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Abstract
Vibration energy harvesting (VEH) typically involves a mechanical oscillatory mechanism to accumulate ambient kinetic
energy, prior to the conversion to electrical energy through a transducer. The convention is to employ a simple linear
mass-spring-damper oscillator with its resonant frequency tuned towards that of the vibration source. In the past
decade, there has been a rapid expansion in research of VEH into various nonlinear vibration principles such as Duffing
nonlinearity, bi-stability, parametric oscillators, stochastic oscillators and other nonlinear mechanisms. The intended
objectives for employing nonlinearity include broadening of frequency bandwidth, enhancement of power amplitude
and improvement in responsiveness to non-sinusoidal noisy excitations. However, nonlinear VEH also comes with its
own challenges and some of the research pursuits have been less than fruitful. Previous reviews in the literature have
either focussed on bandwidth enhancement strategies or converged on select few nonlinear mechanisms. This paper
reviews 8 major types of nonlinear VEH reported over the past decade; covering underlying principles, advantages and
disadvantages, and application specific guidance for researchers and designers.
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Introduction

Context and underlying principles

Vibration is ubiquitously present in the ambient environ-
ment: from cars to airplanes, roads to tunnels, rail tracks to
bridges, rolling stocks to lorries, engines to human motion,
electrical transmission towers to wind turbines, and infras-
tructure construction systems to water and gas distribution
networks. The research field of vibration energy harvesting
(VEH) Priya and Inman (2009); Beeby and White (2010) is
concerned with devising decentralised generators capable of
converting the ambient vibration energy into useful electrical
energy at the point of use.

Combined with the general trend of system miniaturisa-
tion, VEH has also been increasing integrated with MEMS
(micro-electromechanical system) and IC (integrated circuit)
technologies in order to realise self-powered microsystem
Kazmierski and Beeby (2011). The applications of VEH can
be found in powering autonomous and/or wireless sensors
for condition monitoring and structural health monitoring;
powering wearable, biomedical and implantable devices; and
powering remote tracking and positioning systems Beeby
et al. (2006); Mitcheson et al. (2008).

Some of the early examples of motional energy harvesting
include the inductive kinetic watch Seiko (2011) or the
dynamo powered battery-less flashlight Popular Science
Monthly (1929). VEH research witnessed an emergence
within the modern academia since the 1990s Antaki et al.
(1995); Umeda et al. (1997); Williams et al. (1998); Xu
et al. (1998); Meninger (1999). The convention relied upon
employing a directly excited linear oscillator that can be
modelled as a second order mass-spring-damper system

subjected to base point excitation as shown in figure 1 and the
general form of the oscillator is given by equations 1 and 2.

Figure 1. Model of a mass spring damper system subjected to
base-point direct forcing with acceleration ÿ(t).

mẍ+ cẋ+ kx = F (t) (1)

where, m is the effective mass, c is the effective damping,
k is the effective stiffness constant, F is the base point
external forcing, x is the response displacement and t is the
time domain.

ẍ+ 2ζωnẋ+ ω2
nx = −ÿ(t) (2)

where, ζ = c/(2
√
km) is the damping ratio, ωn =

√
k/m

is the angular natural frequency and y is the excitation
displacement.

If the excitation is sinusoidal y = Y cos (ωt), the
response can be given by x = |X| cos (ωt+ φ), with
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excitation frequency ω and phase angle φ. The mechanical
energy accumulated in the oscillatory motion can then
be converted to electrical energy via a mechanical-to-
electrical transduction mechanism. This linear approach has
been widely applied across various transducers, including:
electromagnetic Williams and Yates (1996); Williams et al.
(1996, 1998, 2001); Glynne-Jones et al. (2004); Beeby et al.
(2007); Serre et al. (2008); Li et al. (2013), piezoelectric
Roundy and Wright (2004); Kim and Priya (2008); Erturk
and Inman (2008c,a,b); Elfrink et al. (2009); Erturk and
Inman (2011b) and electrostatic Meninger (1999); Tashiro
et al. (2000); Meninger et al. (2001); Roundy et al. (2002);
Roundy (2003); Chu et al. (2005) and magnetostriction
Huang et al. (2003); Bayrashev et al. (2004). Further more,
there have also been derivates based on the electrostatic
principle, such as electret Peano and Tambosso (2005);
Suzuki et al. (2010); Renaud et al. (2013); Minakawa et al.
(2013) and triboelectric Wang (2013); Wang et al. (2016).

By designing the oscillator to match the system resonant
frequency ωr (equation 3) towards the active frequency range
of the ambient vibration for ζ < 1/

√
2, fundamental mode

resonance can thus be achieved to maximise the mechanical
response (equation 4) and the resultant electrical power
output. This resonant amplification is important to maximise
the power output.

ωr =
ωn√

1− 2ζ2
(3)

|Xmax| =
Y

2ζ
√

1− ζ2
(4)

The half power bandwidth is usually taken as the practical
operational frequency bandwidth for VEH systems, and the
half power point can be found at: |X| = Xmax/

√
2, for

ζ << 1.
Williams et al. Williams and Yates (1996); Williams et al.

(1996) were amongst the first to establish an analytical
model for a directly excited linear oscillator applied as
VEH. The instantaneous power P (t) coupled from the base-
point vibration to the oscillator mass can be summarised by
equation 5.

P (t) = −mÿ(t)[ẏ(t) + ẋ(t)] (5)

For a given sinusoidal excitation, the theoretical power
amplitude P recoverable from a linear VEH oscillator can
be represented by equation 6 Williams et al. (1996).

P =
mζY 2( ωωn

)3ω3

[1− ( ωωn
)2]2 + [ 2ζωωn

]2
(6)

For a given mechanical damping ratio ζm and electrical
damping ratio ζe from the transducer circuitry, the power
generated is given by equation 7. The total damping ratio
ζ is the sum of the damping in the mechanical and electrical
domains.

P =
mY 2ω3

nζe
4(ζe + ζm)2

(7)

The quality factor Q of the oscillator can be measured
from the limits of the frequency bandwidth ω1 and ω2, as

well as an inverse relationship with damping ratio: Q =
ωr/(ω1 − ω2) = 1/(2ζ).

While linear damping is often used to include the electrical
damping for electromagnetic transducers Williams and Yates
(1996); Williams et al. (2001); often for piezoelectric
transducers, electrical damping is not modelled just as part
of linear damping alone Erturk and Inman (2008b, 2011b).
For scenarios where the piezoelectric transducer damping is
significant in relation to mechanical damping, equation 8 can
be applied.

ẍ+ 2ζωnẋ+ ω2
nx = −ÿ(t) + κV (t) (8)

where, κ is the electromechanical coupling factor and V is
the generated voltage.

By adjusting the overall quality factor Q (as outlined in
figure 2), the VEH oscillator can be tuned to target towards
either maximising power output or broadening frequency
bandwidth; but both power and frequency bandwidth
cannot be simultaneously enhanced. Q also represents
the mechanical advantage of the resonating system to
accumulate mechanical energy. However, in real world
applications where vibration energy is likely to be broadband
and varying, an ideal VEH system should be able to achieve
both high power output and operate across a wide frequency
spectrum.
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Figure 2. Frequency domain response for a linear
mass-spring-damper system with varying quality factor Q. By
tuning Q, the system compromises between peak power and
frequency bandwidth.

