
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Network Representation Learning
Guided by Partial Community Structure
HANLIN SUN1,2, WEI JIE3, ZHONGMIN WANG1,2, HAI WANG4, and SUGANG MA1,2
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, China (e-mail: sunhanlin@xupt.edu.cn,
zmwang@xupt.edu.cn, msg@xupt.edu.cn)
2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, China
3School of Computing and Engineering, University of West London, London, UK (email: wei.jie@uwl.ac.uk)
4School of Engineering and Applied Science, Aston University, Birmingham, UK (email: h.wang10@aston.ac.uk)

Corresponding author: HANLIN SUN (e-mail: sunhanlin@xupt.edu.cn).

This work was partially supported by the National Natural Science Foundation of China [No. 61702414]; the International Science and
Technology Cooperation Project of Shaanxi Province, China [No.2019KW-008]; the Key Industry Innovation Chain Project of Shaanxi
Province, China [No.2019ZDLGY07-08].

ABSTRACT Network Representation Learning (NRL) is an effective way to analyze large scale networks
(graphs). In general, it maps network nodes, edges, subgraphs, etc. onto independent vectors in a low
dimension space, thus facilitating network analysis tasks. As community structure is one of the most
prominent mesoscopic structure properties of real networks, it is necessary to preserve community structure
of networks during NRL. In this paper, the concept of k-step partial community structure is defined and
two Partial Community structure Guided Network Embedding (PCGNE) methods, based on two popular
NRL algorithms (DeepWalk and node2vec respectively), for node representation learning are proposed.
The idea behind this is that it is easier and more cost-effective to find a higher quality 1-step partial
community structure than a higher quality whole community structure for networks; the extracted partial
community information is then used to guide random walks in DeepWalk or node2vec. As a result, the
learned node representations could preserve community structure property of networks more effectively.
The two proposed algorithms and six state-of-the-art NRL algorithms were examined through multi-label
classification and (inner community) link prediction on eight synthesized networks: one where community
structure property could be controlled, and one real world network. The results suggested that the two
PCGNE methods could improve the performance of their own based algorithm significantly and were
competitive for node representation learning. Especially, comparing against used baseline algorithms,
PCGNE methods could capture overlapping community structure much better, and thus could achieve
better performance for multi-label classification on networks that have more overlapping nodes and/or larger
overlapping memberships.

INDEX TERMS network embedding, network representation learning, partial community structure,
community structure, multi-label classification, link prediction.

I. INTRODUCTION

Network (graph) is a direct and natural way for data orga-
nization. Information network data is ubiquitous nowadays.
Many real world systems, such as the Internet, Webs, on-
line social networks, traffic networks and so forth, can be
modeled as information networks first and then be analyzed.
Traditionally, an information network (simply referred as
network in following) is represented as a matrix, e.g. adja-
cent matrix, Laplacian matrix, similarity matrix, and so on.
This way of representation has drawbacks of being high-
dimension and sparse for large-scale networks. Moreover,

network analyzing methods usually need iterative computing
and thus are computation intensive, since network nodes are
strongly correlated. These strong correlations among nodes
also render troubles for the design of parallel algorithms. All
in all, analysis of large-scale networks that are common today
faces great challenges due to the use of matrices for network
representation.

Network Representation Learning (NRL) - also referred
as Network Embedding (NE) - provides a reasonable and
promising way for large-scale network analyzing. The idea
of NRL is to project nodes, edges, subgraphs, or even a

VOLUME 4, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

whole graph onto representations of some type in a low-
dimension space with consideration of network structure and
additional information related nodes and edges. The most
widely used representation type is a densely and continu-
ous vector, of which the dimension is much smaller than
the corresponding representation in matrix. In addition, the
resulted representations in low-dimension space by NRL are
independent and thus ready for use as inputs of a large
number of off-the-shelf machine learning algorithms when
they are proper for analyzing tasks. Plenty of NRL algorithms
have been proposed [1]–[6]. Among these algorithms, node
representation learning that maps each node into a low-
dimension vector is studied the most. From the idea how to
capture network structure property, most of these methods
could be categorized into five types, including matrix factor-
izing model, probability based model, similarity based model,
neural network model and generative adversary network
model. In the matrix factorizing model, eigen vectors of a
network matrix (like a Laplacian matrix) are taken as the low-
dimension representations of nodes [7]–[9]. In the probability
model, random walks on a network are collected to capture
co-occurance probability of node pairs within a designated
context window, then node representations are learned from
these walks by the Skip-Gram model, that is widely used for
natural language processing [10]–[14]. LINE [15] is a typical
similarity model algorithm. It directly computes the first and
the second order similarities between node pairs, and uses
optimizing method, like asynchronous stochastic gradient
descending, to learn node representations that could preserve
such similarity relationships. Qiu et al. [16] investigated the
relationships between maxtrix factorization and several NRL
algorithms, including DeepWalk [10], node2vec [11] and
LINE, and showed that these algorithms could be unified into
the matrix factorization framework. In the neural network
model, a neural network of some type (such as the autoen-
coder and the recurrent neural network), that could capture
nonlinear relationships among nodes, is trained to learn low-
dimension node representations [17], [18]. ANE [19], NetRA
[20] and GraphGAN [21] are three examples of Generative
Adversary Network (GAN) [22] model. They design a game-
theoretical minmax game to combine the generative and
discriminative thinking to learn node representations. We will
also focus on node representation learning in this paper.

It is straightforward that the performance of a network
analysis based on learned representations is highly dependent
on whether the learned representations in low-dimension
space are able to preserve structure features of the origi-
nal network well. Most NRL methods focus only on local
or micro topology properties, such as neighbors, two-step
neighbors, and so forth. Recently, works in [23]–[28] started
to explicitly consider preserving community structure in net-
work representation learning in realizing that community is
a prominent mesoscopic structure of networks and has an
important effect on network analysis. Simply, a community is
a group of nodes that have more connections among them, but
have relative less connections with the rest of the network;

thus in community semantics, members of a community are
more similar. Therefore, in embedded low-dimension space,
representations of nodes belonging to a community should be
closer.

In this paper, we proposed two NRL algorithms that could
preserve network community structure well in learned node
representations. The basic idea is to first extract information
on community structure using community detection methods,
and then use the obtained information to enhance node rep-
resentation learning. The idea of our algorithms is different
from most current works that unify community model and
node representation learning model together (more details of
these works will be discussed in section II). In summary, the
main contributions of this work are as follows:

(1) We defined the concepts of k-step partial community
and k-step partial community structure, and then proposed
two Partial Community structure Guiding Node Embedding
(PCGNE) methods, PCGNE-DW and PCGNE-N2V that base
on DeepWalk and node2vec, respectively. The two meth-
ods extract the information of a 1-step partial community
structure for a network firstly, and then use the information
to guide random walks in DeepWalk or node2vec for node
representation learning. Specifically, by giving next walk a
prior probability to 1-step neighbors sharing at least one
partial community, the random walks could be prone to
being trapped within communities; therefore the community
structure could be implicitly preserved in collected walks and
thus in representations learned from these walks.

(2) We quantitatively showed the impact of community
structure on node representations using examples of multi-
label classification, thus proving the necessity of explicitly
preserving network community structure in network repre-
sentation learning.

(3) We conducted extensive tests for the two proposed
methods and six other state-of-the-art network representation
learning algorithms on synthesized and real networks. The
results of experiments showed that our two algorithms could
preserve the property of network community structure, espe-
cially overlapping community structure, well.

(4) We found that the use of these real world networks,
including BlogCatalog, Flickr, Protein-Protein Interactions
(PPI), and so on for NRL algorithm verification through
multi-label classification should be cautioned, since their
node labels did not properly encode their network topology,
namely node labels are not consistent with their connection
relationships. Such networks were widely used in previous
NRL works, that learned node representations purely from
network topology, for performance verification.

The rest of this paper is arranged as follows: section II
introduces some node representation learning methods re-
lated to ours or considering community structure preserving.
Section III quantitatively shows the impact of community
structure on node representations using examples of multi-
label classification. Section IV describes details of the pro-
posed PCGNE-DW and PCGNE-N2V, whileas section V
presents the results of extensive experiments on synthesized

2 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

and real networks. Finally, section VI concludes the paper.

II. RELATED WORKS
In this section, we briefly introduce DeepWalk and node2vec
which we have based our methods on, and NRL algorithms
that explicitly consider to preserve community structure fea-
tures.

