçet et al. (2015) also concurred with the increased NOx 

emission with the chicken biodiesel operation as C20 had around 14% increased NOx emission than 

diesel on average. This shows that the majority of the literature reports increased NOx emission for 

biodiesels, but there are also some studies showing reduced NOx emission with biodiesel operation 

(Table 2.4). Tallow biodiesel and its diesel blends gave reduced NOx emissions by 20%, 40%, 12% 

and 39% for T5, T20, T50 and T100, respectively. Similarly, Sakthivel et al. (2014) also reported a 

5.2% decrease in the NOx emission of F100 (not shown in Table 2.4). This was probably due to 

varying operating conditions such as feedstock property, additive usage, engine modifications or 

aftertreatment conditions. Masera and Hossain (2019) stated that different parameters influence NOx 

formation which might cause contradictory results. Residence time of the fuel-air mixture, spray 

characteristics, ambient conditions, exhaust gas recirculation (EGR) or other aftertreatment 

applications, physical condition of the experimental equipment, oxygen content and measurement 

fluctuations were all linked to NOx emissions (Omari et al., 2017; Ramalingam and Rajendran, 2017; 

Ulusoy et al., 2018). 

 

2.5.2.2. Smoke opacity of animal fat based biodiesels 

Particulate matter (PM) is another exhaust gas which is highly pollutant and harmful for human health. 

This parameter corresponds to the smoke opacity of the exhaust gas (Sakthivel et al., 2014). This 

emission can even be experienced by the naked human eye when it is at the high concentrations. 

Lin and Li (2009) stated a 4% reduction in smoke opacity for F100 compared to diesel. In general, 

smoke opacity followed a decreasing trend as the engine speed decreased. In the study of Behcet et al. 

(2015), the decreasing trend of smoke opacity contributed to improved combustion and homogeneous 

mixing of the substances under the effect of enhanced turbulence, swirl and jet movement of injected 

air with respect to increased engine speed. It was also noted that biodiesel blends of F20 and C20 
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emitted 16% and 10% lower smoke than diesel on average, respectively. Similarly, Oner and Altun 

(2009) measured a significant reduction in smoke opacity for T100 by 57% lower than diesel. 

Biodiesels produced from sheep biodiesels were also reported to have reduced smoke emissions (up to 

71% lower than diesel) by various studies presented in Table 2.4. The main reason for the significantly 

reduced smoke emission with biofuels is the presence of the oxygen content (Baskar and 

Senthilkumar, 2016). These oxygen molecules fill sudden local oxygen vacancies and prevent smoke 

formation (Ozsezen et al., 2009). Another reason for the smoke reduction with biodiesel is the 

chemical structures of FAMEs which are free of aromatic compounds (Williams et al., 1986). 

 

2.5.2.3. CO2 emissions of animal fat based biodiesels 

According to Sakthivel et al. (2014), CO2 emission in the diesel engine is highly related to the 

efficiency of combustion. All carbon atoms in the fuel content convert into CO2 in the case of 

complete combustion. Behcet et al. (2015) reported 7.87% reduction in CO2 emission with the 

biodiesel usage. In contrast, Sakthivel et al. (2014) observed an 6.7% increase in CO2 gas emission for 

F100. Similarly, Jayaprabakar et al. (2019) reported 33% increased CO2 emission with SS20 biodiesel. 

These increased CO2 emissions can be linked to the oxygen content of the esters that leads more 

efficient burning of the fuel which in turn converts more carbon into carbon dioxide rather than carbon 

monoxide (Sakthivel et al., 2014). 

 

2.5.2.4. CO emission of animal fat based biodiesels 

 In the absence of sufficient oxygen, CO gas may be released as a combustion product. Gürü et al. 

(2010) stated that the presence of CO emission represents incomplete combustion as full oxidation did 

not take place to form CO2. According to Table 2.4, all reviewed studies reported mitigated CO 

emissions with animal fat derived biodiesels compared to diesel. Behçet et al. (2015) stated that F20 

and C20 emitted respectively 24.4% and 19.8% lower CO emissions than diesel on average. Lin and 

Li (2009) observed 9% reduced CO emission for F100 compared to diesel. In addition, in the same 

study, it was noted that CO reduction for fish oil biodiesel was almost 2% lower than waste cooking 

oil biodiesel. Godiganur et al. (2010), also used biodiesel formed from fish oil and obtained the 

highest reduction in CO emission of 59% less than diesel. Like other research articles, Sakthivel 

(2014) also observed 33.7% decrease in CO emissions for B100. Öner and Altun (2009) reported 14%, 

16%, 5%, and 15% reduced CO emissions for T5, T20, T50 and T100 compared to diesel. This review 

demonstrates that biodiesels reduce CO emission compared to diesel. This can be attributed to 

improved combustion of fuel.   
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2.5.2.5. HC emissions of animal fat based biodiesels 

Unburned hydro carbons (HC) are the result of incomplete combustion (Komninos, 2009). All 

reviewed studies reported decreased HC emissions in biodiesel applications Table 2.4. This shows that 

biodiesels had improved combustion compared to diesel which results in better burning of fuel. This 

also agrees with the reduced CO emissions result in the previous section. Godiganur et al. (2010) 

stated that HC emissions of F20 and F100 were 13.3% and 40% lower than diesel. Likely, Sakthivel et 

al. (2014) also reported 26% decreased HC emission with F100. Similar to previous studies, Behçet et 

al., (2015) also observed 53.5% and 20% reductions in HC emissions for F20 and C20 respectively. 

Biodiesel obtained from sheep biodiesel (S20) had a 24% lower HC emission than diesel  (Şen et al., 

2018). 

 

2.6. Diesel engine operation using waste cooking oil and inedible vegetable oil based 

biodiesels 

 

Vegetable oils have attracted the interest of many researchers as they provide a significant energy 

source. Similarly, after the cooking process, waste cooking oils (WCO) can be used as an alternative 

fuel in their ‘second life’. There is a significant number of studies on the use of vegetable oils and 

WCO as alternative fuels (Kumar and Sharma, 2011; Atabani et al., 2013). This section reviews 

studies about engine testing of biodiesels derived from inedible vegetable oils or WCO. More 

specifically, biodiesels obtained from various waste cooking oils, waste cooking olive oil, cottonseed, 

Karanja and Jatropha are reviewed in this section as summarised in Table 2.5 and Figure 2.8.  

 

Table 2.5: Changes in engine performance and exhaust emissions of the waste cooking oil and inedible 

vegetable oil biodiesels relative to diesel. 

        Exhaust gas emissions Exhaust gas 

Reference Test Fuel BTE BSFC CO2 CO HC NOx Smoke Temperature 
    (%) (%) (%) (%) (%) (%) (%) (⁰C) 

(Hossain and Davies, 2012b) W100 5 2.5 3 -90 n/a -4 -18 -25 
(An et al., 2012) W100 3 13 -20 -70 -40 -10 n/a -70 
(Lin and Li, 2009) W100 -5 16 n/a -7.3 n/a 13 -21 n/a 

(Dorado et al., 2003) WO100 n/a 8.5 -8.6 -59 n/a -40 n/a n/a 
(Aydin and Bayindir, 2010) CO100 n/a 30 n/a -52 n/a -38 n/a -3 
(Karabektas et al., 2008) CO100 4 n/a n/a -38 n/a -22 n/a n/a 
(Yucesu and Ilkilic, 2006) CO100 n/a 10 -33 -20 n/a -23 n/a -70 

(Raheman and Phadatare, 2004) K100 -20 30 n/a -92 n/a -38 -50 0 
(Ganapathy et al., 2011) J100 -7 15 n/a -40 -33 10 -36 n/a 
(Chauhan et al. 2011a) J100 -8 13 40 -33 -60 52 -37 -100 

W100= waste cooking oil biodiesel, CO= Cottonseed biodiesel, WO100= waste olive cooking oil biodiesel,  
K100= Karanja biodiesel, J100=Jatropha biodiesel, SO= Soybean biodiesel 
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(a) 

 

(b) 

Figure 2.7: Changes in (a) engine performance and (b) exhaust emissions of the reviewed vegetable oil 

and waste cooking oil biodiesels relative to diesel. 

 

Hossain and Davies (2012) tested waste cooking oil biodiesel in a three-cylinder indirect injection CI 

engine. According to the study, W100 had 5% and 2.5% higher BTE and BSFC than diesel at full load 

respectively. In-cylinder peak pressure of W100 was 9.7% and 6.7% lower than that of diesel at low 

and mid-range engine loads and W100 had 16% shorter combustion duration in total. Similarly, An et 

al (2012) reported shorter combustion duration for W100 than diesel at all engine loads. The main 

drawback of biodiesel was reported in CO2 emission which was 3% greater than diesel (Hossain and 

Davies, 2012). On the other hand, biodiesel released 4% and 90% lower NOx and CO emissions than 

diesel.  

In another study, An et al. (2012) investigated the use of W10, W20, W50 and W100 biodiesels in a 

four-cylinder DI diesel engine. They found that W100 produced the lowest in-cylinder peak pressure 

(2% lower than diesel) and this was attributed to the lower calorific value of the biodiesel. Although 

all fuels showed comparable BSFC trends, W100 had almost 13% higher BSFC than the others under 

full load. However, W100 gave 3% improvement in BTE over diesel at full load. The exhaust gas 

temperature reduced in accordance with increased biodiesel content in the blend. Around 100oC 

difference between diesel and B100 was recorded for all engine speeds. Even though they reported 

higher CO emissions with the biodiesel operation at low engine loads, W100 released 70% lower CO 

than diesel at maximum engine speed. Moreover, 20% and 40% reduced CO2 and HC emissions were 

measured for W100 relative to diesel. NOx emissions at almost all loads were found comparable. The 

major difference between diesel and W100 of 10% in favour of W100 was reported at full load and 

maximum engine speed. Very similar results were also measured in the study of Lin and Li ( 2009) for 

W100 except for BTE and NOx. Unlike other W100 studies reviewed, Lin and Li found 5% improved 

BTE and 13% increased NOx emission for the W100 operation at full load. This is probably due to the 

type of W100 biodiesel used, which was described as commercial biodiesel and may have contained 

performance improver additives. 
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Dorado et al (2003) studied waste cooking olive oil biodiesel (WO100)  in a three-cylinder CI engine. 

According to the study, WO100 gave a maximum of 58.9% reduction in CO emission, up to 8.6% 

reduction in CO2 emission, 37.5% reduction in NO emission and up to 57.7% reduction in SO2 

emission compared to diesel. Whereas, NO2 emission increased drastically as a maximum of 81% 

observed with the usage of biodiesel. Another bad performance feature of biodiesel is the increase of 

(less than 8.5%) brake specific fuel consumption. In terms of combustion efficiency, biodiesel and 

diesel have comparable results (Dorado et al., 2003). 

Aydin and Bayindir (2010) studied cottonseed biodiesel CO100 and its blends with diesel at fractions 

of CO5, CO20, CO50 and CO75 in a direct-injection single-cylinder diesel engine. They reported a 

20% reduction in engine power and 17% decrease in engine torque with CO100 at the full load. In 

parallel, a 30% increase in BSFC was reported with CO100 compared to fossil diesel. However, 

significant reductions in the CO and NOx emissions were observed; these were 52% and 38% lower 

than diesel respectively. In addition, almost 100% reduction in SO2 emission was observed again at 

full load. Similarly, Dorado et al. (2003) reported a significant reduction in SO2 emission by 58% 

with waste frying olive oil biodiesel operation in a direct-injection diesel engine.  

Like Aydin and Bayindir (2010), Karabektas et al. (2008), Yucesu and Ilkilic (2006) also reported 

reduction in NOx emission around 23% for cottonseed biodiesel CO100 operation. The other exhaust 

gas emissions like CO and CO2 were measured lower than diesel up to 38% and 33% respectively 

(Table 2.5). Furthermore, BTE of the CO100 was reported 4% higher than diesel (Karabektas et al., 

2008). However, BSFC was reported 10% higher than diesel in the study of Yucesu and Ilkilic (2006). 

Raheman and Phadatare (2004) tested Karanja biodiesel K100 and compared the results against diesel. 

They reported a 20% reduction in BTE and 30% increase in BSFC. Moreover, engine torque was 

reported 19% lower than diesel operation for K100. These results showed that K100 could not 

improve engine performance. This may have been due to poor fuel properties such as relatively high 

viscosity of 9.60 mm2/s (compared to BS EN 14214 standard) and HHV of 36.12 MJ/kg. However, 

exhaust gas emissions of K100 were reported lower than diesel i.e. 92%, 38% and 50% lower CO, 

NOx and smoke emissions were measured for K100. 

Ganapathy et al. (2011) and Chauhan et al. (2011) both studied Jatropha biodiesel J100 and reported 

very similar results in terms of engine performance and exhaust emissions, Table 2.5. Both studies 

were conducted on one-cylinder diesel engines. According to these studies, J100 had around 8% 

reduction in BTE and 15% increase in BSFC. Reductions in CO, HC and smoke emissions were 

measured up to 40%, 60% and 37% relative to diesel respectively, Table 2.5. However, CO2 and NOx 

emissions of J100 were found to be 40% and 52% higher than diesel at the full engine load Table 2.5. 

Similarly, Ganapathy et al. (2011) also reported 10% increase in NOx emission for J100 at full load 

and high engine speed conditions (15 Nm and 3200 rpm). 
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To sum up, engine test results from biodiesels produced from waste cooking oils, cottonseed oil, 

Karanja oil and Jatropha oil were summarised and reviewed in this section. Among the investigated 

biodiesels, WCO biodiesels were found as a good candidate especially in terms of BTE, NOx and 

consistency of the results from different studies. Moreover, CO100 was also superior to other 

biodiesels especially in terms of its relatively low viscosity, higher BTE and reduced NOx emissions 

Table 2.5.  

 

2.7. Diesel engine operation using biodiesel-biodiesel mixtures 

 

Biodiesel-diesel blends are very common in the literature. However, relatively few studies have been 

done on biodiesel-biodiesel blends. Previous studies on biodiesel-biodiesel blending are reviewed 

from different perspectives in this section. 

Benjumea et al (2011) conducted an experimental study on a 4-cylinder turbocharged direct-injection 

diesel engine to observe the effects of degree of unsaturation (DU) of palm oil and linseed oil 

biodiesels. According to the study, no significant effect of degree of unsaturation was reported on 

engine performance. However, the combustion start time of linseed oil biodiesel with an iodine value 

of 185.4 was 2°CA later than the palm oil biodiesel which had an iodine value of 52. Moreover, peak 

heat release rate (HRR) of the linseed oil biodiesel was 40% higher than the palm oil biodiesel. In 

terms of the exhaust emissions, higher iodine value biodiesel released approximately 40% higher NOx 

and slightly higher smoke opacity compared to low iodine value biodiesel. The palm and linseed 

biodiesel blends reported to have a linear relationship between the base fuels for all test parameters. 

Rajkumar and Thangaraja (2019) tested the karanja and coconut biodiesels in the fractions of K100, 

K80C20, K60C40, K40C60, K20C80 and C100. The effect of retarding Start of Injection (SOI) as a 

result of different fuel properties such as bulk modulus of compressibility and degree of unsaturation 

was investigated in a four-cylinder turbocharged diesel engine equipped with a mechanically operated 

injection system. The results of the study showed an increasing trend in the peak pressure with the 

increasing fraction of the karanja biodiesel, which had a higher degree of unsaturation and bulk 

modulus compared to coconut biodiesel. The trend was similar in terms of the NO emission i.e. K100, 

K80C20, K60C40, K40C60, K20C80 and C100 fuels had NO emissions of 765, 732, 695, 672, 628, 

and 590 ppm at 2500 rpm, 80% load, respectively. However, more studies are required to support 

these results as the karanja biodiesel used in the study was not neat but hydrogenated. The 200 ml of 

karanja biodiesel was diluted in 800 ml of methanol in the presence of 1 gram palladium catalyst. 

Sanjid et al. (2016) blended kapok and moringa biodiesels with diesel and tested them in a 4-cylinder 

diesel engine. Not only the 10% and 20% biodiesels blended with diesel (i.e. KB10, KB20, MB10 and 
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MB20), but also 5% and 10% of neat biodiesels blended with each other along with 90% and 80% 

diesel (i.e. KB5MB5 and KB10MB10) and analysed. According to the authors, biodiesel-biodiesel-

diesel blends had comparable engine performance with neat biodiesels and diesel. KB5MB5 and 

KB10MB10 biodiesel-biodiesel-diesel blends had between 14% and 17% increased NO emissions 

compared to diesel. Moreover, the same blends gave 1% and 2% higher CO2 emission compared to 

diesel respectively. However, significant reductions on HC and CO emissions were reported as 38% 

and 31% for the KB10MB10 blend, respectively.   

Dos Santos et al (2018) studied the traceability of biodiesel-biodiesel mixtures collected from different 

regions of Brazil. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyse the various 

ratios of biodiesels obtained from soybean, tallow, palm and cotton. This preliminary study showed 

that biodiesels produced from different regions of Brazil can have different properties. The authors 

stated that biodiesel-biodiesel blending can improve fuel properties and they also recommend future 

works in multiple feedstock biodiesel blending.  

Usta et al. (2005) highlighted the importance of soapstock feedstock, which is a side product of edible 

oil extraction process, as they are cheap, highly available and sustainable. However, these products 

may have high free acid values which make biodiesel production from soapstock more difficult 

compared to vegetable oils. Hence, in their study, hazelnut soapstock was blended with waste 

sunflower oil in 50/50 ratio to reduce the overall fatty acid content of the feedstock. The viscosity of 

the biodiesel obtained was very high at 25 mm2/s; thus the biodiesel was blended with the diesel. 

According to results, 17.5% biodiesel blend gave the best engine performance. Similarly, in another 

study, Can (2014) reduced the high free fatty acid content (10%) of the WCO collected from fast food 

restaurants by blending them with the WCO obtained from cooking factories. The results of the study 

showed that 10% blend of the obtained biodiesel with diesel provided; 4% increase in BSFC, 2.8% 

reduction in BTE, 8.7% increase in NOx emission, 29 % decrease in HC and 51% reduction in CO 

emission compared to diesel. 

Sharma and Ganesh (2019) analysed two different biodiesel blends produced from linseed, karanja, 

palm and sunflower biodiesels in a one-cylinder diesel engine. The first blend was composed of 25% 

of all the four biodiesels; whereas the second blend contained 37.5% of palm and karanja biodiesels 

and 12.5% of linseed and sunflower biodiesels. They reported that the first blend decreased the NOx 

emission by 20% but increased the smoke intensity by 30%. In addition, CO2 emission was reported 

35% lower compared to diesel. The study pointed to the importance of biodiesel-biodiesel blending 

technique which can solve NOx emission disadvantage of biodiesels. Similary, Mehta and Jeyaseelan 

(2014) reported 14% reduction in NO emission with the 80% palm biodiesel - 20% karanja biodiesel 

blend in a 4-cylinder turbocharged direct-injection CI engine. 
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Fadhil et al (2017) blended castor seed oil and waste fish oil feedstock at the ratios of 90/10, 80/20, 

70/30, 60/40 and 50/50 to improve the transesterification process. They reported that 50/50 oils blend 

was found optimal blend for transesterification and best conditions were provided as 0.5 weight% 

KOH, 1:8 molar ratio of methanol, 32⁰C temperature and 30 minutes of stirring at 600 rpm. Although 

the biodiesels were not tested in any engine, this study proved that feedstock blending is a promising 

technique to improve the transesterification process as maximum yield was obtained at lower reaction 

temperature. 

 Summarising the biodiesel-biodiesel blending studies, it is clear that this technique is really promising 

for the future research. According to literature, one of the main advantageous of biodiesel-biodiesel 

blending could be enhancing the utilisation of cheap, highly available but low fuel quality feedstock 

such as soapstocks and high free acid content waste cooking oils. No study was found about the effects 

of using a waste cooking oil and animal fat biodiesel-biodiesel blend in a diesel engine. 

 

2.8. Engine modifications – combined and individual effects of thermal barrier 

coating, injection timing, injection pressure and fuel preheating  

 

 
Compression ignition engines are designed for diesel application, but physico-chemical properties of 

biofuels are not the same with diesel. This section reviews the engine modifications to upgrade biofuel 

operation in terms of engine performance, fuel combustion and exhaust emissions. Both individual and 

combined effects of Thermal Barrier Coating (TBC), injection timing, injection pressure and fuel 

preheating were reviewed in detail. 

Thermal barrier coating also known as Low Heat Rejection (LHR) technique was first reported in 

1978 for the purpose of increasing performance and durability of diesel engine (Kamo and Bryzik, 

1978). Coating layers are typically applied via plasma spray technology which has a volume fracture 

of 10-20% voids and cracks (Samadi and Coyle, 2009). This minimises the heat transfer from the 

combustion chamber to the surroundings; thus heat rejection through the cooling system is reduced 

which in turn improves the thermal efficiency, mechanical power output, fuel consumption and 

exhaust emissions (Masera and Hossain, 2019).  

Generally, two different layers are applied to form TBC; namely the primary and bond coating layers 

(Kumar et al., 2013; Mittal et al., 2013; Iscan, 2016). The thermal insulation is provided by the 

primary layer and bond layer is applied for the adherence between the primary layer and the substrate 

(Figure 2.9). The bond layer minimises the unwanted oxidation or corrosion on the surface of substrate 

(Saint-Ramond, 2001; Yilmaz et al., 2010). 



 

33 

 

The TBC details from various biofuel studies were summarised and tabulated in Table 2.6 explicitly. 

The majority of the studies reviewed preferred to use Zirconium products (ZrOx) for the primary layer 

and NiCrAl alloy in the bond layer (Table 2.6). The Piston crown, cylinder liner, exhaust and inlet 

valves and cylinder head were the main surfaces coated by the researchers. 

 

 

Figure 2.8: Thermal barrier coating layers (Masera and Hossain, 2019). 
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Table 2.6: Biofuels and thermal barrier coating details from the literature, adapted from the author’s 

published paper (Masera and Hossain, 2019). 

Ref Fuel  COATING    Engine 

Components 

Air                               

Intake 

Primary 

Layer 

Material 

Thickness 

(µm) 

Bond 

Layer 

Material 

Thickness 

(µm) 

 

(Aydin and Sayin, 

2014) 

WCOB ZrO2 (88%) + 

Al2O3 (8%) + 

MgO (4%) 

400 NiCrAl 100 PC, V Naturally aspired 

(Aydin, 2013) CSO35 ZrO2 200   CH, PC, V n/a 

(Aydin, 2013) SFO35 ZrO2 200   CH, PC, V n/a 

(Hazar and Ozturk, 
2010) 

COB Al2O3 +TiO2 250 NiAl 50 CH, PC, V Naturally aspired 

(Iscan, 2016) CSO65 ZrO2 400 NiCrAl 100 PC, CL, V Naturally aspired 

(Kumar et al.,  2013) PPOB La2Zr2O7 350 NiCrAlY 150 PC, CH, V Naturally aspired 
(Mittal et al., 2013) GNB15 ZrO2+ Y2O3 

(8% by weight) 

200  NiCrAl 100 CH, V Naturally aspired 

(MohamedMusthafa 

et al.,  2011) 

RME Fly Ash 200 No bond 

layer 

0 CH, CL, PC, V Naturally aspired 

(MohamedMusthafa 

et al.,  2011) 

PME Fly Ash  200 No bond 

layer 

0 CH, CL, PC, V Naturally aspired 

(Palaniswamy and 

Manoharan, 2008) 

Diesel ZrO3 250   PC, CH n/a 

(Prabhahar and Rajan, 
2013) 

PME TiO2 500   PC Naturally aspired 

(Rajan and Kumar, 

2011) 

JOB ZrO3 350  NiCrAl 150 PC n/a 

(Srikanth et al., 2013) ECSO PSZ 500   CH Naturally aspired 

(Taymaz et al., 2003) n/a CaZrO3 (CH 

and V), 
MgZrO3 (PC) 

350 NiCrAl 150 CH, PC, V Turbocharged 

(Reddy et al., 2012) MO PSZ 500   CH Naturally aspired 

(Reddy et al., 2012) MOB PSZ 500   CH Naturally aspired 
(Rao et al., 2013) TOB PSZ 500   CH Naturally aspired 

(Parlak et al., 2005) Diesel MgO-ZrO2 

(PC), CaO-
ZrO2 (CH and 

V) 

350 NiCrAl 150 CH, PC, V Turbocharged 

(Hasimuglu et al., 
2008) 

SOB ZrO3 n/a NiCrAl n/a CH, CL, PC, V Turbocharged 

(Hazar, 2010) CME40 Mo n/a   CH, PC, V n/a 

(Janardhan et al., 
2013) 

JO PSZ 500 supreni-
90 

n/a CH, CL Naturally aspired 

(Janardhan et al., 

2013) 

JOB PSZ 500 supreni-

90  

n/a CH, CL Naturally aspired 

(Murthy, 2013) RBO PSZ 500 supreni-

90 

n/a CH, CL Naturally aspired 

(Prasath et al., 2010) JOB20 PSZ 500   CH, CL, PC, V Turbocharged 
(Sathiyagnanam et 

al.,, 2010) 

ISO10 ZrO2+Al2O3 150 + 150 NiCrALY 150 CH, CL, PC, V Naturally aspired 

WCO: Waste Cooking Oil Biodiesel;CSO35: Cottonseed Oil (35%), Biodiesel + Diesel (65%); SFO35: Sunflower Oil (35%), Biodiesel + 

Diesel (65%); COB: Corn Oil Biodiesel; CSO65: Cottonseed Oil (65%) + Diesel (35%); PPOB: Pongamia Pinnata Oil Biodiesel; GNB15: n-
butanol (15%) + Gasoline (85%); RME: Rice Bran Biodiesel; PME: Pongamia Oil Biodiesel; ECSO: Cottonseed Oil Biodiesel; MO: Mohr 

Oil; MOB: Mohr Oil Biodiesel; TOB: Tobacco Seed Oil Biodiesel; SOB: Sunflower Oil Biodiesel; CME40: Cottonseed Oil (40%), biodiesel 

+ Diesel (60%); JO: Jatropha Oil; JOB: Jatropha Oil Biodiesel; RBO: Rice Brawn Oil; JOB20: Jatropha Oil Biodiesel (20%) + Diesel (80%); 
ISO10: Fuel Additive (Di Iso Propylether 10%) + Diesel (90%); ZrO2: Zirconium dioxide; La2Zr2O7: Lanthanum Zirconate; Y2O3: Yttrium 

Oxide; Fly Ash: (silica SiO2:45%, alumina Al2O3:30 %, iron Fe2O3:10%, magnesium MgO:0.5%); ZrO3: Partially stabilized Zirconia; PSZ: 

Partially stabilized Zirconium PSZ;  Mo: Molybdenum; CH: Cylinder Head; CL: Cylinder Liner; PC: Piston Crown; V: Intake and Exhaust 
Valves 

 

 

2.8.1. Performance characteristics 

Engine performance parameters such as BTE, BSFC, and brake Specific Energy consumption (BSEC) 

of the biofuels are reviewed in Figure 2.10. The results were tabulated under two conditions which 

were; (i) uncoated biofuel to coated biofuel (UB to CB), and (ii) uncoated diesel to coated biofuel (UD 

to CB). Each of the important parameters will be discussed in the next sections. 
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(a) 

 

 (b) 

Figure 2.9: Comparison of engine performance before and after coating - (a) for UB to CB scenario (b) 

for UD to CB scenario, adapted from (Masera and Hossain, 2019). 

 

2.8.1.1. Brake specific fuel consumption 

It is known that the BSFC of the biofuels are generally high relative to fossil diesel operation, due to 

lower heating value (Canakci and Gerpen, 2003; Dorado et al., 2003; Lin and Li, 2009; Öner and 

Altun, 2009; Behçet, 2011; Hulwan and Joshi, 2011; Zhu et al., 2011; Hossain and Davies, 2012). 

However, according to Figure 2.10, the TBC technique clearly improved the BSFC of the biofuels due 

to the heat retained by the coating. The maximum reduction for UB to CB conditions was observed as 

13.4% (Reddy et al., 2012). This can be explained by the shortened ignition delay and improved 

combustion of biodiesel as a result of higher combustion temperatures. Overall, BSFC of biodiesel 

operation can be improved up to 13.4% by the TBC modification. 
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2.8.1.2. Brake specific energy consumption 

BSEC of the biofuels were also considered to have better comparison between fuels with different 

lower heating values. Unlike BSFC, the BSEC takes LHV of fuels into account too (Krishna et al., 

2016). As a result of retained heat diesel and biofuel had up to 7.4% and 15.4% improvements on 

BSEC (MohamedMusthafa et al., 2011; Kumar et al., 2013). Literature agreed that BSEC can also be 

reduced by injector opening pressure, fuel preheating and injection timing adjustment (Reddy et al., 

2012; Srikanth et al., 2013; Krishna et al., 2016). The injection timing should be arranged according to 

cetane number of any fuel (Masera and Hossain, 2019). Srikanth et al. (2013) reported 5.6% and 4.4% 

lower BSEC for cottonseed biodiesel (lower cetane number compared to diesel was reported for this 

biodiesel) after advancing the injection by 6° and 3° crank angles. The improvement was attributed to 

earlier fuel injection which leads to better air/fuel fraction (Srikanth et al., 2013). 

 

2.8.1.3. Brake thermal efficiency 

It is known that biofuel operation generally increases the BTE of an engine due to the oxygen content 

of the fuel (Kumar et al., 2013). Despite this, further improvements were reported with the TBC 

modification. According to the Figure 2.10, the maximum increases in BTE were 17% for UB to CB 

case. Moreover, some studies reported 4.9%, 6.3% and 10.7%  increased BTE for UD to CB scenario 

(Hasimuglu et al., 2008; Prasath, Porai and Shabir, 2010; Srikanth et al., 2013). Properly arranged 

injection timing along with TBC modification could even result in higher improvement in BTE 

(Masera and Hossain, 2019). Masera and Hossain, (2019) stated that increase in BTE is likely to be 

achieved with the increasing injector opening pressure. This can be attributed to the improved 

combustion as a result of upgraded spray characteristics (Srikanth et al., 2013). Preheating of biofuels 

has also a positive effect on BTE of both coated and uncoated engines (Reddy et al., 2012; Srikanth et 

al., 2013; Krishna et al., 2016). The increased temperature of the fuel reduces the viscosity of fuel, 

with which droplet sizes gets smaller during the spray injection (Masera and Hossain, 2019).  

The best BTE may be obtained at various injection timings according to fuel properties of biofuel and 

specifications of engine used. To illustrate, Murthy (2013) reported that 30°bTDC as the optimum 

injection timing for coated engine under rice brawn oil application. Whereas, Reddy et al., (2012) 

stated the optimum injection timing as 28.5°bTDC for coated engine under Mohr oil application. This 

was due to the different ignition delays and combustion durations of the fuels (Masera and Hossain, 

2019). 
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2.8.2. Exhaust gas emissions characteristics 

Figure 2.11 illustrate the effects of TBC modification on exhaust gas emissions of biofuels. Like 

engine performance analyses, exhaust gas emissions were also reviewed under two conditions: (i) 

uncoated biofuel to coated biofuel (UB to CB), and (i) uncoated diesel to coated biofuel (UD to CB). 

 

 

(a) 

 

 (b) 

Figure 2.10: Deviations in exhaust emissions and smoke - (a) for UB to CB scenario (b) for UD to CB 

scenario (Masera and Hossain, 2019). 

 

2.8.2.1. CO Emission 

Many studies noted reduced CO emission with biofuel operation on unmodified engines as a result of 

the oxygen content (Canakci and Gerpen, 2003; Dorado et al., 2003; Hulwan and Joshi, 2011; An et 
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al., 2012; Hossain and Davies, 2012). Figure 2.11 showed even further decrease in CO after TBC 

modification with all three considered cases. Use of ZrO2, ZrO3, TiO2 and Mo coating materials helped 

to achieve better CO gas reduction than other types (Masera and Hossain, 2019). Iscan (2016) and 

Aydin (2013) stated maximum 81.3% and 93.8% reductions in the CO emissions diesel and biofuel 

after TBC modification, respectively.  

 

2.8.2.2. CO2 Emission 

Significant influences of the engine speed and TBC modification on CO2 emission was addressed 

(Aydin, 2013). Aydin (2013) expressed that CO2 emission of diesel was decreased by about 19.4% at 

low and medium engine speed, whereas 29.2% increase was noted at the high engine speed. For 

coated biofuel operation, CO2 emissions of cottonseed biodiesel-diesel blend (35/65 volume fraction) 

and sunflower oil biodiesel-diesel blend (35/65 volume fraction) were reduced by 11.1% and 2.8% 

respectively at low- and medium-range engine speeds; however, at high speed, they were increased by 

20% and 23% respectively (Aydin, 2013). It can be concluded that in coated engines, CO2 emission 

was decreased at low to medium speed operation; however, at high speed and high load operation, 

CO2 emission could increase (Masera and Hossain, 2019a). 

 

2.8.2.3. HC Emission 

As mentioned earlier, HC emissions are caused by incomplete combustion of fuels (Behçet et al., 

2015). The reviewed studies in this thesis reported significantly reduced HC emissions with TBC 

modification Figure 2.11b. Higher lean flammability and reduced distance for quenching due to the 

thermal barrier caused this (Chan and Khor, 2000; Mittal et al., 2013). Up to 92.5% reduction in HC 

gas emission was reported when biofuel was used in a coated engine instead of an uncoated engine 

(Prabhahar and Rajan, 2013). 

 

2.8.2.4. NOx Emission 

Unlike other emissions, for UB to CB case, all studies measured increased NOx emissions between 

4% and 62.9% for TBC modification Figure 2.11b. The increased combustion temperature was linked 

to this increase which resulted in more interaction between nitrogen and oxygen (MohamedMusthafa 

et al., 2011). The more coated components, the more increase in NOx emission (Masera and Hossain, 

2019). The lowest increase in NOx emission was 4% and the only coated component was the piston 

crown in the specified study (Prabhahar and Rajan, 2013).  Injection timing also has an important 

effect on NOx emission. To illustrate this, Kumar et al. (2013) and Alkidas and Cole (1983) reported 

decreased NOx emission when the injection timing was advanced. Moreover, Buyukkaya et al (2006) 
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noted 2.44% reduction in NOx emission with the combined TBC and injection timing modifications. 

350 µm MgZrO3 was used in the primary and 150 µm NiCrAl was applies in bond coating layer in the 

mentioned study. Similarly, Sathiyagnanam et al. (2010) observed 46.5% decrease in NOx emission 

for diesel after TBC modification (with Al2O3 material). However, they used the fuel additive of di-

isopropyl ether in diesel, which may also have contributed to NOx reduction. 

According to Srikanth et al. (2013), advancing the injection timing to 3°b TDC result in 7% reduction 

in NOx emission for cottonseed biodiesel in TBC engine. This was attributed to enhanced air/fuel ratio 

as a result of lower combustion temperature in the particular study (Srikanth et al., 2013). Similar 

reductions in NOx emissions under coated engine operation were also provided by other studies 

reviewed such as; 50 ppm (4.2%) for tobacco seed oil biodiesel operation with advancing the injection 

timing by 3°b TDC (Rao et al., 2013), 40 ppm (3.9%) for mohr oil operation with advancing the 

injection timing by 1.5°b TDC (Reddy et al., 2012). Same studies also reported 80 ppm and 150 ppm 

NOx reductions accounted for the fuel preheating and increased injector pressure modifications. Even 

though injection pressure, injection timing and preheating can reduce the NOx emission in coated 

engine, it was higher than the uncoated engine operation for most of the cases (Masera and Hossain, 

2019). 

 

2.8.2.5. Smoke and particulate matter 

This review noticed further reduced particulate matter and smoke emissions with TBC modification 

for biofuels Figure 2.11. The maximum reduction of smoke emission was noted by 63% for UD to CB 

case (Aydin, 2013). Furthermore, around 40% reduced PM emission was measured with TBC 

modification (Büyükkaya et al., 2006). Moreover, turbocharged engines showed relatively higher PM 

and smoke reductions due to the increased air (or oxygen) content available for combustion in each 

cycle. Literature states that that smoke emission shall be further decreased by rearrangement of the 

injection time, fuel injection pressure (Reddy et al., 2012; Janardhan et al., 2013; Murthy, 2013; Rao 

et al., 2013; Srikanth et al., 2013). This can be linked to better combustion characteristics of fuel due 

to improved spray injection. The number of fuel droplets increased as the droplet diameter got smaller 

and as a result of higher injection pressures (Masera and Hossain, 2019). Another modification is the 

preheating of fuel, which helps to decrease viscosity of fuel in turn provide improved combustion. In 

addition, density of the fuel decreases by the preheating application which is directly proportional to 

the smoke emission (Reddy et al., 2012; Masera and Hossain, 2019). Srikanth et al. (2013) reported 

70% decrease in smoke intensity for cottonseed biodiesel with TBC modification combined with all 

three mentioned modifications. 
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2.9. NOx emission mitigation technologies  

 

Various solutions to lower NOx emissions are reviewed in this section. Modern NOx reduction 

techniques were categorised under three sections: fuel treatment, engine adjustment and 

aftertreatment. Firstly, fuel treatment refers to fuel chemistry modification such as emulsifying, 

blending and doping fuel additives. In this technique, the main aim is to reduce the combustion 

temperature of fuel, hence lower NOx emissions can be achieved. As a second method, the engine can 

be modified for the needs of selected biofuel properties in a way that lower NOx emissions produced. 