Therefore, the conventional linear oscillator is only
suited for specific VEH applications where the ambient
vibration is that of a fixed single frequency source. When
operated across a large bandwidth, a linear oscillator is
fundamentally inefficient to accumulate mechanical energy.
Over the past decade Tang et al. (2010); Zhu et al. (2010),
in order to address the persisting challenges of inadequate
power density and narrow operational frequency bandwidth,
there has been an increasing variety of methods proposed,
including: an array of coupled or uncoupled oscillators
across various frequencies; frequency tuning mechanisms
through mechanical or electrical means; as well as various
nonlinear vibratory phenomena for VEH.

Often, the terms nonlinear vibration or nonlinear oscillator
are narrowly used to describe a higher order polynomial
nonlinear spring. However, vibratory nonlinearity and its
uptake by the VEH community is both much broader and
more nuanced. Nonlinear oscillatory systems are not a
single class of vibratory systems, but rather an umbrella
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definition used to encompass oscillators that are not linear.
Various types of nonlinear oscillators can be as distinguished
amongst themselves, as they are distinct from linear
oscillators. Nonlinear oscillators can be broadly described by
the general form shown in equation 9 Thomson (1998).

ẍ+ f(ẋ, x, t) = 0 (9)

where, f(ẋ, x, t) is a function with at least one nonlinear
term. As will be demonstrated throughout this paper, this
function can take on various forms depending on the type of
nonlinearity that is under investigation. The main distinction
from linear oscillators is that simple superposition does not
hold for the solutions of nonlinear oscillators.

Review of nonlinear VEH
A number of previous reviews exist on the use of nonlinear
vibratory mechanisms for vibration energy harvesting. Most
of these reviews have either targeted on enhancement
bandwidth strategies Tang et al. (2010); Zhu et al. (2010)
or primarily focussed on select few nonlinear principles
such as Duffing and bi-stability Daqaq et al. (2014); Harne
and Wang (2013). However, the motivation of employing
nonlinear VEH extends beyond bandwidth enhancement,
and it can be used to improve overall power density as
well as responsiveness towards noisy or shock excitations.
Furthermore, while Duffing and bi-stability are amongst the
most well known nonlinear VEH, they are far from being the
only nonlinear strategies.

This paper aims to add to the existing body of VEH
review literature, by reviewing the underlying principles
and advances within the VEH field that incorporates the
various types of nonlinear vibration dynamics. Nonlinearity
itself is an umbrella term, which can include vastly varying
principles that are as distinct from each other as they are from
linear systems. This paper reviews 8 major nonlinear VEH
explored by the research community,

• Duffing nonlinearity and other higher order polyno-
mial springs
• bi-stable and multi-stable oscillators
• parametric oscillators
• stochastic resonance
• mechanical frequency converters
• mechanical stoppers
• self-tuning mechanisms, and
• non-oscillatory mechanisms

Sometimes, combinations of these nonlinear mechanisms
Jia and Seshia (2013) can be employed together along with a
linear system. The research of these differing mechanisms
by the literature aim to accomplish varying objectives: to
enhance power peak, to broaden frequency bandwidth, to
tune frequency bandwidth and to enhance responsiveness
to broadband noise excitation. However, not all nonlinear
mechanisms have been entirely successful in achieving
these goals due to constraints either by practicality or by
fundamental vibration principles.

Within the scope of this paper, only vibratory nonlinear
interactions arising within the mechanical domain are
reviewed. Frequency interaction mechanisms that employ
active actuators or electrical damping Zhu et al. (2010)

are not covered herein. Transducers, such as piezoelectric
and electrostatic, all exhibit nonlinearities in the electrical
domain, which are not explored within this paper as well.

Duffing oscillators and higher order
polynomial springs

Background of Duffing nonlinearity
One of the most well known nonlinear vibratory phe-
nomenon explored in the VEH field is Duffing nonlinearity,
named after Georg Duffing Kovacic and Brennan (2011).
The oscillatory systems associated with this type of nonlinear
dynamics are known as Duffing oscillators and the function
used to describe the dynamics is known as the Duffing
equation. Figure 3 summarises a generic model diagram for
the Duffing type mass spring damper system.

Figure 3. Model of a mass spring damper system with Duffing
spring nonlinearity µ, subjected to base-point direct forcing with
acceleration ÿ(t). The key element is the amplitude-dependent
nonlinear spring term. This additional spring restoring term
becomes increasingly significant at larger amplitudes.

The potential U(x) term takes the form of 0.5kx2 +
0.25µx4, where µ = 6mβ, and the Duffing equation is a
differential equation with a cubic (third order polynomial)
spring term as shown in equation 10.

ẍ+ 2ζωnẋ+ ω2
nx+ βx3 = −ÿ(t) (10)

where βx3(t) is the amplitude dependent time function
that describes the level of the spring nonlinearity present
in the system. Therefore, with build up of oscillatory
amplitude, spring hardening effect can be seen for β >
0 and spring softening effect can be observed for β < 0.
Figures 4 and 5 illustrate numerically simulated examples of
the restoring force and frequency domain characteristics of
these nonlinear spring behaviour.

Figure 4. Numerically simulated amplitude dependent restoring
force behaviour of the Duffing equation, illustrating spring
hardening and softening effects. Axes dimensions are arbitrary.

Duffing nonlinearity for VEH
The core thesis of employing Duffing nonlinearity in VEH
is to tap into the bending behaviour of the resonant peak
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Figure 5. Numerically simulated frequency domain
characteristics of the Duffing equation, illustrating resonant
peak bending for spring hardening and softening effects. Axes
dimensions are arbitrary.

as a means of capturing a modestly wider operational
frequency bandwidth compared to the linear resonant peak
Stanton et al. (2009); Erturk et al. (2009); Mann and
Sims (2009); Barton et al. (2010); Sebald et al. (2011);
Mallick et al. (2016). However, a key practical issue is
the frequency hysteresis present in the frequency domain
depending on the direction of the frequency sweep. For
broadband excitations, the system might be trapped in the
less desirable lower bifurcation point around the frequency
vicinity of the resonant peak bend.

For most linear oscillators, when driven towards large
oscillatory amplitude, a weakly nonlinear behaviour can
onset as the spring deviates from its original geometry.
This type of geometric nonlinearity is often defined by the
Duffing equation with a relatively small β. However, strong
spring nonlinearity, mathematically taking the form of a
relatively large β, can be inherently present at small to
modest oscillatory amplitude range as well.

This latter type is generally referred to as Duffing
oscillators and the strong inherent nonlinearity can be
achieved through a number of design approaches. This
includes: coupling of a resonator end mass (ferromagnetic)
with closely placed magnets to induce either spring softening
or hardening effect depending on the magnetic coupling
orientation and topology Stanton et al. (2009); Erturk et al.
(2009); Burrow and Clare (2007); Burrow et al. (2008); the
employment of magnetic springs instead of physical springs
as the restoring force such as magnetically coupled rotary
suspension Spreemann et al. (2006) and nonlinear magnetic
levitation where a magnetic is suspended in a single axis
tube (coils wound from outside) by two opposing magnetics
on either ends Mann and Sims (2009); Daqaq (2010); and
the application of axial pre-stress or pre-compliance to a
spring in order to inherently induce hardening or softening
Marinkovic and Koser (2009).