Perozzi et al. proposed DeepWalk [10], the first algorithm
that can handle node representation learning of large scale
networks. It builds upon the observation that the distribution
of node pair appearance in random walks collected from a
network within a fixed window is power-law, and such a
distribution is considerably similar to the distribution of word
co-occurances in the natural language corpus. Therefore,
DeepWalk imitates word representation learning to learn
node representations: treats a node as a word and a short
random walk as a special sentence and then solves node rep-
resentations using the Skip-Gram model. In fact, DeepWalk
tries to keep neighborhood properties of nodes.

Grover et al. presented node2vec [11] which also learns
node representations by maximizing the likelihood of pre-
serving node neighborhoods. It designs a biased random walk
by introducing two controlling parameters, returning p and
in-out q that control how fast the next walk explores or leaves
the neighborhood of a starting node, respectively. By setting
both parameters as 1.0, where the next walk from current
node is to a randomly selected neighbor, node2vec becomes
DeepWalk.

Recently, a few studies have considered to preserve com-
munity features during node representation learning after
noting the importance of community structure on network
analysis. Wang et al. combined two nonnegative matrix
factorizing (NMF) models that are for node representation
learning and community structure detecting, and proposed
M-NMF (Modularized NMF) [23]. It optimizes both models
at the same time, therefore being able to maintain network
community properties in final node representations. How-
ever, M-NMF adopts a modularity matrix to encode network
community structure and assumes that a node can be assigned
to only one community (i.e. a disjoint community structure),
which is generally not true for real networks. Moreover, M-
NMF needed to designate the number of communities, which
is usually not known in practice and hard to estimate.

Based on the thought that communities regularize commu-
nication pathways for information propagation on networks,
Zhang et al. proposed COSINE (COmmunity-preserving So-
cial Network Embedding from Information diffusion cas-
cades) [24]. Using the Gaussian Mixture Model (GMM)
to model communities in a mapped low-dimension space,
COSINE faces the same problems as M-NMF. The authors
claimed that by replacing GMM with the hierarchical mix-
ture models with Dirichlet priors, COSINE can overcome
both the problems.

Cavallari et al. introduced the ComE (Community Embed-
ding) framework [25]. From ComE’s perspective, the three
tasks of community detection, community embedding, i.e.

attempting to learn a low-dimension representation for each
community, and node embedding are closely related and
should form a closed loop procedure. ComE first employs
DeepWalk to create initial node representations and then up-
dates node representations, community representations and
community assignments of nodes iteratively. It takes Mul-
tivariate Gaussian Distribution (MGD) as the model for
community representations, and supposes that node repre-
sentations are generated from such community distributions.
MGD representation has the strength of clearly showing dis-
tribution features of community members in low-dimension
space. Though ComE supports overlapping community struc-
ture, i.e. a node can join in multiple communities, it requires
the number of communities as input as well.

Tu et al. held a similar view and proposed a unified
framework named CNRL (Community-enhanced Network
Representation Learning) [26]. CNRL extends the idea of
DeepWalk by modeling a community as a topic in natural
language. It uses a vector in the same size as node repre-
sentations as the representation for a community, and hires
Gibbs Sampling of Latent Dirichlet Allocation to find com-
munity assignments for nodes. They developed two commu-
nity enhanced node representation learning methods, CNRL-
DW and CNRL-N2V that base on DeepWalk and node2vec,
respectively. The problem faced by CNRL is the same as for
ComE.

Jia et al. proposed CommunityGAN [27] to learn node
representations and detect overlapping communities simul-
taneously. It uses the theory of GAN as well. However, a
node representation by CommunityGAN indicates the mem-
bership strength of the node to communities; therefore, it
requires the dimension of learned node representation must
be same with the number of communities. It is better to view
CommunityGAN as a community structure detecting method
rather than a general node representation learning one.

Different from the way of aforementioned methods -
jointly modeling community structure and node representa-
tions in a unified framework - CARE (Community Aware
Random walk for network Embedding) [28], which is based
on DeepWalk as well, sets up a new way for integrating com-
munity features into node representations. It firstly detects a
community structure for a network using Louvain, a popular
community detection method, and then uses the obtained
communities to guide DeepWalk random walks. Specifically,
it makes use of community information by increasing co-
occurances of node pairs belonging to a same community,
i.e. with a prior probability, it randomly chooses a node from
communities to which the current node belongs as the next
walk. However, the benefit of using such an aggressive way
of integrating highly depends on whether a proper commu-
nity structure could be found. Unfortunately, finding a high
quality community structure for large scale networks is not
easy.

In short, most preliminary researches that try to take com-
munity features into account as learning node representations
assume some type model for community structure, and solve

VOLUME 4, 2016 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

community representations (and community detection) and
node representations jointly. However, a prior set model may
not capture features of real communities well. Besides, they
need the number of communities, that can not be determined
easily, as input. Our methods follow the way of CARE
in considering community structure, but extract community
information in a less cost approach and integrate community
structure to random walks implicitly.

III. IMPACT OF COMMUNITY STRUCTURE ON NRL
We quantitatively test the impact of community structure
on node representation learning using CARE on networks
having ground truth community structure. Specifically, we
take three synthesized networks created by LFR [29] as
examples. They are denoted as µ = 0.3, on = 30%, and
om = 6, respectively, by their key parameter of LFR. The
network µ = 0.3 has no overlapping nodes. The network
on = 30% has 30% of nodes as overlapping nodes with
community membership 3, whileas the om = 6 has 20%
overlapping nodes with community membership 6. Each
network contains 10,000 nodes. More details about these
synthesized networks can be found in section V-C1.

We adopt the multi-label classification (MLC) from node
representations task to show the impact of explicitly consid-
ering community structure in NRL. First, node representa-
tions of the three networks are learned using CARE aided by
their true community structures (denoted as CARE-RCOM).
Then 70% of nodes and their labels are randomly selected as
training data, and labels of the rest 30% nodes are predicted
using the libsvm [30]. We assigned the community identifiers
of each node as its labels. Note that overlapping nodes have
multiple labels. Such a label assignment is reasonable since
the labels could correctly encode the structure of the network,
namely nodes with a same label have more connections
among them, which is exactly what we would like to preserve
in NRL. Micro-F1 and Macro-F1 are used as evaluation
metrics. Refer to section V-A for more information about
experiment settings and metrics. We compare the two metrics
obtained by CARE with those by DeepWalk to show to
what extent the improvement could be. Table 1 shows the
results. As can be seen from the first two rows, if the true
community structure could be known in some way, both
metrics, especially of network on = 30% and om = 6, can
be improved significantly.

The way that CARE integrates community information
is aggressive, however. It adds in node representations the
community semantics that nodes within a same community
have more similarity, even if they are not directly connected
by an edge. As a result, if the community information used
is correct, this way could greatly increase the similarities
of node pairs within a community; but if the information is
wrong, such a way would cause huge negative impact. For
example, if we replace the true community structures with
those detected by OSLOM [31] in CARE (denoted as CARE-
DCOM), the results do not show obvious improvements any
more than those of DeepWalk, except network om = 6

c 0

c 1

c2

pc (v 0 , c 0)

v1

v2

v3

v4

v9

v5

v6

v7

v8

v10 v11

v12

v0

1

pc (v 0 , c 1)1

FIGURE 1. Examples of 1-step partial community. This figure shows the
partial 2-step neighborhood of node v0 in a network. Different node colors
(except v0) mean different community assignments. Node v0 belongs to two
communities, c0 and c1. Therefore, v0 has two 1-step partial communities,
pc1(v0, c0) and pc1(v0, c1) which are encircled by blue and red dot lines
and consist of v0 and its 1-step neighbors in the two corresponding
communities, i.e. {v0 ,v1,v2,v3} and {v0 ,v5,v6,v7}, respectively.

(Table 1). The reason is that the detected community structure
contains nodes wrongly assigned to some communities, and
such nodes introduce too much wrong community semantics.
Here we adopt OSLOM since it has been proved to be an
effective algorithm for overlapping community detection and
is better than Louvain used in original CARE [32]. We ran
OSLOM 10 times and selected the best community structure
according to the overlapping modularity score [33]. Thereby,
the key problem for CARE is how to find an accurate com-
munity structure as much as possible for networks.

Detecting a high quality community structure for net-
works, especially for large scale networks, is a challeng-
ing task. However, finding community boundaries, namely
finding that if a node stays in a same community with its
neighbors based on the neighborhood topology structure of
the node, is a relatively easier and less cost task. Owning
to this premise, we introduce the concept of k-step partial
community structure.