In the third approach, aftertreatment systems are placed on the exhaust pipe. Various aftertreatment 

techniques exist in the literature like Diesel Particulate Filter (DPF), Selective Catalytic Reduction 

(SCR), and Diesel Oxidation Catalysts (DOC). Figure 2.12 summarises the mentioned three methods 

in NOx emission combating and their specific examples.  
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Figure 2.11: NOx mitigation techniques are categorised under three groups which were (i) Fuel 

treatment, includes any changes on the fuel composition, (ii) Engine modifications and (iii) Exhaust 

aftertreatment technologies. 

 

2.9.1. Fuel treatment to reduce NOx emission 

This section covers physical or chemical changes made to the fuel to reduce NOx emission. The three 

popular fuel treatment techniques are emulsification, diesel blending and usage of fuel additives 

(Figure 2.12). This section also explains the emulsification method and investigates some real case 

studies related to all three techniques.  
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2.9.1.1. Emulsification of biodiesels for lower NOx emission 

Emulsification refers to mixing multiple fluids which are immiscible under normal conditions, like 

biodiesel and water. By using this technique, non-polar and polar fluids can be mixed 

thermodynamically stable (Debnath et al., 2015). The general aim in the emulsification of biofuels 

with water is to improve combustion and reduce harmful tile pipe gases like NOx. Having tinier fuel 

droplets increases the total surface area. In other words, increased contact between the oxygen and fuel 

yields more rapid and upgraded combustion in the engine (Annamalai et al., 2016). Water, having a 

lower boiling temperature, vaporises in the oil which in turn disintegrates the biodiesel cell and results 

in smaller fuel droplets (Subramanian, 2011). Furthermore, additional pressure which occurs due to 

the spontaneous water explosion contributes to the total force acting on the piston crown and 

positively affects the engine torque (Abu-Zaid, 2004). Figure 2.13 represents the microexplosion 

process schematically. 

 

 

Figure 2.12: Schematic of micro explosion process (Basha and Anand, 2011). 

 

Although emulsification results in favourable performance of the engine, it is not a straightforward 

process to mix water with biodiesel. By nature, some liquids contain uneven charge distribution in 

their molecules – these are called polar liquids. For example, in the water molecule, negative charge is 

biased towards the oxygen atom. This uneven distribution of charge results in an unbalance of 

repulsive and attractive forces (Debnath et al., 2015). In contrast to polar liquids, distributions of 

charges on each molecule are even in nonpolar liquids such as vegetable oils and biodiesel. As a 

result, additives have to be used to blend nonpolar and polar liquids. These agents are called 

surfactants or surface acting agents. The presence of both polar and nonpolar group of molecules 

makes the surfactants capable of integrating two immiscible liquids. In addition, as surfactants make 

water suspend in the fuel, water molecules do not undergo direct contact with the metallic surfaces of 

the engine (Ghojel et al., 2006).  However, although, all surfactants have an affinity to both polar and 

nonpolar agents, their affinity levels to each agent differ. Surfactants can be divided into two types in 

terms of their affinity namely, hydrophilic and lipophilic surfactants (Krutof and Hawboldt, 2016). 

The former have more affinity towards polar liquids like water; the latter more affinity towards 
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lipophilic surfactants have more affinity to oil type liquids i.e. biodiesel (methyl esters). Hydrophilic-

lipophilic balance (HLB) number was introduced in the literature as Equation 2.3 (Debnath et al., 

2015). 

 

HLB =  
20 Mh

(Mh +  Ml)
 

(2.3) 

 

Where 𝑀𝑙 and 𝑀ℎ stands for molecular weight of lipophilic and hydrophilic molecule portions. HLB 

value of a surfactant can be maximum 20 which represents surfactant is made up of hydrophilic 

constituents only. Whereas, minimum HLB value of 0 reveals a surfactant which comprises of totally 

lipophilic molecules. For biodiesel emulsification (water-in-oil) HLB range between 4 and 6 suggested 

by Debnath et al. (2015). 

Table 2.7 examines some emulsification studies from the literature and their maximum NOx 

reductions. Qi et al (2010) studied the ethanol-soybean biodiesel-water micro emulsion in a one 

cylinder DI engine. 1 ml of water was emulsified with 80 ml biodiesel, 20 ml ethanol and 4 grams of 

Span 80 surfactant. They reported that emulsified fuel had 12.5% lower NOx emission than neat 

biodiesel. However, this significant reduction was not solely from emulsification, but the contribution 

of ethanol should not be ignored. In another study, Basha and Anand (2011) emulsified 83% jatropha 

biodiesel with 15% of the water in the presence of 2% of Span 80 and Tween 80 surfactants. The 

experiments were carried out in a single-cylinder DI diesel engine. They reported up to 23% reduction 

on NOx emission with emulsified biodiesel compared to neat biodiesel. This study showed that 

increasing the water fraction in emulsification can result in more reduction in NOx emission. This was 

confirmed by Annamalai et al (2016). In their study, the neat waste cooking oil was emulsified with 

diesel and different percentages of water i.e. 10%, 20% and 30%. They reported 35%, 50% and 53% 

reductions of NOx emissions compared to diesel-WCO blend. Note that these reductions proved that 

NOx did not decrease linearly; hence an optimum water fraction must be determined. 
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Table 2.7: Biodiesel emulsification case studies from the literature and provided NOx reductions. 

Reference Biodiesel Diesel Additive Water Surfactant Engine 

type 

Maximum 

reduction in 

NOx 

Compared 

to 

(Qi et al., 

2010) 

Soybean 

biodiesel 

(80 ml) 

None Ethanol 

(20 ml) 

(1 ml) Span 80 

(4 g) 

1CY, 

DI 

12.5% Neat 

biodiesel 

(Basha and 

Anand, 2011) 

Jatropha 

biodiesel 

(83%) 

None None (15%) Span 80 and 

Tween 80 

(2%) 

1CY, 

DI 

23% Neat 

biodiesel 

(Basha and 

Anand, 2011) 

Jatropha 

biodiesel 

(83%) 

None Alumina 

nanoparticle 

(100 ppm) 

(15%) Span 80 and 

Tween 80 

(2%) 

1CY, 

DI 

27.7% Neat 

biodiesel 

(Annamalai et 

al., 2016) 

WCO 

(not given) 

Diesel 

(not 

given) 

None (10%) Type and 

amount not 

given 

DI 45% Diesel 

(20%) 57.7% Diesel 

(30%) 60.6% Diesel 

(Silambarasan 

et al., 2015) 

Annona 

biodiesel 

(20%) 

Diesel 

(80%) 

None (5%) Span 80 and 

Tween 80 

(2%) 

Not 

given 

2.6% Diesel 

(7.5%) 5.2% Diesel 

(Rao and 

Anand, 2014) 

Jatropha 

biodiesel 

(88%) 

None None (10%) Span 80 and 

Tween 80 

(2%) 

1CY, 

DI 

30.3% Neat 

biodiesel 

(Rao and 

Anand, 2014) 

Pongamia 

biodiesel 

(88%) 

None None (10%) Span 80 and 

Tween 80 

(2%) 

1CY, 

DI 

35.4% Neat 

biodiesel 

1CY: 1 Cylinder, DI: Direct Injection, WCO: Waste cooking oil 

 

2.9.1.2. Fuel additives for lower NOx emission 

The number of studies investigating the use of antioxidants for NOx reduction has increased especially 

in the past few decades Table 2.8. Rizwanul Fattah et al (2014) studied the 2(3)-tert-butyl-4-

methoxyphenol (BHA) and 2,6-ditert-butyl-4-methylphenol (BHT) synthetic antioxidants as biodiesel 

additive to reduce NOx emission. The NOx emission of biodiesel (20%)-diesel (80%) blend lowered 

by 7.78% and 3.84% with the 2000 ppm BHA and BHT additives. However, some negative aspects of 

the antioxidant doped fuels were also reported. For example, 8%-9% increase in CO, 17% and 27% 

increases in HC, and 16% and 19% increase in smoke emissions were reported for BHA and BHT 

doped biofuels, respectively. Similarly, Adam et al (2018) studied the antioxidants for NOx reduction 

which were namely, N,N′-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-1,4-phenylenediamine 

(NPPD), 2(3)-tert-Butyl-4-methoxyphenol (BHA), and 2-tert-butylbenzene-1,4-diol (TBHQ). The four 

antioxidants were added into diesel-palm oil biodiesel blends (50/50% by volume) at different 
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fractions (Table 2.8). They report a reduction in NOx emission by 9% compared to the base biofuel 

without additives. However, similar to the previous case study, they also reported approximately, 25% 

increase in CO, a 42% increase in HC and a 32% increase in smoke opacity. The reason for CO 

increase can be attributed to antioxidants inherent property of hindering the CO to CO2 conversion 

(Palash et al., 2014). The increase in HC is due to the reduced hydroxyl radicals (OH) which helps to 

form H2O by breaking down the HC molecules (Varatharajan and Cheralathan, 2013). Finally, the 

reduced oxygen content and increased aromatic compounds with the addition of antioxidants can 

explain the increase in smoke opacity (Rizwanul Fattah et al., 2014). 

 

Table 2.8: Influence of biodiesel fuel additives on NOx emissions and reported side effects on other 

exhaust gases. 

Reference Biodiesel Diesel Additive Engine 

type 

Reduction in 

NOx 

Increase 

in 

(Rizwanul Fattah et 

al., 2014) 

Coconut 

biodiesel 

(20%) 

(80%) 2(3)-tert-butyl-4-

methoxyphenol (BHA) 

(2000 ppm) 

4CY, IDI 7.78% 8% CO 

17% HC 

16% 

smoke 

(Rizwanul Fattah et 

al., 2014) 

Coconut 

biodiesel 

(20%) 

(80%) 2,6-ditert-butyl-4-methylphenol 

(BHT) 

(2000 ppm) 

4CY, IDI 3.84% 9% CO 

27% HC 

19% 

smoke 

(Adam et al., 2018) Palm oil 

biodiesel 

(50%) 

(50%) N,N′-diphenyl-1,4-

phenylenediamine (DPPD) 

(2000 ppm) 

4CY, IDI 9% 25% CO 

33% HC 

20% 

smoke 

(Adam et al., 2018)  Palm oil 

biodiesel 

(50%) 

(50%) N-phenyl-1,4-

phenylenediamine (NPPD) 

(2000 ppm) 

4CY, IDI 9% 8% CO 

42% HC 

24% 

smoke 

(Adam et al., 2018) Palm oil 

biodiesel 

(50%) 

(50%) 2(3)-tert-Butyl-4-

methoxyphenol (BHA) 

(2000 ppm) 

4CY, IDI 9% 25% CO 

50% HC 

33% 

smoke 

(Adam et al., 2018) Palm oil 

biodiesel 

(50%) 

(50%) 2-tert-butylbenzene-1,4-diol 

(TBHQ) 

(2000 ppm) 

4CY, IDI 7.5% 33% CO 

42% HC 

38% 

smoke 

4CY:4 cylinder, IDI: Indirect injection 
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2.9.2. Engine modifications to reduce NOx emission 

This section involves some popular engine modifications on CI engines for the purpose of NOx 

reduction. The changes on the fuel injection parameters such as (i) injection pressure and timing, (ii) 

advanced combustion techniques like LTC, HCCI, (iii) dual fuel injection strategies like RCCI, and 

(iv) water injection methods were investigated. The maximum NOx reductions (typically at full load 

condition) for each technique was reviewed from the literature along with any draw backs on other 

exhaust gases such as an increase in CO, HC or smoke opacity. 

 

2.9.2.1. Injection timing and injection pressure arrangement for lower NOx 

emission 

Biodiesel can be used in diesel engines without any modification but its performance, combustion 

characteristics and exhaust gas emissions can be upgraded by injection timing and pressure 

adjustment. As biodiesel has different fuel properties to diesel, the fuel injection system may be 

modified in accordance with the needs of selected biodiesel. To illustrate, injection timing can be reset 

with respect to cetane number, and injection pressure can be changed with respect to viscosity and 

density of the biodiesel. The effects of injection timing and injection pressure were also studied earlier 

in Section 2.8. 

 Agarwal et al. (2015) studied the influence of different injection pressures as 300, 500, 750 and 1000 

bar and injection timings between -24° and 4°CA on common rail direct injection CI engine fuelled 

with karanja biodiesel-diesel (50/50 by volume) blend. They reported decreased NOx emissions with 

respect to increased pressure. It was also addressed that NOx emissions were reduced with the retarded 

injection timing at 300 and 500 bar injection pressures. On the other hand, slightly increasing NOx 

emissions were reported with the retarded injection timing at 750 and 1000 bar injection pressures 

(Agarwal et al., 2015). The lowest NOx emissions were achieved at 300 and 500 bar injection 

pressures at -9° and -3°CA injection timings. However, HC and CO had increased by approximately 

69% and 27% at the mentioned injection operation points.  

Similarly, Gnanasekaran et al. (2016) studied the effect of injection timing on NOx emission of fish oil 

biodiesel. They reported that NOx emission was reduced by approximately 2.1% by advancing the 

injection timing from 24°bTDC to 27°bTDC. However, CO was increased around 20% whilst smoke 

and HC was not changed. Deep et al. (2017) also investigated the influence of injection pressure and 

injection timing on a single-cylinder diesel engine fuelled with castor biodiesel-diesel (20/80 by 

volume). They reported around 16% and 32% reductions in NOx emission by retarding the injection 

timing from 25° to 23°bTDC and 23° to 21°bTDC, respectively. Similarly, reducing injection pressure 

from 300 to 250 bar and from 250 to 200 bar resulted in 13% and 16% reductions in NOx emission at 
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300 bar. However, CO, HC and smoke opacity were negatively affected by reducing injection pressure 

and retarding injection timing. 

 

2.9.2.2. HCCI combustion for NOx reduction 

Various advanced combustion studies targeted low NOx emission by low-temperature combustion 

(LCT) (Lawler et al., 2017). Homogeneous Charge Compression Ignition (HCCI) can be the most 

popular example of advanced combustion techniques which reduces NOx and provides high engine 

performance (Imtenan et al., 2014; Yousefi, Gharehghani and Birouk, 2015). The main principle is to 

avoid high combustion temperature due to flame propagation like in the cases of SI and CI engines 

(Imtenan et al., 2014). In HCCI combustion, fuel and air are mixed homogenously through the 

combustion chamber and local burning of fuel droplets is achieved simultaneously to avoid flame 

propagation (Figure 2.14). However, Komninos (2009) addressed about 9% increased HC emission 

with HCCI combustion. The difficulty of low combustion control and high mechanical stress on the 

combustion chamber were also noted as further disadvantages of HCCI technique (Benajes et al.,  

2017). To solve these problems, Bessonette et al. (2007) conducted a test on a caterpillar 3401E 

single-cylinder oil test engine under HCCI conditions. They reported that some drawbacks of HCCI 

technique can be solved by arranging engine operating conditions i.e. using higher CN fuels at low 

engine loads and low CN fuels at higher loads. Variable valve timing (Mahrous et al., 2009), 

optimisation of valve lift (Cinar et al., 2015), residual gas trapping (Xie et al., 2014) were the other 

studies to improve HCCI combustion operation. Although those studies reduce the side effects of 

HCCI applications, the operating range of HCCI is still not wide enough (Benajes et al.,  2017).   

 

 

Figure 2.13: Comparison schematic of combustion initiation on spark ignition, compression ignition 

and Homogeneous Charge Compression Ignition engines. 

 



 

48 

 

2.9.2.3. RCCI combustion for NOx reduction 

The dual fuel injection process which is also known as Reactivity Controlled Compression Ignition 

(RCCI) is another popular advance combustion technique (Salahi et al., 2017). In this type of 

combustion high reactivity (thus high cetane number) fuels like biodiesel is injected into combustion 

chamber, whereas low reactivity fuels with high octane number like natural gas, alcohols, gasoline etc. 

are injected typically from intake manifold at early combustion stroke (Imtenan et al., 2014; 

Gharehghani et al., 2015; Zhou et al., 2015) ( Figure 2.15). The combustion starts with the fuel having 

high reactivity at the top of the combustion chamber after that it expands towards the bottom of the 

combustion chamber. By this method, the overall combustion duration increases due to the high 

reactivity differences of two various fuels, thus the cylinder temperature reduces which in turn reduces 

the NOx formation (Poorghasemi et al., 2017). 

 

 

Figure 2.14: The schematic of RCCI engine operation. Low reactivity fuel is injected from the inlet 

manifold and high reactivity fuel is injected from the injector. 

 

Salahi et al. (2017) studied RCCI combustion in an IDI diesel engine with natural gas and diesel. They 

stated that the fraction of highly reactive fuel should be kept relatively low due to the pre-chamber. 

This shows that engines with direct injection are more applicable to the RCCI application. Moreover, 

the compression ratio of the diesel engine should be reduced, as a low reactivity fuel will be used. In 

this regard, Benajes et al. (2017) reduced the compression ratio of a 4-cylinder Volvo/d5k240 CI 

engine from 17.5:1 to 15.3:1 by enlarging the piston bowls. Mahla et al. (2018) studied the duel fuel 

injection Compressed Natural Gas (CNG) and 20% jatropha biodiesel blended with diesel in a single 
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cylinder DI CI engine. They reported a 13% increase in NOx emission with CNG-biodiesel dual 

injection relative to simple diesel injection. However, with the addition of EGR system at 15% valve 

opening, the NOx emission was dropped by 25% relative to neat diesel operation at the full load. 

Similarly, Gharehghani et al. (2015) tested the biodiesel-natural gas fuels on a single-cylinder variable 

compression ratio engine. Firstly, they tested WCO biodiesel as a single fuel which had around 15% 

higher NOx emission than diesel. Then, biodiesel and natural gas fuels were experimented in RCCI 

mode at 17:1 compression ratio. They reported by 85% and 87% reduced NOx emissions with RCCI 

mode relative to neat diesel and neat biodiesel operations. However, for the RCCI combustion, the 

same study reported approximately 50% higher CO emission and 8 times increased HC emissions 

compared to neat biodiesel operation. The natural gas might be the reason behind the increased CO 

and HC emissions. This problem can be minimised by using biofuels as a low reactivity fuel too like 

bioethanol or syngas. However, the reviewed studies prove that even though the RCCI method can 

reduce the NOx emission, other emissions can be increased. Moreover, a complex fuel supply system 

along with a smart operational algorithm should be developed for the RCCI method. 

 

2.9.2.4. Water injection for NOx reduction 

There is a significant amounts of studies on the effect of water injection into combustion chamber both 

on spark ignition and compression ignition engines (Tauzia et al., 2010; Subramanian, 2011; Adnan et 

al., 2012; Tesfa et al., 2012; Chintala and Subramanian, 2014; Kettner et al., 2016; Mingrui et al., 

2017). The main advantage of this technique over the catalytic converter and EGR is the capability of 

NOx reduction at any engine load without increasing the PM emissions (Tauzia et al., 2010). Like in 

the case of emulsification, the injected water reduces the combustion temperature by absorbing the 

heat during the combustion (Tesfa et al., 2012). Consequently, NOx emission reduces with diminished 

peak flame temperature. The water can be injected from different places. To illustrate, Stanglmaier et 

al. (2008) developed a multi-functional injection system which can inject both fuel and water through 

the same injector. For the diesel (70%) + water (30%) operation, they reported a reduction in NOx 

emission by approximately 15% relative to neat diesel application. However, around 50% and 65% 

higher CO and HC were observed. The second and most common water injection place is the intake 

manifold. This may be because of the easier modification of the water injector on the intake manifold 

rather than on the combustion chamber. Subramanian (2011) injected 40% (by mass) of the consumed 

diesel through the intake manifold into a one-cylinder diesel engine. The study reported 41% NOx 

reduction, whereas CO, HC and smoke emissions were increased by 6.7%, 33% and 26% respectively. 

Similarly, Tesfa et al. (2012) were successful in reducing NOx emission of neat rapeseed biodiesel by 

50% by injecting water through the intake manifold at the flow rate of 3 kg/h. This study also reported 

a 40% increase in CO emission. Adnan et al. (2012) also used water injection through the intake 

manifold. They reported 100% improvement in NOx emission when the water was injected at 2 bar 
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pressure. However, SO2 emission was 17% higher than without water application. Similar to 

previously reviewed studies, Chintala and Subramanian (2014) also observed 37% reduction in NOx 

emission by the 270 g/kWh water injection. However, the drawbacks in CO, HC and smoke emissions 

were also reported as they increased by 100%, 54% and 55%, respectively. Table 2.9 summarises the 

case studies according to their operation conditions, maximum NOx reductions and main drawbacks 

on other emissions. To sum up, direct water injection found to be a good way of reducing NOx 

emission. However, it was noticed that the other exhaust gases like CO, HC, SO2 and smoke emissions 

were negatively affected by this technique. This can be due to the reduced combustion temperature. 

Another disadvantage of the system is the direct contact between the water and the metallic surfaces 

such as manifold and combustion chamber which can be rusted and damaged.  

 

Table 2.9: Summary of the direct water injection studies with their details, the maximum NOx 

reduction at full load and negative aspects of other exhaust gases. 

Reference Fuel Water 

injection 

Engine type Reduction 

in NOx  

Increase 

in 

(Subramanian, 

2011) 

Diesel 40% of 

diesel by 

mass 

1CY, water injected through 

intake manifold 

41% 6.7% CO 

33% HC 

26% 

smoke 

(Tesfa et al., 2012) Rapeseed biodiesel 

(100%) 

3 kg/h 4CY, DI, turbocharged, water 

injected through intake 

manifold 

50% 40 % CO 

 

(Adnan et al., 2012) Diesel and 

Hydrogen (5 l/m) 

2 bar DI, naturally aspired, duel fuel, 

water injected through intake 

manifold 

100% 17% SO2 

 

(Chintala and 

Subramanian, 2014) 

Pilot fuel: Diesel 

(80%) + Biodiesel 

(20%) 

Main fuel: 

Hydrogen (100%) 

270 g/kWh 1CY, naturally aspired, water 

injected through intake 

manifold 

37% 100% 

CO 

54% HC 

55% 

smoke 

 (Stanglmaier et al., 

2008) 

Diesel (70% by 

volume) 

(30%) Volvo D-12, DI, water injected 

directly into the combustion 

chamber 

15% 50% CO 

65% HC 

 

 

2.9.2.5. Selective Catalytic Reduction (SCR) 

Selective Catalytic Reduction (SCR) is considered as the most efficient after-treatment technology in 

terms of NOx mitigation (Guan et al., 2014; Zhang et al., 2018). It was first commercialised for heavy 

duty CI engines in 2005 (Cho et al., 2017). In this technique, water-urea solution is injected into 

exhaust gases. When the solution reacts with the flowing hot gases, the solution decomposes to 
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ammonia and reacts with the NOx gases to N2 at the catalyst (Zhang et al., 2018). The system used a 

honeycomb monolith catalyst made of V2O5-WO3/TiO2. After 2010, the material of the catalyst mainly 

shifted to Fe-promoted zeolite due to its better durability, reliability and improved activation with NO2 

(Cho et al., 2017). The following equation 2.4 shows the decomposition of urea [CO(NH2)2] into 

ammonia [NH3], equation 2.5 shows how ammonia [NH3] converts nitrogen oxide [NO] and oxygen 

[O2] into nitrogen [N2] and water [H2O], and equation 2.6 shows the same conversion for both nitrogen 

oxide [NO] and nitrogen dioxide [NO2] (Haridass and Jayaraman, 2018). 

 

(𝑁𝐻2)2𝐶𝑂 + 𝐻2𝑂 →  2𝑁𝐻3 + 𝐶𝑂2 (2.4) 

4𝑁𝐻3 + 4𝑁𝑂 +  𝑂2  →  4𝑁2 + 6𝐻2𝑂 (2.5) 

4𝑁𝐻3 +  2𝑁𝑂 + 2𝑁𝑂2  →  4𝑁2 + 6𝐻2𝑂 (2.6)   

 

Figure 2.16 shows a schematic diagram and Figure 2.17 shows a picture of a typical SCR system. 

Cheruiyot et al (2017) stated that the SCR system operates more efficiently at higher engine loads. 

This is because of the higher NOx formation at high engine loads due to increased combustion 

temperatures. 

 

 

Figure 2.15: Schematic diagram of SCR 

(Haridass and Jayaraman, 2018). 

 

 

Figure 2.16: SCR system (Haridass and 

Jayaraman, 2018). 

 

 

Scientists have been testing the efficiency of the SCR method under various conditions. For example, 

Tadano et al (2014) reported 68% reduced NOx emission for biodiesel with the application of SCR. 

Haridass and Jayaraman (2018) tested the mahua biodiesel in a multi-cylinder diesel engine with and 

without an SCR system. They reported that the SCR system reduced the NOx emission by 

approximately 8.7%. Sachuthananthan et al (2018) studied the effects of Butylated hydroxytoluene 

antioxidant and SCR system on a single cylinder diesel engine fuelled with neem biodiesel. They 

reported that neem biodiesel had around 11% higher NOx emission than the diesel without antioxidant 
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and SCR applications. When 100 mg of antioxidant added into 1 kg of neem biodiesel, the NOx 

emission dropped by 12.5% and 22.2% compared to diesel and neat biodiesel. The NOx emission was 

further reduced by 82% via the application of SCR (Sachuthananthan et al., 2018). In another study, 

Zhang et al (2018) investigated the durability of a 6-cylinder turbocharged diesel engine fuelled with 

B20 (produced from WCO) with common rail fuel injection system and aftertreatment components of 

DOC and SCR. Their results indicated a 25% increase in NOx emission after 500 hours operation of 

the engine. 

The main disadvantage of the SCR system is the N2O generation. N2O is a harmful greenhouse gas 

which is not a typical product of the fuel combustion (Cho et al., 2017). Its global warming potential 

was reported as 298 times greater than CO2 (Cho et al., 2017). Moreover, it is a very stable gas in the 

atmosphere with approximately 114 years of lifetime (Lambert et al., 2014). Grossale et al (2008) 

defined the N2O formation from NO2 emission in equation 2.7, 2.8 and 2.9. They reported that when 

nitrogen dioxide (NO2) and ammonia (NH3) reacts, they form ammonium nitrate (NH4NO3) equation 

2.7 which then decomposes to nitrous oxide (N2O) and water (H2O) equation 2.8. The sum of the 

reactions 2.7 and 2.8 gives equation 2.9 which describes the N2O formation from NO2. 

 

2𝑁𝐻3 +  2𝑁𝑂2  →  𝑁𝐻4𝑁𝑂3 +  𝑁2 + 𝐻2𝑂 (2.7) 

𝑁𝐻4𝑁𝑂3  →  𝑁2𝑂 +  2𝐻2𝑂 (2.8) 

2𝑁𝐻3 +  2𝑁𝑂2  →  𝑁2𝑂 +  𝑁2 +  3𝐻2𝑂 (2.9) 

 

Cho et al (2017) also agreed with the equation 2.9. Moreover, Djerad et al (2006) addressed other 

possible N2O formation reactions for NO emission when reacts with O2 equations 2.10 and 2.11. 

 

4𝑁𝐻3 + 4𝑁𝑂 +  3𝑂2  →  4𝑁2𝑂 +  6𝐻2𝑂 (2.10) 

2𝑁𝐻3 + 2𝑂2  →  𝑁2𝑂 +  3𝐻2𝑂 (2.11) 

 

To sum up, although SCR systems can reduce the NOx emission very effectively (up to 82%), it 

produces another harmful greenhouse gas, N2O, which is not normally produced through fuel 

combustion (Cho et al., 2017). This fact can be considered as the main drawback of the SCR 

application. 
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2.10. Review summary and gaps in the literature 

 

In the chapter, literature was reviewed in detail in terms of biodiesel feedstock, transesterification 

details, biodiesel quality, engine tests, engine modifications and NOx reduction technologies. After 

understanding the already published studies and careful analysis of the literature, the following 

knowledge gaps were found: 

 Fuel properties of biodiesels produced from waste cooking oils (including inedible vegetable 

oils) and animal fats were very different (i.e. Tables 2.2 and 2.3). For example, waste cooking 

oil and inedible vegetable oil biodiesels were superior to animal fat biodiesels mainly in terms 

of viscosity and acid value. On the other hand, animal fat biodiesels were better than waste 

cooking oil and inedible vegetable oil biodiesels in terms of higher heating value, cetane 

number and iodine value (Table 2.10). From the literature review it was discovered that fuel 

properties could be optimised by blending these opposite groups of biodiesels. Hence, it was 

decided to investigate the biodiesel-biodiesel blends for improved fuel properties and better 

combustion in the internal combustion engines. 

 

Table 2.10: Pros and cons of the selected biodiesels relative to diesel and BS EN 14214 standard. 

    

transesterification Cetane 

Biodiesel Viscosity HHV Iodine value difficulty number 

Waste cooking oil Good Normal Bad Good Normal 

Sheep fat Bad Good Good Bad Good 

Cottonseed oil Good Normal Normal Good Normal 

Chicken fat Bad Good Good Bad Good 

 

 

 Literature review showed that biodiesels derived from vegetable oils were blended with each 

other before for various purposes like cheap production, enhance fuel properties and ease 

transesterification (Usta et al., 2005; Sanjid et al., 2016; Sharma and Ganesh, 2019). However, 

biodiesels derived from waste cooking oil and vegetable oils were likely to have similar fuel 

properties as they mainly compose of unsaturated FAMEs (Table 2.2). On the other hand, 

animal fats, which are composed of saturated FAMEs, are also important feedstock used for 

biodiesel production in the world and their blends with unsaturated biodiesels could provide 

promising fuel properties and engine results. To the best of author’s knowledge, hardly any 

study could be found in the literature blending waste cooking oil biodiesel or inedible 
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vegetable oil biodiesels with animal fat biodiesel to test diesel engine performance, 

combustion and emissions. 

 The effect of degree of unsaturation was investigated in the literature up to some extent 

(Schönborn, 2009; Benjumea et al., 2011; Balakrishnan et al., 2016). The previous studies 

tested different source biodiesels produced from soy, canola, rapeseed, palm, linseed and 

tallow to understand the effect of degree of unsaturation. However, effect of other fuel 

properties such as viscosity, density, heating value, volatility, carbon, hydrogen and oxygen 

contents etc. are also influences the results. It is believed that this parameter can be analysed 

in more detail when the effects of fuel properties other than degree of unsaturation are 

minimised. In this regard, two biodiesels having different degree of unsaturation values can be 

blended with each other at different volume fractions. Then, a range of biomixtures having 

various degree of unsaturation can be compared to each other. Highly saturated biodiesel and 

relatively unsaturated biodiesel blends at volume fractions such as 60/40, 50/50 and 30/70 

would contribute to understanding of the effect of degree of unsaturation on diesel engine 

performance, combustion characteristics and exhaust emissions.  

 Literature showed that biodiesels have comparable and even higher NOx emissions compared 

to diesel. Researchers have investigated various techniques to reduce the NOx emission i.e. 

fuel treatment, engine modifications and after-treatment. Among these options, fuel additives 

such as alcohols and antioxidants are found effective way of NOx reduction but their side 

effects were also observed on other emissions like CO, HC and smoke opacity (Figure 2.12). 

Hardly any study could be found in the literature investigating 2-Butoxyethanol as a fuel 

additive. As 2-Butoxyethanol is an ether compound with an alcohol branch, it has promising 

properties for biodiesel blending. It could be doped into biodiesel and/or biodiesel-biodiesel 

mixtures to test fuel properties, engine performance, combustion characteristics and exhaust 

emissions. 

 According to literature, after-treatment system such as SCR is also promising way of NOx 

mitigation, as urea injection could led up to 82% NOx reduction efficiency (Sachuthananthan 

et al., 2018). However, the use of catalytic may cause problems like high back pressure, 

erosion, clogging, expensive cost and limited life time (Javed et al., 2007). After-treatment 

equipment without any catalytic could be designed in order to reduce the NOx emission and to 

avoid catalytic related problems. The after-treatment system could compensate (to some 

extend) the absence of the catalytic by upgrading the turbulence and residence time of injected 

fluid and exhaust gases. 

 

 



 

55 

 

Chapter 3 

 

3. METHODOLOGY 

 

3.1. Introduction 

 

This chapter introduced techniques and methods followed during the feedstock analyse and biodiesel 

production. Fuel properties were introduced in accordance with BS EN 14214 standard. Moreover, 

equipment to conduct this research, and data analysis were described in this section. 

 

3.2. Feedstock 

 

The four main feedstock used in this study were waste cooking oil (WCO), waste sheep fat/tallow, 

inedible cottonseed oil and waste chicken fat (Figure 3.1). WCO was collected from the Matayb 

restaurant located in Birmingham UK. Both waste animal fats, which were sheep fat and chicken skin, 

were obtained from the Euroasia butcher located in Loughborough UK. Inedible cottonseed oil was 

purchased from commercial suppliers. Initially, feedstock collected and pre-treatment processes 

applied according to the need of feedstock. For example, WCO was filtered through a 5 µm sock filter 

to remove any remaining cooking particles. Waste sheep fat and waste chicken skin were both 

rendered i.e. crashed into small parts and owned at approximately 150 °C for 35-45 minutes. The 

released tallow/oil was used in the next stage to measure out Free Fatty Acid (FFA) content by 

titration.  
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Figure 3.1: The four feedstock used in this research, (from left to right) rendered chicken fat, waste 

cooking oil, cottonseed oil and rendered sheep fat. 

 

3.2.1. Titration of feedstock 

The oils having FFA value less than 2% are allowed to proceed with the transesterification process 

(Ramadhas et al., 2005). If it is higher than 2%, the esterification process was recommended to reduce 

FFA value before transesterification (Ramadhas et al., 2005). Titration was carried out at Aston 

University mechanical engineering laboratory by prepared titration solution and oil sample as follows; 

 Preparation of titration solution: 1 gram of catalyst (KOH) dissolved into 1 litre of distilled 

water.  

 Preparation of oil sample: 10 ml of isopropyl alcohol, 1 ml of oil sample and few drops of pH 

indicator (phenolphthalein) added and mixed in a testing vial. 

 Titration: Titration solution was added into testing vail until the colour turns into pink. Then, 

the amount of titration solution spent was recorded. 

The catalyst required for the transesterification, acid value and FFA value of the each feedstock were 

calculated through the titration results. To determine catalyst amount to be used in transesterification, 

the titration result was divided by the purity of the KOH used and added on the base value 7 g/litre 

(Masera and Hossain, 2017). Acid value and FFA value were calculated by using equations 2.1 and 

2.2. 
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3.3. Biodiesel production procedure 

 

Figure 3.2 demonstrates the flow diagram of feedstock conversion into biodiesel. Biodiesels were 

produced at the Aston University mechanical engineering and chemical engineering laboratories. 

 

 

Figure 3.2: Flow diagram of feedstock conversion into biodiesel. 

 

Transesterification process was carried out in the presence of KOH catalyst and methanol. Initially, 

feedstock was heated up to 65 °C. KOH catalyst was dissolved in methanol (5:1 oil to alcohol ratio). 

Then, the KOH - methanol solution was added into the heated feedstock. Note that transesterification 

above 60 °C could be a critic as the methanol evaporates around 64 °C (Methyl-Alcohol, 2018). 

Therefore, the condenser was used to condensing any evaporating methanol vapour back into the 
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transesterification flask. The transesterification process was kept heated at 65 °C and mechanically 

stirred by magnetic stirrers both simultaneously for 3 hours Figure 3.3. 

 

 

Figure 3.3: Transesterification setup which includes heating from the bottom, continuous mechanical 

string with a help of magnets and condenser at the top (Aston University chemistry laboratories). 

 

After three hours of heating and stirring, the solutions were transferred to separator funnels and left for 

24 hours. Glycerol was settled down and crude biodiesel was formed at the top layer as shown in 

Figure 3.4 a. Next, glycerol was removed and crude methyl ester collected for enhancing the quality. 

Biodiesels were washed by spraying distilled water on top Figure 3.4 b. Water cleaned any unreacted 

methanol and other impurities, and settled down. This process was repeated several times (each 

allowed 24 hours for separation) until a clear colour was observed in biodiesel Figure 3.4 d. Finally, 

biodiesel and water separated. The biodiesel can also be heated after this process to evaporate any 

remaining water. 
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    (a)                      (b)                         (c)                              (d) 

Figure 3.4: The products of transesterification process (a) two layers biodiesel on the top glycerine at 

the bottom, (b) water spraying on top of crude biodiesel (c) water reacting with unreacted methanol, 

(d) biodiesel on top and washed water at the bottom. 

 

3.4. Biodiesel quality and British biodiesel standard 

 

This section explains fuel characterisation methods used to define biodiesel physiochemical properties. 