In real vibrational systems, truly linear resonators are quite
rare and nonlinearity can be observed by simply driving an
otherwise linear spring, such a simple cantilever, into high
amplitudes Ramlan (2009); Ramlan et al. (2010). This is
the weakly nonlinear type of the Duffing nonlinearity. The
amplitude at which the Duffing term becomes dominant
is dependent on the geometry and structural design of
the spring. However, to effectively utilise the non-linear
phenomenon for VEH, the aim is to achieve the non-
linearity both at relatively low amplitudes and as few design
complexities as possible.

Triplett et al. Triplett and Quinn (2009) demonstrated an
intrinsically nonlinear piezoelectric composite plate due to
the nonlinear coupling between the composite layers during
curing. This enabled a nonlinear VEH without the addition of
external magnets or magnetic springs. However, the device
experimentally deviated from a classical non-linear model
described by the Duffing equation and the behaviour could
suggest the manifestation of an even higher order polynomial
nonlinear spring, which has yet to be validated.

Through varying buckling configurations Leadenham
and Erturk (2014); Huguet et al. (2019), it is possible
to asymmetrically manipulate Duffing oscillators to enter
harmonic regions in order to substantially expand the
operational frequency of nonlinear resonant bend. However,
the precariousness of these high energy solutions along
the bifurcation branch still remain and can be a potential
limitation when it comes to practical implementation.

Limits of Duffing nonlinearity for VEH
Barton et al. Barton et al. (2010) and Daqaq et al.
Daqaq (2010) experimentally compared linear and Duffing-
type nonlinear harvesters driven by broadband random
vibration, and observed no noticeable improvements despite
the increased device complexity and promising theoretical
predications for limited band response. This could be a
result of the presence of non-trivial boundary conditions
required to access the potentially wider bandwidth of the
non-linear regime. Therefore, the advantages of operating
in the non-linear regime only becomes apparent when the
various boundary conditions, dictated by the vibrational
source, becomes favourable.

On the other hand, authors such as Erturk et al. Erturk
et al. (2009), Ramlan et al. Ramlan (2009); Ramlan et al.
(2010), Stanton et al. Stanton et al. (2009) and Cammarano
et al. Cammarano et al. (2014a,b) all proposed that Duffing
oscillators offer a broader bandwidth performance than their
linear counterparts. This is backed up by both simulation
and experimental results in the frequency domain. However,
these results were achieving by sweeping the frequency
response of the oscillators by a sinusoidal excitation. While
a sinusoidal frequency sweep unveils useful frequency
domain information, it is insufficient to describe the practical
behaviour and broadband response of a nonlinear oscillator.
This is because real world vibration is often noisy and
random in nature, rather than sinusoidal.

Langley Langley (2014, 2015) established from funda-
mental principles: that all forms of oscillators with a given
mass, both linear and nonlinear, will not demonstrate any
overall difference in accumulated power under a broadband
white noise excitation. Mass is the only dominant parame-
ter that influences power responsiveness from a broadband
excitation. This is backed up by independent experimental
work from other groups Daqaq (2010); Barton et al. (2010)
that subjected both comparable linear and nonlinear Duff-
ing oscillators towards broadband excitations. While there
might be incremental differences for narrow band excita-
tions that approximate to sinusoidal forcing Nguyen and
Halvorsen (2010); Quinn et al. (2010); Mallick et al. (2016),
the previously perceived broadband promise Gammaitoni
et al. (2009b) of Duffing oscillators over linear oscillators
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is not backed up either fundamental vibration theory Lang-
ley (2014, 2015) or experimental validation Daqaq (2010);
Barton et al. (2010).

Halvorsen et al. Nguyen and Halvorsen (2010); Tvedt
et al. (2010); Nguyen and Halvorsen (2011); Halvorsen
(2013) investigated Duffing oscillator implementations in
MEMS designs. This is achieved either by electrostatic pre-
stress or topological designs. A significant and complex
nonlinearity onset was observed for the MEMS oscillators.
While considerable bandwidth enhancement was initially
observed from sinusoidal frequency sweeps Nguyen and
Halvorsen (2010), later studies drew the same conclusions
as Langley, Daqaq et al. and Barton et al., namely: Duffing
oscillators do not have a fundamental performance advantage
over linear oscillators when subjected to broadband noise.

Sebald et al. Sebald et al. (2011) also suggested that under
broadband excitation, even for coloured noise, the solution
of a Duffing oscillator is typically almost always trapped in
the lower bifurcation point. For a piezoelectric transducer,
they proposed a fast voltage burst as a possible additional
mechanism to take advantage of the potential higher
bifurcation point for Duffing oscillations. Nonetheless, no
improvement over linear oscillators was observed in both
simulation and experiment.

Therefore, it can be concluded that while Duffing
oscillators exhibit a seemingly broader frequency bandwidth
under sinusoidal frequency sweeps, the average power
response performance has no fundamental improvement over
linear oscillators. Furthermore, the current characterisation
method using sinusoidal frequency sweeps is insufficient to
reveal the actual bandwidth performance towards realistic
vibrational inputs. Characterisations should also incorporate
broadband excitations on top of sinusoidal sweeps.

Higher order nonlinear spring oscillators
The nonlinear spring in discussion here is determined by
the order of the spring function terms in the governing
differential equation of the oscillatory system. Higher order
polynomial spring term is not limited to the Duffing case.
In fact, more generically, the source of this type of spring
nonlinearity stems from the decision to truncate at a
particular correction term of the Taylor series expansion
of the potential energy function U(x). For a linear
spring, U(x) = 0.5kx2 differentiates to the kx term in the
differential equation of the harmonic oscillator. However,
taking into account additional higher order terms, U(x) can
be expanded to equation 11 as an example.

U(x) =
kx2

2!
+
λx3

3!
+
µx4

4!
+
νx5

5!
+
ξx6

6!
+O(x7) (11)

where, O represents the error correction term from the
indicated polynomial order onwards. Differentiating U(x),
and applying α = λ/2m, β = µ/6m, γ = ν/24m and δ =
ξ/120, the differential function (equation 12) governing the
now anharmonic oscillator can be derived.

ẍ+ 2ζωnẋ+ ω2
nx+ αx2 + βx3 + γx4 + δx5

+O(x6) = −ÿ
(12)

For the case of Duffing oscillator, α and γ are equated
to zero in order to eliminate the odd terms in U(x), while
ignoring the higher terms. In scenarios where odd terms
in U(x) are included, the U(x) function is unstable and
there can be scenarios where the solution does not converge
and approach infinity: U(x→ −∞) = −∞ for λ > 0 and
similarly for λ < 0 towards the other direction. Therefore,
for total energy E > 2k3/3λ2, the oscillation can hop out of
the local minimum and escape towards negative infinity.