Definition 1: Given a network G = (V ,E) where V is
the node set and E is the edge set; suppose C is a community
structure of G. For a node v ∈ V , denote the community
(communities) that v belongs to as comsj(v) ⊆ C. A
k-step partial community of v that relates to a community
c ∈ comsj(v), denoted as pck(v, c), is a node group that
contains v itself and its less than or equal to k-step neighbors
that also stay in c, i.e.

pck(v, c) = {v ∪ u|u ∈ ngk(v) ∧ u ∈ c} (1)

where ngk(v) is the less than or equal to k-step neighbors of
v.

Fig. 1 demonstrates examples of the simplest 1-step partial
community.

4 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

TABLE 1. Impacts of Community Structure on MLC

Micro-F1 Macro-F1
Alg. µ = 0.3 on = 30% om = 6 µ = 0.3 on = 30% om = 6

DeepWalk 0.9988 0.8014 0.6628 0.9992 0.8714 0.8072
CARE-RCOM 1.0000 0.9995 0.9770 1.0000 0.9995 0.9689
CARE-DCOM 1.0000 0.8035 0.6898 1.0000 0.8724 0.8100

PCGNE-RCOM 1.0000 0.8888 0.7379 1.0000 0.9311 0.8460

Definition 2: A k-step partial community structure of a
network G, denoted as pcsk(G), is the collection of all k-
step partial communities of its member nodes, i.e.

pcsk(G) = ∪v∈V ∪c∈comsj(v) {pck(v, c)}. (2)

It should be noted that although a community structure of a
given network is involved in the partial community definition,
it is not necessary to find a complete community structure
first and then to extract the related partial communities. The
involved community structure here is used just to clarify
which nodes in neighborhood are included in a partial com-
munity of the node. We could design an algorithm to find a
partial community structure for a network directly.

A partial community structure of a network could be used
as an approach for its local topology property description.
In particular, a 1-step partial community structure provides
community boundaries from viewpoints of nodes. Based on
the concept of 1-step partial community, we propose Partial
Community Guided Network Embedding (PCGNE) for node
representation learning. It captures community structure fea-
tures of a network by random walks defined as follows:

next_node =
{

usual_walk if r < β
partial_community_guided_walk else ,

(3)
where r is a random number uniformly drawn from range
[0, 1] before each walk and β is a designated threshold. The
usual_walk stands for taking next walk as DeepWalk or
node2vec doing, whileas partial_community_guided_walk
means randomly selecting a neighbor that shares at least one
1-step partial community with the current node as the next
walk. In the following text, partial community has the same
meaning as 1-step partial community, except for clear speci-
fication. By giving neighbors sharing communities a priority,
that is adjusted by β, the generated walks are likely trapped
within communities; therefore, a community structure of the
network could be implicitly preserved. Table 1 also lists the
results of PCGNE that takes DeepWalk as usual walk and
uses the true community structures for partial community
guided walks (denoted as PCGNE-RCOM). It can be seen
that both metrics are improved greatly comparing against
those of DeepWalk, though not as much as the improvements
gained by CARE-RCOM.

In practice, we do not need to find an exact partial com-
munity structure for a network in PCGNE, but just group
neighbors of each node into two classes: those sharing at least
one partial community with the given node and those sharing
none. Such a grouping reduces the cost of PCGNE further.

TABLE 2. Notations of PCGNE

notation explanation
G network
V nodes of G
E edges of G
C a community structure of G
N node number of G
v a node

deg(v) degree of v
ngk(v) k-step neighbors of v

comsj(v) communities v joins in
c a community

cn(v, c) connection number of v to c
cs(v, c) connection strength of v to c
cc(v, c) clustering coefficient of v’s neighbors in c

cnmax(v) max connection number of v to joining communities
csmax(v) max connection strength of v to joining communities

Ci an initialized community structure of G
pck(v, c) a k-step partial community of v related to c
pcsk(G) a k-step partial community structure of G

comsn(v) distinct joining communities of v’s neighbors
ngsc(v) neighbors sharing at least one 1-step partial community with v

α community joining threshold
β walking within community threshold

numE number of evolving iteration
numP number of post processing iteration
numW number of walks per node
numN number of negative sampling
dim embedding dimension
len walk length
size context window size
p return parameter for node2vec walking
q in-out parameter for node2vec walking

embs node embedding of G

In the following text, finding a partial community structure
means grouping of neighbors for each node of a network.

IV. PARTIAL COMMUNITY STRUCTURE GUIDED NRL
In this section, we detail the two proposed PCGNE algo-
rithms. Roughly, they consist of two stages: 1) finding a
partial community structure for a network; and 2) guiding
random walks using the found partial community structure
and then learning node representations from the collected
walks. Notations used in PCGNE are listed in Table 2.

A. CONNECTION STRENGTH OF A NODE TO A
COMMUNITY

The key of PCGNE is also to find an accurate partial commu-
nity structure as much as possible. The first question arose
is how we could determine whether a node belongs to a
community or not? We use the concept of connection strength
that quantitates how strong a node v belongs to a community

VOLUME 4, 2016 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

c as in our previous work [34]. It is defined as:

cs(v, c) =

[
cn(v, c)

deg(v)

][1−cc(v,c)]
(4)

where cn(v, c) is the connection number that v has with
community c, deg(v) indicates the degree of v, and cc(v, c)
stands for the clustering coefficient of v’s neighbors assigned
to c. Note that a connection strength could be computed only
for a node having at least three connections to a community,
since a meaningful clustering coefficient exists under such a
restriction.

B. PARTIAL COMMUNITY STRUCTURE DETECTION
The procedure of detecting a partial community structure for
a network is described in Algorithm 1. Its outline is similar to
our previous work of overlapping community detection [34],
but is much simpler since here we only need to differentiate
whether a neighbor of a given node is sharing at least one
partial community with the node. Thereby, we do not need
to consider mergence of communities during evolving. First,
it calls the algorithm ”InitCom” (Algorithm 2) to find an
initial community for each node of the processed network.
Then for each node, the algorithm iteratively evolves its
partial communities in order to join in communities of its
neighbors. The joining criteria are that: 1) if the ratio between
the connection strength of the node to a candidate neighbor
community and the maximum connection strength of the
node exceeds a given threshold α, the node joins in this
neighbor community; 2) if the connection number of the node
to a candidate neighbor community is 2 and the maximum
connection number of the node is not greater than 3, the node
joins in this neighbor community. At the end of each itera-
tion, the algorithm ”PostProcCom” (Algorithm 3) is called to
rectify wrong community joining due to the sequential order
of node processing. Finally, the grouped neighbors of each
node could be easily derived from the found node community
assignments, according to whether they share at least one
partial community with the node.

Algorithm 2 details the procedure of partial community
structure initializing. It finds an initial community for each
node as follows: 1) collecting joining communities of the
node’s neighbors and trying to find such a neighbor com-
munity that if the node joins in, it is still a k-clique; 2) if
there is no such community, trying to find if the node has
two uninitialized neighbors with which the node could form
a 3-clique; 3) if the first two do not meet, then the node
is initialized as a singleton community, i.e. a community
by itself. A k-clique is a completely connected graph of k
nodes; thereby, all of its members are surely belonging to one
community.

As a result of the sequential node processing order in each
evolving iteration, there are some nodes whose community
assignments may be incorrect. To alleviate the effects of
such nodes, we execute a post processing procedure, that
is presented in Algorithm 3, after each iteration to rectify
these wrong assignments. Its criteria are almost the opposites

Algorithm 1 : DetectPartCom
Input: network G, community joining threshold α, evolving

iteration numE , post-processing iteration numP

Output: 1-step partial community structure pcs1(G)
1: pcs1(G) = InitCom(G); /* call Algorithm 2 */
2: for itr = 1 to numE do
3: permute nodes of G;
4: for each v in permuted nodes do
5: collect comsn(v) from pcs1(G);
6: for each c in comsn(v) do
7: compute cn(v, c);
8: if cn(v, c) ≥ 3 then
9: compute cs(v, c);

10: end if
11: end for
12: find cnmax(v) and csmax(v)
13: for each c in comsn(v) do
14: if (cn(v, c) ≥ 3 and cs(v, c) / csmax(v) ≥ α) or

(cn(v, c) == 2 and cnmax(v) ≤ 3) then
15: update pcs1(G) by adding v to c;
16: else
17: update pcs1(G) by removing v from c if

existing;
18: end if
19: end for
20: end for
21: pcs1(G) = PostProcCom(G, pcs1(G), α, numP);

/* call Algorithm 3 */
22: if pcs1(G) does not change then
23: break;
24: end if
25: end for
26: return pcs1(G)

of community joining in Algorithm 1. Additionally, a node
does not join in a community with which it has only one
connection.