The test methods declared in British and European biodiesel standard were taken as reference for the 

fuel characterisation (Table 3.1). Biodiesels were characterised at Aston University mechanical 

engineering, chemical engineering and EBRI laboratories except for elemental analysis which was 

conducted at the University of Birmingham. 

Biodiesels produced from various feedstock are likely to have different fuel properties. This can be 

due to the different chemical compositions of the feedstock and methods used during the 

transesterification process. In this regard, different standards are in use in Europe and America. Table 

3.1 introduces the biodiesel standards for Europe and UK (BS EN 14214) and America (ASTM D 

6751) along with the European petroleum diesel standard (EN 590). It should be noted that EN 590 

diesel standard also involves 7% biodiesel in its content (European Standard EN 590:2013, 2009). The 

European standard for biodiesel last updated in 2008 and named as EN 14214:2008 (Masera and 

Hossain, 2017). The British biodiesel standard is the same as the European standard and named as BS 

EN 14214 (British Standard Institution, 2010). According to Table 3.1, European biodiesel standard is 

more restricted than American standard. For example, some important fuel properties such as density, 

total contamination, unsaturated methyl esters, iodine value etc., were not considered in American 

standard, whereas European standard has strict ranges on the mentioned parameters. Moreover, ASTM 

D 6751 standard allow the usage of biodiesels having a viscosity in the range of 1.9 – 6.0 mm2/s, 
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whilst this range is only 3.5 – 5.0 mm2/s in BS EN 14214. The purpose of the biodiesel standard is to 

provide safe and efficient biodiesel utilisation in terms of storage, transport and engine operation. 
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Table 3.1:European and American standards for biodiesel and petroleum diesel (British Standard Institution, 2010; Deka and Basumatary, 2011). 

Fuel Characteristic Test Method Unit Europe America Europe 

Specification 

  

BS EN 14214:2008 ASTM D 6751-07b EN 590:2009 

Applies to     Biodiesel Biodiesel Diesel 

Density 15°C EN ISO 3675 EN ISO 12185 g/cm³ 0.86-0.90 n/a 0.82-0.845 

Viscosity 40°C EN ISO 3104 ISO 3105 mm²/s 3.5-5.0 1.9-6.0 2.0-4.5 

Distillation EN ISO 3405 % @ °C n/a 90%,360°C 85%,350°C - 95%,360°C 

Flash point EN ISO 3679 °C 101 min 93 min 55 min 

Sulphur content EN ISO 20846 EN ISO 20847 mg/kg 10 max 15 max 50 max 

 

EN ISO 20884 

    Carbon residue EN ISO 10370 %(mol/mol) 0.3 max n/a 0.3 max 

(10%distillation residue) 

     Sulphated ash ISO 3987 %(mol/mol) 0.02 max 0.02 max 0.01 max 

Water EN ISO 12937 mg/kg 500 max 500 max 200 max 

Total contamination EN 12662 mg/kg 24 max n/a 24 max 

Copper strip corrosion EN ISO 2160 3h/50°C 1 max 3 max 1 max 

Oxidation stability EN 14112 hours;110°C 6 hours min 3 hours min (25 g/m3) 

Cetane number EN ISO 5165 

 

51 min 47 min 51 min 

Acid value EN 14104 mg KOH/g 0.5 max 0.5 max n/a 

Methanol EN 14110 %(mol/mol) 0.20 max 0.2 max or Fp <130°C n/a 

Ester content EN 14103 %(mol/mol) 96.5 min n/a 7% FAME 

Unsaturated methyl esters 

 

%(mol/mol) 1 max n/a n/a 

(≥ 4 double bonds)  

     Monoglyceride EN 14105 %(mol/mol) 0.8 max n/a n/a 

Diglyceride EN 14105 %(mol/mol) 0.2 max n/a n/a 

Triglyceride EN 14105 %(mol/mol) 0.2 max n/a n/a 

Free glycerol EN 14105 EN 14106 %(mol/mol) 0.02 max 0.02 max n/a 

Total glycerol EN 14105 %(mol/mol) 0.25 max 0.24 max n/a 

Iodine value EN 14111 

 

120 max n/a n/a 

Linolenic acid content EN 14103 %(mol/mol) 12 max n/a n/a 

Phosphorus EN 14107 mg/kg 4 max n/a n/a 

Alkaline metals (Na,K) EN 14108 EN 14109 mg/kg 5 max 5 max n/a 
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3.4.1. Kinematic viscosity 

The kinematic viscosity of fuel is one of the most important parameters as it directly relates the flow 

of fuel through a fuel supply line and inside the engine. By definition, the viscosity is the resistance of 

a fluid to flow. By this means, high viscosity fuels are not preferred to use in engines as their slow 

movement in the fuel supply line may cause problems. In addition, it is more difficult to atomise 

viscous fuels through injectors (Agarwal et al., 2015). According to standards of EN ISO 3104 for 

Europe (Knothe, 2006) and ASTM D445 for USA (Nabi et al., 2015), measurement of kinematic 

viscosity undergoes at 40°C, it was also recommended to measure this property of biofuels at the room 

temperature as well. The reason for this measurement is to check the behaviour of the biofuel mobility 

from a tank to an engine and at the cold start-up condition. According to the viscosity of a biofuel, 

some modifications on the fuel supply line may be required such as an auxiliary fuel pump or 

preheating. 

The viscosities were measured in accordance with EN ISO 3104 method. The Cannon-Fenske 

viscometer M100 size viscometer which can be used for an estimated viscosity range of 3 to 15 was 

used during the test with the uncertainty of 0.16%. The viscometer was embedded into a water bath 

and fixed by support as shown in Figure 3.5. The electronically controlled heater was heating and 

circulating the water to have a uniform heat distribution. The temperature was both measured on the 

heater and additional thermometer placed away from the viscometer to make sure that the system was 

at the steady state before the measurement. Firstly, biodiesel placed into the viscometer. Then, the fuel 

level on the scaled leg of the viscometer was raised above the start line by using the suction pump 

(Figure 3.6). Next, the suction pump and the pipe were removed to let atmospheric pressure apply on 

both legs of U-tube viscometer. The time measured for the fuel from the start line to the end line. To 

find the viscosity, measured time was multiplied by the constant provided for the used viscometer 

(Cannon, 2012). The experiment was conducted several times to check the consistency of the readings. 
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Figure 3.5: Viscosity measurement equipment, composed of 1 power unit, 2 water bath, 3 hand pump, 

4 water circulation pump, 5 electrical heater, 6 viscometer, 7 thermometer (Aston University 

mechanical engineering laboratory). 

 

 

Figure 3.6: U-Tube viscometer application. 
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3.4.2. Density 

Amount of fuel sent into the combustion chamber generally controlled by volume or time bases 

(Piaszyk, 2012). When biofuel is used in an unmodified diesel engine, the volume of biofuel 

transferred is assumed to be the same with the case of diesel. Thus, it directly affects the mass of fuel. 

In this perspective, a higher density may be desired for better engine efficiency. However, density also 

directly affects the atomisation of fuels. According to literature, higher densities lead to the higher 

formation of particulates which results in poor atomisation (Emiroğlu et al., 2018). 

Densities of biodiesels were measured by hydrometer method in accordance with EN ISO 3675. 

Initially, A graduated cylinder filled with a test fuel and hydrometer placed into it. Then the 

corresponding value reads on the hydrometer scale (Figure 3.7). It should be noted that fuel meniscus 

could lead to an inaccurate density reading (Piaszyk, 2012). A schematic of the true reading was 

shown in Figure 3.7 b. 

 

 

(a) 

 

(b) 

Figure 3.7: (a) Density measurement apparatus - hydrometer and (b) accurate measurement technique. 

 

3.4.3. Flash point 

The flash point of a fuel is an important parameter mainly in terms of safety. Fuels having low flash 

points can cause explosions during the storage, handling or transport (Kirubakaran and Selvan, 2018). 

Knowing the flash point of such fuels allows the user to take necessary precautions to avoid any fire 

hazard. The flash point of biodiesel should be measured in accordance with the standard given by EN 

ISO 3679 for Europe. The minimum allowed flash point is declared as 101⁰C for biodiesels in Europe 

(Table 3.1). 

Flash points were measured in accordance with EN ISO 3679 method. Biodiesel samples were tested 

through Setaflash Series 3 Closed Cup flash point tester with the accuracy of ±0.5 Figure 3.8. 
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Approximately 2 ml of biodiesel was placed into the closed cup thermally control room of the 

equipment. As it was recommended by the suppliers, biodiesel was tested in Auto mode. That is, 

setting a temperature value lower than the estimated value, upon the ready comment (steady 

temperature) the burning flame on top of the closed cup was met with the fuel by operating the 

equipment’s trigger. In the case of any flash detection at this stage, the procedure had to be repeated 

with lower temperature. If there was no flash detected, the temperature was increased and tested again 

with a few °C increments. This experiment was also repeated several times for each fuel to check the 

consistency of the reading. 

 

 

Figure 3.8: Flash points of biodiesels were measured through Setaflash Series 3 Closed Cup flash 

point tester (Aston University mechanical engineering laboratory). 

 

3.4.4. Cloud and pour points 

The cloud point can be explained as the temperature at which wax crystals start to settle up. This 

temperature is highly important especially in cold countries where there is a risk of fuel to freeze 

inside the components of the engine like injectors, fuel supply system or fuel tank. Nabi et al. (2015) 

used ASTM 5773 to measure the cloud point of their fuels. Knothe (2006) states that the method of 

ASTM D2500 can be used to figure out the cloud point of test fuel. However, by European standard, 

there is no specified cold filter plugging point temperature (Knothe, 2006). Nevertheless, EN 116 

method can be used for determining the cold filter plugging point temperature (CFPP). Cold filter 

plugging point temperature represents the minimum temperature at which the liquid fuel can flow. It is 

also called as the Pour point. It can be measured through ISO 3016 test method. Similar to cloud point, 

there is no specific value of pour point on EN 14214 European standard for vehicle usage of biodiesel 

(Hasimuglu et al., 2008; Kumar et al., 2013). However, as the climate conditions vary from country to 

country, individual countries in Europe may define their own pour point temperatures according to the 

time of the year (Hasimuglu et al., 2008; Kumar et al., 2013). British standard BS EN 14214 classifies 
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CFPP of biodiesels differently for the temperate climates Table 3.2  and for the arctic climates Table 

3.3 (British Standard Institution, 2010). Note that, climate related CFPP requirements do not apply for 

FAMEs to be blended with fossil diesel under EN 590 standard  (British Standard Institution, 2010). 

 

Table 3.2: Temperate climate related Cold Filter Plugging Point requirements. 

Property Unit Grade 

A 

Grade 

B 

Grade 

C 

Grade 

D 

Grade 

E 

Grade 

F 

Test 

method 

CFPP ⁰C, min +5 0 -5 -10 -15 -20 EN 116 

 

Table 3.3: Arctic climate related Cold Filter Plugging Point requirements. 

Property Unit Class 

0 

Class 

1 

Class 

2 

Class 

3 

Class 

4 

Test 

method 

CFPP ⁰C, max -20 -26 -32 -38 -44 EN 116 

 

These parameters were not measured in the scope of this research as they do not exist in the BS EN 

14214 standard. Equipment limitation was another reason. However, no indication of wax formation 

was observed on biomixtures at the room temperature. 

 

3.4.5. Water content 

Feedstock may contain a significant amount of water in their contents, especially the waste cooking 

oils. However, the presence of water in the internal combustion engines could create very important 

problems. To illustrate, water contamination may lead to corrosion of engine components. 

Furthermore, water can react with the glycerides which in turn produce glycerine and soap which is 

absolutely undesired scenario (Felizardo et al., 2007). In addition, it also reduces energy content of 

biofuel. To avoid any problems caused by water contamination in biodiesel, BS EN 14214 standard 

limits the water content as maximum 500 mg per kg of biodiesel. The water content of any biodiesel 

can be measured through EN ISO 12937 method, Karl Fisher titration. This property was not 

measured in this research due to equipment limitation. However, water content of biodiesel was 

minimised by allowing each separation process minimum 24 hours during the production stage. 

 

3.4.6. Higher heating value 

Higher Heating Value (HHV) which is also known as calorific value or energy content represents the 

amount of energy released per unit mass of fuel. This value also includes the energy release from the 

condensation of water vapour (product of combustion) (Michael et al., 2011). Although neither 

European nor American standards have limitation over HHV for biodiesels, it is a very important 
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property in terms of engine efficiency (Piaszyk, 2012). DIN 51900-3 is one of the recommended 

methods for measuring HHV (Rutz and Janssen, 2006). 

Higher heating values of fuels were measured through the Parr 6100 boom calorimeter shown in 

Figure 3.9 with the accuracy of 0.1%. Its working principle was specific heat equation, Equation 3.3. 

Initially, the mass of fuel sample was measured and placed into a close system surrounded by the 

water. Then, equipment started the combustion by burning fuse wire. Measuring the temperature rise 

on the water before and after the fuel burned, knowing the mass of the fuel burned and specific heat 

capacity of the system components the software can calculate energy content by using Equation 3.3. 

 

Q = mcΔT (3.3) 

 

 

 

Figure 3.9: Parr 6100 calorimeter used for Higher Heating Value measurement (Aston University 

mechanical engineering laboratory). 

 

3.4.7. Acid value 

The acid value indicates the amount of free acids in the sample. The presence of free acids negatively 

effects the biodiesel aging (Predojević, 2008). The acid values of the samples were measured by the 

same titration method explained in Section 3.2.1. Initially the 0.1 N KOH titration solution was 

prepared and filled in the burette. At the same time, 1 ml biodiesel was dissolved in 10 ml isopropyl 

alcohol and some phenolphthalein indicator was added. The amount of titration solution spent to 
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convert the colour to pink was recorded as a result. This value was then used to calculate acid value 

through Equation 3.4 (Jagadale and Jugulkar, 2012; Heroor and Bharadwaj, 2013).  

 

Acid Value =  
(titration result)(Normality)(28.2) 

(weight of sample)
 

(3.4) 

 

3.4.8. Elemental analysis (CHN analysis) 

As the name refers elemental analysers are useful devices to analyse the compounds of carbon, 

hydrogen, nitrogen and sulphur in organic substances. There is no specified test method for the carbon, 

hydrogen and oxygen content of the biodiesels in BS EN 14214 standard (Table 3.1). The main 

working principle of elemental analysers is separating the oxygen molecules attached to carbon, 

hydrogen, nitrogen and sulphur by the help of copper. During this process test sample generally 

carried by additional gases which are known as carrier gas such as helium (Thompson, 2008). Figure 

3.10 presents the CHN analyser used in this study located at University of Birmingham. It should be 

noted that it was very challenging to conduct EA analysis for the biomixtures. This was because of the 

possibility of a biodiesel agent to be more dominant in a vail where the sample was taken. Therefore, 

four measurements conducted for each sample and averages of the results were used.  

 

 

Figure 3.10: Elemental analyser equipment used to measure carbon, hydrogen and nitrogen contents of 

biodiesels and biomixtures (University of Birmingham). 
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3.4.9. Thin layer chromatography 

Thin layer chromatography (TLC) of each feedstock was conducted at Aston University, European 

Bioenergy Research Institution (EBRI) laboratories. This analyse was conducted to determine 

fractions of triglycerides (TAG), diglycerides (DAG), monoglycerides (MAG) and free fatty acids in 

the sample. 

The solvent was prepared by mixing 70 ml of hexane, 30 ml of dimethyl ether and 1 ml of acetic acid, 

and placed into a chromatography tank. A TLC silica plate was activated by heating. The 0.5 ml oil 

samples were diluted with 1.5 ml hexane and 50 µl of samples were applied on the plate. Plate was 

transferred into tank and time allowed for solvent to separate TAG, FFA, DAG and MAG. Then, the 

plate was introduced into an iodine tank which made the separation visible.  

To quantify the fractions, corresponding areas of TAG, FFA, DAG and MAG were scraped separately 

for each sample and transferred into tubes. Internal standard of C17:0 was added into tubes by 25 µl. 

The samples were transesterified by adding 2 ml of 2.5% sulfuric acid-methanol solution at 80⁰C for 

1.5 hours. Then, samples were analysed through gas chromatography and mass spectrum analysis at 

EBRI. 

 

3.4.10. Gas chromatography and mass spectrum analysis 

Gas Chromatography and Mass Spectrum (GC-ms) analyses was given as the standard measurement 

method of the following parameters; methanol content, ester content, unsaturated methyl esters which 

have ≥ 4 double bonds, monoglyceride content, diglyceride content, triglyceride content, free glycerol, 

total glycerol and linolenic acid contents (British Standard Institution, 2010). The test methods for the 

mentioned properties were given in BS EN 14214 standard like EN 14110, EN 14103, EN 14105 and 

EN 14106 (Table 3.1). Additionally, some other fuel properties such as iodine value, cetane number, 

lower heating value, degree of unsaturation were calculated by using mass fractions of each FAME 

forming biodiesel. 

Two different Gas Chromatography and Mass Spectrum (GC-ms) analyses was conducted in this 

research. Firstly, biodiesels tested the find FAME compositions at Aston University chemical 

engineering laboratories Figure 3.11. Secondly, biodiesel (and feedstock oil) samples were separated 

into TAG/FAME, FFA, DAG and MAG on a Thin Layer Chromatography (TLC) plate and quantified 

through GC-ms at EBRI Figure 3.12. 
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Figure 3.11: Gas Chromatography and mass spectrum equipment used to determine FAME 

compositions (Aston University, chemical engineering laboratory). 

 

 

Figure 3.12: Gas Chromatography and mass spectrum equipment used to quantify FAME, TAG, DAG 

and MAG  (Aston University, European Bioenergy Research Institute). 

 

The gc-ms analysis was carried out with the help of helium carrier gas which was supplied to the inlet 

of the system and flows through detector under controlled pressure. The test sample injects from the 

injection port and carried to the column by the carrier gas after volatilised. Separation occurred inside 

the long column. After elution, carrier gas carried the sample into a detector where the electronic 

signal generated as a response to a physicochemical property of substances. The data system measures 

the electronic signal and produces results as a chromatogram (Masada, 1976). In the scope of the GC-

ms analysis, every test was duplicated for each sample to check the consistency of the results. The 

equipment was measuring different peaks at different times which were indicating the type of FAME. 

The probabilities of the FAME determination were around 80% throughout the experiment.  
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3.4.10.1. Sample preparation for gas chromatography and mass spectrum 

analysis 

All biodiesels were separately tested in the Trace 1300 type Thermo Scientific Gas Chromatography 

and the ISQLT Mass spectrum (Aston University chemical engineering laboratories). The 0.05 g of 

biodiesels were dissolved in 50 ml of methanol. Samples were prepared in 50 ml volumetric flasks 

(Figure 3.13) and placed into ultrasonificator for 15 minutes. Then, 0.1µl of the prepared samples were 

transferred into test tubes and loaded to GC-ms equipment. The Perkin Elmer column was used in the 

analysis which was 30 m long, 0.22 mm diameter and 0.25 µm film thickness. A split mode was used 

with 1:10 ratio and injector temperature was set to 280 °C. The initial temperature of the oven was 100 

°C and it was increased up to 275 °C with the increments of 10 °C per minute. Electron impact 

ionisation (at 200 °C) with the operation range of 50-600 m/z was used at the mass spectrometer (250 

°C).    

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.13: Sample preparation for GC-ms analysis (a) weight 0.05g of sample and fill 50 ml of 

solvent, (b) place in ultrasonificator and (c) pipette out 0.1 µL of sample into test vial. 

 

Additionally, biodiesel and feedstock oil samples which were separated into TAG/FAME, FFA, DAG 

and MAG on a Thin Layer Chromatography (TLC) plate were also tested in the Agilent Technologies 

6890N GC system (Aston University EBRI laboratories). A DB-23 capillary column was used which 

has length of 30 m, internal diameter of 0.25 mm and film thickness of 0.25 µm. The GC injector was 

operated in split mode 50:1 with an inlet temperature of 250°C. The column temperature was kept at 

50°C for 1 min then increased at 25°C /min to 175°C, followed by a second ramp with a heating of 

4°C/min up to 235°C held for 15 min. Assignments of main FAME were made by  using a NIST08 

MS library. 
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3.4.11. Iodine value and degree of unsaturation 

Iodine Value (IV) is a measure of the Degree of Unsaturation (DU)  in oils and fats (Mata et al., 

2014). The physical interpretation of the iodine number can be described as the amount of iodine in 

grams consumed by 100 gram of fat, thus it is an unitless parameter (Balakrishnan et al., 2016). Like 

all other saturation level measurements, the principle is the same for estimation of iodine value. Iodine 

added into unsaturated oil breaks the double bonds between carbon atoms and becomes a part of the 

molecular structure by attaching themselves. Consequently, higher consumption of iodine indicates a 

higher degree of unsaturation level (Ham et al., 1998; Soares, Lima and Rocha, 2017). British standard 

for biodiesel BS EN 14214 stated an updated alternative technique to determine the iodine number of 

biodiesel (British Standard Institution, 2010). According to this technique, firstly FAME composition 

of biodiesel is defined through gas chromatography and mass spectrum (GC ms) experiments. Next, 

iodine value can be calculated by multiplying the mass fractions of each FAMEs with the defined 

constants  (Table 3.4) (British Standard Institution, 2010). Equation 3.5 was used to calculate overall 

iodine value of biodiesels. 

 

Table 3.4: Factors used in the calculation of iodine value (British Standard Institution, 2010). 

Methyl ester of the following acids Factor  

Myristic C14:0  0 

Palmitic C16:0 0 

Palmitoleic C16:1 0.95 

Stearic C18:0 0 

Oleic C18:1 0.86 

Linoleic C18:2 1.732 

Linolenic C18:3 2.616 

Eicosanoic C20:0 0 

Eicosenoic C20:1 0.785 

Docosanoic C22:0 0 

Docosenoic C22:1 0.723 

 

 

Iodine valuebiodiesel = ∑(Iodine valueFAME) (mass persentage of FAME) 
(3.5) 

 

Although degree of unsaturation does not take place in the standard, this method was generally 

preferred by the researchers (Ramos et al., 2009; Redel-Macías et al., 2013; Balakrishnan et al., 2016; 

Dhamodaran et al., 2017; Han Li et al., 2018). The principle is very similar to the iodine value 

calculation. However, in the calculation of DU, number of double bonds was considered rather than 

type of FAME. There was no certain empirical definition defined in the literature and it was defined 
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slightly different by each researcher. Table 3.5 summarises the various definitions of DU found in 

literature and in this study. 

 

Table 3.5: Different definitions of degree of unsaturation (DU) in the literature and this study. 

Reference Equation  

(Ramos et al., 2009) DU = (mono) + 2 (poly) (3.6) 

(Redel-Macías et al., 2013) 
DU =

(mono) + 2 (di) + 3 (tri)

100
 

(3.7) 

(Balakrishnan et al., 2016) 
DU =

(2 C + 2 + N − X − H)

2
 

(3.8) 

(Dhamodaran et al., 2017) DU = (mono) + (poly) (3.9) 

(Han Li et al., 2018) DU = (mono) + 2 (poly) (3.10) 

This study DU = (mono) + 2 (di) + 3 (tri)  (3.11) 

mono: Weight percentage of FAMEs having 1 double bond; poly: Weight percentage of FAMEs having 2 or 

more than 2 double bonds; di: Weight percentage of FAMEs having 2 double bonds; tri: Weight percentage of 

FAMEs having 3 double bonds; C: Number of carbon atoms; N: Number of nitrogen atoms; X: Number of 

halogen atoms; H: Number of hydrogen atoms 

 

Although there were different equations found in the literature, most of the equations were build up 

with the same logic i.e. weight percentages of unsaturated FAMEs. Among the equations defined in 

the literature, only the Equation 3.7 was differentiating FAMEs with 2 and 3 double bonds. 

Considering the significant difference in iodine values of 2 and 3 double bond FAMEs, Equation 3.7 

found to be the best option in the analysis of this study. However, a small modification decided to be 

made i.e. not dividing by 100. This was made to have larger DU differences between the test fuels, 

which in turn provide easier analysis to have a better understanding of the effect of DU. Ultimately; 

Equation 3.11 was modified from previous equations and used in this study. 

 

3.4.12. Cetane number 

Cetane number (CN) is a dimensionless parameter represents ignition delay period of a biodiesel after 

being injected into the combustion chamber (Knothe et al., 2003). In other words, CN value represents 

the readiness of fuel to self-ignition after its injection into combustion chamber (Sivaramakrishnan and 

Ravikumar, 2012). According to Rao et al. (2010), there is a direct relation between CN and other fuel 

properties such as heating value and density. Higher cetane number fuels provide shorter ignition 

delay. There are also significant amount of studies correlating higher CN with reduced exhaust gas 

emissions, specifically NOx and unburned hydrocarbons (HC) (Knothe et al., 2003; Tong et al., 2011). 
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Cetane number of biodiesels was estimated with the same principle as iodine value. This technique 

was also frequently used in the literature (Kurtz and Polonowski, 2017; Masera and Hossain, 2019). It 

should be noted that, unlike iodine value, British standard does not provide any factors to calculate 

cetane number. Various factors were used by different researchers in the literature Table 3.6. The 

values were summarised in Table 3.6 and noticed that they were very close to each other. Cetane 

number factors provided by Ramírez-Verduzco et al., (2012) were selected to be used in this study. 

Equation 3.12 represents the calculation method of the cetane number for biodiesels (Kurtz and 

Polonowski, 2017; Masera and Hossain, 2019). 

 

Table 3.6: Cetane numbers of FAMEs declared by various studies. 

    Reported cetane numbers 

    

(Bamgboye 

et al., 2008) 

(Knothe et 

al., 2003) 

(Tong et 

al., 2011) 

(Ramírez-

Verduzco et al., 

2012) 

(Murphy et 

al., 2004) 

Myristic C14:0 

  

66.2 65.4 

 Palmitic C16:0 74.4 74.5 74.3 73.9 81 

Palmitoleic C16:1 51 51 51 53.3 

 Stearic C18:0 76.3 86.9 75.6 82.3 89 

Oleic C18:1 57.2 55-59.3 56.5 61.7 62 

Linoleic C18:2 36.8 42.2-38.2 38.2 41.1 42 

Linolenic C18:3 21.6 20.6-22.7 22.7 20.5  

Arachidic C20:0   100 90.8  

gadoleic C20:1   64.8 70.2  

Erucic C22:1   76 78.7  

 

 

Cetane numberbiodiesel = ∑(Cetane numberFAME) (mass persentage of FAME) 
(3.12) 

 

3.5. Test engine 

 

This section describes the engine testing facilities used to conduct this research. A three-cylinder 

Lister Petter LPWS 3 CI engine having an indirect injection system was used. Figure 3.14 illustrates 

the test engine coupled to a dynamometer. Table 3.7 shows the engine specifications. The engine had a 

natural aspiration system and there was not any EGR facility installed. A heat exchanger (Bowman 

UK, header tank type) other than radiator was used for engine cooling (Figure 3.14). The water 

reservoir located under the building was used as a cooling agent for the heat exchanger. Exhaust gases 

were diverted outside the building by a pipe system with the help of a suction fan (Figure 3.15). In 
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addition, an extra opening with a valve was placed on the exhaust pipe inside the engine cell for the 

purpose of emission measurement. 

 
Table 3.7: Test engine specifications. 

Manufacturer Lister Petter (UK) 

Model LPWS Bio3 water cooled 

Cylinder number 3 

Bore/Stroke 86/80 mm 

Rated speed 1500 rpm 

Continuous power at rated speed 9.9 kW 

Overload power at rated speed 10.9 kW 

Fuel injection type Indirect injection. Self-vent fuel system 

 with individual fuel injection pumps 

Fuel pump injection timing 20o BTDC 

Aspiration Naturally aspired 

Exhaust gas recirculation 0% 

Cylinder capacity 1.395 litre 

Compression ratio 1:23.5 

Firing order 1-2-3 

Minimum full load speed 1500 rpm 

Maximum permissible exhaust back pressure 75 mbar 

Continuous power fuel consumption at 1500 rpm 3.19 L/hr (fossil diesel) 

Glow plug Combustion-chamber glow plugs 

Exhaust gas flow 41.4 L/sec at full loads at 1500 rpm 

Jacket water flow at full load 33 L/min (at 1500 rpm) 

Maximum engine jacket water temperature 99 - 102 °C 

 

 

 
Figure 3.14: Engine – dynamometer coupling and water cooling system (Aston University mechanical 

engineering laboratory). 
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Figure 3.15: Main switches for cooling water pump and exhaust gas fan (Aston University mechanical 

engineering laboratory). 

 
The test engine was equipped with a dual fuel supply system which can be operated manually by a T-

junction valve Figure 3.16. By this means, it was possible to switch from one fuel to another without 

stopping the engine. This allows avoiding cold start effect of any test fuel, unless it was the main 

scope. In this research, the engine was started on diesel and switched to test fuels after engine warmup. 

Similarly, the fuel switched back to diesel to avoid any contamination in the engine at the end of 

experiments. The original (unmodified) fuel injection system provided by the engine manufacturer 

was used in this research. The detailed information and part numbers were provided in the Lister 

Petter LPW, LPWT and LPWS Masters part manual (Lister-Petter, 2001). 

 

 

Figure 3.16: T-junction placed on the dual fuel supply system. 
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Figure 3.17 illustrates the schematic of experimental setup used for this research. Engine and 

dynamometer were coupled to each other and located in a properly isolated test cell (room). The 

engine load and speed were controlled from the control panel located just outside test cell. Similarly, 

combustion analyser was placed at the same place and a computer was connected to log and observe 

measured data Figure 3.18. The fuel supply system was located on the outer wall of the test cell. 

Exhaust gas analyser was also located outside.  
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Figure 3.17: The schematic of the engine test rig. 1 engine; 2 dynamometer; 3 dynamometer controller; 4 Kister combustion analyser; 5 computer to collect 

and visualise combustion data; 6 fossil diesel tank; 7 biodiesel tank; 8 three-way valve; 9 valve; 10 graduated cylinder to measure fuel consumption; 11 fuel 

filter; 12 valve on the exhaust line; 13 exhaust gas exit; 14 branch on the exhaust line to measure smoke opacity; 15 smoke opacity unit; 16 data acquisition 

for BOSCH exhaust gas analyser; 17 computer to collect and visualise exhaust gas emissions; 18 engine cooling; 19 deq card to measure and log temperature; 

20 computer with LabView to monitor temperature readings; 21HORIBA tailpipe attachment; 22 HORIBA gas analyser; 23 data acquisition for HORIBA gas 

analyser. 
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Figure 3.18: Control panel of the engine - dynamometer coupling and combustion. 

 

3.6. Data acquisition systems and instruments 

 

 
An eddy current type Froude Hofmann AG80HS dynamometer which had ±1 rpm speed and ±0.4 Nm 

torque accuracies were used for this experiment. The constant speed variable engine load was 

performed to analyse test fuels. The rated engine speed of 1500 rpm was used in this research. Data 

collected at six different engine loads which were corresponding approximately to 20%, 40%, 60%, 

70%, 80% and 100% of the full load. Fuel consumption of the engine was measured manually. A 

graduated cylinder was placed on the fuel supply line to observe amount of fuel used (Figure 3.19). By 

this means, time to consume 100 ml of fuel was measured via stopwatch. 

 

 

Figure 3.19: Graduated cylinder installed on fuel supply system to measure fuel consumption. 

 
Two different gas analyser systems were used for the different chapters of this research. As the degree 

of unsaturation study requires advance emission measurement, the HORIBA OBS-ONE measurement 

system was borrowed from the company for the mentioned analyse only (Chapter 4). 

Figure 3.20 shows the HORIBA OBS-ONE-GS02 which is a portable emissions measurement system 

(PEMS) designed for engine/vehicle certification under real road conditions. The Gas-PEMS measures 

concentrations of CO, CO2, NO, NO2 and NOx emissions, air-to-fuel ratio, exhaust flow rate, GPS 
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data, environmental conditions (e.g. atmospheric temperature, humidity and pressure) and calculates 

mass emissions. HORIBA OBS-ONE features the highly adaptable, intelligent operating platform 

called “HORIBA ONE PLATFORM” which integrates other ONE series product data and optimises 

test cell operation. During the experiment, some parameters such as GPS data was ignored, as it was 

not related to stationary engine test.  

 

 

Figure 3.20: Horiba OBS-ONE-GS02 gas analyser. 

 

The cold gas pump sucks the exhaust gas through the analysers, which are all designed as semi-

vacuum types. The power consumption of the cold pump was 450W with a heated line of 191°C. In 

this study, the gas analyser OBS-ONE-GS02 was used for NO and NOx measurements. The Non 

Dispersive Infrared (NDIR) analyser was heated to 95 °C and measured the CO, CO2 and water. Using 

this measurement the water quenching effect in NOx analyser and the water interference of the CO and 

CO2 analysers were compensated by means algorithm (Nakamura et al., 2002). The water 

concentration was not displayed in the control software. The Chemiluminescent Detectors (CLD) 

analyser used to measure NO or NOx. This measurement was hot and wet at 95 °C. The used analysers 

were also robust against vibration. 

Figure 3.21 shows the tailpipe attachment including a pitot placed on the exhaust system to measure 

the exhaust gas temperature and gas sampling. Masses of the gas emissions were calculated by the 

system using the measured flow rate and concentration data. 

 

 



 

81 

 

  
Figure 3.21: Tailpipe attachment, sampling part with water trap. 

 

Apart from the degree of unsaturation analysis (Chapter 4), the rest of the research was conducted with 

the commercially available Bosch BEA 850 five-gas emission analyser for measuring exhaust 

emissions Figure 3.22. By this device, it was possible to measure the exhaust gases of HC, CO, CO2, 

O2, NO and excess air ratio (lambda). Besides these emissions, the smoke intensity was analysed 

through the Bosch RTM 430 smoke opacity measurement instrument. The emission data observed 

simultaneously and collected when all readings were steady. 

 

 

Figure 3.22: The Bosch BEA 850 gas analyser. 
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Combustion characteristics of test fuels were investigated on the first cylinder of the engine. The first 

cylinder which was located close to radiator side was modified to collect in-cylinder pressure and 

crank angle data. Kistler 6125C11 pressure sensor with the Kister 5064B11 charge amplifier was 

installed for the measurement of in-cylinder pressure. The Kister 4065A500A0 pressure sensor along 

with the Kister 4618A0 amplifier was used to observe and log the fuel injection pressure. Crank angle 

was detected by using the optical encoder, Kister 2614A. The Kister product, 2893AK8 model KiBox 

was installed to the system to log the gathered data by the encoder and the amplifier. Then a computer 

having KiBoxCockpit software (to analyse the combustion parameters) was used to connect KiBox 

through an ethernet connection. Details of the used equipment are given in Table 3.8. 
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Table 3.8: Details of the data acquisition components. 

Measured parameter Equipment Details Accuracy 

Torque Eddy Current Dynamometer Froude Hofmann AG80HS ± 0.4Nm 
Engine speed Eddy Current Dynamometer Froude Hofmann AG80HS ± 1 rpm 
Time to consume 100 ml of fuel Scaled cylinder and stopwatch Manually tested ± 0.1 s 
Exhaust gas temperature Horiba OBS-ONE-GS02 Tailpipe attachment with pitot ± 0.1 °C full scale (0°C - 800°C) 
CO Horiba OBS-ONE-GS02 Heated NDIR ± 0.01 vol. % 
CO2 Horiba OBS-ONE-GS02 Heated NDIR ± 0.1 vol. % 
NO Horiba OBS-ONE-GS02 Heated dual CLD ± 1 ppm 
NOx Horiba OBS-ONE-GS02 Heated dual CLD ± 1 ppm 
Smoke opacity Bosch RTM 430 ± 0.01 m-1 
CO Bosch BEA 850 ± 0.001 vol. % 
CO2 Bosch BEA 850 ± 0.01 vol. % 
NO Bosch BEA 850 ± 1 ppm 
O2 Bosch BEA 850 ± 0.01 vol. % 
HC Bosch BEA 850 ± 1 ppm 
In-Cylinder pressure Kistler 6125C11 pressure sensor, 5064B11 charge amplifier ± 0.1 bar 
Fuel injection pressure Kistler 4065A500A0 pressure sensor, 4618A0 amplifier ± 0.1 bar 
Crank angle Kistler  an optical encoder, 2614A ± 0.1 ° 
To log the combustion data Kistler  2893AK8 model KiBox  

 Combustion software Kistler KiBoxCockpit   
NDIR: Non dispersive infrared detection, CLD: Chemiluminescence detection 
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3.7. Data analysis 

 

In this section, empirical equations necessary to work collected data were examined. By this means, 

compression ignition engines were investigated theoretically in terms of heat transfer and 

thermodynamics principles. Understanding the engine theory was highly important for converting any 

experimental data into physical interpretation accurately.   

 

3.7.1. Combustion chamber geometry 

Internal combustion engine converts chemical energy stored in fuel into mechanical energy in the form 

of rotating crank shaft. By the design of the cylinder piston geometry (combustion chamber) released 

energy transferred to the crankshaft via connecting rod Figure 3.23. Thus, the design geometry of the 

engine directly affects the operating parameters. 