This has been theoretically explored by Kurmann et
al. (2015) Kurmann et al. (2015) for up to a 5th order
nonlinear spring. Under certain boundary conditions and
excitation conditions, the solutions can approach infinity and
the system exhibit an ultra broadband frequency response in
the nonlinear regime. However, the physical manifestation
of such a system, and keeping the oscillatory system on the
desired side of the bifurcation solution might not be as trivial
in practical terms as the numerical simulation suggests. It
has also been shown that magnetic spring is one potential
source that can give rise to the higher order polynomial
spring nonlinearity Kurmann et al. (2016a).

While many in the literature Mann and Sims (2009);
Zhu and Beeby (2013b) assume a third order nonlinear
restoring term for magnetic springs and often approximate
the system to a Duffing oscillator, the approximation only
holds for small oscillations Kurmann et al. (2016a). At
large oscillations, the behaviour is much more complex and
involves higher orders Jia et al. (2018c), leading to the
theoretical potential of accessing the broadband behaviour
described by the odd terms in U(x). Work in this area within
the VEH field is still scarce and further work is still needed to
further assess the behaviour and feasibility of implementing
such higher order spring systems.

Bi-stable and multi-stable oscillators

Background of bi-stability
Bi-stable systems employ negative stiffness as the restoring
term, which typically involves an unstable equilibrium at
the zero-displacement position. Figure 6 illustrates a generic
model representation for such systems.

Figure 6. Model of a bistable mass spring damper system
configured with negative spring restoring terms ks1 and ks2,
subjected to base-point direct forcing with acceleration ÿ(t).

For a linear spring operating within the elastic region,
the potential energy function takes the form of U(x) =
−0.5kx2. The governing equation of the system can then
take the form of equations 13 and 14.

mẍ+ cẋ− kx = F (t) (13)

ẍ+ 2ζωnẋ− ω2
nx = −ÿ(t) (14)
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Therefore, multiple intra system potential wells (figure 7)
are created, which traps the resonators in one particular
stable state (potential well). Energy can be harnessed through
either the normal resonant behaviour within any of the stable
states or from the instantaneous energy release when the
system attains enough energy to hop from one potential well
to another across a potential barrier. This inter-well hopping
is also known as the snap-through state.

 
 

(2) 

(1) 

Figure 7. A bi-stable system, showing two potential wells
separated by a potential wall of magnitude ∆U . The x = 0
position is now an unstable equilibrium, while −xs and xs are
two stable equilibria. Oscillation around position (1) represents
intra-well oscillation, while position (2) illustrates inter-well
hopping (snap through state) when the energy input exceeds
∆U .

Intra-well oscillation is similar to the Duffing oscillatory
response where extra stiffness can be observed upon a given
resonant response. On the other hand, the vibration required
to induce the snap-through state is generally independent
of the natural frequency of the system and only requires
the forcing energy amplitude to be large enough to cross
the potential barrier. Therefore, assuming ample amplitude,
the snap-through mechanism is responsive across a wide
range of frequencies, especially for low frequencies where
displacement amplitude is high.

Bi-stability and multi-stability for VEH
Dogheche et al. in 2006 Dogheche et al. (2006) was amongst
the earliest to suggest the possibility of implementing
bi-stability in VEH through the demonstration of a bi-
stable piezoelectric micro-machined ultrasonic transducer
originally designed as an acoustic sensor. Ramlan Ramlan
(2009) and Moehils et al. Moehils et al. (2009) investigated
the higher power output available from snap-through
motion over a linear resonator. Bi-stability can either be
mechanically introduced through stressing or inherently
configured into the system during manufacturing (figure 8).
An example of the former is the use of axial loading to
introduce a buckling force in a clamped-clamped beam
Formosa et al. (2009). An example of the latter is the bistable
carbon fibre piezoelectric composite plate by Arrieta et al.
Arrieta et al. (2010), which was created from the residual
pre-stress of non-aligned uni-directional fibre orientations in
the composite stack.

Magnets are a popular choice to realise bi-stable VEH.
Examples include cantilever with magnet end mass and
an opposing magnet in the zero-displacement position to
push the oscillatory proof mass magnet away Cottone et al.
(2009); Stanton et al. (2010); Lin et al. (2010); the use
of ferromagnetic end mass on a pendulum or a cantilever,
and two attractive magnets placed on either sides to pull

 
 
 
 
 
 
 

 
 

 
 
 

Negative 
restoring force  

Negative 
restoring force  

(2) Magnetic forcing, 
mechanical axial loading, 

or centripetal force (1) inherent spring 
bi-stability through 

pre-stress 

Figure 8. Generic schematic of inducing bi-stability in a
resonator beam. (1) involves inducing inherent structural
bi-stability by introducing significant residual stress from the
manufacturing process, and (2) involves inducing bi-stability
from external loading within the mechanism.

and nullify the stability of the zero-displacement position
Erturk et al. (2009); Stanton et al. (2009); and two or more
cantilevers with magnetically opposing end mass placed in
close proximity to push each other into bi-stable Zhu and
Beeby (2013b); Lin et al. (2010) or multi-stable Trigona
et al. (2013) states. The bi-stable or multi-stable VEH thus
created from magnetic coupling are not too unlike the use of
magnetic coupling for enabling frequency tuning Challa et al.
(2011), multi-coupled resonators Petropoulos et al. (2004);
Challa et al. (2009) and non-linear resonators. Therefore, a
system that is simultaneously all of the above can be realised
to exploit multiple resonant and vibration regimes, along
with the snap-through mechanism. Centripetal acceleration
has also been used as a means for introducing bi-stability in
a rotational system Horne et al. (2018).

The main advantage of bi-stability over linear systems
is that the snap-through operation is amplitude dependent
rather than frequency dependent. Therefore, for large
amplitude vibratory applications, such as wide band
aerospace vibration, bi-stability might be more favourable
than narrow band linear oscillators. However, the snap-
through response of the bistable system is still inherently
non-resonant in nature. Therefore, while it benefits from
broadband response, the same mechanical amplification
from resonators are not enjoyed by snap through states.

Bi-stable oscillators can also exhibit resonance when the
system is trapped within one of the potential intra-wells.
However, the oscillatory response is typically of lower
energy than the linear equivalent Zhu and Beeby (2013a); Jia
and Seshia (2013), as it is constrained due to the higher pre-
stress required to induce bi-stability. Furthermore, resonance
within the potential well is equally confined in operational
frequency bandwidth as linear oscillators.

Jia et al. Jia et al. (2019) reported a bi-stable system
internally coupled with a subsidiary oscillator, which
utilises the amplitude-dependent inter-well snap-through
states to act as a defined internal frequency source to
drive the subsidiary oscillator into resonance. Dubbed
‘broadband resonance’, this scheme can deterministically
achieve resonant amplification from a broadband vibration
irrespective of its excitation frequencies, as long as the
average noise intensity is well defined.