Due to the random node processing order in community
initializing and evolving, this partial community structure
detecting algorithm is unstable, namely rerunnings could
result in different communities even on a same network.
In PCGNE, we rerun ”DetectPartCom” several times and
combine all results to get a final partial community structure.
As a result, if a neighbor of a node is found sharing a partial
community with the node in any run, they are regarded as
sharing a community.

C. PCGNE
As we get a partial community structure of a network, we
could use it to guide random walks as in (3) and then
learn node representations on collected walks by Skip-Gram.
Algorithm 4 outlines PCGNE. We use both the random
walk manners in DeepWalk and node2vec as the usual walk,
and denote the two as PCGNE-DW and PCGNE-N2V, re-
spectively. Specifically, the codes from line 2 to 23 collect

6 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

Algorithm 2 : InitCom
Input: network G
Output: an initialized community structure Ci

1: permute nodes of G
2: for each v in permuted nodes do
3: if v has been initialized then
4: continue;
5: end if
6: collect comsn(v) from initialized neighbors;
7: for each c in comsn(v) do
8: if c is a k-clique after v joins in then
9: update Ci by adding v to c;

10: tag v as initialized;
11: break;
12: end if
13: end for
14: if v has NOT been initialized and v forms a 3-clique

with two uninitialized neighbors then
15: create a new community c containing the three

nodes;
16: add c to Ci;
17: tag the three nodes as initialized;
18: end if
19: if v has NOT been initialized then
20: create a new community c containing only v;
21: add c to Ci;
22: tag v as initialized;
23: end if
24: end for
25: return Ci

partial community aware random walks. At each walk step,
a next node is firstly selected according to the DeepWalk or
node2vec manner (line 9); and then, it may be replaced by a
random neighbor that shares at least one partial community
with the current node with a prior probability 1− β (line 11-
18). The code in line 25 achieves node embedding learning.

D. COMPLEXITY ANALYSIS
After obtaining a partial community structure, the random
walk collecting and then representation learning of PCGNE
are similar as in DeepWalk or node2vec. The complexity of
random walk has only very slightly increase, due to the par-
tial community aware next walk reselection. Here, we focus
on the complexity of partial community structure detecting.

Denote the node number of the processed network as N .
The first step of detection is to find an initial community for
each node. According to the finding criteria in Algorithm
2, the complexity of initializing step is very close to O(N)
since the numbers of neighbors and joining communities
of each node are generally dramatically less than N . The
second step is partial community structure evolving and post-
processing. The evolving operations include, for each node,
collecting joining partial communities of its 1-step neighbors,
computing connection strength to each of such a partial

Algorithm 3 : PostProcCom
Input: network G, partial community structure pcs1(G),

community joining threshold α, post processing iteration
numP

Output: rectified partial community structure
1: for itr = 1 to numP do
2: permute nodes in G;
3: for each v in permuted nodes do
4: collect comsj(v) from pcs1(G);
5: for each c in comsj(v) do
6: compute cn(v, c);
7: if cn(v, c) ≥ 3 then
8: compute cs(v, c);
9: end if

10: end for
11: find cnmax(v) and csmax(v);
12: for each c in comsj(v) do
13: if (cn(v, c) ≥ 3 and cs(v, c) / csmax(v) < α)

or (cn(v, c) == 2 and cnmax(v) > 3) or
cn(v, c) ≤ 1 then

14: update pcs1(G) by removing v from c;
15: end if
16: end for
17: end for
18: if pcs1(G) does not change then
19: break;
20: end if
21: end for
22: return pcs1(G)

community, and deciding joining in each one or not. Given
that the number of neighbors and joining communities of
each node are usually greatly less than N , the complexity
of one iteration evolution is also close to O(N). The op-
erations of post-processing are much similar as evolving,
and thus its complexity. As a result, considering that the
evolving and post-processing iterations are usually small, the
total complexity of partial community structure detecting is
approximate to O(N).

V. EVALUATION
In this section, we examine the performance of the two
PCGNE methods and compare them against six state-of-
the-art network representation learning algorithms, including
DeepWalk [10], node2vec [11], LINE [15], GraRep [7],
ComE [25] and CNRL [26]. Both ComE and CNRL ex-
plicitly consider to maintain community structure properties
of networks. For CNRL, we do not adopt the ”Statistic-
based assignment” strategy, that achieves node community
assignments using the Gibbs sampling method of Latent
Dirichlet Allocation, due to its heavy computation. Instead,
we use the ”Embedding-based assignment” strategy, which
hires embeddings of nodes and communities to estimate node
community assignments, owning to its computing efficiency.
We run all involved algorithms on LFR synthesized networks

VOLUME 4, 2016 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

Algorithm 4 : PCGNE
Input: network G, partial community structure pcs1(G),

threshold of walking within communities β, embedding
dimension dim, walk length len, walks per node numW ,
context window size size, negative sampling number
numN [, return p, in-out q (for node2vec walk)]

Output: node embedding embs
1: /* collect walks*/
2: walks = [];
3: for itr = 1 to numW do
4: permute nodes of G;
5: for each v in permuted nodes do
6: node_walk = [v];
7: for step = 1 to len do
8: set cur_node as the last node of node_walk;
9: set next_node as DeepWalk (or node2vec) do-

ing;
10: collect ngsc(cur_node) from pcs1(G);
11: if ngsc(cur_node) is not none then
12: randomly extract a number r from range [0, 1];
13: /* partial community guided walk */
14: if r ≥ β then
15: randomly select a neighbor from

ngsc(cur_node);
16: update next_node as the selected neighbor;
17: end if
18: end if
19: append next_node to node_walk;
20: end for
21: append node_walk to walks;
22: end for
23: end for
24: /* learn embedding */
25: embs = SkipGram(walks, dim, size, numN);
26: return embs

and a real network in order to get their low dimension node
representations, and then conduct multi-label classification
and link prediction based on obtained representations.

A. METRICS FOR MULTI-LABEL CLASSIFICATION
In multi-label classification tests, we split a processed net-
work into two parts, training part and test part. We first train a
classifier according to the training nodes and their labels, and
then use the classifier to predict labels for the test nodes. The
classifier hired here is libsvm [30], in which the linear kernel
function is used and other parameters are set as defaults.

The metrics for evaluating multi-label classification are
Micro-F1 and Macro-F1. Micro-F1 is computed from
each label prediction instance of each node, whileas
Macro-F1 is the averaged F1 scores of each label predic-
tion. Specifically, they are defined as:

Micro-F1 =
2 · Precision ·Recall
Precision+Recall

(5)

where

Precision =

∑
l∈L TruePositive(l)∑

l∈L[TruePositive(l) + FalsePositive(l)]
(6)

and

Recall =

∑
l∈L TruePositive(l)∑

l∈L[TruePositive(l) + FalseNegative(l)]
;

(7)

Macro-F1 =

∑
l∈LMicro-F1(l)

|L|
. (8)

In above equations, TruePositive(l), FalsePositive(l)
andFalseNegative(l) are the number of true positives, false
positives and false negatives of the instances predicted as
label l, respectively. L is the overall label set. Micro-F1(l)
is the Micro-F1 measurement for the label l.

B. METRICS OF LINK PREDICTION
Link prediction is to estimate if a node pair should form an
edge between them. We will use the words link and edge
interchangeably in following. Intuitively, if two nodes have
stronger relationship, e.g. having more common neighbors,
they are more likely to form a new edge. In embedding
space, the smaller the distance between two node vectors, the
more likely the two corresponding nodes will form an edge.
Here, by taking community semantics into consideration, we
categorize the relationships of node pairs into four classes: 1)
node pair having an edge between them and sharing at least
one community; 2) node pair having an edge but belonging
to different communities; 3) node pair having no edge but
sharing at least one community; and 4) node pair without
an edge and locating in different communities. We denote
the four relationships as e-incom, e-crcom, ne-incom, and
ne-crcom, respectively. Fig. 2 shows the four type relation-
ships on a toy network. Generally, e-incom node pairs have
the strongest relationship due to both edge connection and
community semantics, whileas the ne-crcom ones have the
weakest. The relationship strength of e-crcom and ne-incom
node pairs depend on the semantics of edge connection and
community.

From the view of community semantics, the likelihood of
forming an edge within a community is higher than that of
crossing communities. Therefore we will randomly remove a
small portion of e-incom edges, and evaluate the prediction of
these edges in link prediction tests. The community structure
of networks should not be changed after such removal to
guarantee that these test links are still e-incom edges. Thus,
we remove only 5% edges within communities from tested
networks, and further ensure that no more than one edge
leading from a node will be removed. In experiments, the
actual number of removed edges depend on the community
structure of the processed network, and may be less than 5%
of total edges.