 

 

Figure 3.23: Schematic of a typical piston cylinder assembly. 

 

Geometric parameters of a piston and cylinder assembly are presented in Figure 3.23. Where bore 

dimension is designated by b. Connecting rod is an intermediate component of the system which 

transfers power to the crankshaft. In addition, connecting rod together with crankshaft, convert the 

linear motion of piston into the circular motion; their lengths are denoted by l and a sequentially. Note 

that crank radius a is equal to half of the stroke distance s.  
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Top Dead Centre (TDC) is the upper limit that piston reaches in each stroke. Typically this point 

corresponds to crank angle at Ө=0o (Ferguson and Kirkpatrick, 2015). The volume of the cylinder 

when the piston is at TDC is called as clearance volume Vc. Similarly, Bottom Dead Centre (BDC) is 

the lowest level of piston crown which corresponds to Ө=180o crank angle and maximum volume V1 

was obtained at this position. Compression ratio r, of an engine, is defined as a ratio of total volume to 

clearance volume Equation 3.13 (Ferguson and Kirkpatrick, 2015). 

 

r =  
clearance volume

maximum volume
=  

Vc

V1
 

(3.13) 

 

By the geometry, the maximum volume is equal to the summation of clearance volume Vc, and 

displacement volume Vd. The displacement volume is also presented in Equation 3.14. 

 

Vd =  
π

4
b2s 

(3.14) 

 

Beside of total displacement volume, instantaneous volume V(Ө), of the combustion chamber with 

respect to the reciprocating motion of the piston is calculated by Equation 3.15 (Ferguson and 

Kirkpatrick, 2015). 

 

V(Ө) = Vc +
π

4
b2 (l + a − (√l2 − a2sin2Ө + a cosӨ)) 

(3.15) 

 

 

3.7.2. Engine performance 

The torque of the engine T and engine speed N are measured through the dynamometer. Thus, brake 

power �̇�b can be calculated via Equation 3.16. Brake power is rate of work done. 

 

Ṗb = 2πTN (3.16) 
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Indicated mean effective pressure (imep) can be defined as net work per unit displacement volume of 

gas during the combustion. Imep is equal to break mean effective pressure (bmep) plus friction 

pressure. Thus, bmep can be defined as the useful work which makes it the real interest in this research 

(Ferguson and Kirkpatrick, 2015). Equation 3.17 was used in the calculation of bmep. 

 

bmep =
4πT

Vd
 

(3.17) 

 

Brake specific fuel consumption (BSFC) shows the rate of fuel consumed divided by the brake power 

obtained Equation 3.18. Although BSFC is a crucial parameter to compare different engines, in the 

case of fuel comparison brake specific energy consumption (BSEC) is as crucial as the BSFC. 

Because, lower heating value (LHV) of fuel is also taken in to account in BSEC calculation Equation 

3.19.  

 

BSFC =
ṁf

Ṗb

 
(3.18) 

BSEC =
ṁf LHV

Ṗb

 
(3.19) 

 

The brake thermal efficiency BTE is another important engine performance parameter. It can be 

explained by the ratio of the brake power �̇�b to the mass flow rate of the fuel �̇�𝑓 and lower heating 

value of fuel Equation 3.20. 

 

BTE =
Ṗb

ṁf LHV
 

(3.20) 

 

Volumetric efficiency represents the mass ratio of actual air to theoretical air Equation 3.21. Where 

theoretical air refers to the amount of air which could occupy the cylinder under ideal atmospheric 

conditions and can be calculated by Equation 3.22 (Ferguson and Kirkpatrick, 2015). The actual air 

intake can be measured during the experiment. However, this parameter was not considered in this 

research as the aspiration system was the same throughout the research. 
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ηv =  
(ṁair)actual

(ṁair)theoretical
 

(3.21) 

 

(ṁair)theoretical =  
2 N i Vd ρstd

j
 

(3.22) 

 

Where i is the number of cylinders, ρstd is standard air density and j is a number of strokes. Standard air 

density ρstd can be calculated by the ratio of standard atmospheric pressure Pstd, over standard 

atmospheric temperature Tstd, multiply by the gas constant of air Rair Equation 3.23. 

 

ρstd =
Pstd

Rair Tstd
 

(3.23) 

 

Air-fuel ratio of an engine is also important. A related parameter is called excess air coefficient 

(lambda) λ and can be defined as the ratio of actual air-fuel ratio to theoretical air-fuel ratio Equation 

3.24. 

 

λ =
(A F⁄ )actual

(A F⁄ )theoretical
 

(3.24) 

 

3.7.3. Combustion characteristics 

Cylinder pressure p is one of the fundamental combustion parameter as it affects most of the 

combustion parameters like heat release rate. Pressure was measured with respect to changing crank 

angle and recorded during the experiments. Combustion analyses were conducted for the all samples 

with the data collected from the first cylinder of the engine. In this regard, heat release, heat release 

rate, in-cylinder pressure, combustion start and finish times, total combustion duration, fuel injection 

pressure and knock intensity were analysed. Note that for in-cylinder pressure and heat release, a 

selected typical cycle (among 51 measured cycles) was presented with respect to crank angle. 

Whereas, for the rest of combustion parameters, (which are illustrated with respect to engine load) the 

arithmetic average of 51 indication cycles was used i.e. knock intensity, start and end of the 

combustion, combustion duration, maximum heat release and fuel injection pressure. Combustion 

parameters were determined by considering the geometry of the engine, the first law of 
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thermodynamics and pressure versus volume cycle. Heat losses to walls neglected and adiabatic 

expansion and compression were assumed.  

 

3.7.3.1. Heat release rate 

To analyse the heat release from the combustion process Q, can be calculated by applying the first low 

of the thermodynamics (Schönborn, 2009). The effect of pre-chamber was neglected at this 

calculations due to lack of pressure data. The combustion chamber was selected as a control volume 

and the assumptions made were; cylinder gases have ideal gas behaviour, no mass transfer and 

adiabatic conditions. 

These assumptions were also used in the literature (Schönborn, 2009; Emiroğlu et al., 2018). Under 

these circumstances, the net heat release can be equal to the gross heat release as a result of 

combustion Qgross, and the heat transfer to combustion chamber walls Qwalls (Schönborn, 2009). 

However, as the temperature of the controlled volume is typically much higher than the surroundings 

i.e. combustion chamber, transferred heat to combustion chamber walls may be s negative value by the 

convention. The governing equation of heat release with respect to crank angle can be written as 

Equation 3.25. 

 

dQnet

dӨ
=

dQgross

dӨ
+

dQwalls

dӨ
 

(3.25) 

 

Applying the first law of thermodynamics over the combustion chamber Equation 3.26, net heat 

release is must be equal to the addition of work delivered to the piston and internal energy of the 

gases. 

 

dQnet

dӨ
= p

dV

dӨ
+

dUgases

dӨ
 

(3.26) 

 

Equation 3.27 recalls the ideal gas behaviour assumption. Thus, change of the internal energy rate of 

the gases can be calculated from Equation 3.28. 

 

pV = mRT (3.27) 
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dUgases

dӨ
= m cv

dT

dӨ
 

(3.28) 

 

Equation 3.29 obtained after rewriting Equation 3.26 with substituting Equation 3.28;   

 

dQnet

dӨ
= p

dV

dӨ
+ m cv

dT

dӨ
 

(3.29) 

 

By taking the derivatives of both sides of Equation 3.29 and assuming R is constant, it was possible to 

rewrite Equation 3.30 as follows (Equation 3.29) (Heywood, 1988). 

 

dp

p
+

dV

V
=

dT

T
 

(3.30) 

 

Then both sides of the Equation 3.30 were multiplied by (
𝑃 𝑉

𝑅
) and (𝑇𝑚), which are equal to each 

other by the ideal gas law (Equation 3.31) (Heywood, 1988). 

 

(V dp + p dV)
1

R
= m dT 

(3.31) 

 

Substation of Equation 3.31 into Equation 3.29 for replacing the (𝑚 𝑑𝑇); 

 

dQnet

dӨ
= p

dV

dӨ
 (1 +

cv

R
) +

cv

R
V

dp

dӨ
 

(3.32) 

 

Recalling the basic thermodynamic equations; 

 

γ =
cp

cv
 

(3.33) 

 

R = cp − cv (3.34) 
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Rearranging Equation 3.32 by considering Equations 3.33 and 3.34, the final equation can be driven 

for calculation of heat release rate Equation 3.35. 

 

𝑑𝑄𝑛𝑒𝑡

𝑑Ө
= 𝑝

𝑑𝑉

𝑑Ө
 (

𝛾

𝛾 − 1
) + 𝑉

𝑑𝑝

𝑑Ө
(

1

𝛾 − 1
) 

(3.35) 

 

The specific heats ratio ϒ may be assumed constant for both strokes of compression and power as the 

gas contents do not change significantly. Schönborn (2009) recommended using  ϒ ≈ 1.35 for 

compression stroke and range in between ϒ ≈ 1.35 and ϒ ≈ 1.35 for the power stroke. 

 

3.7.3.2. Cumulative Heat release 

As the name refers cumulative heat release was the total chemical energy release from the fuel 

Equation 3.36. Generally, this parameter is calculated between specific crank angles as there is no 

continuous release at every crank angle. For example, heat release measurement was started from the 

crank angle at which fuel injection occurs to the opening of the exhaust valve.  

 

𝑑𝑄𝑔𝑟𝑜𝑠𝑠 = ∫
𝑑𝑄𝑔𝑟𝑜𝑠𝑠

𝑑Ө

Ө𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

Ө𝑠𝑡𝑎𝑟𝑡 𝑝𝑜𝑖𝑛𝑡

 𝑑Ө 

(3.36) 

 

3.7.3.3. Combustion start and finish 

Pressure data was used to analyse the start of injection (SOI), start of combustion (SOC), ignition 

delay (ID), end of combustion (EOC) and combustion duration (CD). The crank angle when the fuel 

injection pressure was built up was assumed as a SOI point. Moreover, 5% and 90% of heat release 

were assumed as the start and end of combustion. Ignition delay corresponds to crank angle difference 

between the SOC and SOI. Similarly, combustion duration was the crank angle difference between the 

EOC and SOC (Kistler Group, 2017; Emiroğlu et al., 2018; Masera and Hossain, 2019). 
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3.8. Summary 

 

This chapter studied the feedstock analysis in detail. In addition, the biodiesel production strategy for 

the research was given. British and European standard for biodiesel was introduced and fuel 

characterisation methods were explained. Moreover, experimental setup to conduct this research, data 

acquisition equipment, tools and methods were explained. Furthermore, analytical equations to convert 

observed raw data into useful results were demonstrated. 
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Chapter 4 

 

4. EFFECTS OF BIODIESELS UNSATURATION ON FUEL 

PROPERTIES AND ENGINE PERFORMANCE 

 

This chapter investigates waste cooking oil biodiesel and waste sheep fat biodiesel blends at different 

volume fractions. A set of biomixtures, having different degrees of unsaturation (DU) as a result of 

blending, was tested to provide a better understanding of biodiesel DU on engine test results. 

Moreover, new biomixture blends with an optimised degree of unsaturation were analysed thoroughly 

in terms of physicochemical fuel properties and engine test results. Therefore, the suitability of the 

biomixtures with the BS EN 14214 standard was checked and volume fractions which complied with 

the standard identified.  

 

4.1. Introduction 

 

The most popular and used waste biodiesel feedstock are waste cooking oils and animal fats (Hajjari et 

al., 2017). However, biodiesels derived from WCO hardly comply with the BS EN 14214 standard 

especially in terms of iodine value (Demirbas, 2009; Refaat, 2009). This is due to the high degree of 

unsaturation of WCO. On the other hand, animal fats are highly saturated (relatively low degree of 

unsaturation) and biodiesels derived from this feedstock generally are too viscous, hence also failing 

to comply with BS EN 14214 standard. As the degree of unsaturation is a crucial fuel property for 

biodiesel, it was chosen for further investigation. 

 

4.2. Literature review for biodiesel degree of unsaturation 

 

The FAMEs which have no double bond, like C14:0, C16:0 and C18:0, are named as saturated 

FAMEs. On the other side, FAMEs having at least one double bond are categorised as unsaturated 

FAMEs (Lanjekar and Deshmukh, 2016). The degree of unsaturation (DU) and iodine value (IV) of 

any FAME depends on the number of double bonds in its content. Therefore, FAMEs having only one 

double bond are called monounsaturated whereas FAMES having two or more double bonds are called 

as polyunsaturated. DU and IV are very important for biodiesels as it directly affects the combustion 

characteristics (Rao et al., 2010). Hence, some researchers have investigated the influence of 
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molecular structure, the degree of unsaturation and carbon chain length of FAMEs on diesel engine 

performance, combustion characteristics and exhaust emissions. However, results have not yet 

provided any consensus as effect of DU on NOx, smoke emission, start of combustion (SOC) and heat 

release rate (HRR) were conflicting Table 4.1. Moreover, a significant gap in the literature was noticed 

regarding the effect of DU on CO2 emission (Table 4.1). 

 

Table 4.1: How parameters were affected by the decreasing degree of unsaturation, DU (increasing 

saturation level). 

Case study NOx CO CO2 Smoke Start of HRR Engine 
        opacity combustion   Performance 

(Lapuerta and Armas, 2009) ↓ n/a n/a ↑ retarded ↓ No change 
(Benjumea et al., 2011) ↓ n/a n/a ↓ advanced ↓ No change 

(Altun, 2014) ↑ n/a n/a ↓ n/a n/a No change 
(Rao et al., 2010) ↓ n/a n/a n/a n/a n/a n/a 

(Schönborn et al., 2009) ↓ n/a n/a n/a advanced n/a n/a 
(Fareez et al., 2016) ↓ n/a n/a n/a n/a n/a n/a 

(Dhamodaran et al., 2017) ↓ ↑ n/a ↑ retarded ↓ No change 
(Li et al., 2018) ↓ ↑ n/a ↓ advanced No change n/a 

(Redel-Macías et al., 2013) ↑ ↑ n/a n/a n/a n/a n/a 

 

Lapuerta and Armas (2009) produced biodiesels from three different feedstock: waste cooking olive 

oil, waste cooking sunflower oil and neat sunflower oil. These were blended with diesel. Biofuels 

having different iodine values were tested in a direct injection (DI) type 2.2 litre four-cylinder 

turbocharged diesel engine. As a result of the study, no significant effect of IV on the engine 

performance was reported. In terms of emissions, a 10% increase in NOx emissions was reported with 

higher IV fuels. However, high IV fuels released particulates with reduced diameters. In addition, 

saturated fuels resulted in more delay on the ignition start time and lower heat release rates. However, 

considerable variations among the viscosities and lower heating values could also have influenced the 

combustion and emission parameters, and the possible effects of these parameters on the results should 

also be taken into account. 

Benjumea et al (2011) conducted an experimental study on a 4-cylinder turbocharged direct injection 

diesel engine to observe the effect of degree of unsaturation of palm oil and linseed oil biodiesels. 

Similar to Lapuerta et al (2009), no significant effect of degree of unsaturation was addressed on 

engine performance. According to the study, combustion start time of higher DU biodiesel (linseed oil 

biodiesel having iodine value of 185.4) was 2°CA later than the lower DU biodiesel (palm oil 

biodiesel having iodine value of 52). Moreover, peak heat release rate (HRR) of the higher DU fuel 

(linseed oil biodiesel) was 40% higher than the lower DU fuel (palm oil biodiesel). In terms of the 

exhaust emissions, higher DU biodiesel released higher NOx and slightly higher smoke opacity 
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compared to low DU biodiesel. This was mainly explained by the reduced cetane number and by the 

increasing degree of unsaturation which in turn delays the start of combustion. 

Altun (2014) produced three different biodiesels from palm oil, cottonseed oil and anchovy fish oil, 

having different iodine values of 59, 115 and 185 respectively. The experiments were carried out on a 

direct injection naturally aspired 3-cylinder diesel engine. As in other studies, no change in engine 

performance as a result of changing DU was indicated. The NOx emissions of palm, cottonseed and 

fish biodiesels were reported as 960, 900 and 970 ppm.. 

Rao et al (2010) investigated the influence of iodine value and cetane number of biodiesels produced 

from various feedstock on a single cylinder naturally aspired DI diesel engine. The biodiesels used for 

the mentioned study were obtained from coconut oil (IV: 10), palm kernel (IV: 52), mahua (IV: 74), 

pongamia pinnata (IV: 81), jatropha curcas (IV: 93), rice bran (IV: 100) and sesame seed (IV: 110) 

(Rao et al 2010). The study revealed a linear relationship between the iodine value and the NOx 

emissions at the full load Figure 4.1. 

 

 

Figure 4.1: Relationship between the NOx emission and iodine value, values are taken from ( Rao et 

al., 2010). 

 

Schönborn et al., (2009) studied the effect of biodiesel molecular structure on the combustion and 

exhaust gas emissions. 2-ethylhexy nitrate was used to adjust ignition properties. Hence, the effect of 

ignition delay did not change the combustion temperature which was a crucial parameter affecting the 

NOx formation. According to the study, decreased DU and increased chain length of fatty acids 

resulted in decreased ignition delay. As a result of the study, it was observed that longer premixed 

combustion phase results in higher NOx formation. This means, lower DU biodiesels having higher 

cetane number and less premixed combustion fraction develops less NOx emission. 
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Fareez et al (2016) examined the saturation degrees of the biodiesel to understand their effect on NOx 

emission and Fourier Transform Infrared Spectroscopic characteristics. Biodiesels having various 

iodine values obtained from canola oil (IV: 110-120), palm oil (IV: 44-58), and coconut oil (IV: 8-10) 

(Fareez et al., 2016). The mentioned biodiesels were blended with diesel at three different percentages 

10%, 15% and 20% and tested in a naturally aspired DI diesel engine. The results stated that the blend 

having lowest IV (20%coconut oil biodiesel blended with diesel) emitted 1% and 5% less NOx than 

the medium IV blend (20% palm oil biodiesel) and the highest IV blend (20%canola oil biodiesel) 

respectively.  

Dhamodaran et al., (2017) compared the biodiesels produced from three different feedstock sources 

which were rice bran, neem and cottonseed oil having DUs of 79.3 (weight %), 77.7% (weight %) and 

71% (weight %) respectively. 20% blends of the biodiesels with the diesel were tested on a single 

cylinder diesel engine for the analysis. Like other reviewed studies, they also provided comparable 

engine performance between the biofuels having various DU. Ignition delay of the highest DU 

biodiesel blend was approximately 2°CA and 3°CA less than the lowest DU biodiesel blend and diesel 

respectively. Similarly, peak HRR of the highest DU fuel was around 11% and 15% higher than the 

lowest DU biodiesel blend and diesel at the premixed combustion phase respectively. Most of the 

exhaust gas emissions such as HC, CO and smoke opacity were increasing with the decreasing DU. 

On the other hand, the highest DU biodiesel blend (rice bran) emitted approximately 33% higher NOx 

than the lowest DU biodiesel blend (cottonseed oil). However, there was inconsistency between the 

FAME compositions which used to estimate DU of the biodiesels with the literature. Although, 

Dhamodaran et al., (2017)  estimated the DUs of biodiesel-diesel blends by using only the C18:1, 

C18:2 and C18:3 FAMEs, (Sachuthananthan et al., 2018) reported 17% of C16:0 in the content of 

neem biodiesel. Therefore, the mentioned DUs can be changed after the consideration of neglected 

FAMEs like C16:0 for neem biodiesel. 

Li et al., (2018) tested six different biodiesels which were obtained from palm, olive, rapeseed, 

soybean and grapeseed feedstock and having degrees of unsaturation as 64.2, 92.8, 121.9, 143.8 and 

157.9 respectively. A turbocharged 4-cylinder DI engine with common rail fuel injection system was 

used in the study. Li et al., (2018) sated that combustion starts earlier with the decreasing DU and this 

was mainly attributed to the reduced kinematic viscosity that provides better turbulence and spray 

characteristics. It was also reported that NOx and smoke opacity emissions increased with increasing 

DU whereas; CO emission was decreasing with the increasing DU. 

Redel-Macías et al., (2013) investigated the influence of the degree of unsaturation over CO, NOx 

emissions and noise characteristics of a 3-cylinder DI diesel engine. In the study; coconut, palm, olive-

pomace, sunflower, and linseed oils were used as feedstock to produce biodiesels having DU of 12, 

61, 98, 151 and 217, respectively. Results of the study indicated that the CO emission and noise of the 
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engine were reduced with increasing DU. However, according to their NOx results, there was an 

uneven relationship between NOx and DU noticed. 

The literature investigated the effects of the degree of unsaturation, especially on NOx and PM 

emissions. However, studies mainly compare the biodiesels from various feedstock sources which 

have different degrees of unsaturation (iodine values) or their blends with diesel. In this chapter, on the 

other hand, the main aim is to investigate the effect of degree of unsaturation by keeping the feedstock 

the same i.e. biodiesel-biodiesel blends (100% biomixtures). This technique minimises any effects of 

fuel properties other than DU on engine operation. For example, biomixtures obtained from the same 

sources would have very similar carbon chain lengths, carbon, hydrogen, oxygen contents, densities, 

viscosities, flash points, heating values and acid values. By this means, the degree of unsaturation was 

the main parameter creates some changes on engine performance, combustion characteristics and 

exhaust gas emissions. In this study, moreover, another significant novelty was achieved by 

understanding the effect of biodiesel’s DU on CO2 emission.  

 

4.3. Horiba emission analyser for accurate emission readings 

Although BOSCH BEA 850 was the main gas analyser used in this PhD research (as described in 

Chapter 3), for this specific chapter a more advanced emission measurement system, i.e. HORIBA 

OBS-ONE-GS02 was used to detect emissions more accurately (Figure 4.2). This was due to the 

expected small changes in biomixtures emissions as a result of the minimised effect of fuel properties 

other than DU. In addition, NO2 and NOx were also measured with the HORIBA OBS-ONE-GS02. 

Smoke opacity was monitored by BOSCH analyser by placing the probe into the exhaust system. 
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Figure 4.2: Engine test rig equipped with HORIBA exhaust gas analyser. 

 

4.4. Biomixture blends for the degree of unsaturation study 

 

Two biodiesel sources were selected according to their degrees of unsaturation (iodine values). The 

low DU biodiesel was produced from sheep fat (DU: 47), whereas high DU biodiesel was derived 

from waste cooking oil (DU: 167).  Approximately 1.576 kg of sheep tallow was rendered from 1.8 kg 

of sheep fat; hence the rendering yield was calculated as 88%. The each feedstock was converted into 

biodiesel separately by the transesterification technique described in Chapter 3. The titration results of 

the fat and oil, amounts of KOH and methanol used for transesterification are given in Table 4.2. 

 

Table 4.2: Titration results and chemicals used to convert feedstock into biodiesel. 

Feedstock Volume of titration KOH used for  Methanol used for 

 
solution consumed Transesterification  1 litre of feedstock 

  (ml) (g/litre)  (ml) 

WCO 1 8.2  200 
Sheep tallow  0.6 7.7   200  

 

Fuel properties of 7 biofuels were tested, namely 2 neat biodiesels, 100% WCO biodiesel (W100), 

100% waste sheep tallow biodiesel (A100), and 5 biomixtures at different volume ratios. The 

biomixtures were composed of waste cooking oil biodiesel to sheep biodiesel volume ratios of 80/20, 
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60/40, 50/50, 30/70 and 10/90; and named as W80A20, W60A40, W50A50, W30A70 and W10A90 

respectively Figure 4.3. The reference ULSD diesel was purchased from Esso UK and it was 

satisfying the BS EN 590 specifications (Esso, 2019). 

 

 

Figure 4.3: Biomixtures obtained by blending waste cooking oil biodiesel (W100) and sheep fat 

biodiesel (A100); from left to right W100, W80A20, W60A40, W50A50, W30A70, W10A90 and 

A100. 

 

Fuel characterisations of all test fuels were carried out and their suitability to British and European 

biodiesel standard BS EN14214 were checked. Next, selected biomixtures i.e. W60A40, W50A50 and 

W30A70 along with both neat biodiesels and diesel were tested in the engine to measure engine 

performance, combustion characteristics and exhaust gas emissions. 

 

4.5. Fuel characterisation results for the waste cooking oil biodiesel – sheep fat 

biodiesel blends 

 

FAME compositions of each biodiesel were analysed and presented in Table 4.3. In addition, total 

percentages of saturated FAMEs (C14:0, C16:0 and C18:0), monounsaturated FAMEs (C16:1 and 

C18:1), and polyunsaturated FAME (C18:2) were summarised in Table 4.3. According to the GS-ms 

results, W100 was mainly formed of C18:2 as 76.8% which was the most unsaturated FAME in this 

chapter. In contrast, A100 was only containing 1.1% of C18:2. Whilst, the main FAMEs found in the 

structure of A100 were C18:1, C18:0 and C16:0 with the percentages of 43.5%, 29.3% and 21.6%, 

respectively. The blends of biodiesels (W100 and A100) had extremely different FAME percentages 

which also result in a significant difference on degrees of unsaturation. Figure 4.4 presents the 

distribution of the neat biodiesels as well as the biomixtures according to total percentages of 

saturated, monounsaturated and polyunsaturated FAMEs. The major changes were observed on 

saturated and polyunsaturated FAMEs. On the other hand, a relatively minor change was spotted on 
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monounsaturated FAMEs. To illustrate, the overall percentage of saturated FAMEs was 15.1% for the 

W100 and it was increased to 22.9% by the addition of 20% (by volume) A100 into W100. It was 

followed by increases to 30.5%, 34.9%, 42.5%, and 50.8% as the addition of A100 by 40%, 50%, 70% 

and 90% respectively. Finally, the highest percentage of saturated FAME was spotted in the content of 

A100 as 54.4%. However, as described earlier in Chapter 3, the degree of unsaturation was defined by 

the unsaturated FAMEs such as monounsaturated and polyunsaturated. Similar to saturated FAMEs, 

linear variations were observed in the changes of both monounsaturated and polyunsaturated FAMEs 

after blending of the two neat biodiesels Table 4.3 and Figure 4.4. 

 

Table 4.3: Mass percentages of each FAME compound found in the test fuels, adapted from the 

author’s published paper (Masera and Hossain, 2017). 

FAME W100 W80A20 W60A40 W50A50 W30A70 W10A90 A100 

C14:0 0.1 0.5 0.9 1.2 1.7 2.3 2.8 
C16:0 11.0 13.1 14.8 15.8 18.2 20.6 21.6 
C16:1 0.0 0.0 0.4 1.0 1.4 1.9 0.9 
C18:0 4.0 9.3 14.7 17.9 22.6 27.9 29.3 
C18:1 2.6 3.8 5.0 5.9 6.8 7.9 43.5 
C18:2 76.8 68.9 60.5 55.0 47.1 38.2 1.1 
C18:3 5.4 4.5 3.6 3.1 2.2 1.2 0.8 

Saturated 15.1 22.9 30.5 34.9 42.5 50.8 54.4 
Monounsaturated 2.6 3.8 5.4 7.0 8.2 9.8 44.4 
Polyunsaturated 82.2 73.4 64.1 58.1 49.3 39.4 1.1 

 

 

Figure 4.4: Distribution of test samples according to polyunsaturated, saturated and monounsaturated 

methyl esters, adapted from the author’s published paper (Masera and Hossain, 2017). 

Figure 4.5 demonstrates the TLC chromatography results of the waste cooking oil, sheep fat and their 

biodiesel versions. According to Figure 4.5, TAGs were the most dominant compound in the oils. 

Figure 4.6 also showed that TAGs were main source of the feedstock that was converted into 
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biodiesel. Note that FFA, DAG and MAG compounds could not be quantified as their concentrations 

were below the detection point.  

 

      

                                             (a)                                                                  (b) 

Figure 4.5: Thin layer chromatography (TLC) results (a) feedstock and (b) biodiesel samples. 
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(a) 

 

(b) 

Figure 4.6: GC-ms results of the (a) Sheep fat TAG and (b) sheep biodoesel FAME. Sheep biodiesel 

A100 mainly composed of C16:0, C18:0 and C18:1 (C17:0 was added as an internal standard). 

 

Table 4.4 shows the fuel properties of the neat biodiesels, the biomixtures, diesel, British biodiesel 

standard BS EN 14214 and European diesel standard EN 590 (European Standard EN 590:2013, 2009; 
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British Standard Institution, 2010). Note that the EN 590 diesel standard allows the presence of 7% 

biodiesel by volume to be blended with diesel (not shown in Table 4.4). According to measured fuel 

properties, neither W100 nor A100 satisfied the BS EN 14214 biodiesel standard. For example, 

W30A70, W10A90 and A100 did not comply with the BS EN 14214 standard in terms of their 

viscosities higher than 5.0 mm2/s. Moreover, W100 and W80A20 did not comply with the standard 

due to cetane numbers being lower than 52 and iodine values being greater than 120. In the light of 

fuel characterisation analysis, W60A40 and W50A50 were the only two biomixtures meeting the BS 

EN 14214 standard (Masera and Hossain, 2017). 
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Table 4.4: Fuel properties of the test fuels along with BS EN 14214 British/European biodiesel standard and EN 590 diesel standard (European Standard EN 

590:2013, 2009; British Standard Institution, 2010). 

Fuel Units Biofuels   BS EN 14214 EN 590 

Properties 
 

W100 W80A20 W60A40 W50A50 W30A70 W10A90 A100 Diesel Biodiesel Diesel 
                    Standard Standard 

Viscosity at 40°C  (mm2/s) 4.80 4.85 4.90 4.93 5.15 5.33 5.48 2.78 3.5 - 5.0 2.0 - 4.5 
Density (g/cm3) 0.882 0.880 0.874 0.872 0.870 0.868 0.865 0.828 0.86 - 0.90 0.820 - 0.845 
Flash Point (°C) 169 170 168 168 172 172 170 61.5 min 101 min 55 
Cetane numbera () 47 50 53 55 58 62 70 53.5 min 51 min 51 
Cetane numberb () 44 47 51 52 55 58 66 53.5 min 51 min 51 
Carbon, theoretical (%) 77.27 77.16 77.04 76.96 76.84 76.71 76.48 n/a n/a n/a 
Carbon, measured (%) 76.56 n/a 77.48 77.1 75.01 n/a 76.89 86.6c n/a n/a 
Hydrogen, theoretical (%) 11.74 11.84 11.93 11.99 12.08 12.18 12.43 n/a n/a n/a 
Hydrogen, measured (%) 11.86 n/a 12.12 12.66 12.58 n/a 12.81 13.4c n/a n/a 
Oxygen, theoretical (%) 10.99 11.01 11.03 11.05 11.08 11.11 11.09 n/a n/a n/a 
Oxygen, measured (%) 11.58 n/a 10.41 10.24 12.41 n/a 10.30 0.07c n/a n/a 
HHV (MJ/kg) 38.4 39.8 39.5 39.4 39.2 39.0 40.5 45.16 n/a n/a 
LHV (MJ/kg) 37 37 37 37 37 37 37 42 n/a n/a 
Iodine number (g/100g) 145 130 116 107 92 77 40 n/a max 120 n/a 
Linolenic acid methyl ester (%mol/mol) 5.4 4.5 3.6 3.1 2.2 1.3 0.8 n/a max 12  n/a 
Monoglyceride (MAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.8 n/a 
Diglyceride (DAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.2 n/a 
Triglyceride (TAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.2 n/a 
Methanol (%mol/mol) 0 0 0 0 0 0 0 n/a max 0.2 n/a 
Acid value (mg KOH/g) 0.200 0.229 0.259 0.289 0.289 0.290 0.291 0.091 max 0.5 n/a 
Degree of Unsaturation (Weight %) 167 150 133 123 107 89 47 n/a n/a n/a 

a= (Ramírez-Verduzco et al., 2012); b= (Tong et al., 2011); c= (Schönborn et al., 2009); ND= Not detected 
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Relations between DU-cetane number and DU-viscosity were noticed. For example, viscosity and 

cetane number of the biofuels were observed to be increasing with the decreasing DU Figure 4.7. This 

can be due to the chemical structures of the saturated FAMEs such as carbon chain lengths Table 2.1. 

DU of the biofuels was decreasing by adding more A100 into W100. Thus, the percentage of saturated 

FAMEs was also increasing (Table 4.3 and Figure 4.4). These results are in good agreement with the 

literature (Schönborn et al., 2009). 

 

 

Figure 4.7: Effect of degree of unsaturation on viscosity and cetane number of biodiesel. 

 

Although some biofuels (i.e. W100, W30A70 and A100) did not comply the BS EN 14214 standard, 

they were also tested in the engine to understand the effect of degree of unsaturation on engine 

performance, combustion characteristics and exhaust gas emissions. Among the characterised biofuels, 

W100, W60A40, W50A50, W30A70 and A100 were tested in the engine along with the ULSD diesel 

as a reference fuel.  

 

4.6. Combustion characteristics and degree of unsaturation 

 

Combustion parameters were collected from the first cylinder of the engine. Various combustion 

parameters such as combustion start and end times, overall combustion duration, peak knock, in-

cylinder pressure, heat release, heat release rate were collected and analysed through KiBoxCockpit 

software. Averages of 51 consecutive cycles were used to analyse combustion characteristics of the 

test fuels. 
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Figure 4.8 presents combustion (a) start (b) finish times, and (c) total combustion duration in terms of 

crank angle position. From Figure 4.8 (a) it can be understand that combustion of the test fuels started 

almost at the same crank angle at each engine load. However, combustion end time increases with 

respect to increasing engine load Figure 4.8 (b), as the amount of fuel consumed increased to 

overcome increased resistance. This increase in combustion end time affects the overall combustion 

duration which was also increased with respect to increasing engine load Figure 4.8 (c). Figure 4.9 

studies the ignition delay and combustion durations of the test fuels including the diesel.  

Results also showed that there was a relatively long ignition delay period for all fuels. In other words, 

combustion took place after about 4 °CA Top Dead Centre (TDC), which was not the desired scenario 

and shows that the injection system of the engine shall be rearranged. Under the mentioned 

circumstances, biodiesels having higher cetane number than diesel (Table 4.4) performed slightly 

shortened ignition delay periods. Presumably, ignition delays of the biofuels would be better than that 

of diesel with an advanced fuel injection arrangement of the engine. It was also presumed that biofuels 

would provide even shorter ignition delays than diesel in a direct injection engine. 
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(a) 

 

(b) 

 

(c) 

Figure 4.8: Crank angle positions at different stages of the combustion; (a) at the beginning, (b) at the end, and (d) total combustion duration.
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(a) 

 

(c) 

 

(b) 

 

(d) 

Figure 4.9: Ignition delay and combustion durations with respect to crank angles at 40%, 60%, 80% and 

100% engine loads. 

 

The influence of the degree of unsaturation on ignition delay and total combustion duration were 

investigated in detail at 40% and 80% engine loads at 1500 rpm (Figure 4.10 and Figure 4.11). Results 

indicated that the ignition delay reduces with the reducing DU. The highest ignition delay was observed as 

24.03 °CA for W100, which was 7% higher than that of A100 at 40% engine load (Figure 4.10). 

Similarly, total combustion duration also reduced for the low DU biodiesels (Figure 4.11). At 40% engine 

load, the highest combustion duration was observed as 15.20 °CA for the W100 and it decreased with the 

0.2 °CA decrements for W60A40, W50A50, W30A70 and A100 which had DU’s of 133, 123, 107 and 

47, respectively. The decreasing trend was the same at the 80% load operation but with decrements of 

approximately 0.5 °CA between the biomixtures. The decreasing ignition delay and combustion duration 

trends with respect to decreasing DU were in good agreement with the literature (Schönborn et al., 2009; 
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Benjumea et al., 2011; Li et al., 2018). This was attributed to increased cetane number of the biodiesels in 

the literature. However, relatively complex molecular structures of saturated FAMEs like having double 

bonds should also be considered. It was assumed that high DU FAMEs take longer time to burn due to the 

extra time/energy spent for breaking the double bunds. 

 

 

(a) 

 

(b) 

Figure 4.10: Effect of degree of unsaturation on ignition delay at 40% and 80% engine loads. 

 

 

(a) 

 

(b) 

Figure 4.11: Effect of degree of unsaturation on combustion duration. 

 

Engine knocking is a vital parameter for the smooth operation of an engine. Zhen et al., (2012) reviewed 

various methods to measure this parameter which were analysis based on in-cylinder pressure, the 

vibration of the engine block, the temperature of the exhaust gases, heat release and intermediate radicals 

and species. In this study, engine knocking was investigated through the in-cylinder pressure. According 

to the peak knock results provided in Figure 4.12, it can be reported that the engine was running smoothly 

on every test fuel. Peak knockings were in the order of 0.1 and 0.2 bars which were negligible for the 

engine operating around 70 bar in-cylinder pressure. It was also noticed that biofuels burned smoother at 

the higher engine loads (above 70%). This small knocking at low engine loads can be attributed to higher 
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viscosities and densities of the biofuels which cause relatively poor atomisation properties at lower 

temperatures compared to diesel. It was also believed that the test engine was not responding well at low 

engine loads as it has indirect injection system and a relatively high compression ratio of 1:23.5. 