Huguet et al. Huguet et al. (2017, 2018, 2019)
studied the harmonic and subharmonic dynamics of bi-
stable oscillators and suggested a broadening of operating
frequency compared to pure first harmonic operation.
These authors used an actuator to manipulate the buckling
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level of bi-stable doubly clamped beams to control orbit
jumps across various harmonic and subharmonic regimes.
The expansion of phase portraits for the various higher
harmonic and subharmonic bi-stable oscillatory orbits reveal
a theoretical realm where bi-stable oscillators can exhibit
a very broadband high energy response, akin to that of
broadband resonance.

Once the high energy bi-stable inter-well snap-through
states onset, the desirable large oscillatory amplitude is
possible. However, the average power density has been
experimentally shown to be equivalent to that of a linear
oscillator counterparts Zhu and Beeby (2013a); Zhu et al.
(2014). Furthermore, from a theoretical point of view, the
power density will not over-perform that of linear oscillators
Langley (2014); Barton et al. (2010) when subjected to
broadband excitations. This is because while high energy
inter-well oscillations are frequency-independent in nature,
its also non-resonant in nature despite the large oscillatory
response.

Therefore, the overall power density performance of
bistable oscillators exposed to broadband noise are not
necessarily found to be more advantageous than linear
oscillators taking into account all these pros and cons Zhu
et al. (2010); Tang et al. (2010). Nonetheless, for low
frequency and large amplitude noisy applications, bistable
systems can be more preferable over linear oscillators
due to the amplitude-dependent and frequency-independent
behaviour.

Parametric oscillators

Background of Mathieu instability
Parametric resonance is an inherently nonlinear vibratory
phenomenon, which is distinct from directly excited oscil-
lations due to the presence of a specific instability phe-
nomenon sometimes dubbed the Mathieu instability. Instead
of energy build-up from a forced response, parametric res-
onance involves a periodic modulation in system parameter.
There could be two types of parametric resonance Minorsky
(1974); Nayfeh and Mook (1979); Cartmell (1990): one is
the externally induced heteroparametric resonance (which
is generally known simply as parametric resonance) where
a periodic modulation of system parameter is induced due
to external forcing, and the other is the internally excited
autoparametric resonance that arises from certain integer
ratio relationships among the various natural frequencies of
a multiple DOF system. Examples of the model representa-
tions for both are shown in figure 9.

In figure 9, a circular block is used to represent a
parametric coupling term, where direct excitation/oscillation
is translated into a periodic modulation on the spring
stiffness, i.e., a parametric excitation. The physical
manifestation of the parametric coupling term could involve
a rotary mechanism such as that seen in a pendulum Nayfeh
and Mook (1979), multi-axes leakage of base vibration Jia
et al. (2014a) or movement of the vibrating base affecting the
effective stiffness of the spring Jia et al. (2016). The direct
excitation/oscillation components are intentionally drawn in
the y direction and orthogonal to the parametric oscillatory
response in the x direction, in order to illustrate that the
parametric response does not onset from direct forcing in

Figure 9. Model of mass spring damper system configured for
(a) heteroparametric oscillation or (b) auto-parametric
oscillation when subjected to external forcing with acceleration
ÿ(t). The circle represents the parametric coupling term, where
horizontal oscillations (here) in the y direction are translated into
periodic modulation on the spring stiffness k(t).

its response direction, but it instead arises from the system
parameter modulation.

Mathematically, both types of parametric resonances
reduce to an equation that contains a time coefficient in at
least one of the system parameters, known as the Mathieu
equation, named after the elliptical membrane problem
studied by M.E. Mathieu Mathieu (1868). The canonical
Mathieu equation Mathieu (1868); McLachlan (1947) is
given by equation 15. The generic parametric oscillatory
equation of motion Jia et al. (2013b) can be represented
by equation 16 and the generic equations of motion for
autoparametric oscillator Jia and Seshia (2014) can be shown
by equations 17 and 18.

d2y

dz2
+ [δ − 2ε cos (2z)]y = 0 (15)

where, y and z are generic variables and δ and ε are
generic parameters.

ẍ+ 2ζωnẋ+ (ω2
n − αÿ)x = 0 (16)

where, α is the heteroparametric coupling term relating the
transfer of energy from the external excitation to the periodic
modulation of the system parameter.

z̈ + 2ζ1ω1ż + ω2
1 − εµ(ẋ2 + xẍ) = −ÿ(t) (17)

ẍ+ 2ζ2ωxẋ+ (ω2
2 − εz̈)x = 0 (18)

where, ε is the internal mode coupling coefficient between
the directly excited degree-of-freedom and the parametric
oscillator.

Traditionally, the study of parametric resonance has
circled around its control and prevention in regards to
structural failure of mechanical systems such as aircraft
wings, marine crafts, civil structures, etc. Tondl et al.
(2000); Fossen and Nijmeijer (2012); as oscillations, en
route to chaos, could accumulate to significantly larger
amplitudes than direct resonance. This implies that it could
potentially act as a mechanical amplifier to maximise the
energy conversion efficiency of a given transducer and
drastically improve its output power density for a given
forcing amplitude.

The wider transducer community has dubbed this as
the ‘parametric amplification effect’ employed to achieve
higher input-to-output sensitivity than direct resonance Carr
et al. (2000); Oropeza-Ramos and Turner (2005); Requa and
Turner (2006); Thompson and Horsely (2009). Parametric
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resonance has the potential to simultaneously improve
the power density and broaden the operational frequency
bandwidth for a given drive acceleration amplitude.

Parametric resonance for VEH
Daqaq et al. in 2009 Daqaq et al. (2009) was amongst the first
to report investigation into parametrically excited systems
for the purpose of vibration energy harvesting (VEH) as
well as deriving a mechanical based numerical model for
such systems. While the parametric amplification effect has
been previously reported to enhance sensing technologies
Oropeza-Ramos and Turner (2005); Requa and Turner
(2006), the implementation of parametric resonance for the
power generating nature of VEH is fundamentally different
as additional power to drive the parameter modulation is not
readily available. In order to activate parametric resonance in
practice, a critical threshold amplitude and strict frequency
criterion needs to be attained Daqaq et al. (2009); Jia
et al. (2014b), which gets increasingly more difficult for
higher orders of parametric resonance or at higher damping
situations Levy and Keller (1963); Turner et al. (1988).

Daqaq’s 2009 study laid out the principles and behaviour
of parametric resonance for VEH, noting that while
parametric resonance is potentially beneficial, the conditions
required to activate a heteroparametric system from external
excitation might be too onerous for practical applications.
This is further work was further developed by the same group
Stabler (2010); Daqaq and Bode (2011) in an attempt to
couple in both direct excitation to help activate parametric
excitation. A compromise was hypothesised to exist between
exciting a system at an angle, where both direct and
parametric excitations can couple in.

In the meantime, Ma et al. Ma et al. (2010) looked at
parametrically excited pendulum with a rotary generator
coupled to the pendulum pivot. However, as electrical
damping was applied, a similar critical threshold limitation
can be observed. Jia et al. Jia et al. (2014b) coupled a
parametrically excited pendulum to a second degree of
freedom lever mechanism, and applied electrical damping
on the second coupled mechanism. This enabled minimal
damping on the parametrically excited oscillator, thus
allowing the manifestation of parametric resonance at a
relatively low acceleration amplitude.