The most used metric for link prediction is AUC (Area
Under the receiver operating characteristic Curve). We follow

8 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

FIGURE 2. Examples of node pair relationships. The toy network has 7 nodes
that form 2 communities, i.e. {v1, v2, v3, v4} and {v5, v6, v7}, denoted by
different node colors, and 9 edges that are in bold line . One example of both
ne-incom and ne-crcom edge that do NOT exist in the network are shown in
dotted line.

theAUC definition for discrete data in [35]; thereby, a mech-
anism for ranking continuous node pair distances should be
designed. Moreover, in order to fairly compare the ranks of
distances obtained by different NRL algorithms - which have
their own scales - distances should be normalized at first. The
designed distance ranking mechanism is as follows:

(1) sort distances of both e-incom and e-crcom node pairs,
and take the first 95% as effective distances;

(2) use the largest effective distance as the normalizer
to normalize all involved distances, including distances of
e-incom and e-crcom node pairs and distances of sampled
negative node pairs (ne-incom and ne-crcom node pairs);

(3) divide the normalized effective distance range, from 0
to 1, to several equal parts (ten in this paper) and add an extra
part at right end for those normalized distance that are greater
than 1;

(4) assign each normalized involved distance a rank ac-
cording to the range part it falls into.
In such a mechanism, a part represents the possibility that
two nodes will form an edge if the distance between them
falls into this part. The left most part has the most likelihood
(highest rank), whileas the right most part has the least
likelihood (lowest rank). To eliminate effects of extreme
distances, we select the normalizer as the largest one of the
first 95% effective distances. Extreme distances take only
a small portion but distribute widely; therefore, they may
affect the distribution of effective distances that we reference
to evaluate edge forming likelihood. Then AUC can be
computed as:

AUC =
num1 + 0.5× num2

num
(9)

TABLE 3. LFR parameter settings of synthesized networks

Parameter Description Experiment Setting
N number of nodes 10,000
k averaged node degree 15

maxk maximum node degree 50
minc minimum community size 20
maxc maximum community size 1000

t1 minus exponent for −2
degree distribution

t2 minus exponent for −1
community size distribution

µ mixing ratio 0.3, 0.4, or 0.5
with on=0 and om=0

on number of 10%, 20%, or 30% of N
overlapping nodes with µ=0.3 and om=3

om number of community 3, 6, or 9 with
memberships of overlapping µ=0.3 and on=20% of N
nodes

where num stands for the number of total observations,
num1 is the times that a predicted edge has a higher rank
than a random chosen none existing edge, and num2 is the
times they have a same rank. The value of AUC ranges from
0 to 1. Usually, it falls into [0.5, 1.0]. The more it exceeds
0.5, the better the prediction. We follow the fast computing
method of AUC in [35].

C. EVALUATION ON SYNTHESIZED NETWORKS
We generate synthesized networks using LFR model [29],
which is widely used for community detection evaluation.
The community structure properties of generated networks
could be controlled by model parameters, therefore it allows
us to systematically investigate effect of community structure
on learning of node representations.

1) LFR settings
We vary three LFR model parameters that are mixing ratio
µ, overlapping density on, and overlapping diversity om, to
control community structure properties. The mixing ratio µ
controls the average ratio of external degree of a community
to its total degree. The smaller the µ, the better the quality
of community structure. The overlapping density on is the
number of overlapping nodes, whileas overlapping diversity
om specifies the number of community memberships of over-
lapping nodes. The parameter settings in our experiments are
shown in Table 3. We vary µ, on and om to generate networks
with simple, complex, or none community structure. Note
that the parameters of network on = 20% and om = 3 are
same, so we simply use a same network for both settings in
later experiments.

However, as we check the community structures of these
synthesized networks using connection number, we find that
for network with large on or om, there are a small portion
of nodes breaking the property of a strong community, that
have more connections within a community but relatively
less connection with outside nodes. Therefore, we rectify
community structures of these networks as follows:

(1) a node leaves a joining community with which it has

VOLUME 4, 2016 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

zero or one connection. We note that some overlapping nodes
have just one connection to all their joining communities.
In such a situation, it is reasonable to assign the node to
each community or to none. We take the latter because one
connection is a trivial structure.

(2) a node joins in a not joining community with which the
number of connections of the node is equal to or larger than
the minimum connection number of the node with its already
joining communities. Such a situation occurs mainly as the
connection number of new joining is 2.

Both of the leaving and joining actions are executed iter-
atively until no node changes its community assignments, or
up to a given number of times. Leaving actions are carried out
first. The original community memberships of overlapping
nodes are specified by om and are same for all nodes,
whereas they could be different after rectifying. The distri-
butions of amended community memberships except one are
shown in Fig. 3. As can be seen, community memberships
could be spread in a wide range, thus making community
structures more complicated. The blue bars stand for the om
specified community membership. It should also be kept in
mind that after rectification, some nodes may form singleton
communities.

2) Results of Multi-Label Classification
We label each node of synthesized networks according to its
community identifier(s); therefore, nodes with a same label
will have more connections among them, namely node labels
are consistent with network topology. Similar to previous
works, we randomly sample 50% to 90% nodes and their
labels as training data to train a libsvm [30] classifier, and
then use the classifier to predict labels of the rest nodes.
Additionally, for networks having overlapping nodes, we
ensure that the same ratio of overlapping nodes are sampled
as training nodes. We further make sure that none singleton
community node is sampled. They are left as test nodes, but
their labels cannot be predicted correctly.

Following parameter settings of previous works, the di-
mension of node representation is set as 128 for all algo-
rithms; for those using random walks to capture network
structure features, the length of walk is 40 and the walk
number starting from each node is 80; and both the context
window size and the negative sample number of Skip-Gram
are 5. For ComE and the two CNRL algorithms, the required
community number is set as the actual number of commu-
nities, excluding singleton communities. Both of the ComE
trade-off parameters α and β are set as 0.1 according to the
analysis in that paper. The max transition probability order
of GraRep is 4. As finding a partial community structure
in PCGNE, the rerunning number of ”DetectPartCom” is 5.
For the parameter returning p and in-out q of node2vec and
algorithms based on it, as well as the community joining
threshold α and walking within communities threshold β of
PCGNE methods, we run the algorithm with each candidate
parameter combination three times and select the one that
results the maximum Micro-F1.

We execute each algorithm on each network 10 times and
compute average Micro-F1 and Macro-F1 scores. Fig. 4
and 5 present the average scores for networks with mixing
parameter µ varying. LINE-1 denotes using only the first
order similarity in LINE, whileas LINE-c means using both
the first and second order similarities. Keep in mind that there
are no overlapping nodes in µ networks. We first examine
Micro-F1 and then Macro-F1, as can be seen:

(1) when µ is 0.3, where the community structure is
clear, all algorithms are able to make good label predictions.
Micro-F1 scores are very close to 1.0.

(2) as µ increases to 0.4, where the community structure
becomes blur, all scores deteriorate a little bit. In general,
GraRep is mildly better than ComE, which is slightly better
than others. DeepWalk, node2vec and the four based on them
are a little superior to the two LINE algorithms.

(3) as µ grows to 0.5, where no community structure is
supposed to exist, GraRep and ComE are the top two again,
and are appreciably better than others. The six based on
random walks perform slightly better than the two LINE
under this situation as well.

(4) from Macro-F1 scores, we can observe similar phe-
nomenons except GraRep becomes worse as µ = 0.3 and
0.4.

Fig. 6 and 7 show the average Micro-F1 and Macro-F1
scores of networks having overlapping node number on
changing, respectively. It could be found that:

(1) as on = 10%, where the community structure becomes
more complicated but still is clear, GraRep performs best
again and our two PCGNE algorithms become the second
best. Both of them bring obvious improvements to their
basement, DeepWalk or node2vec. ComE, that models a
community as a multivariate Gaussian distribution, is the
third best. However, the two CNRL methods, that are based
on DeepWalk and node2vec as well and model a community
as a topic in natural language processing, become the worst.
They are even worse than their own based algorithm.

(2) as on becomes 20%, the ranking order of these algo-
rithms almost remains the same, except node2vec exceeds
DeepWalk and CNRL-DW precedes LINE-c.

(3) as on grows further to 30%, where there are more
overlapping nodes, PCGNE-DW and PCGNE-N2V become
the best two, but GraRep degrades greatly to the second
worst. The ranking order of the rests remains similar.

(4) clearly LINE-1 that takes into account only the first
order similarity performs better than LINE-c that considers
both the first and second order similarities.

(5) from Macro-F1, it can be seen that our PCGNE-DW
and PCGNE-N2V are the two best. Additionally, LINE-1
surpasses ComE in general, that is inverse to the result by
Micro-F1. Other details are omitted for simplicity.