Moreover, late fuel injection could cause some peak knock fluctuations especially at the low engine loads; 

where the effect of high viscosity biofuels (i.e. W30A70 and A100) observed more dominant under low 

combustion temperatures. 

 

 

Figure 4.12: Peak knock at different engine loads. 

 

Exhaust gas temperature (EGT) was increasing almost linearly with the increased engine load (Figure 

4.13). This was because of the longer combustion durations at the higher engine loads (Emiroğlu et al., 

2018). Longer combustion duration may cause a significant amount of fuel to be burned at the late power 

stroke where the volume is getting larger, hence released energy creates less impact on the pressure 

applied on piston head (Awad et al., 2014). Note that it is also known that high EGT negatively effects the 

NOx emissions (Dhamodaran et al., 2017). This is because of the combining tendency of oxygen and 

nitrogen molecules to at higher temperatures. The results also indicate a reducing exhaust gas temperature 

with respect to decreasing DU of the biofuels. To illustrate, exhaust gas temperatures of 215°C, 211°C, 

209°C, 206°C and 206°C were reported for W100, W60A40, W50A50, W30A70 and A100 at 70% engine 

load, respectively. 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

20% 40% 60% 70% 80% 100%

P
e

ak
 k

n
o

ck
 (

b
ar

)

Engine Load

Diesel W100 W60A40 W50A50 W30A70 A100



 

110 

 

 

Figure 4.13: Exhaust gas temperatures of biofuels at different engine loads. 

 

According to the in-cylinder results, all biofuels provided higher in-cylinder pressure, by a few bars, than 

the diesel as a result of improved combustion due to their inherent oxygen contents (Figure 4.14). Among 

the biofuels, W50A50 provided the maximum pressure at almost every engine load. For example, the peak 

in-cylinder pressure of W50A50 was 67.9 bar at 10.5 °CA, 68.9 bar at 10.3 °CA and 67.5 bar at 12.0 °CA 

which were 4.3%, 5.2% and 2.8% higher than both neat biodiesels at 70%, 80% and 100% engine loads, 

respectively. This was deemed to its optimised fuel properties which provide relatively medium viscosity 

(4.93 mm2/s) and relatively medium DU of 123 (34.9% saturated, 7.0% monounsaturated and 58.1% 

polyunsaturated). At the 20% engine load, W60A40 was the other well-performing biomixture after the 

W50A50 in terms of maximum in-cylinder pressure. The reason was again the optimised fuel properties. 

Optimised fuel characteristics of biomixtures such as DU and viscosity, lead to optimum molecular 

structure (carbon chain length, number of double bonds) and atomisation characteristics of the fuel 

molecules to create best in-cylinder pressure. However, at 60% engine load, highly saturated biofuels like 

W30A70 and A100 provided in-cylinder pressure as 66 bar which was at the level of W50A50. This can 

be explained by the reduced viscosities of the highly saturated biofuels at the high temperatures of the 

higher engine load. At the 80% engine load, W50A50 provided approximately 2 bar higher peak in-

cylinder pressure at around 10 °CA aTDC compared to other fuels. To sum up, in-cylinder pressure 

analysis demonstrated that biodiesel-biodiesel blends (biomixtures) could provide slightly higher peak in-

cylinder pressures compared to their neat biodiesel versions due to optimised fuel properties. For example, 
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maximum peak in-cylinder pressure was observed by W50A50 and W30A70 which was 2 bar (2.9%) 

higher than the neat biodiesels and diesel at 100% load. 

 

 

(a) 
 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 4.14: In-cylinder pressures versus crank angle for all test fuels at different engine loads. 
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Figure 4.15 demonstrates the heat release (HR) of the test fuels with respect to crank angle at different 

engine loads. Negative heat release values just before the combustion can be attributed to evaporation of 

the fuel (Bowden et al., 1969). At 20% engine load, it was observed that W60A40 and W50A50 

biomixtures provided around 10 joules and 20 joules higher HR than the diesel at each crank angle (during 

the combustion period). At the initial phase of combustion, the lowest DU biodiesel A100 had the highest 

HR approximately 4% higher than other fuels at almost all engine loads. For example, A100 had 15 joules 

higher HR than average of other fuels at 7°CA at 60% engine load. On the other hand, A100 had 5.5% 

lower HR than the other fuels towards the end of combustion i.e. released 20 joules less than the average 

of other fuels at 35°CA at 60% engine load. The results were almost the same for the 80% engine load too. 

In contrast, highly unsaturated biodiesel W100 which contains only 15.1% saturated FAMEs exhibited 

better heat release performance towards the end of the combustion rather than at the initial phase. This 

was due to the number of double bonding in FAMEs and cetane number. As it consumes more energy and 

time to break down the second bonds, energy release on highly saturated biofuels like A100 and W30A70 

was more significant at the beginning of the combustion period. On the other hand, HR of the highly DU 

W100 was more effective towards the end of the combustion period. Ultimately, it can be concluded that 

lower DU biodiesels had quicker and higher HR at the early phase of the combustion, whereas higher DU 

biofuels had higher HR at the late combustion phase. 
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(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 4.15: Heat release of the test fuels at various engine loads. 

 

Figure 4.16 shows the heat release rates (HRR) of the test fuels at different engine loads at 1500 rpm. 

Biodiesels had higher HRR than the diesel at almost all engine loads due to their oxygen content. The 

rapid burning at the premixed combustion phase was due to higher cetane numbers of the biofuels 

compared to diesel Table 4.4. The HRR trends of the biofuels were similar at all loads. The low DU 
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biodiesels such as A100 and W30A70 found to be burning rapidly at all engine loads because of the easier 

breakdown of the saturated FAME molecules and high cetane numbers. However, their maximum HRR 

(25 J/°CA at 20% engine load) at low engine loads were not as much as at the high engine loads (30 J/°CA 

at 100% engine load) due to their relatively higher viscosities and densities. The effect of DU on 

maximum HRR was investigated at 80% load for the biomixtures. According to Figure 4.17, the 

maximum HRR values were 27.8 J°CA, 28.4 J°CA and 29.6 J°CA for W60A40, W50A50 and W30A70, 

respectively. The similar increasing maximum HRR trend for the decreasing DU was also observed on 

70% engine load. However, according to results shown in Figure 4.17, W50A50 biomixture gave the 

highest maximum heat release rate as 32 J/°CA at the full engine load. The heat release rate results also 

show that optimised fuel properties like DU, density, viscosity, cetane number and carbon chain length 

could provide optimum combustion characteristics at all engine loads.  
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(a) 

 

(d) 

 

(b) 
 

(e) 

 

(c) 

 

(f) 

Figure 4.16: Heat release rate of test fuels vs crank angles at different engine loads. 
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Figure 4.17: Maximum heat release rate of the test fuels at different engine loads. 

 

4.7. Engine performance and degree of unsaturation 

 

Brake specific fuel consumption (BSFC), Brake Specific Energy Consumption (BSEC) and Brake 

Thermal Efficiency (BTE) of the indirect injection CI engine operating at 1500 rpm were measured and 

analysed in the scope of engine performance evaluation. Figure 4.18 demonstrates the BSFC of the test 

fuels at different engine loads. All biodiesels had higher BSFC than diesel at every engine load. This was 

in good agreement with the literature and can be linked to lower LHV of biodiesels (Özener et al., 2014). 

The differences between each BSFCs were similar as 1% at the lowest engine load. A100 had the highest 

BSFC as 0.433 kg/kWh, followed by W30A70 with 0.426 kg/kWh, W50A50 with 0.412 kg/kWh, 

W60A40 with 0.400 kg/kWh, W100 with 0.390 kg/kWh and diesel with 0.369 kg/kWh at 40% engine 

load. The biofuels having low DU values like A100 and W30A70 had the same BSFC value of 0.36 

kg/kWh which was approximately 2.8% higher than the other biodiesels at 60% engine load. The 

differences between the BSFC values of the biofuels were decreasing and approaching to zero as the 

engine load increased. Hence, there was no BSFC difference among the biodiesels at the full load. It was 

very clear that DU had not a significant effect on the BSFC at medium and high engine loads as the BSFC 

values were very close to each other. The slight difference at the low engine loads can be attributed to 

relatively highly viscosities of low DU biodiesels. Due to the poor combustion characteristics of relatively 

low DU biodiesels like A100 and W30A70 at low engine loads, more amount of fuel consumed to provide 

the same power output compared to relatively less saturated fuels. W100 and W50A50 were the best 
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performing biofuels by having 3.4%, 5.1% and 8.5% less BSFC than W60A40, W30A70 and A100, 

respectively; but 6.8% higher BSFC than the diesel at the lowest engine load. As the combustion 

temperature increases proportionally to engine loading, viscosities of the A100 and W30A70 biofuels 

reduced and similar BSFC levels with the other biofuels achieved after 70% engine load. However, 

average BSFC of the biodiesels was 14.5% higher than diesel at medium and high engine loads. This can 

be attributed to the low LHV of the biofuels which caused more amount of fuel to be burned in order to 

provide the same power output with the diesel operation. Unlike the lowest engine load condition, A100 

having the lowest DU biodiesel provided the lowest BSFC which was 3.2% less than that of W100. 

 

 

Figure 4.18: Brake specific fuel consumptions of the test fuels at different engine loads. 

 

Although BSFC’s of the biodiesels were analysed, BSEC analysis was also crucial as the compared fuels 

had different LHV properties (Krishna et al., 2016). Unlike BSFC analysis, BSEC did not only consider 

the amount of fuel consumed but LHV were taken into account. According to BSEC analysis provided in 

Figure 4.19, the energy consumptions of the biodiesels were comparable with the diesel. Moreover, 

relatively high DU biodiesels W100, W60A40 and W50A50 had around 1.9% lower BSEC than the diesel 

at 60% engine load. Comparing the BSEC’s of the biodiesels at the low and medium engine loads, A100 
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had the highest BSEC as 16.0 MJ/kWh, followed by W30A70 with 15.6 MJ/kWh, W50A50 with 15.1 

MJ/kWh, W60A40 with 14.8 MJ/kWh and W100 with 14.5 MJ/kWh at 40% engine load.  

 

Figure 4.19: Brake specific energy consumptions of the test fuels at different engine loads. 

 

Figure 4.20 illustrates the BTE of the engine operating at 1500 rpm at different loads. The highest DU 

biodiesel W100 had the highest BTE which was 8% and 10% greater than the diesel and the lowest DU 

biodiesel A100 at medium engine loads, respectively. Moderate DU biomixtures such as W60A40 and 

W50A50 exhibited approximately 2% higher BTE than the diesel between 20% and 60% loads. The 

presence of oxygen in molecular structures of the biodiesels believed to be the main reason for improved 

BTE. However, A100 and W30A70 addressed 3.3% and 3.0% lower BTE than the diesel at 60% load. 

This was due to their limited combustion characteristics due to high viscosities at low combustion 

temperatures. On the other hand, at the highest engine load, W100 with high DU provided 2% lower BTE 

than all other fuels. This could be due to the energy loss to breakdown excessive double bonds for 

unsaturated FAMEs. 
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Figure 4.20: Brake thermal efficiency at different engine loads. 

 

To sum up, all biodiesels performed almost the BSEC and comparable BTE among themselves and diesel, 

especially at the full load. Therefore, no significant effect of DU was observed on the engine performance 

parameters. This finding also matches with the literature (Lapuerta and Armas, 2009; Benjumea et al., 

2011; Altun, 2014; Dhamodaran et al., 2017). 

 

4.8. Exhaust emissions and degree of unsaturation 

 

In the scope of exhaust gas analysis, CO, CO2, NO, NO2, NOx and smoke opacity emissions were analysed 

for all biodiesels and compared to diesel emissions. Simultaneous readings were collected in %volume for 

CO and CO2; and ppm for NO and NOx emissions. In addition, data was also collected in grams for a 

defined time interval after the steady-state condition. Effects of DU on the mentioned emissions were 

investigated in detail. To contribute to the literature, not only the different biodiesels (i.e. W100 and 

A100) but also the biomixtures (i.e. W60A40, W50A50 and W30A70), which were blends of the two neat 

biodiesels, were analysed to have a deep understanding on DU. In this way, all changes on the exhaust gas 

emissions were solely caused by the direct effect of the DU property.  
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Carbon content, oxygen content and burning efficiency are the three main factors which effect the CO2 

and CO emissions (Kumar and Subramanian, 2017). Hence, CO2 emission of any fuel shows its 

combustion efficiency. During the combustion process, carbon atoms oxidise with the presence of oxygen 

and form CO and CO2 gases sequentially. Under these circumstances, lack of oxygen prevents the second 

phase of the oxidation and carbon atoms release as CO before turning into CO2 (Wakode and Kanase-

Patil, 2017). CO2 Results of all fuels indicated linear increases on CO2 emissions with the increasing 

engine loads Figure 4.21 and Table 4.5. This was due to the increasing amount of fuel with the engine 

load. It was also observed that all biofuels, except W100, released around 6% (15 g/100s at full load) 

reduced CO2 than the diesel on average. W50A50 biomixture provided 3.6% and 6.7% reduced CO2 

emission compared to diesel and W100 respectively at the full load. W100 had the highest CO2 emission 

at 240.4 g/100s and it was the only biodiesel having the CO2 emission greater than the diesel by 3.1%. All 

other biodiesels like W60A40, W50A50, W30A70 and A100 released 1.8%, 3.3%, 2.6% and 2.9% lower 

CO2 emissions than diesel at the full load condition respectively. The effect of degree of unsaturation on 

CO2 emission was investigated by comparing the CO2 emissions of the biomixtures at 80% and 100% 

engine loads Figure 4.22. According to results, no significant change in CO2 emissions was observed at 

biomixtures having DU range between 167 and 123. The largest CO2 emission changes were only 1 

g/100s (0.005%) and 3 g/100s (0.013%) at 80% and 100% engine loads. 

 

 

(a) 
 

(b) 

Figure 4.21: CO2 emissions of test fuels in (a) g/100s and (b) % volume. 
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Table 4.5: Mass (gram) of CO2 emitted in 100 seconds. 

  Engine load 
Fuel 20% 40% 60% 70% 80% 100% 

Diesel 92.3 122.3 152.9 169.0 186.8 232.9 
W100 92.6 122.8 156.0 175.3 194.5 240.4 
W60A40 88.4 120.4 149.6 166.3 183.1 228.8 
W50A50 89.8 119.0 149.6 165.6 182.8 225.3 
W30A70 89.5 120.6 150.8 167.1 184.0 226.8 
A100 89.7 121.2 150.9 166.3 183.9 226.0 

 

 

 

(a) 

 

(b) 

Figure 4.22: Effect of degree of unsaturation on biodiesel’s CO2 emission at (a) 80% and (b) 100% engine 

load. 

 

Figure 4.23 presents CO emissions of the test fuels in grams per 100 seconds. Like CO2, CO emissions 

were also increasing with the engine load. This can be explained by the increased fuel content and 

combustion duration at high engine loads. Although the majority of biodiesels emitted lower CO than the 

diesel at all engine loads, W100 had approximately 0.30 g/100s higher CO than the other biodiesels. It can 

be concluded that W100 had relatively poor combustion efficiency when compared to other biodiesels. 

Moreover, W100 had the highest carbon content among the biodiesels. The highest DU biodiesel W100 

had the highest CO emission as 0.461 g/100s and it was followed by the other biodiesels; W60A40 of 

0.132 g/100s, W50A50 with 0.127 g/100s, W30A70 with 0.123 g/100s and A100 with 0.109 g/100s at 

80% engine load. All of these CO emissions were lower than that of diesel by 5.9%, 73.0%, 74.2%, 74.8% 

and 77.7% respectively. The slight differences in biodiesels CO emissions were also due to variation in 

their carbon contents Table 4.4. For example, it was noticed that the carbon content of the biomixtures 

decreased with the increasing percentage of A100 in the blend, which in turn resulted in lower carbon 
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atoms to form CO emission. Hence, A100 with the lowest carbon content and DU provided the least CO 

emissions, which was 67% (approximately 0.35 g/100s) less than the diesel at low and medium engine 

loads Figure 4.23 and Table 4.6. W50A50 found to be least CO emitting fuel as 0.211 g/100s at full 

engine load which was 70% and 63% lower than the diesel and W100 at the full load.  

 

 

Figure 4.23: CO emissions of the test fuels in g/100s. 

 

Table 4.6: Mass (grams) of CO emitted in 100 seconds. 

  Engine load 
Fuel 20% 40% 60% 70% 80% 100% 

Diesel 0.437 0.420 0.447 0.471 0.490 0.696 
W100 0.410 0.385 0.406 0.432 0.461 0.574 
W60A40 0.062 0.060 0.084 0.110 0.132 0.244 
W50A50 0.052 0.059 0.082 0.096 0.127 0.211 
W30A70 0.042 0.051 0.080 0.099 0.123 0.232 
A100 0.039 0.042 0.070 0.088 0.109 0.222 

 

The effect of degree of unsaturation on CO emission was investigated by comparing the CO emissions of 

the biomixtures at 80% engine loads Figure 4.24. According to the results, CO was slightly increased with 

increasing DU. The highest CO emission increases were of 3.8% and 5.3% at 80% and 100% engine 

loads. This can be attributed to increasing the carbon content of the biomixtures with the increasing DU. It 

can be concluded that the carbon content of any fuel has more impact than its DU on CO emission. 
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Figure 4.24: Effect of degree of unsaturation on biodiesel’s CO emission at 80% engine load. 

 

Figure 4.25 and Table 4.7 illustrates the NO, NO2 and NOx measurements of the test fuels at different 

engine loads. NOx was the combination of the nitrogen oxide (NO) and nitrogen dioxide (NO2) emissions. 

Unlike CO2 and CO emissions, all biodiesels emitted higher NO and NOx emissions, especially at low and 

moderate engine loads. This can be explained by their inherent oxygen content which results in improved 

combustion. It was also noticed that NO and NOx emissions of all test fuels exhibited a decreasing trend at 

the full load condition. This can be attributed to reduced oxygen to nitrogen contents ratio at the 100% 

load. More specifically, W100, W60A40 and A100 released lower NO emission than diesel by 0.5%, 

1.2%, and 2.9% at the full load respectively. On the other hand, W50A50 and W30A70 released higher 

NO emission than diesel by 2.4% and 1.7% at the full load respectively. However, NO2 emissions of all 

biofuels were higher than diesel by 25%, 25%, 6%, 29% and 29% at the full load respectively. Ultimately, 

the NOx emissions of the W100, W50A50 and W30A70 were higher than the diesel by 0.7%, 2.5% and 

2.9% at the full load respectively. However, the NOx emissions of the A100 and W60A40 were 

comparable to that of diesel as they released 1.4% lower and the same NOx emissions compared to diesel, 

respectively. Note that, W60A40 was one of the biomixtures complies with the BS EN14214 standard. 
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(a) 

 

(b) 

 

(c) 

Figure 4.25: NO, NO2, and NOx emissions of the test fuels at different engine loads. 
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Table 4.7: NO, NO2, and NOx emissions of test fuels at different engine loads (ppm). 

  NO 

 
Engine load 

Fuel 20% 40% 60% 70% 80% 100% 

Diesel 260 367 410 425 435 415 
W100 260 350 437 430 446 413 
W60A40 296 395 430 435 440 410 
W50A50 318 405 440 440 450 425 
W30A70 300 385 440 452 455 422 
A100 315 389 435 427 430 403 

  NO2 

Diesel 44 36 40 26 25 15 
W100 47 55 34 40 27 20 
W60A40 37 39 32 27 20 20 
W50A50 37 35 30 26 25 16 
W30A70 35 40 30 30 28 21 
A100 35 35 37 30 27 21 

  NOx 

Diesel 304 403 450 451 460 430 
W100 307 405 471 470 473 433 
W60A40 333 434 462 462 460 430 
W50A50 355 440 470 466 475 441 
W30A70 335 425 470 482 483 443 
A100 350 424 472 457 457 424 

 

Figure 4.26 compares the two neat biodiesels and illustrates that W100 had higher NO and NOx emissions 

than A100 by 3.6% and 3.4% at 80% engine load. Similarly, the same differences were 2.4% and 2.1% at 

the full load condition. This analysis between two different neat biodiesels matches with the literature, as 

NOx emission was decreasing with respect to decreasing DU of biodiesel (Dhamodaran et al., 2017). 

However, when the same analysis conducted with the biomixtures, the trend was exactly the opposite. 

According to Figure 4.27, NOx emission was increasing with respect to decreasing DU of the biomixture. 

For example, 15 ppm increase on NOx emission was reported when the DU of biomixture reduced from 

167 to 133. Similarly, another 8 ppm increase on NOx was observed with the reduction of DU from 133 to 

123. Lanjekar and Deshmukh (2016) depicted bulk modulus of biodiesel, which is directly proportional to 

density but in inverse relationship to the NOx emission. Increase in the biodiesel’s bulk modulus was also 

addressed with the higher DU FAMEs (Giakoumis, 2013; Lanjekar and Deshmukh, 2016). In this regard, 

the results of this study match with the mentioned theory as NOx increased with decreasing densities and 

DU. In addition, the higher NOx emission with the lower DU biomixtures can be attributed to improved 

combustion characteristics of the low DU biomixtures like shorter ignition delay, shorter combustion 

duration, and higher heat release at the early period of the combustion. It is known from the literature that 
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improved combustion characteristics cause higher NOx emission as a result of the increase in combustion 

temperature (Shameer and Ramesh, 2017). Consequently, NOx was in an inverse relationship with the DU 

due to improved combustion properties. 

  

 

Figure 4.26: The effect of degree of unsaturation when observed on different biodiesels. 

 

 

Figure 4.27: The effect of degree of unsaturation when observed on biomixtures (biodiesel-biodiesel 

blends). 

 

Figure 4.28 demonstrates smoke opacity measurements of the test fuels at different engine loads. The 

smoke opacity was the same for biodiesels and lower than diesel at all engine loads. This can be attributed 

to the aromatic hydrocarbon content of the diesel. The aromatic compounds decompose during the 

combustion and form visible side-products which are known as smoke (as well as soot) in the absence of 
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the oxygen (Dhamodaran et al., 2017). According to the results, average smoke opacity of biofuels was 

approximately 56%, 92% and 96% lower than the diesel at low (40%), medium (70%) and high (100%) 

engine loads respectively. The lower smoke emissions of biofuels were due to the improved combustion 

efficiency as a result of the inherent oxygen content of biofuels. The increasing smoke opacity trend with 

respect to increasing engine load can be explained by the reduced oxygen content in the combustion 

chamber. It was also previously reported that combustion behaviour like air turbulence and spray 

characteristics; and fuel properties such as cetane number, density and viscosity affects the smoke opacity 

(Ragit et al., 2010; Dhamodaran et al., 2017). The filter of the gas analyser was observed after the test of 

diesel fuel Figure 4.29a. Then the filter was replaced with the new one and contamination was observed 

again after testing the biofuels Figure 4.29b.  

 

Figure 4.28: Smoke opacity of the test fuels at various engine loads. 

 

  

(a) 

 

(b) 

Figure 4.29: Condition of the Horiba gas analyser filter, after testing (a) the diesel, and (b) biomixtures. 
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4.9. Repeatability of the results 

 

The results provided in this chapter were validated through repeatability analysis. The experiments were 

repeated for W50A50 with a 1 year aged biomixture and new sets of produced biodiesels. Moreover, apart 

from the HORIBA gas analyser, the exhaust emissions were also measured by another exhaust gas 

analyser BOSCH BEA 850 (described in Chapter 3). Standard errors for the CO2, CO, HC, O2, NO, smoke 

emission and time to consume 100 ml fuel were given in Table 4.8. The first measurement for smoke 

opacity of diesel was recorded extremely higher than another tests which can be related to inconsistency 

of diesel quality purchased from commercial supplier, ESSO UK. 

The repeatability analysis also proved that there was not any significant effect of 1-year storage of 

biomixtures on engine results. The biomixtures were stored at the room temperature in glass containers; 

lids were closed and kept in the dark.  

 

Table 4.8: Repeatability of test results for W50A50 biomixture. The measurements conducted on 

15/02/2019 was 1 year aged biomixture, whereas measurements on 20/02/2019 were for new biomixture. 

1.9 kW (20%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 3.5 3.43 3.5 3.55 3.50 0.05 0.02 
CO (% vol) 0.01 0.012 0.005 0.002 0.007 0.005 0.002 
HC (% vol) - 1 1 1 1 0 0.00 
O2 (% vol) - 16.15 16.16 16.00 16.10 0.09 0.04 
NO (ppm) 318 265 304 309 299 23 11.70 

Smoke (m-1) 0.01 0.01 0.01 0.01 0.010 0.00 0.00 
Time for 100 ml fuel (s) 273 276 267 266 271 5 2.40 

Gas analyser HORIBA BOSCH BOSCH BOSCH 
   

        3.8 kW (40%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 4.67 4.24 4.76 4.77 4.61 0.25 0.13 
CO (% vol) 0.01 0.006 0.003 0.003 0.01 0.003 0.002 
HC (% vol) - 3 2 2 2 1 0.29 
O2 (% vol) - 14.98 14.43 14.37 14.59 0.34 0.17 
NO (ppm) 405 361 394 394 389 19 9.53 

Smoke (m-1) 0.02 0.01 0.01 0.01 0.01 0.01 0.00 
Time for 100 ml fuel (s) 206 206 199 198 202 4 2.17 

Gas analyser HORIBA BOSCH BOSCH BOSCH    
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5.7 kW (60%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 5.92 6.12 6.34 6.23 6.15 0.18 0.09 
CO (% vol) 0.01 0.003 0.006 0.005 0.01 0.003 0.001 
HC (% vol) - 2 1 2 2 1 0.29 
O2 (% vol) - 12.59 12.35 12.35 12.43 0.14 0.07 
NO (ppm) 440 460 480 481 465 19 9.71 

Smoke (m-1) 0.03 0.02 0.025 0.02 0.02 0.00 0.00 
Time for 100 ml fuel (s) 160 163 155 162 160 4 1.78 

Gas analyser HORIBA BOSCH BOSCH BOSCH    

        6.65 kW (70%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 6.58 6.95 7.05 6.97 6.89 0.21 0.10 
CO (% vol) 0.01 0.003 0.008 0.003 0.01 0.004 0.002 
HC (% vol) - 1 2 1 1 1 0.29 
O2 (% vol) - 11.64 11.44 11.48 11.52 0.11 0.05 
NO (ppm) 440 459 480 489 467 22 10.98 

Smoke (m-1) 0.03 0.02 0.02 0.02 0.02 0.00 0.00 
Time for 100 ml fuel (s) 141 146 141 146 144 3 1.44 

Gas analyser HORIBA BOSCH BOSCH BOSCH    

        7.6 kW (80%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 7.29 7.82 7.87 7.82 7.70 0.27 0.14 
CO (% vol) 0.01 0.005 0.009 0.008 0.01 0.002 0.001 
HC (% vol) - 2 1 1 1 1 0.29 
O2 (% vol) - 10.66 10.38 10.32 10.45 0.18 0.09 
NO (ppm) 450 447 501 490 472 28 13.77 

Smoke (m-1) 0.03 0.02 0.02 0.02 0.02 0.00 0.00 
Time for 100 ml fuel (s) 128 130 128 130 129 1 0.58 

Gas analyser HORIBA BOSCH BOSCH BOSCH    

        9.75 kW (100%) Test dates   standard standard 

W50A50 26/10/2017 19/12/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 9.05 10.15 10.09 10.07 9.84 0.53 0.26 
CO (% vol) 0.01 0.009 0.012 0.011 0.01 0.001 0.001 
HC (% vol) - 0 0 0 0 0 0.00 
O2 (% vol) - 7.85 7.53 7.46 7.61 0.21 0.10 
NO (ppm) 425 420 478 477 450 32 15.91 

Smoke (m-1) 0.21 0.04 0.02 0.02 0.07 0.09 0.05 
Time for 100 ml fuel (s) 101 103 103 102 102 1 0.48 

Gas analyser HORIBA BOSCH BOSCH BOSCH    
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4.10. Conclusion 

 

Two neat biodiesels of W100 and A100 were blended at different ratios to produce biomixtures at 

different levels of DU. According to engine tests of the tested fuels, the following conclusions were made; 

1. Viscosity, iodine value and cetane number were the three main fuel properties which were directly 

affected by the degree of unsaturation.  

2. Ignition delay of the biomixtures was slightly shortened by 0.05 °CA each time DU reduced from 

133 to 123 and 123 to 47. Similarly, total combustion duration was shortened by 0.5 °CA each 

time the DU of the biomixtures reduced. 

3. Exhaust gas temperature was the highest for the highest DU biodiesel W100 as 215°C, followed 

by W60A40, W50A50, W30A70 and A100 as 211°C, 209°C, 206°C and 206°C at 70% engine 

load respectively. 

4. The highest peak in-cylinder pressure was provided by the W50A50 biomixture having moderate 

DU of 123 at almost all engine loads i.e. 67.9 bar at 10.5 °CA, 68.9 bar at 10.3 °CA and 67.5 bar 

at 12.0 °CA which were 4.3%, 5.2% and 2.8% higher than the neat biodiesels at 70%, 80% and 

100% engine loads respectively. 

5. The maximum HRR values were 27.8 J/°CA, 28.4 J/°CA and 29.6 J/°CA for W60A40, W50A50 

and W30A70 at the 80% engine load respectively. The study also shows that biodiesels having 

low DU values burned slightly quicker by around 15 joules (4%) at the early phase of the 

combustion. On the other hand, high DU biodiesels were burning approximately 30 Joules (5.5%) 

higher than the low DU biodiesels at the late combustion phases at 80% engine load.  

6. No significant effect of DU was observed on engine performance at full engine load. However, 

the highest DU biodiesel W100 provided maximum BTEs at the low and medium engine loads by 

approximately 8% and 10% higher than the diesel and the lowest DU biofuel A100 respectively. 

7. A100 had the highest BSFC as 0.433 kg/kWh and followed by W30A70 as 0.426 kg/kWh, 

W50A50 as 0.412 kg/kWh, W60A40 as 0.400 kg/kWh, W100 as 0.390 kg/kWh and diesel as 

0.369 kg/kWh at 40% engine load. However, there was no difference among all fuels BSFC 

values at the high engine loads. This shows no significant effect of DU on the BSFC of biodiesels. 
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8. Biodiesels having DU greater than 123 like W100, W60A40 and W50A50 had around 1.9% lower 

BSEC than the diesel at 60% engine load. However, all biodiesels and diesel had the same BSEC 

as 11.7 MJ/kWh at the full engine load. 

9. W100 had the highest CO2 emission as 240.4 g/100s and it was also 3.1% higher than the diesel. 

All other biodiesels like W60A40, W50A50, W30A70 and A100 released 1.8%, 3.3%, 2.6% and 

2.9% lower CO2 emissions than diesel at the full load condition respectively. 

10. The highest DU biodiesel W100 had the highest CO emission which was 5.9% less than the 

diesel. CO emissions were reduced as reduced DU. For example, W60A40, W50A50, W30A70 

and A100 released 73.0%, 74.2%, 74.8% and 77.7% lower CO emissions than the diesel at 80% 

engine load respectively. 

11. NOx emissions of the W100, W50A50 and W30A70 were higher than the diesel by 0.7%, 2.5% 

and 2.9% but A100 and W60A40 released comparable NOx emissions with the diesel at the full 

engine load. When the results of the biomixtures compared at the 80% engine load, NOx emission 

increased with respect to decreasing DU value due to improved combustion. 

To sum up, this chapter recommends the blending of two different biodiesels to optimise the fuel 

properties especially viscosity, cetane number, degree of unsaturation and iodine value. Improved 

combustion characteristics and exhaust gas emissions were also observed with the biomixtures as a result 

of optimised fuel properties. In this regard, the next chapter will be concentrated on chicken biodiesel 

which has advantages; high availability, high energy content, high cetane number and low degree of 

unsaturation. At the same time, chicken biodiesel has the main disadvantage of high viscosity. The 

disadvantages of the mentioned biodiesel will be minimised in light of the blending technique proved in 

this chapter. 
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Chapter 5 

 

5. CHARACTERISATION AND ENGINE PERFORMANCE OF 

CHICKEN FAT BIODIESEL AND COTTONSEED OIL 

BIODIESEL BLENDS 

 

This chapter present studies on improvement of the waste chicken fat biodiesel fuel properties by blending 

with cottonseed biodiesel. The targets were: (i) to achieve the fuel properties to meet the BS EN 14214 

standard, (ii) to have improved combustion characteristics and reduced exhaust emissions with optimised 

biomixture fuel. In the beginning part of this chapter, negative aspects of the produced chicken biodiesel 

were spotted in terms of fuel properties. Cottonseed biodiesel was selected for blending with the chicken 

fat biodiesel. Characterisation of the chicken fat biodiesel – cotton seed oil biodiesel mixtures were carried 

out. Optimised biomixture fuels were tested in the engine to evaluate the combustion and emission 

advantages. 

 

5.1. Introduction 

 

During the last decade, animal fats have become more popular feedstock for biodiesel production due to 

relatively cheaper price and availability of the feedstock (Adewale et al., 2015). Furthermore, they are 

considered as wastes and their disposal is subjected to some procedures in the UK (Environment Agency, 

2015). The number of reported chickens as waste (landfilled either as whole or parts of poultry) was 86 

million in 2015 in the UK, this makes it a promising candidate as biodiesel feedstock (McDougal, 2015). 

Chicken skin, offal, blood, trims, feathers etc. can be used as feedstock for fats extraction and biodiesel 

production (Alptekin and Canakci, 2011). Typically, the mentioned feedstock is rendered and chicken oil 

obtained for transesterification process (Adewale et al., 2015). According to the type of selected waste 

chicken feedstock, a pre-treatment may be required due to high acid content (Alptekin and Canakci, 

2010). Researchers are working to develop new techniques particularly for converting waste chicken 

feedstock into biodiesel. For example, Marulanda et al., (2010) experimented supercritical 

transesterification of chicken fat at temperature of between 300-400 °C and 41.1 MPa pressure. The 
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authors reported that this technique gave higher biodiesel yield than the conventional technique 

(Marulanda et al., 2010). 

 

5.2. Literature review for improving fuel properties 

 

The viscosity of biodiesels directly affects the combustion characteristics (Masera and Hossain, 2019). 

High viscosities cause poor atomisation and/or vaporisation of fuel droplets, which may also lead to 

higher pollution (Barrios et al., 2014). As per BS EN 14214  standard, the maximum allowable viscosity 

was set as 5 mm2/s (British Standard Institution, 2010). Nevertheless, animal fat biodiesels hardly meet 

the standard and have difficulties in direct usage in engines (Adewale et al., 2015; Ashraf et al., 2017; 

Kirubakaran and Selvan, 2018). Significant amount of studies reported viscosity higher than 5 mm2/s for 

chicken biodiesel (Bhatti et al., 2008; Mata et al., 2010, 2011, 2014; Alptekin and Canakci, 2011; 

Jagadale and Jugulkar, 2012; Ashraf et al., 2017). Various techniques were used to overcome this 

challenge, such as pre-heating of biodiesel, use of additives and diesel blending. Nonetheless, each 

technique had its own drawbacks. Blending with diesel may be the most popular among the mentioned 

solutions. However, this method cannot be reliable as the literature forecasts fossil fuel depletion in the 

future  (Day and Day, 2017; Wang et al., 2017). The other solution was the pre-heating of biodiesel with 

various engine modifications. To illustrate, Nanthagopal et al. (2017) used the heat from the exhaust 

system to pre-heat the blend of ethanol-diesel by approximately 50 °C. Similarly, Hossain and Davies 

(2012) raised the temperatures of karanja and jatropha oils by 75 °C which in turn decreased the 

viscosities from 80 cSt to 11 cSt and from 58 cSt to 9 cSt via hot jacket water, respectively. Even though 

the mentioned modifications were successful, they need significant modifications on the engine cooling or 

exhaust systems which means extra cost and weight (Masera and Hossain, 2019). Finally, fuel additives 

such as alcohols are doped into biodiesels to reduce high viscosities (Tosun et al., 2014; Yasin et al., 

2014; Imdadul et al., 2016; Yilmaz and Atmanli, 2017). To illustrate, Yasin et al. (2014) doped methanol 

5% (by volume) into palm oil biodiesel-diesel blend (20%/75%). The study addressed 1.38 mm2/s 

improvement on the blend’s viscosity. However, alcohol additive causes a reduction on the engine 

performance and increase on exhaust emissions. The study reported that engine power was reduced by 

8.3% and increased the NO emission by 7% at medium brake mean effective pressure (Yasin et al., 2014). 