Jia et al.’s work in both MEMS and macroscopic
platforms Jia et al. (2012, 2013b, 2014a) laid out various
passive design strategies for realising parametric resonance
for VEH at relatively low initiation threshold amplitudes
(summarised in figure 10). Jia et al. reported over an order
of magnitude improvement in both power amplitude and
frequency bandwidth for devices driven into parametric
resonance in contrast to the same device operated in
direct resonance. Additionally, unlikely direct resonators
that have to compromise between amplitude and bandwidth
as the quality factor changes, parametric resonators have
been shown to demonstrate both power and bandwidth
enhancements when damping decreases Jia et al. (2013a).
This is because as damping decreases, the system operates
deeper into the instability region, which is a fundamentally
different underlying resonant principle than directly forced
resonances.

Figure 10. Parametric resonance onsets within the shaded
instability regions of the δ-ε parameter space from equation 15.
This plot is known as the Strutt instability plot Minorsky (1974);
Nayfeh and Mook (1979). (a) As damping (either mechanical or
electrical) is introduced, an initiation threshold amplitude starts
to build up, which needs to be attained before activating
parametric resonance. (b) Passive design routes to minimise
this initiation threshold for vibration energy harvesting include:
(1) minimising damping and subjecting electrical damping to
another degree-of-freedom, and (2) amplification of base
excitation either directly or by auto-parametric means. Figure
based on Jia (University of Cambridge).

Apart from hetero-parametric resonance (externally forced
parameter modulation), the use of auto-parametric resonance
has been recognised as an even more desirable method
for vibration amplification at low amplitudes Jia and
Seshia (2014) (illustrated in figure 11). This involves
a strict internal frequency relationship between multiple
degrees-of-freedom compound resonators, where one sub-
resonator’s frequency is twice that of another sub-resonator.
Furthermore, a finely tuned auto-parametric resonator
has been theoretically predicted to exhibit semi-resonant
response towards broadband excitations Kurmann et al.
(2016b), as the onset of parametric resonance is mainly
reliant upon the intrinsic internal parameter ratio rather than
excitation frequency. A similar broadband response is also
theoretically predicated by Alveras et al. Alveras et al.
(2017). However, the practical implementation of achieving
such a system remains an open question.

Apart from the principal (first order) parametric reso-
nance, higher orders of parametric resonance can also be
used as additional operational frequency windows for VEH
Jia et al. (2013b,a). The number of orders are determined
by ω = 2ωn/n, where ω is the excitation frequency and n
is the order number. Therefore, higher orders are found in
lower frequency submultiples. While realising higher order
parametric resonance are relatively challenging at macro-
scopic scales, MEMS implementations can potentially more
readily unveil these higher instability intervals Jia et al.
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Figure 11. Generic schematic for a basic auto-parametric
resonator, where the resonant frequencies of the first
sub-resonator (1) and the second sub-resonator (2) are related
to each other with a ratio of either 2 : 1 Jia and Seshia (2014) or
1 : 2 Jia et al. (2018b). This strict internal frequency f ratio
enables the direct resonance onset of the 2f sub-resonator to
drive the other 1f resonator into parametric resonance.

(2016, 2018a). However, the principal parametric resonance
is always going to provide the highest energy spectrum
and any yields from the higher order are likely to quickly
diminish.

Zaghari et al. further undertook a series of studies
for realising parametric resonance from a small actuating
element as the source of the parametric modulation Zaghari
et al. (2015) along with a base excitation, and characterising
its nonlinear dynamic response Zaghari et al. (2016) while
establishing a phase-dependent relationship to its activation
Zaghari et al. (2018a). Zaghari et al. also built a numerical
model Zaghari et al. (2018b) taking into account the
electrical domain effects of an electromagnetic transducer.

Overall, the key challenge is to activate parametric
resonance at a relatively more attainable set of frequency,
amplitude and time-dependent boundary conditions, in order
to practically realise its high power accumulating potentials.
While parametric resonance holds the theoretical potential
of achieving both higher power output and wider frequency
bandwidth than directly excited counterparts due to the
fundamentally distinct instability phenomenon, its design,
implementations and operational considerations are far from
trivial when compared to basic direct resonators such as
simple cantilever beams.

Stochastic resonance

Background of Mathieu instability

Stochastic resonance Gammaitoni et al. (1998); Ando and
Graziani (2000) is the vibrational phenomenon where an
excitation (signal) that is usually too small to yield a
meaningful result (to detect), becomes meaningful with the
addition of noise. In sensing applications, it is popularly
known as ‘adding noise to remove noise’, since the addition
of either white noise or a specific coloured noise helps to
boost the signal-to-noise ratio Droogendijk et al. (2013).
This amplification effect has been observed in a number of
areas such as electronics, neuroscience and climate change
Gammaitoni et al. (1998); and have been exploited in
communication and sensing applications Jung and Hanggi
(1991); Ando and Graziani (2000). Though, it should be
noted that not all noise are strictly stochastic excitations
and a system designed to be responsive to noise/broadband
vibration does not necessarily exhibit stochastic resonance.

An example of stochastic resonance that is particularly
relevant to the VEH context is a bi-stable system (figure 12
and equation 19) experiencing a periodic forcing that is
less than sufficient to cross the potential barrier. Although
the system is trapped in a potential intra-well, when driven
into resonance, it can still yield a meaningful power output.
However, with the addition of noise (stochastic excitation)
into this system, the extra energy in combination with the
periodic forcing could activate the snap-through states by
modulating the potential barrier at a specific frequency and
realise a much larger power output.

Figure 12. Model of a stochastically excited bistable mass
spring damper system configured with negative spring terms
ks1 and ks2, and potential well modulating terms kc1 and kc2,
subjected to base-point direct forcing with acceleration ÿ(t). By
modulating the potential barrier at a specific frequency, the
probability of achieving bi-stable snap through state can be
promoted.

ẍ+ 2ζωnẋ− ω2
nx+ µx3 = ÿ +N(t) (19)

where, N is the noise excitation. With the application of a
sinusoidal periodic forcing with amplitudeA as illustrated in
equation 20, the bistable potential wells start to modulate as
shown in figure 13.

U(x, t) = −1

2
kx2 +

1

4
µx4 −Ax sin (ωt) (20)

The probability of the system hopping between the
potential wells is defined by the Kramers’ rate Kramers
(1940); Gammaitoni et al. (1998); Su et al. (2013); Zheng
et al. (2014) as defined in equation 21.

rk =
k√
2π

exp (− k2

4µD
) (21)

Stochastic resonance can be achieved with a potential
barrier modulating frequency in the vicinity of f = 0.5rk as
illustrated in equation 22.