Fig. 8 and 9 display the average Micro-F1 and
Macro-F1 scores for networks with overlapping member-
ship om varying, respectively. Remember that the network
om = 3 is the same one as on = 20%. We replot the figure
here for easy comparison as om changing. We can see that:

10 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

0 10 20 30 40
0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

ie
s

(a) on=10%, om=3

0 10 20 30 40
0

250

500

750

1000

1250

1500

1750

(b) on=20%, om=3

0 10 20 30 40
0

250

500

750

1000

1250

1500

1750

(c) on=30%, om=3

0 10 20 30 40
0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

ie
s

(d) om=3, on=20%

0 10 20 30 40
overlapping community membership

0

200

400

600

800

1000

1200

1400
(e) om=6, on=20%

0 10 20 30 40
0

200

400

600

800

1000

1200

1400
(f) om=9, on=20%

FIGURE 3. Distributions of amended overlapping community memberships of synthesized networks.

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01

 M
icr

o-
F1

(a) μ=0.3

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01
(b) μ=0.4

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01
(c) μ=0.5

FIGURE 4. Micro−F1 scores of networks with µ changing, none overlapping structure.

(1) as om is 6, where the overlapping memberships
of overlapping nodes become high, all scores deteriorate.
Our PCGNE-DW and PCGNE-N2V are the best two, and
node2vec becomes the second best in general. Once again,
the two CNRL are the two worst in all examined algorithms.

(2) as om increases to 9, scores further deteriorate whileas
the ranking order trend remains similar.

(3) forMacro-F1 scores, PCGNE-DW and PCGNE-N2V
are the best two once more. In addition, as om increases,
DeepWalk and node2vec perform better, whileas GraRep
degrades.

We also compare the results of PCGNE-DW and PCGNE-
N2V with those of CARE that uses OSLOM detected com-
munity structures as walk guidance (CARE-DCOM) for net-

work on = 30% and om = 6. Table 4 shows the average
Micro-F1 and Macro-F1 scores. As can be seen, our two
partial community structure aided algorithms perform better.
As having been explained, the reason lies in that CARE inte-
grates community information aggressively, and thus wrong
community assignments could induce heavy negative effects
on NRL results.

From the aforementioned experiments, we can draw the
conclusions that:

(1) both PCGNE-DW and PCGNE-N2V can greatly im-
prove their based algorithm, DeepWalk and node2vec, re-
spectively.

(2) when the community structure of a network is simple
and clear, even there is no community structure, GraRep

VOLUME 4, 2016 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01

 M
ac

ro
-F
1

(a) μ=0.3

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01
(b) μ=0.4

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.95

0.96

0.97

0.98

0.99

1.00

1.01
(c) μ=0.5

FIGURE 5. Macro−F1 scores of networks with µ changing, none overlapping structure.

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.88

0.90

0.92

0.94

0.96

 M
icr

o-
F1

(a) on=10%

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.80

0.82

0.84

0.86

0.88

0.90
(b) on=20%

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.76

0.78

0.80

0.82

0.84

(c) on=30%

FIGURE 6. Micro−F1 scores of networks with on changing, µ = 0.3, om = 3.

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.90

0.92

0.94

0.96

0.98

1.00

 M
ac

ro
-F
1

(a) on=10%

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.86

0.88

0.90

0.92

0.94

(b) on=20%

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.82

0.84

0.86

0.88

0.90

0.92
(c) on=30%

FIGURE 7. Macro−F1 scores of networks with on changing, µ = 0.3, om = 3.

12 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.80

0.82

0.84

0.86

0.88

0.90

 M
icr

o-
F1

(a) om=3

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.50

0.55

0.60

0.65

0.70

0.75
(b) om=6

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.2

0.3

0.4

0.5

0.6

0.7

(c) om=9

FIGURE 8. Micro−F1 scores of networks with om changing, µ = 0.3, on = 20%.

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.86

0.88

0.90

0.92

0.94

 M
ac

ro
-F
1

(a) om=3

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850
(b) om=6

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.60

0.65

0.70

0.75

0.80

0.85
(c) om=9

FIGURE 9. Macro−F1 scores of networks with om changing, µ = 0.3, on = 20%.

TABLE 4. F1 Scores of Detected Community Information Aided Algorithms

Micro-F1 Macro-F1
Alg. on = 30% om = 6 on = 30% om = 6

CARE-DCOM 0.8035 0.6898 0.8724 0.8100
PCGNE-DW 0.8244 0.7043 0.9084 0.8338

PCGNE-N2V 0.8241 0.7070 0.9098 0.8331

and ComE could produce better embedding results for multi-
label classification. However, the computing cost of GraRep
is heavy due to its matrix multiplication, therefore it is not a
good choice for large scale network embedding. ComE needs
the number of communities as input, but it is not easy to
estimate in practice. Our two PCGNE algorithms perform
quite well under such situations.

(3) as community structure becomes complicated, namely
more overlapping nodes and higher overlapping member-
ships, our two partial community structure aided algorithms

have more chance to result better node representations that
maintain community structure properties.

3) Results of Link Prediction
The manner of parameter settings of involved algorithms for
link prediction are same as in multi-label classification task.
We run each algorithm on each edge removed network 10
times and compute averageAUC scores for inner community
link prediction from learned node representations.

Fig. 10, 11, and 12 display these averageAUC scores. At a
first glance, it can be noticed that GraRep has the best scores
except as µ = 0.3, of which the score is still comparable.
We believe this is mainly because GraRep takes 4 order node
pair relationships into consideration, thus making similarities
of node pairs more accurate. The cost, however, is time
consuming matrix computation. For similar reasons, LINE-
c that considers both first and second order similarities is
superior to LINE-1 that only takes the first order similarity.

VOLUME 4, 2016 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

(a) μ=0.3

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
(b) μ=0.4

GraRep
DeepWalk

CNRL-DW
PCGNE-DW

node2vec
CNRL-N2V

PCGNE-N2V
LINE-1

LINE-c
ComE

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
(c) μ=0.5

FIGURE 10. AUC scores of networks with µ changing, none overlapping structure.

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

(a) on=10%

0.4

0.5

0.6

0.7

0.8

0.9
(b) on=20%

GraRep
DeepWalk

CNRL-DW
PCGNE-DW

node2vec
CNRL-N2V

PCGNE-N2V
LINE-1

LINE-c
ComE

0.4

0.5

0.6

0.7

0.8

0.9
(c) on=30%

FIGURE 11. AUC scores of networks with on changing, µ = 0.3 and om = 3.

0.4

0.5

0.6

0.7

0.8

0.9

AU
C

(a) om=3

0.4

0.5

0.6

0.7

0.8

0.9
(b) om=6

GraRep
DeepWalk

CNRL-DW
PCGNE-DW

node2vec
CNRL-N2V

PCGNE-N2V
LINE-1

LINE-c
ComE

0.4

0.5

0.6

0.7

0.8

0.9
(c) om=9

FIGURE 12. AUC scores of networks with om changing, µ = 0.3 and on = 20%.

14 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

It is also easy to find that CNRL-DW and PCGNE-DW
improve DeepWalk, and that CNRL-N2V and PCGNE-N2V
improve node2vec significantly - even as µ = 0.5 where
none community structure is supposed to exist. As we check
the community structure of network µ = 0.5, we find that
node pairs of e-incom edges have more common neighbors
than those of e-crcom edges, i.e. to some extent, nodes of
a community are still more densely connected comparing
with nodes locating in different communities. Therefore the
four DeepWalk and node2vec based algorithms that take
community structure into consideration could achieve better
performance.

Though both two CNRL algorithms are not good at multi-
label classification, they perform slightly better than the
corresponding PCGNE method in a lot of cases at link
prediction, including network on = 10%, 20%, 30% and
om = 3, 6 for DeepWalk based and network µ = 0.3, 0.5,
on = 10%, 20%, 30%, and om = 3, 6 for node2vec based.
This could be explained by the property of PCGNE algo-
rithms, since they are able to capture overlapping structure
well, thus making communities sharing overlapping nodes
become closer in mapped space. As a result, distances of
some ne-crcom node pairs decrease, and thus the negative
samples used in AUC computation will become worse.
However, our PCGNE algorithms, especially PCGNE-DW,
are comparable to CNRL ones on most networks for inner
community link prediction. Particularly, PCGNE-DW is the
best (except GraRep) on µ networks where there are no
overlapping communities.