Another biodiesel which has promising fuel properties to compensate weak fuel properties of chicken 

biodiesel can be blended. This technique may help to meet BS EN 14214 standard and utilise chicken fat 

biodiesel in a more efficient manner (Masera and Hossain, 2019). 
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Cottonseed biodiesel with a relatively low viscosity value can be a good candidate to be blended with the 

chicken biodiesel. Alhassan et al. (2014) measured 4.38 mm2/s viscosity for the cottonseed biodiesel at 

40°C. Similarly, Venkatesan et al., (2017), Alptekin and Canakci (2009), and Ramírez-Verduzco et al., 

(2012) all reported relatively low viscosities for cottonseed biodiesels as 3.75, 4.06 and 4.12 mm2/s, 

respectively. These values were considered relatively low for biodiesel, thus viscosity of chicken 

biodiesel-cottonseed biodiesel blend can be reduced to comply with the BS EN 14214 standard. Moreover, 

literature also reported reduced NOx emission for cottonseed biodiesel compared to diesel. Aydin and 

Bayindir (2010) investigated need biodiesel obtained from cottonseed in a one cylinder DI diesel engine. 

The study reported approximately 18% reduction in NOx emission for the cottonseed biodiesel compared 

to diesel operation. Similarly, 5% reduction in NOx emission was reported for a cottonseed biodiesel pre-

heated to 90 °C (Karabektas et al., 2008). Furthermore, Yucesu and Ilkilic (2006) investigated neat 

cottonseed biodiesel in a one cylinder CI engine and recorded 16% lower NOx emission relative to diesel. 

The purpose of this chapter is to improve the viscosity of chicken biodiesel and comply with the BS 

EN14214 standard by cottonseed biodiesel blending. By this means, fuel properties such as viscosity 

could be optimised and blends could be directly used in CI engines without any engine modification, 

diesel blending or fuel additive. Furthermore, combustion characteristics and exhaust gas emissions of 

novel blends could be superior to neat biodiesels and diesel. 

 

5.3. Cottonseed biodiesel and chicken fat biodiesel blending 

 

Initially, the waste chicken skin was collected from EURO ASIA CASH & CARRY, Loughborough UK 

and cottonseed oil (origin Greece) was purchased from Mystic Moments, UK. Next, they were converted 

into biodiesel at the Aston University mechanical engineering and chemical engineering laboratories as 

described in Chapter 3. Figure 5.1 shows the chicken skin rendering fat and cottonseed oil feedstock used 

in this research. 
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Figure 5.1: Chicken skin rendering fat (on the left) and cottonseed oil (on the right). 

 

Biomixtures were prepared by blending cottonseed biodiesel (CO100) and chicken fat biodiesel (CH100) 

at 80/20, 60/40, 50/50, 30/70 and 10/90 volume ratios and named as CO80CH20, CO60CH40, 

CO50CH50, CO30CH70 and CO10CH90 as shown in Table 5.1. The commercially available Esso ULSD 

diesel (in the UK) was used as a reference fuel which contain 5% biodiesel in accordence with EN 590 

standard. The biomixtures kept undisturbed for 2 weeks at room temperature and there was no phase 

separation or miscibility problem observed Figure 5.2.  

 

Table 5.1. Biodiesel percentages of the biomixtures, adapted from the author’s published paper (Masera 

and Hossain, 2019). 

Fuel Volume percentage of Fuel Engine 

Name Cottonseed biodiesel Chicken biodiesel Characterisation Testing 

CO100 100% 0% Yes Yes 

CO80CH20 80% 20% Yes NO 
CO60CH40 60% 40% Yes Yes 
CO50CH50 50% 50% Yes Yes 
CO30CH70 30% 70% Yes Yes 
CO10CH90 10% 90% Yes NO 
CH100 0% 100% Yes Yes 
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Figure 5.2. The appearance of the test fuels which are from left to right; Diesel, CO100, CO80CH20, 

CO60CH40, CO50CH50, CO30CH70, CO10CH90 and CH100, adapted from the author’s published 

paper (Masera and Hossain, 2019). 

 

5.4. Fuel characterisation results for cottonseed biodiesel-chicken biodiesel blends 

 

Around 2.2 kg of oil was rendered from 5kg waste chicken skin; hence rendering yield was 43.5%. On the 

other hand, biodiesel yields of both transesterifications of the chicken and cottonseed oil were 

approximately 92%.  

Table 5.2 illustrates the mass percentages of saturated FAMEs for CO100 and CH100 as 26.7% and 

28.8%, respectively. Similarly, overall unsaturated FAMEs were also close to each other as 73.3% and 

71.2%. However, a significant difference was observed on the type of unsaturated FAME i.e. 

monounsaturated and polyunsaturated. This was an important detail as the type of unsaturated FAME play 

a crucial role in fuel properties (Masera and Hossain, 2017). According to the results, CO100 was mainly 

composed of C18:2 as 51.7%, whereas CH100 mainly had C16:1 and C18:1 as 48.8% in total. 
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Table 5.2. Fatty Acid Methyl Ester compositions of the biofuels, adapted from the author’s published 

paper (Masera and Hossain, 2019). 

FAME 
Mass percentage (%) 

CO100 CO80CH20 CO60CH40 CO50CH50 CO30CH70 CO10CH90 CH100 

C14:0 0.7 0.6 0.6 0.6 0.6 0.6 0.6 
C16:0 23.2 21.8 21.7 21.5 21.6 21.5 21.7 
C16:1 0.5 1.4 2.1 3.1 4 5.1 5.4 
C18:0 2.8 3.8 5.2 5 5.7 6.2 6.6 
C18:1 20.9 25.8 30.9 32.6 36.8 40.9 43 
C18:2 51.7 46.5 39.4 37.3 31.3 25.4 22.4 
C18:3 0.2 0.2 0 0 0 0.3 0.4 
C20:0 0.1 0 0 0 0 0 0 

Total saturated 26.7 26.2 27.6 27.1 27.9 28.3 28.8 
Monounsaturated 21.6 27.3 33 35.7 40.8 46.3 48.8 
Polyunsaturated 51.7 46.5 39.4 37.3 31.3 25.4 22.4 

 

Figure 5.3 demonstrates the TLC chromatography results of the cottonseed oil, chicken fat and their 

biodiesel versions. According to Figure 5.3, TAGs were the most dominant compound in the oils. Figure 

5.4 also showed that TAGs were main source of the feedstock that was converted into biodiesel. Note that 

FFA, DAG and MAG compounds could not be quantified as their concentrations were below the detection 

point.  

  

                              (a)                                                                                          (b) 

Figure 5.3: Thin layer chromatography (TLC) results of (a) feedstock and (b) biodiesel samples. 
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(a) 

 

 

(b) 

Figure 5.4: GC-ms results of the (a) chicken fat TAG and (b) chicken biodoesel FAME. Chicken biodiesel 

CH100 mainly composed of C16:0, C18:1 and C18:2. (C17:0 was added as an internal standard). 
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Fuel properties of the test biodiesels and diesel are shown in Table 5.3. Moreover, BS EN 14214 biodiesel 

standard (British Standard Institution, 2010) and EN 590 diesel standard (European Standard EN 

590:2013, 2009) are also included as reference. The biggest differences of the neat biodiesels were on 

cetane number, viscosity, degree of unsaturation and iodine value. Therefore, they were the major 

parameters affected from cottonseed-chicken biodiesel blending. Influence of blend ratio on cetane 

number and viscosity was given in Figure 5.5. Both cetane number and viscosity were increased as the 

chicken biodiesel fraction of blends increased. This can be attributed to the relatively low amount of 

polyunsaturated FAME content of the CH100 as 22.4% (Masera and Hossain, 2019). 
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Table 5.3. Fuel properties of the test fuels with the corresponding EN14214 biodiesel (British Standard Institution, 2010) and EN 590 diesel 

(European Standard EN 590:2013, 2009) standard, adapted from the author’s published paper (Masera and Hossain, 2019). 

Fuel Units Biofuels   BS EN 14214 EN 590 

Properties 
 

CO100 CO80CH20 CO60CH40 CO50CH50 CO30CH70 CO10CH90 CH100 Diesel Biodiesel Diesel 
                    Standard Standard 

Viscosity at 40°C  (mm2/s) 4.33 4.48 4.66 4.92 5.10 5.16 5.36 2.78 3.5 - 5.0 2.0 - 4.5 
Density (g/cm3) 0.884 0.882 0.882 0.881 0.880 0.880 0.878 0.828 0.86 - 0.90 0.820 - 0.845 
Flash Point (°C) 176 176 173 171 168 165 165 61.5 min 101 min 55 

Cetane numbera () 54 55 57 57 59 60 60 53.5 min 51 min 51 

Cetane numberb () 52 52 54 54 56 56 57 53.5 min 51 min 51 
Carbon, theoretical (%) 76.69 76.77 76.85 76.84 76.79 76.49 76.44 n/a n/a n/a 
Carbon, measured (%) 77.58 n/a 74.69 74.20 76.12 n/a 75.67 86.6c n/a n/a 
Hydrogen, theoretical (%) 11.93 11.98 12.05 12.06 12.09 12.09 12.10 n/a n/a n/a 
Hydrogen, measured (%) 12.33 n/a 12.49 12.41 11.33 n/a 11.96 13.4c n/a n/a 
Oxygen, theoretical (%) 11.08 11.08 11.10 11.11 11.11 11.08 11.08 n/a n/a n/a 
Oxygen, measured (%) 10.09 n/a 12.82 13.40 12.55 n/a 12.38 0.07c n/a n/a 
HHV (MJ/kg) 39.4 39.4 39.6 39.4 39.1 39.6 39.3 45.2 n/a n/a 
LHV (MJ/kg) 37 37 37 37 37 37 37 42 n/a n/a 
Iodine number (g/100g) 108 104 97 95 90 84 81 n/a max 120 n/a 

Linolenic acid methyl ester (%mol/mol) 0.2 0.2 0 0 0 0.3 0.4 n/a max 12  n/a 
Monoglyceride (MAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.8 n/a 
Diglyceride (DAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.2 n/a 
Triglyceride (TAG) (%mol/mol) ND ND ND ND ND ND ND ND max 0.2 n/a 
Methanol (%mol/mol) 0 0 0 0 0 0 0 n/a max 0.2 n/a 
Acid value (mg KOH/g) 0.228 0.200 0.200 0.171 0.172 0.172 0.172 0.091 max 0.5 n/a 
Degree of Unsaturation (Weight %) 125 120 112 110 103 97 94 n/a n/a n/a 

   a= (Ramírez-Verduzco et al., 2012); b= (Tong et al., 2011); c= (Schönborn et al., 2009); ND=   Not detected
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Figure 5.5. Variation of viscosity and cetane number with respect to cottonseed-chicken biodiesel 

ratio, adapted from the author’s published paper (Masera and Hossain, 2019). 

 

Literature pointed viscosity as one of the most important fuel property due to its direct effect on fuel 

combustion (Alptekin and Canakci, 2009). Viscosity of chicken biodiesel was not complied with the 

BS EN 14214 standard as it was measured as 5.36 mm2/s at 40⁰C. This can be linked to relatively low 

iodine value of the chicken biodiesel which was 81 g/100g. The literature also stated higher viscosities 

for low iodine value FAMEs (Schönborn et al., 2009). However, viscosity was improved when 

cottonseed biodiesel was added into chicken biodiesel and blends with minimum 50% cottonseed 

biodiesel met the BS EN 14214 standard in terms of viscosity Figure 5.5. Density is another fuel 

property directly effects engine performance and combustion (Emiroğlu et al., 2018). All biodiesels 

found suitable with the BS EN 14214 standard in terms of density. The highest density was measured 

for CO100 as 0.884 g/cm3. Densities of blends were increased by the cottonseed biodiesel blending. 

Flash point is an important parameter for safe storage and transport of the fuels (Masera and Hossain, 

2019). The flash points of all biodiesels complied with the standard and measured between 176°C and 

165°C. Cetane number is a good measure of the ignition quality of any fuel (Kurtz and Polonowski, 

2017). All biodiesels met the BS EN 14214 standard in terms of cetane number as they were above the 

minimum limit of 51. However, the highest CN measured for chicken biodesel as 60 was reduced with 

the cottonseed biodiesel blending. This was the biggest drawback of cottonseed biodiesel blending of 

chicken biodiesel. Nevertheless, this scarify from cetane number can be acceptable as the CN of 

optimised biomixtures such as CO60CH40 and CO50CH50 were 57 and higher than diesel having CN 

of 53.5. The carbon, hydrogen and oxygen contents of the test biodiesels similar to each other and 

good agreement with the literature (Giakoumis, 2013). The HHV and LHV of biodiesels were very 

similar to each other as 39.4 MJ/kg and 37 MJ/kg; these values were slightly lower than diesel Table 

5.3. As mentioned earlier, DU and IV are both measuring the same fuel property which is saturation 
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level (Schober and Mittelbach, 2007). All biodiesels complied with the BS EN14214 iodine value 

standard declared as maximum 120 g iodine/100g. IV of blends increased with the increased 

cottonseed biodiesel fraction. Acid value of a biodiesel shows its resistance to ageing (Predojević, 

2008). Acid values were all measured within the range declared by the BS EN 14214. This was a good 

indication of biodiesels safe usage in CI engines in terms of corrosion and pump plugging and 

(Predojević, 2008; Emiroğlu et al., 2018). Ultimately, the high viscosity of CH100 was successfully 

reduced and 5.00 mm2/s viscosity requirement of BS EN 14214 standard was met by cottonseed 

biodiesel blending. For example, CO60CH40 and CO50CH50 were high quality biomixtures which 

also complied with the standard.  

Fuel characterisation of the biomixtures i.e. CO50CH50 were in good agreement with the similar 

studies in the literature. For example, Benjumea et al., (2011) studied palm/linseed biodiesel blends at 

50/50 volume fraction. The blend had similar HHV as 39.8 MJ/kg, density as 0.885 g/cm3 and iodine 

value as 112.7 g/100g with the CO50CH50. However, the blend had 10% lower CN as 51.3 than 

CO50CH50 biomixture. In another study, Sanjid et al. (2016) studied the kapok biodiesel-Moringa 

biodiesel-diesel blend with volume ratio of 10/10/80 respectively. The biofuel had around 30% lower 

viscosity value than CO50CH50, this can be attributed to the high percentage of diesel as 80%. 

However, CN of the biofuel was around 16% lower than CO50CH50. To sum up, the biomixtures 

produced and analysed in this chapter had comparable fuel characteristics with similar types of biofuel 

blends in the literature. Furthermore, the biomixtures produced in this research like CO60CH40 and 

CO50CH50 had superior cetane numbers over the literature due to relatively high CN of chicken 

biodiesel as 60. 

 

5.5. Engine performance of cottonseed biodiesel-chicken biodiesel blends 

 

Figure 5.6 shows the BTE of the test fuels at various engine loads. Biomixtures with relatively higher 

fractions of cottonseed biodiesel had better BTE at low and medium engine loads. BTE of CO100, 

CO60CH40 and CO50CH50 was approximately 10% higher than other biodiesels and diesel at 40% 

load. This was linked to the presence of oxygen content of biodiesels which improves the combustion. 

However, all biodiesels had slightly lower BTE by about 1.6% than diesel at the full engine load. The 

result was in good agreement with the literature. Diesel had higher BTE than biodiesels at the full load 

due to its higher LHV than biodiesel (Emiroğlu et al., 2018).  
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Figure 5.6. BTE of the test fuels at different engine loads, adapted from the author’s published paper 

(Masera and Hossain, 2019). 

 

Figure 5.7 demonstrates (a) BSFC and (b) BSEC of the test fuels at different engine loads. BSFC of all 

biodiesels were measured 15.4% higher than diesel at the full load. BSFC of lower IV biodiesels were 

higher at the low and medium loads. For example, CH100 and CO30CH70 biodiesels with relatively 

high IV provided 5.6% and 14.4% higher BSFC than diesel and other biodiesels at 60% load, 

respectively. However, BSFC of the all biodiesels were comparable at the full load due to similar 

LHV. To minimise the influence of LHV, BSEC of biodiesels could be analysed (Reddy et al., 2012; 

Krishna et al., 2016). This allows comparing the test fuels in terms of the energy consumed to produce 

the same power output (Masera and Hossain, 2019). Figure 5.7 (b) states that CO100, CO60CH40, 

CO50CH50 provided 11.8% reduced BSEC than CO30CH70, CH100 and diesel at 40% load. 

Furthermore, all biodiesels and diesel gave comparable BSEC at the full engine load. To sum up, 

diesel did not provide any superiority over biodiesels at the full engine load. 
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(a) 

 

(b) 

Figure 5.7. BSFC and BSEC of the test fuels at different engine loads, adapted from the author’s 

published paper (Masera and Hossain, 2019). 
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5.6. Injection and combustion characteristics of cottonseed biodiesel-chicken 

biodiesel blends 

 

Figure 5.8 illustrates start of combustion (SOC), end of combustion (EOC) and total combustion 

duration (CD) of a test fuel. All test fuels had very similar SOC regardless of engine load, whereas 

EOC were linearly increasing for the all test fuels as a result of increased fuel to overcome increasing 

resistance. Consequently, CD was also increased for the test fuels at higher engine loads. 

 

(a) 

 

(b) 
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(c) 

Figure 5.8. Combustion (a) start, (b) end times and (c) combustion duration in terms of crank angles, 

adapted from the author’s published paper (Masera and Hossain, 2019). 

 

Deep investigation over ignition delay (ID) and combustion durations were analysed and given Figure 

5.9. CO100 had the shortest ID as a result of its high CN and low DU. Around 0.2°CA and 0.1°CA 

longer IDs were observed with each 2 CN decrements at medium and high loads. This means, both ID 

and CD were increased with the increased cottonseed biodiesel fraction in a blend. This was due to the 

relatively high density, IV and lower CN of the cottonseed biodiesel. The biomixtures of CO60CH40 

and CO50CH50 gave average ID and CD values as 4.0°CA and 28°CA at the full load. 

 

Figure 5.9. Ignition delay and combustion duration of the test fuels at the full engine load, adapted 

from the author’s published paper (Masera and Hossain, 2019). 
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Exhaust gas temperature (EGT) is an important parameter to understand effective heat energy of a fuel 

(Dhamodaran et al., 2017). High EGT indicates lower energy conversion into useful work (Emiroğlu 

et al., 2018). In addition, BSFC and NOx emission are typically increase under higher EGT 

(Dhamodaran et al., 2017). EGTs of the test fuels were measured and given in Figure 5.10. Similar to 

CD, EGT was also increased with the increasing load. Overall, the biodiesels had lower EGT than 

diesel. The CO50CH50 biomixture had the lowest EGT at each engine load i.e. 7.8%, 6.9% and 2.4% 

lower than diesel, CO100 and CH100 at full engine load, respectively. Diesel had the highest EGT and 

it was followed by the CO100 and CO60CH40 at each engine load. Longer combustion durations may 

cause some of the fuel to be burned in the expansion stroke where the combustion chamber volume 

gets larger (Masera and Hossain, 2019). This phenomena results in converting the fuel energy into 

exhaust temperature rather than useful energy, which explained the reason of higher EGT of diesel, 

CO100 and CO60CH40 (Awad et al., 2014). For example, diesel had 0.5°CA longer CD than 

CO50CH50 at 60% engine load which result in 10°C higher EGT. 

 

 
 

Figure 5.10. Exhaust gas temperature of the test fuels at different engine loads, adapted from the 

author’s published paper (Masera and Hossain, 2019). 

 

The in-cylinder pressures of the biodiesels and diesel were given in Figure 5.11. Smooth in-cylinder 

pressure patterns were obtained for all biodiesels like diesel which indicated no abnormality for the 

biodiesels operation (Hossain et al., 2016). The maximum in-cylinder pressure was observed for 

CO50CH50 as 71.8 bar at 10.7°CA. This value was around 4.2% and 4.5% higher than diesel and 

average of other biodiesels at the full load. The optimised fuel properties (by blending) of CO50CH50 
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was the reason why the pressure of CO50CH50 was the highest (Masera and Hossain, 2019). To 

illustrate, although CO100 had the minimum viscosity as 4.33 mm2/s; it had lower CN as 54 and 

higher DU as 125 compared to CH100 having CN as 60 and DU value as 94. This proved that high 

viscosity detriment of CH100 and low CN drawback of the CO100 were both minimised with the 

CO50CH50 blend. Figure 5.12 demonstrates HR of the test fuels with respect to crank angles. Like in-

cylinder pressure, CO50CH50 had the maximum HR at the early (pre-mixed) phase of combustion i.e. 

between 5°CA and 25°CA aTDC. For example, Figure 5.12(b) shows that CO50CH50 had 249 J of 

heat at 12°CA, but diesel had only 238 J of HR which was 4.4% lower than CO50CH50. Beyond the 

35° CA, CO60CH40 had the maximum HR around 3.8% higher than the neat biodiesels and diesel at 

69°CA. Iodine value, degree of unsaturation, cetane number and viscosity were the main fuel 

parameters affecting the HR.  It was noticed that biodiesels with lower IV burned relatively faster due 

to presence of less number of double bonds in their chemical structures (Masera and Hossain, 2017). 

Nevertheless, their relatively high viscosities led to poor atomisation which reduces the burning 

quality of the fuel (Kirubakaran and Selvan, 2018). Therefore, CO50CH50 and CO60CH40 had the 

highest HR due to optimised fuel properties such as IV and viscosity. 

 

 

 

 

 

 

 

 

 

 



 

149 

 

 

 

  

 
 

Figure 5.11. In-cylinder pressure versus crank angle of the test fuels at different engine loads. 
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Figure 5.12. Heat release of test fuels at versus crank angles whole combustion period, and early 

combustion phase (enlarged view). 

 

5.7. Exhaust emissions of cottonseed biodiesel-chicken biodiesel blends 

 

CO2, CO and NO emissions were measured via BOSCH BEA 850 gas analyser and instantaneous 

readings were captured for the neat biodiesels, the biomixtures and diesel. According to Figure 5.13, 

all CO2 emissions were increasing in accordance with increasing engine load. This can be linked to 

increased carbon atoms in combustion reaction as a result of increased fuel consumption at high 

engine loads. On contrary, O2 emissions were decreasing with the increasing engine load, as the air 

aspiration kept constant at the speed of 1500 rpm (Figure 5.14). Oxygen content and burning 

efficiency were the other important factors stated in literature in CO2 emission (Kumar and 

Subramanian, 2017). However, carbon, hydrogen and oxygen contents of the biodiesels were very 

similar to each other as given in Table 5.3. Consequently, variations on CO2 were linked to burning 
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efficiency of the fuels. Comparing the two neat biodiesels, CO100 released 5.4% higher CO2 

compared to CH100. Moreover, CO100 released 2.8% higher CO2 than diesel, whereas CH100 

released 2.8% lower CO2 then diesel. However, even though CH100 had viscosity challenge according 

to BS EN 14214 standard and cannot be directly used in an engine, lower CO2 emission advantage of 

the chicken biodiesel effected the CO2 emission of the CO50CH50 biomixture positively. The 

CO50CH50 released the minimum CO2 at almost each load. It was 5.8% and 2.9% lower than CO100 

and diesel at the full load respectively. To sum up, CO2 emission at high engine loads was successfully 

decreased by cottonseed biodiesel and chicken biodiesel blending. 

 

  

 

Figure 5.13. CO2 emissions of the test fuels at different engine loads, adapted from the author’s 

published paper (Masera and Hossain, 2019). 

 

 

Figure 5.14: O2 emissions of the test fuels at different engine loads. 
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Figure 5.15 presents CO emissions of the biodiesels and diesel under various load conditions. 

CO50CH50 released the same CO with diesel and it was 15% lower than both neat biodiesels at the 

full load. In contrast, CO60CH40 and CO30CH70 released approximately 17% higher CO than the 

neat biodiesels. Consequently, in average CO50CH50 biomixture proved that blending of cottonseed 

biodiesel with chicken biodiesel was successfully reduced the CO emission. 

 

 
Figure 5.15. CO emissions of the test fuels at different engine loads, adapted from the author’s 

published paper (Masera and Hossain, 2019). 

 

NO emissions of the test fuels presented in Figure 5.16. Although the NOx emission was not measured 

directly, the manufacturer of the equipment stated that NOx can be estimated as approximately 1.2 

times greater than the measured NO emission (Masera and Hossain, 2019). NO emissions of all fuels 

were increasing with the increasing engine load up to 70%, then remained similar at the 80% load and 

slightly decreased at the full load. This reduction at the full load was attributed to relatively low 

oxygen content to form NO. Comparing the neat biodiesels, CO100 released around 3%, 4% and 2% 

reduced NO than diesel at high engine loads like 70%, 80% and 100%, respectively. On the other side, 

CH100 released comparable NO with diesel. The reduced NO emissions of CO100 were in good 

agreement with the literature (Yucesu and Ilkilic, 2006; Karabektas et al., 2008; Aydin and Bayindir, 

2010). Similar to CO100, CO60CH40 also released 6.5% mitigated NO compared to diesel at full 

load. The reduction on NO emission was attributed to the lower in-cylinder pressure, which indicates 

lower combustion temperature because of lower LHV of CO60CH40 (Masera and Hossain, 2019). 

However, it must be noted that different factors influences the NO formation which might result in 

conflicting measurements. The ambient conditions, fuel spray characteristics, gas residence time of the 

fuels, EGR application, physical condition of the experimental equipment, oxygen content, and 

fluctuations can all affect the NO and NOx formations, thus it is difficult to determine the most 
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dominant parameter causing the difference (Omari et al., 2017; Ramalingam and Rajendran, 2017; 

Emiroğlu et al., 2018; Ulusoy et al., 2018). 

 

 
Figure 5.16. NO emissions of the test fuels at different loads, adapted from the author’s published 

paper (Masera and Hossain, 2019). 

 

Smoke opacities of the biodiesels along with diesel were also measured Figure 5.17. Smoke opacities 

of the biodiesels were comparable among themselves and lower than that of diesel at each engine load. 

For example, biodiesels had around 90% reduced smoke opacity than diesel at the full engine load. 

 

 

Figure 5.17: Smoke opacity of the test fuels at different engine loads, adapted from the author’s 

published paper (Masera and Hossain, 2019). 
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5.8. Repeatability of test results 

 

The results provided in this chapter were validated through repeatability analysis. The experiments 

were repeated for CO50CH50 biomixture with 1 year aged biomixture and new sets of produced 

biodiesels. Standard errors were found comparable with the Chapter 4 (Table 5.4). Like in the Chapter 

4, the first measurement for smoke opacity of diesel was recorded higher than other tests at full load 

which can be related to inconsistency of diesel quality purchased from ESSO UK. 

The repeatability analysis also proved that there was not any significant effect of a 1 year aged 

biomixtures on engine results. The biomixtures were stored at the room temperature in glass 

containers; lids were closed and placed in dark.  

 

Table 5.4: Repeatability of test results for CO50CH50 biomixture. The measurements conducted on 

15/02/2019 was 1 year aged biomixture, whereas measurementson 20/02/2019 were for new 

biomixture. 

1.9 kW (20%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 3.31 3.44 3.58 3.44 0.14 0.08 
CO (% vol) 0.002 0.004 0.003 0.003 0.001 0.001 
HC (% vol) 1 1 1 1 0 0.00 
O2 (% vol) 16.37 16.13 16.09 16.20 0.15 0.09 
NO (ppm) 310 278 313 300 19 11.20 

Smoke (m-1) 0.01 0.01 0.01 0.01 0.00 0.00 
Time for 100 ml fuel (s) 280 270 265 272 8 4.41 

Gas analyser BOSCH BOSCH BOSCH       

       3.8 kW (40%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 4.06 4.8 4.86 4.57 0.45 0.26 
CO (% vol) 0.004 0.004 0.003 0.004 0.001 0.000 
HC (% vol) 1 0 0 0 1 0.33 
O2 (% vol) 15.25 14.23 14.25 14.58 0.58 0.34 
NO (ppm) 386 392 391 390 3 1.86 

Smoke (m-1) 0.02 0.02 0.02 0.02 0.00 0.00 
Time for 100 ml fuel (s) 220 217 210 216 5 2.96 

Gas analyser BOSCH BOSCH BOSCH       

       5.7 kW (60%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 6.15 6.12 6.29 6.19 0.09 0.05 
CO (% vol) 0.004 0.008 0.005 0.006 0.002 0.001 
HC (% vol) 2 3 0 2 2 0.88 
O2 (% vol) 12.59 12.44 12.39 12.47 0.10 0.06 
NO (ppm) 519 485 483 496 20 11.68 

Smoke (m-1) 0.03 0.03 0.03 0.03 0.00 0.00 
Time for 100 ml fuel (s) 163 163 160 162 2 1.00 

Gas analyser BOSCH BOSCH BOSCH       
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6.65 kW (70%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 6.99 6.98 7.1 7.02 0.07 0.04 
CO (% vol) 0.006 0.007 0.005 0.006 0.001 0.001 
HC (% vol) 1 2 1 1 1 0.33 
O2 (% vol) 11.55 11.38 11.33 11.42 0.12 0.07 
NO (ppm) 530 497 498 508 19 10.84 

Smoke (m-1) 0.03 0.03 0.03 0.03 0.00 0.00 
Time for 100 ml fuel (s) 143 145 142 143 2 0.88 

Gas analyser BOSCH BOSCH BOSCH       

       7.6 kW (80%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 7.68 7.89 7.96 7.84 0.15 0.08 
CO (% vol) 0.008 0.009 0.006 0.008 0.002 0.001 
HC (% vol) 2 0 0 1 1 0.67 
O2 (% vol) 10.64 10.26 10.24 10.38 0.23 0.13 
NO (ppm) 529 477 502 503 26 15.01 

Smoke (m-1) 0.03 0.02 0.02 0.02 0.01 0.00 
Time for 100 ml fuel (s) 128 129 128 128 1 0.33 

Gas analyser BOSCH BOSCH BOSCH       

       9.75 kW (100%) Test dates   standard standard 

CO50CH50 19/03/2018 15/02/2019 20/02/2019 average deviation error 

CO2 (% vol) 9.92 10.07 10.18 10.06 0.13 0.08 
CO (% vol) 0.013 0.014 0.013 0.013 0.001 0.000 
HC (% vol) 0 1 0 0 1 0.33 
O2 (% vol) 7.85 7.47 7.45 7.59 0.23 0.13 
NO (ppm) 498 468 469 478 17 9.84 

Smoke (m-1) 0.2 0.02 0.02 0.08 0.10 0.06 
Time to 100 ml fuel (s) 102 102 102 102 0 0.00 

Gas analyser BOSCH BOSCH BOSCH       

 

5.9. Conclusion 

 

In this chapter, waste chicken fat biodiesel was chosen as base biodiesel because of high feedstock 

availability and promising fuel properties such as cetane number, iodine value and heating value. 

However, viscosity of chicken biodiesel was high, thus did not comply with the BS EN 14214 

standard. In this regard, it was blended with cottonseed biodiesel for the purpose of fuel property 

improvement. It was found that blends with minimum 50% volume fraction of cottonseed biodiesel 

met the British and European standard. The major conclusions of the CO60CH40 and CO50CH50 

biomixtures were; 

1. BSEC of the all biodiesels found similar to that of diesel at the full engine load. Similarly, 

BTE of the biodiesels were comparable to diesel, BTE was only 1.6% lower than diesel at full 

load. 
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2. The lowest exhaust gas temperature was measured for CO50CH50; at full engine load, they 

were 7.8%, 6.9% and 2.4% lower than diesel, CO100 and CH100 respectively. 

3. The in-cylinder peak pressure was maximum for CO50CH50 biomixture fuel, 4.2% higher 

than diesel. Moreover, heat release of the biomixture was observed 4.4% higher than diesel 

[between 5°CA and 25°CA aTDC (early combustion phase)]. 

4. The lowest CO2 was observed with CO50CH50. It was 5.8% and 2.9% lower than CO100 and 

diesel fuels, respectively. Similarly, CO was of CO50CH50 was around 15% lower than the 

both neat biodiesels and comparable to diesel at the full load. However, CO50CH50 gave 6% 

higher NO emission compared to diesel. On the other hand, biomixture CO60CH40 gave 6.5% 

lower NO emission than diesel at full load. 

To sum up, this part of the research proved that fuel properties of the chicken biodiesel were improved 

and met the BS EN 14214 standard when blended with cottonseed biodiesel. However, non-

investigated properties such as metals content, oxidation stability, water content etc. should also be 

measured, they were out of scope of the current study and recommended as a future work to be able to 

declare that the biomixtures fully complies with the BS EN 14214 standard. Biomixtures CO50CH50 

and CO60CH40 were provided comparable engine performance, improved combustion characteristics 

and reduced exhaust emissions. 
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Chapter 6 

 

6. EXPERIMENTAL INVESTIGATION OF THE 2-

BUTOXYETHANOL AS A BIODIESEL ADDITIVE 

 

This chapter studies the 2-Butoxyethanol, which is an ether component having an alcohol branch, as a 

biodiesel additive. The additive was tested with the biomixtures introduced in the previous chapters 

i.e. W50A50 and CO50CH50 by 15% (by volume) and analysed in detail. Moreover, it was also tested 

with some popular biodiesels in the UK such as waste cooking biodiesel (W100) and rapeseed 

biodiesel (R100). Previous chapters proved that the biomixtures had improved engine test results 

compared to neat biodiesels due to their optimised fuel properties. Further upgrades on fuel properties 

and engine test results were investigated by the novel biodiesel additive in the present chapter.  

 

6.1. Introduction 

 

Renewable alternative fuels could potentially be used in diesel engines to reduce the harmful gas 

emissions (Atabani et al., 2012; Hossain and Davies, 2012b, 2013; Masera and Hossain, 2017). 

Biodiesels are considered as one of the most promising alternative to fossil diesel due to promising 

physico-chemical properties and life-cycle emission mitigation potential. Literature reported that 

biodiesel fuel significantly reduced the PM, HC, CO and CO2 emissions; however, most researchers 

reported that the use of neat biodiesels fuels in the unmodified CI engines gave higher NOx emissions 

than those obtained for diesel (Hoekman and Robbins, 2012; Mofijur et al., 2013; Palash et al., 2013). 

Other technical issues associated with neat biodiesel use are: (i) starting the engine in cold weather, 

(ii) sticking and clogging of fuel injector holes, fuel filters, and inlet/exhaust vales, and (iii) 

compatibility of fuel supply pipe materials with the biodiesel (Bhale et al., 2009; Verma et al., 2016; 

Datta and Mandal, 2017).  

 

6.2. Literature review for alcohol fuel additives 

 

Blending biodiesel with fossil fuels or alcohol additives improved engine performance and reduced 

emissions (Varatharajan and Cheralathan, 2012; Mofijur et al., 2013). Blending neat biodiesel with 

additives gave lower NOx and PM emissions than neat biodiesel operation (Zhu et al., 2010; Yilmaz, 
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2012b; Yasin et al., 2014; Datta and Mandal, 2017). Datta and Mandal (2017) reported that blending 

palm biodiesel with 15% methanol (or ethanol) decreased the peak in-cylinder pressure with respect to 

the neat biodiesel. The NOx emissions were reduced by 19% and 30% due to methanol and ethanol 

addition respectively (Datta and Mandal, 2017). The smoke opacity was decreased dramatically when 

the biodiesel-alcohol blend was used (Datta and Mandal, 2017). In another study, the effects of PM 

and PAHs emissions were investigated when 1-3% acetone and 1% isopropyl were added in the waste 

cooking oil biodiesel (Tsai et al., 2014). The authors reported that the use of both additives helped to 

reduce the PAH and PM emission by 24.1% and 53.2%, respectively. Vedaraman et al., (2011) 

reported that NOx emissions were decreased when ethanol, methanol, diethyl ether and distilled water 

was added separately into fossil diesel-palm oil biodiesel blend. Addition of methanol and water 

reduced the NOx emission by up to 2.7% and 7%, respectively (Vedaraman et al., 2011). However, 

HC emission was increased with the distilled water addition (Vedaraman et al., 2011). 