ω =
k√
2
exp (− k2

4µD
) (22)

Stochastic resonance for VEH
As mentioned previously in section , the triggering of the
bi-stable snap-through state is independent of the ambient
frequency and is instead amplitude-dependent. This makes
bi-stable systems more suitable for harvesting high intensity
noise excitations. However, this is implies a high excitation
amplitudes needs to be maintained for any meaningful
output. Leveraging the essence of stochastic resonance,
if a system is designed properly to experience stochastic
resonance from a vibrational source that comprises of both
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Figure 13. Modulation of the bistable potential well when
subjected to a periodic forcing whose amplitude is just enough
to match the potential barrier. T is the time period of the
periodic forcing, showing that the system is positioned more
favourably to cross the potential barrier every half cycle.

noise and periodic excitations, then such a system has
potential to exhibit the above mentioned meaningful output
even if either the noise or the periodic excitation does not
meet the prerequisite amplitude criterion to cross the bi-
stable potential barrier on its own McInnes et al. (2008);
Gammaitoni et al. (2009b,a).

Therefore, the energy of the broadband noise can
be harvested with the onset of appreciable mechanical
response from the snap-through states in contrast to the
confined response within the potential well. In essence, the
combination of two individually insignificant energy sources
(periodic and stochastic excitations) when fed to a carefully
design stochastic resonant system, can yield a significant
power response. Although stochastic resonance is not limited
by bi-stable system, this snap-through working mechanism
has been the core of the theoretical and experimental
investigations within VEH thus far Moehils et al. (2009);
Formosa et al. (2009); Zheng et al. (2014).

McInnes et al. in 2008 McInnes et al. (2008) were
amongst the first to propose a theoretical framework to
implement stochastic resonance to enhance vibration energy
harvesting. McInnes et al. modelled the addition of a
small periodic signal to a bistable oscillator, which was
otherwise being exposed to an ambient broadband noise
vibration signal that is insufficient to achieve snap-through
states. At the right frequency conditions (meeting the
Kramers’ rate criterion), it was modelled that the bi-stable
system starts to cross the potential barrier as stochastic
resonance onsets. Formosa et al. Formosa et al. (2009)
experimentally investigated a double bi-stable system in

an attempt to observe large amplitude amplification from
stochastic excitations; however, it wasn’t clear if stochastic
resonance itself was achieved in their system. Cottone et al.
Cottone et al. (2009) and Gammaitoni et al. Gammaitoni
et al. (2009a) also investigated nonlinear VEH in relation
to noise excitations. However, while the vibrational input
might have been stochastic in nature, it also wasn’t clear
if stochastic resonance or any additional amplification was
achieved.

The research led by K. Nakano and M.P. Cartmell Su et al.
(2013); Zheng et al. (2014); Zhang et al. (2014) were the first
group to definitively experimentally demonstrate stochastic
resonance for VEH while showcasing its amplification effect
from ambient broadband noise. Their work has shown
the modulation of the bi-stable potential well Hu et al.
(2012); Su et al. (2013, 2014), while also mapping out a
comprehensive theoretical and experimental framework for
stochastic resonance in a rotational VEH context Zheng et al.
(2014). The rotational scenario has been experimented in
automotive wheels Zhang et al. (2014, 2015, 2016), where
the external ambient road vibration acts as the broadband
noise excitation and wheel speed dependent vibration acts
as the specific periodic signal. When the wheel operates
within a certain velocity, the conditions becomes favourable
for stochastic resonance to enhance the magnetic bi-stable
snap-through states from the broadband road vibration. This
is particularly useful because the system can be designed to
be stochastically resonant for a specific vehicle speed. This
design speed could potentially be the average urban vehicle
speed or the national speed limit.

Therefore, in similar applications where an ambient noise
excitation is present and a clear stable periodic signal is also
available, the system can be designed so that equations 21
and 22 can be satisfied. This is particularly useful as
many real world vibrations tend to be noisy, while having
a few specific frequency information embedded within
that broadband spectrum. However, designing a system
to inherently match the application and system specific
Kramers’ rate within its system parameters is also by no
means trivial.

Other principles and considerations

Frequency conversion
Miniaturisation of VEH is often desired to realise on-board
system integration. However, at smaller dimensions, the
natural frequency of the resonators are typically much higher
than the frequency of the ambient vibration. Frequency up
conversion is a design technique that can be incorporated in
VEH to remedy this situation. Also, some transducers and
interface electronics only attain optimal efficiency above a
certain frequency. Additionally, the overall system can be
responsive to multiple frequencies depending on the design.

A frequency up converter typically involves a primary
resonator or dynamic system that is either linear Rastegar
et al. (2006); Lee et al. (2008); Ferrari et al. (2013);
Edwards et al. (2013) or rotational Priya (2005); Rastegar
and Murray (2009) with potential to incorporate transmission
gear trains. This primary resonator or dynamic system is
typically designed to be responsive to a lower and/or wide
band frequency to couple with the ambient source, which is
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in turn coupled to a secondary resonating system that usually
operates at a higher narrow band frequency with a higher
quality factor.

As the larger primary resonator responds to vibration,
energy internally flows towards the secondary resonator
via a specific coupling mechanism, thus enabling the
secondary resonator to oscillate and decay at its own natural
frequency independent of the external vibrational frequency.
This internal coupling mechanism could involve: physical
interactions such as tapping or plucking, magnetic coupling
or geared mechanism. The shock induced natural decay
oscillatory response in the secondary resonator can then be
harvested through a transducer.

Priya Priya (2005) and Rastegar et al. Rastegar
et al. (2006); Rastegar and Murray (2009) demonstrated
mechanical plucking of secondary piezoelectric elements,
and Ferrari et al. Ferrari et al. (2013) investigated smaller
piezoelectric cantilever beams driven by mechanical impact
from the oscillation of a neighbouring large and parallel
drive cantilever. On the other hand, Wickenheiser and Garcia
Wickenheiser and Garcia (2010), and Kulah and Najafi
Kulah and Najafi (2008) employed magnetic coupling to
actuate the secondary resonators. These examples can be
illustrated by the generic diagram shown in figure 14. Jung
et al. Jung and Yun (2010b,a) reported a larger clamped-
clamped beam that houses multiple smaller subsidiary
cantilever beams as illustrated by the generic diagram in
figure 14. This topology enables direct coupling of the
primary and secondary resonators within the same structure
rather than an external coupling mechanism that might
dissipate additional energy. 

 

 
 

 

 

 
 
 

 
 

Figure 14. Generic schematic of frequency conversion using a
lower frequency primary resonator to drive a higher frequency
secondary resonator.

Frequency conversion mechanisms themselves don’t
necessarily improve bandwidth or power amplitude. In
fact, the additional coupling mechanism required might be
an extra source of nonlinear energy damping/dissipation.

However, the frequency conversion methods might be
desirable the source vibration is far from (typically lower)
the optimal operational range of a given harvester and the
accompanying power conditioning electronics. Though, it
should also be noted that the response from such systems, are
rarely resonant in nature and rely more on oscillatory decay.