The impacts of overlapping nodes on PCGNE methods
for link prediction could be eliminated if a mirror node for
each overlapping node is added into each community that
the node belongs to, and connections between the (mirror)
node and its neighbors in the same community are kept. As
a result, with no overlapping node existing any more, our
PCGNE-DW will perform quite well. Under such a setting,
multiple embedded representations for an overlapping node,
as many as the number of its community memberships, will
be learned, and a proper one could be selected for link
prediction. Such an improvement could benefit multi-label
classification task, too. We leave this as a future task.

It can also be noted that node2vec becomes the worst one
here. Theoretically, if both p and q are set as 1.0, random
walks of node2vec and DeepWalk are equivalent in statistics;
therefore, node2vec should not be inferior to DeepWalk if
the representation learning procedure from walks are same.
In experiments, we use the codes of DeepWalk and node2vec
by their authors. The difference between them is the former
employs the ’Hierarchical Softmax’ strategy in node repre-
sentation learning, whileas the later hires the ’Negative Sam-
pling’. We believe the reason for node2vec being worse than
DeepWalk is the adoption of different learning strategies.

As shown, although ComE is relatively good at multi-label
classification, it is not at inner community link prediction.

D. EVALUATION ON A REAL NETWORK
In previous NRL works, the evaluation of algorithms by
multi-label classification is mainly on real world networks
of which nodes are labeled, including Citeseer [36], Protein-
Protein Interactions (PPI) 1, BlogCatalog [37], Flickr [37],
and so on. Taking the labels of each node as its commu-
nity identifiers, we check the community structures of these
networks using the index connection number. We find that
node labels of these networks are not consistent with their
topology structures. Specifically, there exists a large number
of nodes that have zero connection with some of their joining
communities (referred as wrong assignments), and an even
larger number of nodes that have large enough connections
to some labels, but do not join in the corresponding commu-
nities (referred as missing assignments). These phenomenons
are reasonable because labels of such a network are assigned
according to strategies that cannot assure community prop-
erty. Take BlogCatelog as an example, of which each node
is a user of the BlogCatelog service and each edge indicates
friendship between two users. A label of a node stands for
one topic that the user is interested in. Though two users who
are friends are likely to share a common topic of interest,
they do not have to. Similarly, two users may have a same
interest topic even they are not friends yet. Therefore, we
believe it is not appropriate to evaluate node representation
learning algorithms, that solve representations merely from
network topology, by multi-label classification task on such
networks.

Fortunately, there is one exception, Cora2, which is a social
network of research paper citation relationships. It contains
2,708 nodes (papers) and 5,278 edges (citations). Each node
has just one label that represents the class of the paper. There
are 7 classes in total. Although labels are assigned to papers
based on feature words they contain, the network connection
structure is quite consistent with label assignments. Taking
all label assignments as the total number, the wrong assign-
ments and missing assignments take up only 6% and 9%,
respectively. Therefore, we use Cora for evaluating involved
algorithms by multi-label classification and inner community
link prediction in this paper.

Fig. 13 illustrates the average Micro-F1 and Macro-F1
scores of multi-label classification test. As can be seen, gen-
erally ComE is the best, whileas our two PCGNE algorithms
are the second best. However, GraRep, which is good at node
representation learning on synthesized networks with simple
community structure, does not get better results here. The
reason may lie in that the wrong and missing label assign-
ments of Cora cause great negative effects on the predicted
labels, though GraRep could obtain more accurate node pair
relationships from node connection structure.

Fig. 14 displays the average AUC scores of inner commu-
nity link prediction. We can find that PCGNE-DW, node2vec,
PCGNE-N2V, LINE-c and ComE give out comparable best

1http://snap.stanford.edu/node2vec/POS.mat
2https://linqs.soe.ucsc.edu/data

VOLUME 4, 2016 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

M
icr

o-
F1

(a) Micro-F1

0.5 0.6 0.7 0.8 0.9
Training Ratio

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

M
ac
ro
-F
1

(b) Macro-F1

DeepWalk
node2vec

LINE-1
LINE-c

GraRep
ComE

CNRL-DW
CNRL-N2V

PCGNE-DW
PCGNE-N2V

FIGURE 13. Micro−F1 and Macro−F1 scores of Cora.

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

GraRep
DeepWalk
CNRL-DW
PCGNE-DW
node2vec

CNRL-N2V
PCGNE-N2V
LINE-1
LINE-c
ComE

FIGURE 14. AUC scores of Cora.

results. Surprisingly, both of node2vec and ComE that per-
form badly on synthesized networks, achieve quite good
results on Cora. We check the connection structure of syn-
thesized networks and Cora and find that the ratio of test
edge node pairs of Cora that have at least one common
neighbor is at least 20% higher than these ratios of syn-
thesized networks, of which the highest ratio is 42%. Such
common neighbors can greatly benefit algorithms based on
random walks. We believe here the performance of node2vec
is dominated by such many common neighbors of test edge
node pairs, instead of learning strategy of Skip-Gram as on
synthesized networks. In contrast, GraRep, that is good at
inner community link prediction on synthesized networks,
becomes the worst on Cora. This may also be due to the
wrong and missing label assignments of Cora since they
affect the samplings of test edges and thus the predicting
results.

From all conducted experiments, we could conclude that
our two PCGNE algorithms are able to capture overlapping
community structure property of networks well, and gener-
ally can improve their basement, DeepWalk or node2vec,
greatly for multi-label classification and inner-community

link prediction tasks. At least, by setting proper parameters,
they will not degrade the performance of their basement.

VI. CONCLUSION

In this paper, we first quantitatively showed the potential
effect of community structure on node representation learn-
ing, then we defined the concept of k-step partial community
structure for a network. Based on the 1-step partial commu-
nity structure, two node representation learning algorithms,
PCGNE-DW and PCGNE-N2V that are based on DeepWalk
and node2vec, respectively, were proposed. The two algo-
rithms use a found 1-step partial community structure of a
network to guide random walks that could implicitly capture
community structure features of the network. Therefore, node
representations learned from such walks could preserve net-
work topology properties better. Since it is easier to find a
high quality partial community structure for a network than
to find a high quality complete community structure, our two
methods do not import too much extra computation to the
based methods. Extensive experiments on eight synthesized
networks and one real network were conducted. The results
suggested that the two partial community structure aided
algorithms could improve their based algorithm significantly,
especially on networks with complicated overlapping com-
munity structure, and are competitive for node representation
learning comparing with six other state-of-the-art network
embedding algorithms.

In future, we will improve our PCGNE algorithms accord-
ing to the overlapping node removing strategy by adding
mirrors for overlapping nodes, as described in section V-C3.
We also would like to develop parallel PCGNE algorithms to
further speed up large scale network representation learning,
since partial community structure detection, random walk
collection and representation learning by Skip-Gram could
be easily parallelized.

16 VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

REFERENCES
[1] D. Zhang, J. Yin, X. Zhu, and C. Zhang, “Network representation learning:

a survey (early access),” IEEE Trans. on Big Data, Jan. 2018.
[2] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and

performance: a survey,” Knowl.-Based Syst., vol. 151, pp. 78–94, Mar.
2018.

[3] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: methods and applications,” IEEE Data Eng. Bull., Apr. 2018.
[Online]. Available: http://arxiv.org/abs/1709.05584

[4] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Feb. 2018.

[5] J. Qi, X. Liang, Z. Li, Y. Chen, and Y. Xu, “Representation learning of
large-scale complex information network: concepts, methods and chal-
lenges (in chinese),” Chinese J. Comput., vol. 41, no. 10, pp. 2394–2420,
Oct. 2018.

[6] C. Tu, C. Yang, Z. Liu, and M. Sun, “Network representation learning: an
overview (in chinese),” Scientia Sinica Inf., vol. 47, no. 8, pp. 980–996,
Aug. 2017.

[7] S. Cao, W. Lu, and Q. Xu, “Grarep: learning graph representations with
global structural information,” in the 24th ACM Int’l Conf. on Information
and Knowledge Management, Melbourne, Australia, Oct.19-23 2015, pp.
891–900.

[8] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu, “Arbitrary-order
proximity preserved network embedding,” in the 24th ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining, London, UK, Aug.19-23
2018.

[9] X. Liu, T. Murata, K.-S. Kim, C. Kotarasu, and C. Zhuang, “A general
view for network embedding as matrix factorization,” in the Twelfth ACM
Int’l Conf. on Web Search and Data Mining, Melbourne VIC, Australia,
Feb.11-15 2019, pp. 375–383.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: online learning of so-
cial representations,” in the 20th ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, New York, NY, USA, Aug.24-27 2014, pp.
701–710.

[11] A. Grover and J. Leskovec, “node2vec: scalable feature learning for net-
works,” in the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, Aug.13-17 2016, pp. 855–864.