On the other hand, increase in the NOx emissions were also observed by the researchers when 

additives were added to neat biodiesel or diesel-biodiesel blends. Yilmaz (2012a) compared the effects 

of ethanol and methanol on diesel-biodiesel blends in a two cylinder direct injection type Kubota 

diesel generator set. Four different blends 40%Biodiesel-40%Diesel-20%Alcohol and 45%Biodiesel-

45%Diesel-10%Alcohol and neat diesel were tested. The author reported that the BSFC of ethanol and 

methanol blends were increased by 28.6% and 58.3%, respectively. The methanol blends did not help 

to decrease the NOx emissions. Whereas, ethanol blends reduced the NOx emission by approximately 

20% at medium loads (Yilmaz, 2012a). Another study conducted by Tosun et al. (2014) investigated 

the influences of ethanol, methanol and butanol addition separately on the peanut oil biodiesel in a 

multi-cylinder direct injection type diesel engine. They reported that 20% blends of methanol, ethanol 

and butanol with peanut oil biodiesel enhanced the engine torque output by 1.2%, 3.4% and 6.1% 

respectively as compared to neat biodiesel operation. The CO emissions of methanol, ethanol and 

butanol blends were decreased by 4.8%, 1.8% and 9.1%, respectively. They observed that the NOx 

emissions were increased by 13.8%, 4.1% and 17.4% for 20% blends of methanol, ethanol and butanol 

respectively (Tosun et al., 2014). Yasin et al. (2014) investigated the effects of 5% methanol addition 

on B20 blend with diesel. Methanol was mixed with the biodiesel-diesel blend using an ultrasonic 

agitator operated at 40 kHz frequency. They found that the brake power for B20 M5 fuel was 

decreased by approximately 7% and 10% than B20 and neat diesel fuels respectively. The BSFC of 

the engine was increased by about 4-6% (Yasin et al., 2014). A reduction of approximately 17-18% in 

CO and CO2 emissions, and an increase of 13% in NOx emission was reported when the engine was 

fuelled with B20 M5 fuel (Yasin et al., 2014). Yilmaz (2012b) studied the effects of air intake 

temperature when the engine was fuelled with 85%biodiesel-15%alcohol blends. The author reported 

that the CO and HC emissions were reduced by increasing the air intake temperatures and with the 

increasing percentage of alcohol additives (Yilmaz, 2012b). 
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The above studies demonstrated that blending biodiesel with alcohols improved engine performance 

characteristics. However, in the case of emission characteristics, no specific conclusions could be 

reached on whether adding alcohol helped to decrease the harmful gas emissions or not. So far, the 

effects of ethanol, methanol and butanol on biodiesel fuelled engine operation were found in the 

literature. In this chapter, a new additive ‘2-Butoxyethanol’ will be used to assess the performance and 

emission characteristics of the engine operated with biodiesel-2-butoxyethanol blends. 2-

Butoxyethanol is an ether compound with ethanol branch containing additional oxygen molecule. It is 

not a naturally occurring compound but obtained via different techniques in the laboratory 

environment like ethoxilation and etherification of butanol (Sievers and Wenzel, 1981; Rogers et al., 

2015). Additional oxygen content would further help to combust the biodiesel fuels more efficiently. 

Furthermore, the flash point of the 2-Butoxyethanol is close to diesel and higher than other alcohols 

used previously by the researchers (Fisher Scientific, 2018). In addition, 2-Butoxyethanol have better 

surfactant properties which may help to reduce the corrosion rate of a biodiesel fuel on engine 

components (Rogers et al., 2015). Due to these promising fuel properties, investigation of the 2-

Butoxyethanol as a biodiesel additive will be carried out in this chapter. It is important to note that no 

such study was found in the literature. 

 

6.3. Biomixtures with 2-Butoxyethanol additive 

 

2-Butoxyethanol (99% purity) purchased from Thermo Fisher Scientific was used as a biodiesel 

additive in this study. Fuel properties of the 2-Butoxyethanol and popular alcohol additives were 

tabulated in Table 6.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

160 

 

Table 6.1: Properties of common alcohols and 2-Butoxyethanol. 

  
Methanol (Methyl-

Alcohol, 2018) 

Ethanol 
(Ethanol, 

2018) 

Butanol (Butyl-
Alcohol, 2018) 

2-Butoxyethanol (2-Butoxyethanol, 
2018; Fisher Scientific, 2018) 

  

 

Structure 

 
Linear formula CH3OH CH3CH2OH CH3(CH2)3OH CH3(CH2)3OCH2CH2OH 

Molecular weight 
(g/mol) 

32.042 46.069 74.123 118.176 

Heat of vaporisation 
(kJ/mol at 25C) 

37.34 42.32 52.35 56.59 

Miscibility with 
organic solvents 

Yes Yes Yes Yes 

Kinematic viscosity 
(mm2/s) 

0.69 at 25°C 1.36 at 20°C 3.14 at 25°C 3.15 at 25°C 

Density (g/ml) 0.79 0.79 0.81 0.90 

Flash point (°C) 12 17 29 62 

Boiling point (°C) 64.7 79 117.6 171 

Melting point (°C) -98 -117 -90 -75 

 

Amount of the 2-Butoxyethanol to be doped into biodiesels was selected by a set of fuel 

characterisation experiments. In this regard, the additive was added into W50A50 biomixture at the 

volume fractions of 10%, 15% and 20%. Next, the mostly affected properties which were viscosity 

and HHV were measured. Figure 6.1 indicates the changes on viscosity and HHV with the 0%, 10%, 

15% and 20% 2-Butoxyethanol. Both viscosity and HHV reduced with the increasing percentage of 

the additive. Although viscosity reduction was considered as improvement, HHV reduction was the 

disadvantage of the additive. Therefore, 15% volume of the additive was decided to be used in this 

research as HHV was around 38.5 MJ/kg. This means, doping 15% of the 2-Butoxyethanol additive 

caused 14% reduction in viscosity and 2.5% reduction in HHV. 

 

 

Figure 6.1: Effect of the 2-Butoxyethanol percentage on viscosity and higher heating value. 
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The mentioned additive was added into W50A50 and CO50CH50 biomixtures by 15% (by volume) 

and new biofuels were named as W42.5A42.5B15 and CO42.5CH42.5B15. Furthermore, the most 

common biodiesels in the UK were also tested with the additive which were waste cooking oil and 

rapeseed oil biodiesels (Alberici and Toop, 2014). Therefore, seven different fuels were tested 

in this study which were: ultra-low sulphur diesel (ULSD) as a reference fuel; neat waste 

cooking oil biodiesel (W100); blend of 85% waste cooking oil biodiesel and 15% of 2-

Butoxyethanol (W85); neat rapeseed oil biodiesel (R100); blend of 85% rapeseed oil biodiesel 

and 15% of 2-Butoxyethanol (R85), blend of 42.5% waste cooking biodiesel-42.4% sheep 

biodiesel and 15% of 2-Butoxyethanol (W42.5A42.5B15); blend of 42.5% cottonseed 

biodiesel-42.4% chicken biodiesel and 15% of 2-Butoxyethanol (CO42.5CH42.5B15) Figure 

6.2. The miscibility of biodiesels with 2-Butoxyethanol was successful. Thus, there was no 

need of any surfactant or mechanical stirring. The reference ULSD diesel was purchased from 

Esso UK and it was satisfying the BS EN 590 specifications (see Appendix) (Esso, 2019). 

 

 

 
Figure 6.2: Fuel samples from left to right: Diesel, W100, W85, R100, R85, W42.5A42.5B15, and 

CO42.3CH42.5B15. 

 

6.4. Fuel characterisation results for cottonseed biodiesel-chicken biodiesel blends 

 

The FAME compositions of the biodiesels with and without 2-Butoxyethanol additive are shown in 

Table 6.2. The major FAMEs found in this study were C16:0, C18:0, C18:1 and C18:2. Peaks for the 

mentioned FAMEs were clearly observed on the mass spectra and presented in Figure 6.3. According 

to GCms results for W100, W85, R100 and R85, the first peaks were obtained at retention time around 

18 minute which were representing the presence of the C16:0 (Figure 6.3 a, b, c and d). On the other 

hand, the following peaks between 21 and 22 minutes were accounted for C18 group FAMEs such as 

C18:0, C18:1 and C18:2. It was clearly observed that 2-Butoxyethanol additive reduced the mass 

fraction of the C18:2 FAME in the neat biodiesels around 3% in W100 and 7% in R100. It was 
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assumed that 2-Butoxyethanol (i.e. oxygen atoms) break the second double bonds in the content of 

C18:2. This phenomena directly influences the fuel properties especially cetane number and iodine 

value. Because, according to BS EN 14214 standard for biodiesel, iodine value of biodiesel is directly 

proportional to FAME breakdown of any biodiesel (British Standard Institution, 2010). Similarly, 

other fuel properties such as cetane number, lower heating value (LHV), density and cloud point can 

be predicted through FAME composition (Ramírez-Verduzco et al., 2012). 

 

 
Table 6.2: Mass fractions of the measured Fatty Acid Methyl Esters in the biodiesels. 

FAME   Biodiesels 

Formula Fatty acid Designation   W100 W85 R100 R85 W42.5A42.5B15 CO42.5CH42.5B15 

C15H30O2 Myristic C14:0  0.0 0.0 0.0 0.0 1.2 0.6 
C17H34O2 Palmitic C16:0 

 
10.4 10.1 4.1 4.3 15.9 22 

C17H32O2 Palmitoleic C16:1 
 

0.0 0.1 0.1 0.0 1.0 3 
C19H38O2 Stearic C18:0 

 
3.3 3.4 1.5 1.6 17.9 5 

C19H36O2 Oleic C18:1 
 

32.8 36.0 65.8 72.3 5.9 33 
C19H34O2 Linoleic C18:2 

 
52.9 50.0 26.0 19.2 58.1 37 

C19H32O2 Linolenic C18:3 
 

0.0 0.1 0.0 0.0 0.0 0.0 
C21H42O2 Arachidic C20:0 

 
0.2 0.0 0.5 0.5 0.0 0.0 

C21H40O2 gadoleic C20:1 
 

0.2 0.4 1.3 1.4 0.0 0.0 
C23H46O2 Behenic C22:0 

 
0.2 0.0 0.2 0.2 0.0 0.0 

C23H44O2 Erucic C22:1   0.0 0.0 0.5 0.5 0.0 0.0 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 
(f) 

Figure 6.3: Gas chromatography and mass spectrum analyse of (a) W100, (b) W85, (c) R100, (d) R85, 

(e) W42.4A42.5B15 and (f) CO42.5CH42.4B15. 

 
Table 6.3 shows the fuel properties of the test fuels and the British biodiesel norms BS EN 14 214. 

Visocsities (at 40 ⁰C) of the W100 and R100 biodiesels were reduced by 12.5% and 9.8% with the 

addition of 15% 2-Butoxyethanol additive, respectively. Densities of the biodiesels did not change 

with the additive as 2-Butoxyethanol has similar density value with biodiesels as 900 kg/m3 (Table 

6.1). Flash points were also reduced by the 2-Butoxyethanol additive. They were measured relatively 

low for biodiesels, between 80 ⁰C and 90 ⁰C. This requires more precautions in the storage and 

transportation safety of the 2-Butoxyethanol doped biodiesels. Similarly, HHV of the biodiesels were 

reduced by 1-2.5%.  Iodine value and degree of unsaturation were also slightly reduced with the 
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additive addition. On the other hand, cetane number was slightly increased. Carbon, hydrogen and 

oxygen contents were not significantly affected by the 2-Butoxyethanol additive. Overall, fuel 

characterisation results proved that 2-Butoxyethanol (by 15% volume) can be used as biodiesel 

additive, especially for the purpose of viscosity reduction. 
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Table 6.3: Fuel properties of the test fuels and BS EN 14214 standard. 

Fuel Property Unit Diesel W100 W85 R100 R85 W42.5A42.5B15 CO42.5CH42.5B15 BS EN 14214 

Kinematic Viscosity at 40°C (mm2/s) 2.78 5.05 4.42 4.6 4.15 4.22 3.95 3.5-5.0 
Kinematic Viscosity at 20°C (mm2/s) 4.39 7.61 6.66 6.69 6.21 6.31 5.91 n/a 
Density (kg/m3) 828 882 882 880 880 872 881 860-900 
HHV (MJ/kg) 45.16 38.4 38 39.2 38.5 38.4 38.3 n/a 
LHV (MJ/kg) 42 36 35 37 36 36 36 n/a 
Flash point (⁰C) 61.5 169 87 173 81 86 90 101 min 
Iodine value (g iodine/100 g) n/a 120 118 103 97 109 97 120 max 
Linolenic acid methyl ester (% mol/mol) n/a 0 0 0 0 0 0 12 max 
Cetane numbera () 54 53 53 58 59 55 57 51 min 
Cetane numberb () 54 49 50 53 55 53 55 51 min 
Degree of u  nsaturation (% m/m) n/a 239 237 220 213 121 108 n/a 
Carbon content (% m/m) 86.6c 77.14 77.13 77.12 77.08 76.96 76.84 n/a 
Hydrogen content (% m/m) 13.4 c 11.91 11.93 12.04 12.08 11.99 12.06 n/a 
Oxygen content (% m/m) 0.07 c 10.95 10.95 10.84 10.84 11.05 11.11 n/a 
a= (Ramírez-Verduzco et al., 2012); b= (Tong et al., 2011); c= (Schönborn et al., 2009) 
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6.5. Engine performance of 2-Butoxyethanol doped biodiesels 

 

The alcohol blends of biodiesels provided higher BSFC than neat biodiesels and diesel, Figure 6.4 a. 

On average, BSFC of the W85 was 4.3% and 14.1% higher than the W100 and diesel respectively. 

Similarly, BSFC of the R85 was observed as 5.2% and 18.8% greater than R100 and diesel 

respectively. The scenario was the same with the biomixtures as BFSC of W42.5A42.5B15 was 

around 5% higher compared to W50A50. On the other hand, CO50CH50 and CO42.5CH42.5B15 had 

comparable BSFC values. This increase on BSFC can be attributed to the reduced LHV of the 

biodiesels with the alcohol addition (Table 6.3). However, BSFC of the alcohol blends were improved 

by the increasing engine load. Therefore, BSFC of the alcohol blends were very close to that of the 

neat biodiesels, only 1% higher, at the highest engine load. This was mainly due to the higher enthalpy 

of vaporisation of alcohol blends, which leads to better performance under higher engine loads 

(temperatures) (Yilmaz, 2012). Comparing the 15% alcohol blends, all W85, R85, W42.5A42.5B15 

and CO42.5CH42.5B15 presented the same trend but BSFC of W85 and CO42.5CH42.5B15 was 

slightly (0-3%) lower than that of R85 and W42.5A42.5B15  (Figure 6.4 a). Brake Specific Energy 

Consumptions (BSEC) of the fuels were also analysed and given in Figure 6.4 b. The trends off all 

biofuels were the same with BSFC. However, most of the biofuels (except R85 and W42.5A42.5B15) 

had approximately 7% lower BSEC than diesel at the low and medium engine loads. 

 

 

(a) 
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(b) 

Figure 6.4: (a) BSFC and (b) BSEC of the test fuels at different engine loads. 

 

Figure 6.5 presents the relationship between Brake Thermal Efficiency (BTE) and engine load for the 

test fuels. BTE of the engine was observed 1.5% lower for W85 and R85 compared to their base 

biodiesels at the full load. The reduction in BTE with the additive can be explained by the reduction 

on LHV with the 2-butoxyethanol addition Table 6.3. In contrast, 0.6% and 3.7% increase with 

W42.5A42.5B15 and CO42.5CH42.5B15 were observed compared to W50A50 and CO50CH50 at the 

full load. Moreover, W100 and CO42.5CH42.5B15 had 5% higher BTE than the diesel (in average) 

were clearly the best fuels among the tested fuels. They were followed by the W50A50 and 

CO50CH50 as around 3% higher BTE was reported than that of the diesel. The improved BTE’s can 

be explained by the higher oxygen content of the biodiesels which in turn enhances the combustion 

(Vellguth, 1983; Tashtoush, Al-Widyan and Al-Jarrah, 2004). To sum up, in average BTE of the 

biodiesels were slightly reduced by 2.6% with the 2-Butoxyethanol additive due to reduced LHV. 

 

 

Figure 6.5: BTE of test fuels at different engine loads. 
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6.6. Combustion characteristics of 2-Butoxyethanol doped biodiesels 

 

There was not any stability problem spotted during the engine operations. Figure 6.6 represents in-

cylinder pressure behaviour of the test fuels at low, mid-range, and high loads. At the lowest load 

(20%), in-cylinder pressures of the neat biodiesels W100 and R100 were quite similar to that of the 

diesel. Whereas, the same parameter for alcohol blends (W85 and R85) was measured approximately 

6% higher at the peak point, Figure 6.6a. This increase at the low loads was presumably caused by 

increased volatility of the alcohol blends. However, at the same time, W42.5A42.5B15 and 

CO42.5CH42.5B15 gave 6% lower peak pressure than W50A50 and CO50CH50. The results 

indicated that difference of peak pressures of all test fuels reduced with respect to increased load and 

comparable pressures were measured at the medium load. For example, at 60% engine load, R100 

provided a similar peak in-cylinder pressure with the alcohol blends by 7.7% higher than the diesel, 

Figure 6.6b. Then, increase on the peak in-cylinder pressure was observed at 80% engine load for 

W100, Figure 6.6c. Finally, at the full load condition, biodiesels were provided 6-11% higher peak in-

cylinder pressure than the diesel, Figure 6.6d. Besides, around 5°CA shift in peak in-cylinder pressure 

was detected between the diesel and all biofuels especially at the 100% load, Figure 6.6d. The alcohol 

blends of the biomixtures W42.5A42.5B15 and CO42.5CH42.5B15 gave further increase in peak 

pressure which was around 5% higher than W50A50 and CO50CH50. This is due to reduced viscosity 

and increased volatilities of the biodiesels with the 2-Butoxyethanol additive. Moreover, cetane 

number, density and iodine value were not negatively affected by the additive. In addition, increased 

in-cylinder pressures with the biodiesels and their alcohol blends proved that combustion was 

improved due to the presence of oxygen in their content.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.6: Relationship between the in-cylinder pressure and the crank angles at (a) 20%, (b) 60%, (c) 

80% and (d) 100% engine loads. 
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The start and end of combustion processes were analysed and presented for each sample in 

Figure 6.7. Combustion start angle was measured when 5% of the combustion took place and 

similarly combustion finish angle was recorded at 90% of the total combustion via the help of 

KiBox cockpit software, Figure 6.7a and 6.7b. Differences between the finish and start angles 

were reported to identify the total combustion duration, Figure 6.7c. According to the results, 

combustion of all biodiesels started similar to diesel at low loads. However, higher ignition 

delays were addressed for the alcohol blends by 18% and 6% at mid-range and high engine 

loads respectively, Figure 6.7a. These results agree with the similar studies (with different 

alcohol blends) in the literature (Zhu et al., 2010; Anand et al., 2011). Enhanced ignition 

delay can be explained by the alcohol presence in the blend (Datta and Mandal, 2017), On the 

other hand, It was clearly observed that combustion of W85, R85, W42.5A42.5B15 and 

CO42.5CH42.5B15 ended few ⁰CA earlier than the diesel and slightly earlier than their neat 

versions at almost every load Figure 6.7b. This early completion of the combustions 

automatically reflected into the combustion duration. According to Figure 6.7c, combustion 

durations of the W85, W42.5A42.5B15 and CO42.5CH42.5B15 were 0-6 ⁰CA and 0-3 ⁰CA less 

than the diesel and their neat versions (without additive) respectively (except 80% load for 

W85). Similarly, combustion duration of the R85 was reported 1-2 ⁰CA less than both diesel 

and R100 at low and mid-range loads. Maximum reductions on the combustion durations 

were observed at the full load by approximately 3⁰, 4⁰, 4⁰, 3⁰, 2⁰, 3⁰, 3⁰ and 1⁰ for the W100, 

W85, R100, R85, W50A50, W42.5A42.5B15, CO50CH50 and CO42.5CH42.5B15, respectively 

Figure 6.7c. This analysis proved that the 2-Butoxyethanol blends of biodiesels burn quicker 

than the diesel and neat biodiesels. This can belinked to reduced viscosity and iodine value. 

Moreover, increased cetane number and volatility also contributed in rapid burning of the 2-

Butoxyethanol blends. 
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(a) 

 

(b) 

 

(c) 

Figure 6.7: Analyse of combustion (a) start, (b) finish and (c) combustion duration. 
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Energy releases of the test fuels at corresponding angles were measured at the different engine 

load conditions and were illustrated in Figure 6.8. W85 and R85 were providing higher heat 

release especially during the early phases i.e. between approximately 3° and 15° CA at all 

engine loads. For example, heat releases of both W85 and R85 at 10° CA were 17% (23 

Joules) higher than the diesel and neat biodiesels at the low (20%) and medium (60%) engine 

loads. The higher heat releases of alcohol blends of biodiesels (W85 and R85) can be 

attributed to their increased volatility and viscosity with presence of alcohol which results in 

faster combustion. However, in accordance with the lower peak pressures, W42.5A42.5B15 and 

CO42.5CH42.5B15 had around 11% lowered energy release than W50A50 and CO50CH50 at the low 

engine load. At the full engine load, on the other hand, heat releases of alcohol blends and neat 

biodiesels were comparable as the high combustion temperatures makes the atomisation of 

neat biodiesels easier. All biofuels were releasing around 16% (24 joules) higher heat than the 

diesel at 10° CA at the highest engine load. Although, however, alcohol blends burned 

quicker, their maximum heat release was 2.6-11% less than neat biodiesels at the end of 

combustion at almost each engine load. This was because of the shorter combustion durations 

of the alcohol blends. Maximum heat release rates of the fuels were measured for 51 cycles 

and the arithmetic mean was calculated for all loads Figure 6.9. Like in heat release case, in 

maximum heat release rate have an uneven distribution for fuels at low loads. However, after 

the 60% engine load, the deviations between the biofuels were not that significant. The first 

reason of this was believed to be the relatively higher combustion temperature which 

eliminates the effect of high viscosities. Secondly, the higher enthalpy of vaporisation of 

alcohol results in better maximum heat release rates at the higher combustion temperatures 

(Armas et al., 2012). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.8: Heat release of test fuels at corresponding crank angles a) at 20%, b) at 60%, c) at 80% and 

d) at 100% engine loads. 
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Figure 6.9: Maximum heat release rates of the fuels at different engine loads. 

 

Consequently, 2-Butoxyethanol additive slightly reduced the combustion characteristics at the low 

engine loads due to reduced cetane number and LHV. However, combustion characteristics of alcohol 

blends found comparable with the base biodiesels at high engine loads. This was in good agreement 

with the literature and can be linked to higher enthalpy of vaporisation of alcohol additives, which 

gave better combustion under high temperatures (Nour et al., 2017). 

 

6.7. Exhaust emissions of 2-Butoxyethanol doped biodiesels 

 

Exhaust gas emissions of the engine were tested at six engine loads for each fuel. Emissions were 

monitored instantaneously and captured at the steady state condition. Figure 6.10 indicates variation of 

CO2 emissions with respect to increasing loads. It is clear that there was a linear relationship between 

the CO2 emitted and the engine load. This can be explained by increased amount of fuel to overcome 

increasing load. Although all the test fuels exhibited comparable CO2 emissions, the alcohol blends 

were emitting slightly higher (approximately 1-3%) CO2 than their neat biodiesels. The highest CO2 

emission was noticed for the W42.5A42.5B15 which was 10.8% higher than W50A50 at the full load. 

This slight increased may be due to rapid burning of the 2-Butoxyethanol blends which turns more 

carbon atoms in to carbon dioxide. Unlike CO2 emission, O2 emissions were linearly decreasing with 

the increasing engine load for the all test fuels Figure 6.11. This was due to the increased reaction 

between the relatively higher amount of fuel molecules and the same amount of air (oxygen) 
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molecules at the higher loads. As the amount of air is constant at the CI engines, more O2 was taking 

place in the combustion as an oxidiser at the higher engine loads. 

 

 

Figure 6.10: CO2 emissions of the test fuels at different engine loads. 

 

 

Figure 6.11: O2 emissions of the test fuels at different engine loads. 

 

Theoretically, biodiesels are likely to reduce the HC emission as the additional oxygen 

content provides more complete combustion (Li et al., 2015). Hence, alcohol blends of 

biodiesels were expected to emit reduced HC emission as overall oxygen content increases 
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with presence of alcohol. Experimental results proved the theory as most of the biodiesels 

emitted almost 100% reduced HC emissions than diesel. Moreover, the alcohol blends had 

around 50% lower HC emissions than their neat biodiesel versions in average (Figure 6.12).  

The dramatic decrease on the HC emission can be a result of the extra oxygen molecules in 

the 2-butoxyethanol (both ether and alcohol) content. 

 

 

Figure 6.12: HC emissions of the test fuels at different engine loads. 

 

Figure 6.13 provides CO emissions of the test fuels at different loads. It can be clearly 

deemed that 2-butoxyethanol addition into WCO biodiesel decreased the CO emission by 

approximately 25% on average. Similarly, CO of W42.5A42.5B15 and CO42.5CH42.5B15 

were reduced by 10% and 30% compared to W50A50 and CO50CH50 at the full load 

respectively. In contrast, the additive increased the CO emission by around 12% when it was 

added into the rapeseed biodiesel. This result shows that the type of feedstock is very 

important for the 2-butoxyethanol blending in terms of the CO emission. The effect of oxygen 

content of any feedstock on the CO and CO2 emissions were addressed in the literature 

(Vedaraman et al., 2011). W85 emitted 10% less CO (on average) compared to diesel. 

Furthermore, the maximum reduction in CO emission of W85 was observed by 36.4% less 

than W100 at 70% engine load and by 30% less than the diesel at 60% load. At full load, 

W42.5A42.5B15 and CO42.5CH42.5B15 gave approximately 44% lower CO than diesel. The 

reduction in CO emission was presumably due to the reduced viscosities of the alcohol blends 
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which in turn leads to better vaporisation and of the fuel (Imdadul et al., 2017). It is presumed 

that 2-butoxyethanol increased the atomisation characteristic and volatility of the alcohol 

blends during injection which in turn improved the combustion.  

 

 

Figure 6.13: CO emissions of the test fuels at different engine loads. 

 

Nitrogen oxide of all test fuels was measured at the different engine loads Figure 6.14. The 2-

Butoxyethanol blends of biodiesels exhibited different behaviours at low, medium and high 

engine loads. The results at the low and medium loads were uneven such as W85, R85, 

W42.5A42.5B15 and CO42.5CH42.5B15 had around 15% increased NO emissions than neat 

biodiesels. Then, at the medium engine loads, NO emissions of W100 and R100 were 

comparable to W85 and R85, whereas W42.5A42.5B15 and CO42.5CH42.5B15 gave around 

4.5% reduced NO emissions compared to W50A50 and CO50CH50 at the 60% load.  Finally, 

after exceeding the 80% engine load, alcohol blends started to emit lower NO than the 

biodiesels without additive which reached to its maximum value at full load by 5.4%. Beside 

their neat biodiesel versions, they also emitted 3.5% lower NO emission than the diesel at the 

maximum load. This might be attributed to the higher enthalpy of vaporisation of the 2-

butoxyethanol (𝛥vapH= 51.20 kJ/mol at 372.5 K) which leads to better combustion of alcohol 

molecules at high engine loads (Yilmaz, 2012b). As a result of more alcohol fraction in the 
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combustion, it is believed that more cooling effect of the alcohol helped to reduce NO 

emissions at the high loads. 

 

 

Figure 6.14: NO emissions of the test fuels at different engine loads. 

 

Figure 6.15 presents trend of the smoke opacity with respect to the increasing engine load. It 

was clearly observed that smoke opacities of the all biofuels significantly reduced with the 

increasing engine loads. The maximum reductions on smoke opacities were recorded at full 

load as 73%, 79%, 66% and 71% for W100, W85, R100 and R85 respectively. Moreover, 

97% reductions were observed for the W50A50, CO50CH50 biomixtures and their 2-

Butoxyethanol blends again at the full load. Dramatic reductions in smoke opacities were due 

to the extra oxygen content in the biofuels content (Baskar and Senthilkumar, 2016). The 

additional oxygen molecules in the content of 2-butoxyethanol also caused further reduction 

compared to their neat versions at full load Figure 6.15. 

 



 

 

179 

 

 

 

Figure 6.15: Smoke opacity of the test fuels at different engine loads. 

 

The 2-Butoxyethanol additive gave 30%, 50%, 5.4% and 20% reductions in CO, HC, NO and smoke 

opacity compared to biodiesels without additive. However, at the same time 1-3% increase (in 

average) in CO2 was also found for the 2-Butoxyethanol blends.  

 

6.8. Conclusion 

 

The 2-Butoxyethanol blends of the biodiesels with and without 2-Butoxyethanol additive were 

investigated in this chapter. According to in-cylinder pressure diagrams, there were no abnormalities 

found on combustion of the 2-Butoxyethanol additive. Hence, it could be concluded that the 2-

Butoxyethanol (15% vol.) is a safe biodiesel additive for CI engine application. The major research 

outcomes are summarised below: 

1. The 2-Butoxyethanol is an effective additive to reduce viscosity of a biodiesel. However, LHV 

of blended biodiesel also reduced with the additive. Therefore, optimum amount of 2-

Butoxyethanol was found as 15% by volume. 

2. BSFC of biodiesels was increased by approximately 5% when blended with the 2-

Butoxyethanol (15% by volume). In addition, the additive decreased the BTE of the biodiesels 

by 2.6%. Nevertheless, BTE of the biodiesels were still comparable to diesel at full load. 
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3. Biomixtures with the 2-Butoxyethanol additive (W42.5A42.5B15 and CO42.5CH42.5B15) 

released around 5% higher peak pressure at full load. Comparable heat release rates were 

observed for the biofuels at the full load.  

4. Total combustion duration of biodiesels was decreased around 1-2 ⁰CA with the 2-

Butoxyethanol additive due to improved cetane number. 

5. The NO emissions of the biodiesels were successfully reduced approximately 5.4% with the 2-

Butoxyethanol (15% vol.) Moreover, this value was around 3.5% lower than the diesel at full 

load. In addition, significant reductions in CO, HC and smoke emissions were observed by 

30%, 50% and 20% with the 2-Butoxyethanol blends compared to the biodiesels without 

additive. However, CO2 was slightly increased between 1-3% in average (maximum increase 

was observed with W42.5A42.5B15 by 10.8% at full load). 

To sum up, this study concludes that the 2-Butoxyethanol is an effective and safe biodiesel additive. 

Compared to literature studies, it can be superior to other alcohols like methanol and ethanol 

especially in terms of BSFC, BTE and NO emission due to its fuel properties. Although, this chapter 

proved that 2-Butoxyethanol is a suitable biodiesel additive for the biodiesels including the W50A50 

and CO50CH50 biomixtures, the biodiesel’s NOx emissions can be reduced further with an after-

treatment application. In this regard, the biomixtures will be tested with an after-treatment system with 

the purposes of (i) minimising the NOx penalty of biofuels and (ii) understanding the NOx mitigation 

capability of the biomixtures with the up to dated technology of urea injection. 
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Chapter 7 

 

7. REDUCTION OF NOx EMISSION BY MODIFIED 

SELECTIVE NON CATALYTIC REDUCTION 

 

This chapter reported the research work carried out on the modified Selective Non-Catalytic 

Reduction (SNCR) as an after-treatment system. The biomixtures introduced in the previous chapters 

W50A50 and CO50CH50 were tested in the presence of modified SNCR for the purpose of NOx 

mitigation. Commercially available urea-water solution (Adblue) was used as Diesel Exhaust Fluid 

(DEF) to react with the NOx emissions. Moreover, modified SNCR was also tested with neat distilled 

water injection. Research presented in Chapter 6 showed that 2-Butoxyethanol additive reduced the 

NO emission of the biomixtures by 5% at full load condition. Further reductions on NO emission were 

investigated by injection of urea-water solution and distilled water separately through modified SNCR 

aftertreatment system. 

 

7.1. Introduction 

 

Previous chapters proved that biomixtures obtained from waste resources like animal fats and waste 

cooking oil are good alternatives to replace fossil diesel. The biomixtures gave improved combustion 

characteristics compared to neat biodiesels. In addition, most of the exhaust gas emissions such as CO, 

CO2, HC and smoke intensity were reduced with biomixtures compared to diesel. However, NOx 

emissions of biodiesels were comparable to neat biodiesels and diesel. Similarly, around 85% of the 

published studies reported an increase in NOx emission for biodiesel applications (Thangaraja et al., 

2016). The reason underlies on the increased combustion temperature as a result of the higher oxygen 

content of biofuels which provides improved combustion. Therefore, it was decided to cope with the 

NOx penalty at the exhaust system by a help of after-treatment system. In this regard, the latest 

technology found was  ammonia injection after the combustion process i.e. at the exhaust system 

(Soleimanzadeh et al., 2019). One application of this technique is Selective Non-Catalytic Reduction 

(SNCR) which generally used in relatively large engines, furnaces, incineration or boilers. SNCR 

system injects diesel exhaust fluid (DEF – ammonia) directly into the exhaust system without any 

catalyst. Another application is Selective Catalytic Reduction (SCR) which also involves catalytic to 



 

 

182 

 

 

upgrade the NOx reduction yield. Because of the cost of catalyst, it is mainly used in relatively small 

size applications such as the automotive sector.   

 

7.2. Introduction Literature review – Selective Catalytic Reduction (SCR) and 

Selective Non-Catalytic Reduction (SNCR) 

 

The SCR was first found in the 1970s and commercialised in Japan around 1957 (Javed et al., 2007). 

The operational temperature of the system is above 350°C (Yim et al., 2004). Up to 90% of NOx 

reductions were reported in the literature (Muzio et al., 2002). However, these extreme NOx 

mitigations came up with well-developed designs providing reagent NH3 to NOx ratio and uniform 

velocity through the catalyst (Muzio et al., 2002). Even though SCR is a very effective technique, 

there are some drawbacks due to the presence of a catalyst such as erosion (because of dust or 

ammonium bisulphate), limited lifetime, expense and possibility of catalytic disintegration which 

cause an additional source of pollutant (Javed et al., 2007). These problems can be avoided with 

SNCR system which is free of catalyst. However, SNCR systems have the operating temperature 

between 875°C and 1050°C, thus they are mainly used in large stationary sources like boilers, 

furnaces, incineration etc., (Hao et al., 2015). This is mainly due to the lower reaction rate between 

ammonia and NOx below 800°C; hence the injected ammonia does not properly react with the exhaust 

gas. On the other hand, above 1200°C temperature, ammonia oxidises and starts forming NO which 

increases the emissions (Xu et al., 2019). Mansha et al., (2007) proved these conditions with a 

numerical study. They studied NOx reduction by utilising SNCR technique and predicted up to 96% 

reduction of thermal NOx under the conditions of; molar ratio of 1; the temperature at 800°C and 

residence time 2.5 seconds. However, the high-temperature window (i.e. operation range between 

875°C and 1050°C) was considered as the biggest barrier for SNCR application for diesel engines 

(Muric et al., 2018). To avoid this issue, studies have tried various solutions such as implementing an 

extra mixing chamber to enhance the turbulence (Thiyagarajan et al., 2017), double compression 

expansion engines to increase the exhaust temperature (Muric et al., 2018), various additives and/or 

injection agents (Krahl et al., 2010) and injecting aqueous urea solution directly into the combustion 

chamber after the fuel injection (Yang et al., 2015). For example, Thiyagarajan et al., (2017) studied 

SNCR technique with an extra mixing chamber on a single cylinder CI engine on diesel operation. 

They have tested four different injection agents which were anhydrous ammonia, succinic acid, 

diethylamine and monoethanolamine at 1 kg/h flow rate. They reported maximum reductions of 10% 

and 15% for NO and CO2 emissions with monoethanolamine injection at full load. Muric et al., (2018) 
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used double compression expansion engine and reported 55% reduction on NOx emission at 1200 rpm 

and 1200 K temperature. However, the same study also provided 10-22% NOx reduction at 1000 K 

exhaust temperature. In another study, Krahl et al., (2010) tested 1,2,3-tris-

(diethylaminomethoxy)propane, 1,2-Bis-(diethylaminomethoxy)-3-ter/-butoxy propane and 2,2-

dimethyl-(4-diethylaminomethoxy)-1,3-dioxolane additives with SNCR and obtained 22% NOx 

reduction for diesel and 47% NOx reduction for biodiesel. Yang et al., (2015) used a separate injector 

to inject urea-water solution directly into the combustion chamber during the power stroke, they 

reported NOx reduction up to about 53%. 

Based on the literature review, three parameters such as mixing (turbulence), exhaust temperature and 

residence time are critical for SNCR efficiency. This chapter will focus on a modified SNCR after-

treatment system with a new design composed of two parts which are expansion and swirl chambers. 

Enhanced turbulence intensity and residence time are desired to improve NO reduction of biomixtures 

and diesel. The CFD analysis of design options was carried out to select the best design geometry in 

terms of turbulence intensity and injected particle residence time. Then, the selected design was 

manufactured and implemented on the test rig for experimental analysis. 

 

7.3. Calculation of urea-water solution (32.5%) needed for injection 

 

7.3.1. NOx decomposition reaction mechanism 

Ammonia is a well-known chemical that reacts with nitrogen oxides and forms nitrogen and 

water which are not harmful. However, ammonia itself is a dangerous chemical. Therefore, it 

is commonly stored and transferred in the form of urea CO(NH2)2. Typically, urea-water 

solution is used for injection through aftertreatment systems. Then the urea decomposes into 

ammonia in the presence of water as shown in equation 7.1 (Haridass and Jayaraman, 2018). 

This process takes place above 350°C with a residence time minimum of 0.1 s (Haridass and 

Jayaraman, 2018). 

 

𝐶𝑂(𝑁𝐻2)2 + 𝐻2𝑂 → 2𝑁𝐻3 + 𝐶𝑂2 (7.1) 
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The three possible reaction mechanisms of NOx reduction in the presence of ammonia are 

illustrated in equations 7.2, 7.3 and 7.4 (Cho et al., 2017; Haridass and Jayaraman, 2018; 

Mehregan and Moghiman, 2018; Sachuthananthan et al., 2018). 