[12] S. Cui, B. Xia, T. Li, M. Wu, D. Li, Q. Li, and H. Zhang, “Simwalk:
learning network latent representations with social relation similarity,”
in 12th Int’l Conf. on Intelligent Systems and Knowledge Engineering,
Nanjing, China, Nov.24-26 2017.

[13] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena, “Don’t walk, skip! online
learning of multi-scale network embeddings,” in the 2017 IEEE/ACM Int’l
Conf. on Advances in Social Networks Analysis and Mining, Sydney,
Australia, Jul.31-Aug.3 2017, pp. 258–265.

[14] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec:
Learning node representations from structural identity,” in the 23th ACM
SIGKDD Conf. on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, Aug.13-17 2017.

[15] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: large-scale
information network embedding,” in the 24th IInt’l Conf. on World Wide
Web, Florence, Italy, May 18-22 2015, pp. 1067–1077.

[16] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding
as matrix factorization: unifying deepwalk, line, pte, and node2vec,” in the
Eleventh ACM Int’l Conf. on Web Search and Data Mining, Marina Del
Rey, CA, USA, Feb.5-9 2018, pp. 459–467.

[17] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in
the 22nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, Aug.13-17 2016, pp. 1225–1234.

[18] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: higher-order graph neural
networks,” in The Thirty-Third AAAI Conf. on Artificial Intelligence,
Honolulu, Hawaii, USA, Jan.27-Feb.1 2019.

[19] Y. Xiao, D. Xiao, B. Hu, and C. Shi, “Ane: network embedding via
adversarial autoencoders,” in 2018 IEEE Int’l Conf. on Big Data and Smart
Computing, Shanghai, China, Jan.15-17 2018, pp. 66–73.

[20] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong, H. Chen,
and W. Wang, “Learning deep network representations with adversarially
regularized autoencoders,” in the 24th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, London, UK, Aug.19-23 2018,
pp. 2663–2671.

[21] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: graph representation learning with generative

adversarial nets,” in the 32nd AAAI Conf. on Artificial Intelligence, New
Orleans, Louisiana, USA, Feb.2-7 2018.

[22] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
the 27th Int’l Conf. on Neural Information Processing Systems, Montreal,
Quebec, Canada, Dec.8-13 2014, pp. 2672–2680.

[23] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community pre-
serving network embedding,” in the Thirty-First AAAI Conf. on Artificial
Intelligence, San Francisco, CA, USA, Feb.4-9 2017, pp. 203–209.

[24] Y. Zhang, T. Lyu, and Y. Zhang, “Cosine: community-preserving social
network embedding from information diffusion cascades,” in the Thirty-
Second AAAI Conf. on Artificial Intelligence, New Orleans, LA, USA,
Feb.2-7 2018, pp. 2620–2627.

[25] S. Cavallari, V. W. Zheng, and H. Cai, “Learning community embedding
with community detection and node embedding on graphs,” in the 2017
ACM on Conf. on Information and Knowledge Management, Singapore,
Singapore, Nov.6-10 2017, pp. 377–386.

[26] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and L. Lin,
“A unified framework for community detection and network representation
learning,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 6, pp. 1051–1065,
Jun. 2019.

[27] Y. Jia, Q. Zhang, W. Zhang, and X. Wang, “Communitygan: community
detection with generative adversarial nets,” in the World Wide Web Conf.
2019, San Francisco, USA, May.13-17 2019, pp. 784–794.

[28] M. M. Keikha, M. Rahgozar, and M. Asadpour, “Community aware ran-
dom walk for network embedding,” Knowl.-Based Syst., vol. 148, no. 15,
pp. 47–54, Feb. 2018.

[29] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Phy. Rev. E, vol. 78, p. 046110,
Oct. 2008.

[30] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector ma-
chines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, p. 27, Apr. 2011.

[31] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato, “Finding
statistically significant communities in networks,” PLoS One, vol. 6, no. 4,
p. e18961, Apr. 2011.

[32] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detection
in networks: the state-of-the-art and comparative study,” ACM Comput.
Surv., vol. 45, no. 4, p. 43, Aug. 2013.

[33] M. Chen, K. Kuzmin, and B. K. Szymanski, “Extension of modularity
density for overlapping community structure,” in 2014 IEEE/ACM Int’l
Conf. on Advances in Social Networks Analysis and Mining, Beijing,
China, Aug.17-20 2014, pp. 856–863.

[34] H. Sun, W. Jie, L. Wang, S. Ma, G. Han, Z. Wang, and W. Xing,
“A parallel self-organizing overlapping community detection algorithm
based on swarm intelligence for large scale complex networks,” Future
Generation Computer Systems, vol. 89, pp. 265–285, Aug. 2018.

[35] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve,” Radiology, vol. 143, no. 1,
pp. 29–36, Apr 1982.

[36] A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Inf. Retrieval,
vol. 3, no. 2, pp. 127–163, Jul. 2000.

[37] R. Zafarani and H. Liu, “Social computing data repository at ASU,” 2009.
[Online]. Available: http://socialcomputing.asu.edu

VOLUME 4, 2016 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2978517, IEEE Access

H. Sun et al.: Network Representation Learning Guided by Partial Community Structure

HANLIN SUN received his B.S. degree in com-
puter science and technology from the Nan-
jing University of Posts and Telecommunications,
Nanjing, China, in 2003 and his Ph.D. degree in
computer science and technology from the Beijing
University of Posts and Telecommunications, Bei-
jing, China, in 2010.

From 2010 to 2014, he was a Lecture with
the School of Computer Science and Technology,
Xi’an University of Posts and Telecommunica-

tions. Since 2014, he has been an Associate Professor with the same
school. From August, 2018 to July, 2019, he was a Visiting Scholar with
the Department of Computer Science, Northwestern University, Illinois,
USA. His research interests include computer networks, big data analytics,
complex network, and information network mining.

Dr. Sun is a member of China Computer Federation.

WEI JIE received his B.S. and M.S. degrees in
computer science and engineering from the Bei-
hang University, Beijing, China, in 1993 and 1996,
respectively. He received his Ph.D. degree in com-
puter engineering from the Nanyang Technologi-
cal University, Singapore, in 2000.

From 2001 to 2007, he was a Senior Research
Engineer with the National High Performance
Computing Research Institute of Singapore. From
2007 to 2009, he was a Senior Researcher with the

National Academy of Social Sciences Information, University of Manch-
ester, UK. Since 2009, he has been an Associate Professor in Computing
with the School of Computing and Engineering, University of West London.
He is the General Chair of the IEEE workshop on Security in e-Science and
e-Research, and has served as Program Committee Member for more than
40 international conferences and workshops. His research interests include
cloud computing, big data processing and analytics, computing security
technologies, and multi-disciplinary research.

Dr. Jie is a Fellow of the Higher Education Academy, UK.

ZHONGMIN WANG received the M.S. degree in
mechatronic engineering and the Ph.D. degree in
mechanical manufacture and automation from the
Beijing Institute of Technology, Beijing, China, in
1993 and 2000, respectively.

He was with Xidian University from 1993 to
1997. From 2004 to 2005, he was a Visiting
Scholar with the Robotics Laboratory, Australian
National University, Canberra, Australia. Since
2000, he has been a Full Professor with the

School of Computer Science and Technology, Xi’an University of Posts
and Telecommunications. His current research interests include embedded
intelligent perception, intelligent information processing, machine learning,
brain-computer interface, and effective computing.

HAI WANG received the B.S. degree in computer
and information science and the Ph.D. degree in
computer science from the National University of
Singapore in 2000 and 2004, respectively.

From 2001 to 2003, he was a Research As-
sistant with the School of Computing, National
University of Singapore. From 2006 to 2009, he
was a Research Associate of Medical Informatics
Group, Computer Science Department, University
of Manchester. From 2006 to 2009, he was a

Research Fellow of the Intelligence-Agents-Multimedia Group, Electronics
and Computer Science, University of Southampton. Since 2009, he has been
a Lecturer/Senior Lecturer of Computer Science, the School of Engineering
and Applied Science, Aston University. His research focuses on formal
software engineering and knowledge-based systems and services.

SUGANG MA received his M.S. degree from the
Xidian University, Xi’an, China, in 2010. He is
currently pursuing the Ph.D. degree in computer
science at the Chang’an University, Xi’an, China.

He is a Senior Engineer with the School of
Computer Science and Technology, Xi’an Uni-
versity of Posts and Telecommunications. His re-
search interests include intelligent transportation
and information system engineering.

Mr. Ma is a Senior Member of the China Com-
munications Society.

18 VOLUME 4, 2016