 

4𝑁𝐻3  + 4𝑁𝑂 +  𝑂2 →  4𝑁2 +  6𝐻2𝑂 (7.2) 

4𝑁𝐻3  + 2𝑁𝑂2  +  𝑂2  →  3𝑁2 +  6𝐻2𝑂 (7.3) 

2𝑁𝐻3  + 𝑁𝑂2  +  𝑁𝑂 →  2𝑁2 +  3𝐻2𝑂 (7.4) 

 

The required amount of urea for an application can be calculated through the introduced 

equations. In this research, it was assumed that all NO will be converted through equation 7.2 

and all NO2 will be converted through equation 7.3. The equation 7.4 was not considered as it 

also requires the same molar ratio with the equations 7.2 and 7.3 (2 moles of NH3 is required 

to convert 1 mole of NO2 and 1 mole of NO). Ultimately, 1 mole of NH3 is needed to 

decompose 1 mole of NO; and 2 moles of NH3 is required for decomposing 1 mole of NO2. 

 

7.3.2. Desired flow rate of the injection 

Although the rated speed of the engine was 1500 rpm, the after-treatment system was tested at 2000 

rpm and 80% engine load. This was simply because of the exhaust temperature limitations of the low 

power density engine. The exhaust temperature was around 380 °C at the mentioned condition. 

Exhaust heat wrap also applied to retain the heat at the exhaust pipe. The required injection amount 

was calculated in this section in accordance with the emissions of one of the promising biomixtures 

i.e. W50A50.  

The NO and NO2 emissions for the biomixture were previously measured as 1.408 g and 0.840 g 

through Horiba gas analyser. Table 7.1 shows the amount of NO and NO2 release and required amount 

of NH3 for full reduction of NOx for 1 second. Approximately 1.4 g of ammonia per second is 

required to be injected at the exhaust pipe. This corresponds to around 2.2 g of urea. 
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Table 7.1: The NO and NO2 emissions of W50A50 biomixture for one second and NH3 agent to be 

injected per second. 

  Emission released   NH3 needed   CO(NH2)2 needed 

  g mole   mole g 
 

mole g 

NO 1.408 0.047 
 

0.047 0.8 
 

0.023 1.2 

NO2 0.840 0.018   0.037 0.6   0.018 1.0 

NOx 2.248 0.065   0.084 1.4   0.041 2.2 

 

The commercial Diesel Exhaust Fluids (DEF - AdBlue) are generally composed of %32.5 urea 

solution in deionised water. As a commercially available DEF was used in this study, the flow rate of 

the %32.5 urea solution in deionised water was calculated in equations 7.5 and 7.6. 

 

𝑈𝑟𝑒𝑎 𝑛𝑒𝑒𝑑𝑒𝑑 =  
2.2 (

𝑔
𝑠)

1.32 (
𝑔

𝑐𝑚3)
 = 1.67 (

𝑐𝑚3

𝑠
)  

(7.5) 

32.5% 𝑈𝑟𝑒𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑛𝑒𝑒𝑑𝑒𝑑 =  
1.67 (

𝑐𝑚3

𝑠 )  𝑥 100

32.5
= 5.14 (

𝑐𝑚3

𝑠
) = 308 (

𝑚𝑙

𝑚𝑖𝑛
)  

 

(7.6) 

 

7.4. Design and CFD simulation of the modified SNCR system 

 

7.4.1. Design candidates 

Three exhaust aftertreatment geometries were developed and modelled in ANSYS FLUENT software 

version 17.1 to figure out the best geometry Figure 7.1. The idea of the system was to inject the 

commercially available urea-water solution (AdBlue) but avoiding the catalytic; as the use of catalytic 

cannot be suitable for low power density engines which cannot cope with high back pressures. In this 

regard, it was planned to increase both turbulence intensity and particle residence time of the catalytic 

free system. 
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(a) 

 
(b) 

 
(c) 

Figure 7.1: Design candidates tested in CFD simulation; (a) design A, (b) design B and (c) design C. 

 

All three designs were composed of two parts which were named injection and expansion pipe and 

swirl chamber. The injection point was at the axis of the injection and expansion pipe and located just 

before the expansion section. In this regard, mixing between injected fluid and exhaust gas can be 

enhanced through the expansion pipe. More specifically, injection fluid molecules will enter the 

exhaust system whilst the diameter of the pipe is increasing, thus the gap between exhaust molecules 

also be enlarged and filled with the injected agent. Then, the diameter will again be reduced to 

increase the velocity before flowing into the swirl chamber, where the turbulence intensity was desired 

to increase. 

The design A had larger expansion pipe diameter, compared to designs B and C. In addition, its exit 

diameter was the same as the inlet diameter. In contrast, designs B and C had the same injection and 

expansion pipe dimensions which has smaller exit diameter than exit diameter. The designs A and B 

had the same swirl chamber with an exit from the top of the chamber. Moreover, the exit pipe extends 

deep into the chamber, forces the entering exhaust fluid to rotate around it by flowing down (towards 

the conical part), then flowing towards upside through inside of the exit pipe. By this manner, not only 
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the turbulence intensity but also residence time was desired to improve. On the other hand, the swirl 

chamber of design C had an exit from the bottom (conical part) of the chamber. 

 

7.4.2. Meshing 

The maximum achievable mesh count was around 520,000 cells due to the limitations with the 

ANSYS (academic) software and computational cost. The numbers of cells were 492692, 505591 and 

485258 for designs A, B and C, respectively. The numbers of nodes were 303136, 265173 and 278201 

for designs A, B and C, respectively. Although more accurate results could be achieved with higher 

meshing size, the results obtained from a similar order of magnitude meshing size would be acceptable 

(Gomez, 2018). Because the design candidates will only be compared to each other (in terms of 

turbulence intensity and residence time) to select the best option rather than investigating the NOx 

reductions.  

 

 

 

Figure 7.2: The meshing illustration of design A, which has a larger diameter expansion pipe and 

venturi between expansion pipe and swril chamber. 
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Figure 7.3: The meshing illustration of design B, which has no venturi between the expansion pipe and 

swril chamber and outlet is on top of the swril chamber. 

 

 
 

Figure 7.4: The meshing illustration of design C, which has no venturi between the expansion pipe and 

swril chamber and outlet is at the bottom of the swril chamber. 

 

7.4.3. CFD Model set up 

This simulation was inspired from a CFD modelling for a study aimed for CO2 emission reduction by 

magnesium hydroxide injection (Gomez, 2018). All three designs were modelled through the same 

calculation process, turbulence algorithms and boundary conditions. The viscous –RNG k-e, standard 

wall functions were selected to have the best monitoring on the turbulence motion (Yakhot et al., 

1992). In addition, swirl dominated flow option was selected as it was expected with the presence of 

the swirl chamber. 

Three different species were selected for species model which were assumed as nitrogen oxide as a 

continuous phase (exhaust gas) and urea-water as a discrete phase. The other exhaust gases were 

neglected for the simplicity of the study. Nevertheless, the flow behaviour of the exhaust gas can be 
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considered a single-phase flow, hence neglecting other components was an acceptable assumption for 

the turbulence intensity and residence time analysis (Gomez, 2018). 

The discrete phase model was selected for simulating the injection of urea-water solution (AdBlue) 

into the exhaust gas stream. Interaction with the continuous phase was activated to simulate The 

evaporation of injection agent and momentum change between the two phases (Gomez, 2018). Then, 

the injection conditions such as location, direction, nozzle type, temperature, flow rate, injection angle 

and diameter were introduced to the model. The urea-water option was selected as injection material. 

Inlet boundary condition was entered in accordance with the previous experimental measurements 

(Chapter 4). On the other hand, the outlet boundary condition was set as out flow. To provide the 

interaction between the walls and injected fluid, wall-jet was property was activated. Gravity was also 

introduced to the model for realistic simulation. 

According to Gomez Gomez (2018), SIMPLE scheme was used for the steady-state flow of pressure 

related equations; Least Squares Cell Based gradient was implemented for the selected mesh type and 

minimum false diffusion; PRESTO pressure for swirl flows involving pressure gradients; Second 

order upwind for more accurate results with Taylor series expansion of the cell-centred solution 

(Gomez, 2018). 

 

7.5. Simulation outcomes and design selection 

 

Initially exhaust gas flow was solved without any injection. Then, the injection was implemented too. 

The system was successfully converged. 

As discussed earlier, the most important parameters are the turbulence intensity and particle residence 

time for this selection. The velocity magnitude and turbulence intensities for the design candidates 

were plotted through velocity vectors Table 7.2. The magnitude scales were arranged the same for the 

all three candidates, hence colour maps of velocity vectors indicate magnitudes of velocity and 

turbulence intensity. According to results, design A gave much lower velocity and turbulence than 

designs B and C, thus design A can be eliminated at this stage. However, no significant difference was 

spotted between designs B and C. 
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Design Velocity magnitude (m/s)  Turbulence intensity (%) 

A 

 

 

 

 

 

B 

 

 

 

C 

 

  

 

Figure 7.5: Comparison of design candidates A, B and C in terms of velocity magnitude and 

turbulence intensity. 

 

Design A was eliminated for lower velocity and turbulence, thus designs B and C were compared in 

terms of particle residence time in Table 7.3. The residence time results of design B and C were again 

comparable at the expansion pipe. However, residence times of the design B and design C were 

recorded as 3 seconds and 1 second at the swirl chamber, respectively. Consequently, design B was 

superior to other candidates when all parameters were considered. Therefore, design B was selected to 

manufacture and conduct the experiment Figure 7.5. The mechanical drawings of the selected design 

were added in Appendix 1. 
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Design  Particle residence time 

candidate  (s) 

A 

 

 

 

B 

 

 

C 

 

 

Figure 7.6: Comparison of design candidates A, B and C in terms of particle residence time. 

 

7.6. Experimental investigation of the SNCR 

 

The selected design was manufactured at the external metalwork company duRose Ltd in 

Birmingham. A small water pump and cone injector were used to develop an injection mechanism for 

the modified SNCR system Figure 7.5. The flow rate was measured by stopwatch-bucket method and 

the lowest flow rate of 375 ml/min was adjusted by providing 3 volts to the pump. Although this value 

was higher than the calculated value of 308 ml/min, it was used in the experiment as the NH3 slip was 

out of the scope for this analysis.  
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(a) 

 

 
(b) 

Figure 7.7: Components of the modified SNCR system (a) the injection mechanism of the after-

treatment system and (b) system assembly. 

 

Next, the injector was located into the injection pipe and the flow of the pattern was checked before 

installing the system on the test rig Figure 7.6. 
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Figure 7.8: Injection pattern starts just before the expansion pipe and expands along with the pipe. 

 

The setup was installed on the exhaust system as shown in Figure 7.7. The national grid power 

converted into direct current and 3 volts supplied to the pump to obtain the desired flow rate. The 

expansion pipe was placed parallel to the ground and the exit of the swirl chamber was located 

vertically as simulated. The injection was controlled by the on-off switch of the power source (Figure 

7.7). The system was commissioned by a leak test. Moreover, the in-cylinder pressure diagram was 

checked for any indication of abnormalities due to back pressure. Ultimately, the system was ready for 

the tests. 

 

Figure 7.9: Engine test rig equipped with the modified SNCR aftertreatment system. 
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7.7. Results and discussions of SNCR aftertreatment 

 

As mentioned earlier, exhaust emissions of the W50A50, CO50CH50 biomixtures and diesel were 

tested through modified SNCR aftertreatment at 2000 rpm and at 80% engine load. in-cylinder 

pressure diagrams are important to spot any abnormalities regarding the back pressure due to the 

implemented after-treatment system (Azimov et al., 2018). Therefore, in-cylinder pressures of fossil 

diesel, W50A50 and CO50CH50 were measured at 2000 rpm and at 80% engine load with the 

modified SNCR system Figure 7.8. The results gave comparable results with each other such as 67 

bars at 13⁰CA. Moreover, the trends before and after the application of the modified SNCR system 

were also the same with each other and no abnormal peak or jump was spotted. 

 

 

Figure 7.10: In-cylinder pressures for the test fuels with the modified SNCR aftertreatment system. 

 

As the purpose of this chapter was the reduction of NO reduction, the main emphasis was on the 

emission results of the test fuels. Note that engine performance and combustion characteristics of the 

W50A50 and CO50CH50 biomixtures (including various other blend ratios) were analysed in detail in 

previous chapters. It was expected that similar engine performance and combustion characteristics 

would be observed with or without SNCR. 

CO and CO2 emissions under no injection, neat distilled water injection and urea-water (AdBlue) 

injection were given in Figure 7.9 and 7.10 respectively. It was clear that there was no significant 

effect of neither neat water injection nor urea-water injection on CO and CO2 emissions. This was 
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because there was not any diesel oxidation catalyst (DOC) or diesel particular filter (DPF) facility on 

the test rig. However, CO emission was decreased slightly by around 0.006 volume %, 0.005 volume 

% and 0.003 volume % with the urea-water injection for the diesel, W50A50 and CO50CH50 

respectively. CO reduction with urea-water injection was in good agreement with the literature. 

Praveen and Natarajan, (2014) also stated a 32% reduction with the urea injection for diesel-ethanol 

(90/10) blend and linked this reduction to oxidation of CO in the presence of excess oxygen. This also 

explains the slight increase in CO2 with urea-water injection. 

 

 

Figure 7.11: CO emissions of diesel, W50A50 and CO50CH50 with the modified SNCR application. 

 

 

Figure 7.12: CO2 emissions of diesel, W50A50 and CO50CH50 with the modified SNCR application. 
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The unburned hydrocarbons emissions were also measured with and without injections Figure 7.11. 

The results were the same in all scenarios; hence HC was not affected by the modified SNCR system. 

This finding agreed with the literature (Thiyagarajan et al., 2017; Haridass and Jayaraman, 2018).  

 

Figure 7.13: HC emissions of diesel, W50A50 and CO50CH50 with the modified SNCR application. 

 

The most important emission in this chapter was the NO emission. Unfortunately, NO2 emission could 

not be measured due to lack of equipment. Comparing the reductions of NO and NO2 which are the 

main components of NOx emission, reduction of NO2 is easier than NO emission as it reacts with 

water and forms nitric acid (Javed et al., 2007). This fact should be highlighted as NOx reduction is 

expected to be higher than NO reduction. In other words, any promising results found for NO emission 

would be even better for the NOx emission. 

Figure 7.12 studies the NO emissions of diesel, W50A50 and CO50CH50 with and without modified 

SNCR after-treatment system. Without any injection, the biomixtures of W50A50 and CO50CH50 

gave similar NO emission (at 2000 rpm and 80% engine load) and it was around 1.5% higher than that 

of diesel. The neat distilled water injection through modified SNCR gave approximately 6% reduction 

for all three test fuels. Moreover, the urea-water injection reduced the NO emission by 13% and 15% 

lower than diesel and biomixtures. These emission reductions are likely to be increased for NOx 

emission, as NO2 reductions will also contribute (Javed et al., 2007). 
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Figure 7.14: NO emissions of diesel, W50A50 and CO50CH50 with the modified SNCR application. 

 

The modified SNCR aftertreatment system worked without any back pressure problem for low power 

density engine (11.2 kW at the engine speed of 2000 rpm). The exhaust temperature was observed as 

378⁰C which was well below conventional SNCR temperature window (between 875°C and 1050°C) 

but above the lower limit of SCR (350⁰C). Nevertheless, the desired exhaust emission of NO was 

successfully reduced by 15%. These results proved that the idea of turbulence and residence time 

improvement through expansion pipe and swirl chamber was successful. Note that this value would be 

even higher for NOx emission if NO2 emission could be measured. It is also believed that designed 

aftertreatment technique would yield further reductions under higher exhaust temperatures with 

medium or high energy density engines.  

 

7.8. Conclusion 

 

This chapter focused on NO emission reduction of the biomixtures of W50A50 and CO50CH50. The 

latest SCR and SNCR technologies found in literature were combined in a new design to enhance 

turbulence intensity and residence time. The main advantages of the new system were eliminating 

catalytic related problems such as weight, clogging, cost etc. The after-treatment system was tested in 

the engine at 80% load with two injection agents which were neat distilled water and commercially 

available urea-water solution also known as AdBlue. The NO emission of biomixtures and diesel was 

reduced by approximately 6% and 15% by neat water and urea-water solution injections at 375 ml/min 

flow rate and at 378⁰C exhaust temperature. On the other hand, no significant effect of catalyst free 

modified SNCR system on CO, CO2 and HC was observed. 
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Chapter 8 

 

8. CONCLUSIONS 

 

This final chapter summarises the findings of the study by responding to aims and objectives given in 

Chapter 2. The research objectives were examined individually in order to demonstrate the extent to 

which they are achieved. In addition, recommendations for future work were made in the light of 

research outcomes. 

 

8.1. Responses to objectives 

 

Objective 1: To select feedstock for biodiesel-biodiesel blending by a detailed literature review in 

terms of biodiesels fuel properties, their combustion and emission characteristics results in the 

compression ignition engines. 

This objective was met by an intensive literature review on possible feedstock candidates available in 

the literature. Biodiesel feedstock was grouped as animal fats, waste cooking oils and inedible 

vegetable oils. The biodiesels obtained from various sources were studied in terms of their fuel 

properties. The fuel properties were discussed and compared with in the BS EN 14214 biodiesel 

standard. According to differences in their fuel properties, the blending of animal fat based biodiesels 

with waste cooking oil was found to be an attractive option to upgrade the fuel properties. Particularly, 

animal fat biodiesels possesses promising heating value, cetane number and iodine number; but 

relatively poor viscosity compared to other biodiesels. On the other hand, waste cooking oil biodiesels 

have comparable viscosity, heating value, cetane number but relatively poor iodine value compared to 

other biodiesels and BS EN 14214 standard. The blending of these two different biodiesel agents was 

found to be a very promising technique in order to optimise fuel properties. The engine test results of 

the individual biodiesels were reviewed and summarised. The blending concept was also supported by 

the engine test results in terms of engine performance and exhaust emissions. In addition, published 

studies on biodiesel-biodiesel blending were reviewed to demonstrate the research gap.  

The contribution to knowledge arising from the first objective was: 
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 Animal fat and waste cooking oil biodiesels very well matched for biodiesel-biodiesel 

blending with respect to viscosity, iodine value, degree of unsaturation and cetane number. 

 

Objective 2: To produce biodiesel-biodiesel blends (biomixtures) in order to identify promising 

volume ratios which meets BS EN 14214 biodiesel standard. Moreover, to understand the effect 

of biodiesel degree of unsaturation on engine performance, combustion characteristics and 

exhaust emissions. 

The first step to achieve this objective was to find an appropriate method for biodiesel production. The 

crucial parameters of the transesterification technique were reviewed from the literature. Next, the 

produced biodiesels were blended to perform various analyses such as (i) understanding the effect of 

biodiesel degree of unsaturation (DU) on engine results, (ii) optimising fuel properties to eliminate 

dependency on external additive agents to meet the BS EN 14214 standard (iii) making use of highly 

available waste biodiesel resources to meet the BS EN 14214 standard (iv) upgrading engine test 

results compared to neat biodiesels as a result of optimised fuel properties. 

Firstly, waste sheep fat biodiesel was blended with the waste cooking biodiesel in order to understand 

the effect of biodiesel DU. As the biodiesles had an extreme difference on the DU, a wide range of 

biomixtures having various DU values was obtained. At the same time, other properties like densities, 

heating values, acid values, flash points and elemental concentrations were very close to each other. 

This study revealed that ignition delay and total combustion duration of the biomixtures was slightly 

shortened by reducing DU. Therefore, NOx emission increased with the decreased DU in accordance 

with the improved combustion characteristics. On the other hand, CO emission decreased with the 

decreased DU. No significant effect of changing DU was noticed on engine performance. 

Secondly, biodiesel produced from waste cooking oil hardly satisfies the BS EN 14214 standard 

specifically because of higher iodine value as 145 g/100g; according to the standard, the upper limit of 

biodiesel iodine value is 120 g/100g. However, the WCO biodiesel-sheep fat biodiesel blends 

obtaining at least 40% volume fraction of animal biodiesel met the BS EN 14214 standard in terms of 

iodine value. This eliminates any requirement of an unsustainable agent like fossil diesel to meet the 

standard.  

Thirdly, widely available chicken feedstock can be utilised as waste biodiesel source but chicken 

biodiesel has high viscosity problem. Although blending technique could help to reduce chicken 

biodiesel’s viscosity within the acceptable range of BS EN 14214 standard (3.50-5.00 mm2/s), it was 

quite challenging to find a waste driven biodiesel which has relatively low viscosity. However, 
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minimum 50% (by volume) cottonseed biodiesel blending of chicken biodiesel had successfully 

reduced the viscosity below 5.00 mm2/s value at the 40⁰C. 

The findings and contributions to knowledge arising from the second objective were: 

 The decrease in the degree of unsaturation resulted in improved combustion of biodiesel 

which in turn reduced the CO emission but increased the NOx emission. 

 The high iodine value challenge of waste cooking oil biodiesels was solved by animal fat 

biodiesel blending; hence any need for unsustainable additive was avoided. 

 The high viscosity problem of animal fat biodiesels was eliminated by cottonseed biodiesel 

blending. 

 

Objective 3: To assess the combustion and emission characteristics of the produced biomixtures 

in a CI engine and determine promising biodiesel-biodiesel blends (biomixtures) which improves 

combustion characteristics and reduces harmful exhaust emissions. 

The biomixtures formed by waste cooking oil and sheep fat biodiesels blending were tested (presented 

in Chapter 4) at 60/40, 50/50 and 30/70 volume fractions. Similarly, biomixtures obtained by blending 

cottonseed biodiesel and chicken biodiesel with the same volume fractions and they were tested in the 

engine (presented in Chapter 5). The neat biodiesels along with diesel were also tested to be compared 

to biomixtures. 

According to Chapter 4, the most promising volume fraction was 50/50. W50A50 gave 5.2% higher 

peak in-cylinder pressure than the neat biodiesels at 80% load. Similarly, the heat release rate of 

W50A50 was higher than the neat biodiesels. However, NOx emission of W50A50 was approximately 

2.5% higher than the neat biodiesels as a result of improved combustion due to optimised fuel 

properties. In contrast, CO2 emission of the W50A50 was 6% lower than the W100. Similarly, 

CO50CH50 was the best performing biomixture formed from blends of cottonseed and chicken 

biodiesels. Results given in Chapter 5 states that CO50CH50 had the highest in-cylinder pressure and 

heat release by 4.2% and 4.4% higher than the diesel. Moreover, CO2 and CO emissions of the 

CO50CH50 were around 3% and 15% lower than diesel. The only disadvantage of CO50CH50 

biomixture was the 6% increased NO emission compared to diesel. In contrast, CO60CH40 

biomixture gave 6.5% reduced NO emission than diesel. All these improvements in the combustion 

characteristics were due to the optimised fuel properties such as viscosity, cetane number, iodine value 

and degree of unsaturation. Therefore, this thesis recommends the biodiesel-biodiesel blending 
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technique. However, fuel properties of neat biodiesels should be considered to find optimum blending 

matches in accordance with the desired properties to be optimised.  

The contributions to knowledge arising from the third objective were: 

 Biodiesel-biodiesel blending was improved the combustion characteristics such as in-cylinder 

pressure and heat release due to optimised fuel properties. 

 Exhaust gas emissions such as CO2 and CO were reduced by biodiesel-biodiesel blending as a 

result of improved combustion. 

 

Objective 4: To assess the effectiveness of the 2-Butoxyethanol as biomixture and neat biodiesels 

additive in terms of fuel properties, engine performance, combustion characteristics and exhaust 

emissions characteristics.  

The 2-Butoxyethanol was analysed as a biodiesel fuel additive in Chapter 6. The potential of the 

additive over fuel properties and engine test results of W50A50 and CO50CH50 were investigated. In 

addition, the additive was also tested with the two commonly used biodiesels in the UK which were 

waste cooking biodiesel and rapeseed biodiesel. Initially, the amount of the additive was determined 

by characterisation analysis. The 2-Butoxyethanol was doped into W50A50 at volume ratios of 10%, 

15% and 20% to monitor the changes on fuel properties. Viscosity, heating value and flash point were 

observed as the most affected parameters by the presence of 2-Butoxyethanol. This was due to the 

alcohol properties of the additive. On the other hand, there was no insignificant change in cetane 

number, density and iodine value by the 2-Butoxyethanol addition. Therefore, neat versions of the 

mentioned test samples and 15% 2-Butoxyethanol blends were characterised and tested in the 

unmodified CI engine. Although BSFC and BTE of the biodiesels were reduced with the additive by 

around 5% and 2.5%, these values were still slightly higher than diesel at the medium engine loads. 

The additive improved the combustion characteristics of biodiesels. For example, peak in-cylinder 

pressure was recorded as 5% higher at the full load. This was attributed to lowered viscosity and 

improved volatility with the 2-Butoxyethanol additive. Biodiesels with 15% 2-Butoxyethanol additive 

emitted significantly reduced CO, HC and smoke emissions by 30%, 50% and 20%, respectively. 

Furthermore, the reduction in NO emission was also achieved by 5.4%. However, CO2 emissions were 

slightly increased by 3% for neat biodiesels and 10% for the biomixtures. 

The contributions to knowledge arising from the fourth objective were: 
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 The 2-Butoxyethanol is a safe additive for biodiesels and suitable for unmodified engine 

application.  

 Combustion of biodiesels such as in-cylinder pressure was upgraded with the 2-Butoxyethanol 

additive as a result of improved viscosity and volatility. 

 Harmful exhaust gas emissions such as CO, HC and smoke were further reduced with 2-

Butoxyethanol additive up to 30%, 50% and 20%, respectively. 

 NOx emission penalty of biodiesels was reduced by 5% NO share, solely with the 2-

Butoxyethanol additive without any after-treatment or EGR application. 

 

Objective 5: To design a new SNCR after-treatment system for minimising the NOx penalty of 

biofuels by injections of distilled water and urea-water solution separately at the exhaust system. 

This objective was met (presented in Chapter 7). A combined version of SCR and SNCR after-

treatment systems was used to avoid negative aspects of each technique. To illustrate, the modified 

SNCR system used in Chapter 7 was free of catalytic, hence catalytic related problems were 

prevented. Moreover, the high operating temperature window of the SNCR system was reduced down 

to suitable range for diesel engine operation by the design concept. The system was composed of two 

components which were namely injection and expansion pipe, and swirl chamber. The working 

principle to perform the injection whilst exhaust gas was expanding through the expansion pipe, thus 

injected agent can fill the created spaces between exhaust gas molecules at the lower velocity for 

better mixing. Then, increasing the velocity of the flowing medium by the Bernoulli principle before 

entering the swirl chamber where turbulence intensity and residence time were increased. The most 

promising biomixtures of W50A50 and CO50CH50 were tested through the novel design along with 

the diesel. After the implementation of the new SNCR system, safe engine operation of low power 

density engine was confirmed through in-cylinder pressure measurement. This proved that there was 

not any back pressure problem. Two different injection agents were tested which were distilled water 

and urea-water solution (commercially available AdBlue). Tests were conducted at 378°C which was 

well below the lower operation limit of conventional SNCR i.e. 800°C. Neither water nor urea-water 

injections had significant effect on CO2, CO and HC emissions. However, NO emissions of diesel, 

W50A50 and CO50CH50 were all reduced by around 6% and 15% with the distilled water and urea-

water injections. Note that NH3 slip (unreacted ammonia release) and N2O (potential new pollutant) 

were not considered. Moreover, NO2 reduction could not be studied and it is believed that 15% 

reduction would be improved with the contribution of NO2 reduction. 
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The contributions to knowledge arising from the fifth objective were: 

 The new SNCR after-treatment design was provided a safe and smooth engine operation. No 

problem was observed in terms of back pressure in low power-density engine. 

 The modified SNCR system prevents catalytic challenges. 

 The high-temperature window of SNCR systems was reduced by increasing both residence 

time and turbulence intensity through design geometry. 

 NO emission penalty of W50A50 and CO50CH50 biomixtures was reduced by 6% and 15% 

with distilled water and commercially available Adblue injections. 

 

Objective 6: Recommendation on biodiesel-biodiesel mixture(s) for CI engine application with 

additive or with after-treatment system. 

The both 50/50 blends, W50A50 and CO50CH50, revealed identical BTE and BSEC performances on 

the unmodified CI engine. They both had very similar fuel properties such as heating value. However, 

cetane number of CO50CH50 was around 4% higher than W50A50. In accordance with the CN 

difference, the in-cylinder pressure of CO50CH50 was recorded approximately 5% higher than 

W50A50 at full engine load. The exhaust gas emissions of CO2, CO, HC and smoke opacity were 

comparable for both 50/50 blends. However, W50A50 had approximately 5% lower NO than 

CO50CH50 at full load. Consequently, the use of both 50/50 blends are suggested as they provided 

improved combustion and reduced emission characteristics than neat biodiesels and diesel. Comparing 

them among themselves, W50A50 is recommended as a first option as it had lower NO emission. 

The NO emission of neat biodiesels and biomixtures were successfully reduced with the both 2-

Butoxyethanol additive and new design SNCR after-treatment system by 5% and 15%, respectively. 

The use of both techniques together is recommended to minimise CO, HC, smoke and NO emissions 

with the combine effect. If the use of both additive and after-treatment together is not possible, 

application of at least one technique is strongly recommended to reduce NO emission below the level 

of fossil diesel. 
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8.2. Responses to the overall aim 

 

The overall aim of this thesis is to blend two different biodiesels in accordance with their fuel 

properties for optimising the engine performance, combustion characteristics and exhaust 

emissions. Biodiesels should comply with the BS EN 14214 standard, and must reduce harmful 

exhaust gas emissions when compared to fossil diesel. 

The overall aim of the thesis was achieved as the biodiesel-biodiesel blending successfully optimised 

fuel properties which in turn complied with BS EN 14214 standard. The thesis focused on two 

different biomixtures but in both cases, an animal fat biodiesel was blended with waste/inedible 

vegetable oil biodiesel. This was because of the complementary advantages of the mentioned biodiesel 

types, which compensate each other’s weaknesses. This outcome was achieved in Chapter 2 as iodine 

value, heating value and cetane number of animal fats biodiesels were found to be better than other 

biodiesel types. In addition, they are considered as waste components and highly available. On the 

other hand, biodiesels of waste cooking oils or inedible vegetable oils had promising viscosity values. 

In the light of this issue, Chapter 4 studied the blending of sheep fat biodiesel with waste cooking oil 

biodiesel and successfully lowered the iodine value of WCO biodiesel within the BS EN 14214 

standard. Moreover, the cetane number of WCO biodiesel was also upgraded and high viscosity of 

sheep fat biodiesel was optimised. The 50/50 blend which was named as W50A50 was found as the 

best-performing biodiesel. Chapter 5 investigated blends of cottonseed biodiesel with chicken fat 

biodiesel. Similarly, CO50CH50 was noticed as the best biomixture in terms of combustion 

characteristics and exhaust emissions. Both biomixtures (proved in Chapter 4 and 5) provided lower 

CO, CO2, HC and smoke opacity compared to diesel. However, NO emissions were comparable with 

the diesel. Therefore, a new biodiesel additive 2-Butoxyethanol was introduced in Chapter 6, which 

slightly reduced the NO emissions of the biomixtures as well as neat biodiesels around 5%. NO 

emissions of the biodiesels further discussed in Chapter 7 with implementation of new SNCR after-

treatment technique. The behaviour of the biomixtures with the latest idea of ammonia injection was 

studied through a new after-treatment design which was a combination of SCR and SNCR techniques. 

NO reduction up to 15% was achieved for the biomixtures and diesel with the SNCR technique. 

Consequently, this thesis proved that fuel properties of the biodiesels produced from waste resources 

can be upgraded by blending with another biodiesel. This can avoid dependency on any unsustainable 

agent such as fossil diesel or other additives to meet BS EN 14214 standard. In addition, biodiesel-

biodiesel blends can reduce most of the exhaust gas emissions and provide comparable NO emission. 

It was also proved that NO emission was reduced with the 2-Butoxyethanol and SNCR after-treatment 

system. 
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Three peer-reviewed articles have been published on the basis of this PhD work by the time this thesis 

was written: 

7. Masera, K., & Hossain, A. K. (2019). Combustion characteristics of cottonseed biodiesel and 

chicken fat biodiesel mixture in a multi-cylinder compression ignition engine. SAE Technical 

Paper 2019-01-0015, 1, pp. 1-14. doi: 10.4271/2019-01-0015. 

8. Masera, K., & Hossain, A. K. (2019). Biofuels and thermal barrier: A review on compression 

ignition engine performance, combustion and exhaust gas emission. Journal of the Energy 

Institute. Elsevier Ltd, 92(3), pp. 783–801. doi: 10.1016/j.joei.2018.02.005. 

 

9. Masera, K., & Hossain, A. K. (2017). Production, characterisation and assessment of biomixture 

fuels for compression ignition engine application. International Journal of Mechanical, 

Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(12), pp. 1857 - 1863. doi: 

scholar.waset.org/1307-6892/10008317. 

Papers regarding the 2-Butoxyethanol and modified SNCR after-treatment system have 

submitted/under preparation. 

10. Masera, K., Hossain, A. K., Davies, P. A., & Doudin, K. (2019). Experimental investigation of the 

2-butoxyethanol as a biodiesel additive. Energy (submitted), 

 

11. Masera, K., Hossain, A. K., Griffiths, G., & Safdar, S. (2019). Understanding the effect of degree 

of unsaturation by blending waste cooking oil biodiesel and sheep fat biodiesel. Fuel (to be 

submitted), 

 

12. Masera, K., & Hossain, A. K. (2020). Injection of urea-water solution through a modified selective 

non-catalytic reduction (SNCR) after-treatment system to reduce NOx emission. 4th South East 

European Conference on Sustainable Development of Energy, Water and Environment Systems, 

Sarajevo, Bosnia and Herzegovina, (abstract submitted), 

 

8.3. Future work recommendations 

 

Although this PhD work successfully provided upgraded combustion characteristics and reduced 

exhaust gas emissions using the biomixtures, there are further aspects that merit investigation. 

One particular aspect recommended for future work is testing of the biomixtures at various engine 

conditions. For example, they could be examined in a direct injection diesel engine with a common 

rail injection system that complies with the latest emission standard. In addition, transient engine 

operations can be investigated with advanced emission analysers. Similarly, behaviours of the 

biomixtures with the commonly used modern technologies like turbocharge, supercharge, diesel 

particulate filter, diesel oxidation catalyst and exhaust gas recirculation facilities can be analysed.  
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Another aspect worth analysing further is oxidation stability and metal contents especially on aged 

biomixtures. Although no significant change in engine results of the one year aged biomixtures was 

spotted in Chapters 4 and 5, this was due to proper storage at the laboratory conditions such as 

perfectly sealed lid (minimum contact with the oxygen), dark and glass container. However, these 

conditions may not be found in some real life applications, thus further investigations on aged 

biomixtures and oxidation stability are recommended. Moreover, the best material for biomixture 

storage in terms of metal content should be studied. 

Although the modified SNCR after-treatment system was successfully reduced the NO emission, its 

application may be upgraded by further improvements. To begin with, the, dimensions of the 

developed design can be investigated further in detail. Secondly, a novel concept may be developed 

for NH3 slip recovery i.e. recirculation over exhaust piping. Thirdly, a smart control system can be 

produced that measures the upstream NOx emission and optimises the injection conditions like 

injection flow rate and pressure. Fourthly, potential new pollutants like N2O as a result of ammonia-

NOx reaction should be investigated with proper measurement techniques. This is a critical area to 

take precautions as N2O is not a combustion product; hence neither emission regulations nor 

conventional gas analysers consider this pollutant. Finally, it is highly recommended to investigate the 

introduced after-treatment system with the TBC application. 

Even though the biomixtures proved feasible and improved the CI engine operation without any need 

of fossil diesel, the biomixtures would likely be commercialised by blending with diesel at the 

maximum allowed biodiesel fraction set by the regulations, currently 7% in Europe. Therefore, 

biomixture-diesel blends should be investigated in accordance with this limit.    
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Appendices 

 

Appendix 1: Methanol content of the biodiesels 

 

Methanol contents of the biodiesels were measured with Hydrogen Nuclear Magnetic Resonance 

technique at Aston University Chemical Engineering laboratories. Although around 2.4% methanol 

was detected for the freshly made crude biodiesel, one year old biodiesels and washed biodiesels gave 

0% methanol in their contents as shown in Figure A.1. This result showed that if the biodiesel will be 

used right after the production, washing is crucial in terms of methanol content. 

 

Figure A.1: Methanol contents of 1 year old biodiesel, freshly made and washed biodiesel and Fresh 

biodiesel. 
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Appendix 2: Calibration certificate of the BOSCH BEA 850 gas analyser 

 

 

Figure A.2: The calibration of the BOSCH BEA 850 gas analyser was carried out successfully. 
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Appendix 3: Technical drawings of the new Selective Non-Catalytic Reduction (SNCR) 

aftertreatment system 

 

Figure A.3: Technical drawing of the modified SNCR aftertreatment system. 
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Figure A.4: Technical drawing of the injection and expansion pipe. 
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Figure A.5: Technical drawing of the swirl chamber. 
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Appendix 4: Certificate of the Esso Diesel used as a reference fuel in this study. 

 

Figure A.6: Certificate of reference fossil fuel purchased from Esso, UK. 