End stop effect
In an attempt to widen the operational frequency bandwidth,
the use of mechanical stoppers to impose a physical
amplitude limit has been studied by Soliman et al. Soliman
et al. (2008, 2009). A general schematic of such a
scheme is given in figure 15. The mechanical stoppers
prevented the oscillating electromagnetic cantilever-based
harvester to reach its potential peak; thus, achieving a
flat and truncated peak from the resonant response. More
than doubling of the operational frequency band was
experimentally observed during a frequency upsweep with
a peak power sacrifice of nearly one third. However, this
broadening behaviour failed to manifest during downward
frequency sweep as a hysteresis effect can be observed.
Furthermore, double sided physical constraint demonstrated
more immediate bandwidth broadening than a single sided
physical constraint. Le and Halvorsen Le and Halvorsen
(2012) also observed a very similar end stop behaviour in
MEMS electrostatic energy harvesters, where anchors were
designed to introduce a double sided physical constraint at
a pre-determined displacement limit. In Le and Halvorsen’s
case, the bandwidth broadening from the end stop effect was
as high as nearly 4 times than the linear counterpart.
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Figure 15. General schematic of a resonator with bidirectional
end stops. Amplitude dependent end stop damping effect
initiates as the resonator attains the end stop threshold. The
end stop can either be mechanical or magnetic in nature.

In both groups’ studies, the frequency broadening were
not simply a truncation of what the original resonant
peak, but there was a nonlinear resonant peak flattening
and extension towards the higher frequency range as
the physical constraint introduces an amplitude-dependent
nonlinear damping effect. Beyond the amplitude of the
physical constraint threshold, the quality factor of the
resonator also lowers from this end stop damping, adding
to the peak flattening. While the frequency broadening
effect appears promising, such systems compromise the
peak power achievable and the physical impacts from the
mechanical stoppers promotes structural fatigue. However,
it might be potentially possible to introduce magnetic or soft
physical constraint to relief wear and tear from the continued
physical impacts. For instance, squeeze film damping akin to
air spring Chen et al. (2017) has been leveraged to act as a
soft damper for MEMS oscillators that are likely to otherwise
experience hard impacts.
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Self-tuning
Literature has widely reported on VEH systems with active
(drive power required) frequency tuning mechanisms that
involves altering the spring stiffness or centre of mass
Leland and Wright (2006); Hu et al. (2007); Challa et al.
(2008); Garcia et al. (2010). This is typically achieved by
an active actuator driving a physical or magnetic interaction
with the spring-mass assembly. While tuning the resonant
frequency towards the ambient frequency maximises power
output, this also requires extra power investment to achieve
the tuning. This is further problematic when the ambient
frequency constantly varies. Roundy and Zhang in 2005
Roundy and Zhang (2005) and Zhu et al. in 2010 Zhu
et al. (2010) have all analytically concluded that the power
drain to continuously active frequency tuning will almost
always exceed the net power recoverable. However, certain
applications such as ferry engines operating with a fixed load
for over an extended period of time has been shown to serve
as a feasible candidate for intermittent active tuning Weddell
et al. (2012).

On the other, there have been some researchers that have
investigated various nonlinear dynamic behaviour that results
in a passive (no extra energy required) self-tuning behaviour
that matches the effective resonant frequency of the harvester
towards that of the ambient source. The idea is for the device
to dynamically adjust itself so its resonant frequency tend
towards the source frequency.

For instance, Gu and Livermore Gu and Livermore
(2010, 2011) have investigated the effect of centripetal
acceleration on the proof mass of a cantilever beam
inside a rotary system with radius r. As the rotational
velocity ω increases, centripetal acceleration ac = −ω2r
also increases with a squared relationship. The induced
centripetal force introduces the frequency shift behaviour.
The proposed system can be a self-tuning mechanism by
carefully designing the inherent frequency of the beam,
the anticipated frequency shift from the changing rotational
velocity and the anticipated change in ambient excitation
frequency as a result of the rotational velocity variation.
However, the implementation of such a solution is relatively
niche as the frequency tuning effects from the change in
rotational velocity needs to align with the drive frequency.
This is therefore still unsuitable for wide-band excitation
sources.

The collaborative studies amongst Imperial College
London, University of California Berkeley and Vestfold
University College Pillatsch et al. (2013); Miller et al.
(2013); Gregg et al. (2014) investigated the peculiar
behaviour of a doubly clamped beam with a sliding proof
mass as illustrated by the generic schematic in figure 16.
As the proof mass is positioned at various locations along
the beam, the resonant frequency shifts. With the proof mass
able to slide along the beam without any physical constraints
apart from friction, the device self-tunes towards the source
frequency as the mass self-slides along towards the most
favourable position possible within the parameter range. The
effect of friction from various material contact was seen to
be a key influencing factor. The resulting frequency domain
characteristics illustrate a bending resonant peak similar to
spring hardening effect. While the device is still bandwidth
limited, the operational bandwidth is significantly wider than

a linear counterpart. However, frictional energy loss as well
as wear and tear from the sliding mechanism might be
potential implementation concerns.
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Figure 16. General schematic of the self-tuning resonator
achieved through a sliding proof mass.

Non-oscillatory mechanisms
While any system driven out of resonance will qualify
the non-resonant characteristic, there have been several
studies that utilises some sort of non-restoring primary
dynamic system to drive a secondary VEH resonator. In
a sense, this is similar to the frequency converters, except
the primary dynamic system here is neither a resonator
nor does it possess a restoring term. Such a harvester
will be independent of frequency but more sensitive to
the absolute value of the excitation amplitude. Therefore,
despite the broader frequency bandwidth, the profitability
of such devices diminishes for higher frequency where the
displacement amplitudes of the drive vibration are typically
low and are insufficient to overcome the inertia.

Examples for these non-oscillatory harvesters include:
cylindrical ferromagnetic roller in a chassis that closely
houses an array of small piezoelectric cantilevers with
magnetic end mass Pillatsch et al. (2011) or ferromag-
netic/magnetic rolling balls that are coupled mechanically by
impact Cavallier et al. (2005), which can all be either mag-
netically Ju et al. (2012, 2013) or electrostatically Bian et al.
(2013) linked to a transducer. Roundy and Tola Roundy and
Tola (2013) demonstrated a device with a single axis rolling
ball inside a fixed tight container that mechanically pushes
against a circular proof mass of a suspended piezoelectric
cantilever embedded at the centre of the container above
which the ball rolls across. From the experimental frequency
analysis, it was found that the rolling ball is responsive to
low frequencies and becomes increasingly energetic with
increasing frequency over a wide range (1’s Hz to ∼25
Hz) until a specific higher velocity is attained where the
ball abruptly becomes motionless due to the overwhelming
coulomb friction.

Therefore, while the system is theoretically independent
of frequency, it is actually practically unsuitable for high
or even moderate frequency applications where the source
displacement amplitude is unlikely to be substantial enough.
On the other hand, the suitability towards low frequency
and high displacement amplitude potentially align these
mechanisms towards applications such as wearables or
human/animal motions Pillatsch et al. (2011).

Metamaterial and micro-structural manipulation
As previously mentioned, Arrieta Arrieta et al. (2010)
introduced composite material plates and beams with built
in bi-stability by leveraging different alignment angles of
composite fibres and pre-stress. Similarly, various forms of
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nonlinearities can be inherently incorporated into materials
and structures through various design and fabrication
techniques. This is achieved through a class of artificial
materials known as metamaterials that are specifically
engineered at a microscopic level to exhibit unusual
materials properties, including mechanical, acoustic, optical,
electrical, dielectric, electromagnetic and other properties
Kshetrimayum (2004).

Metamaterials themselves are not a different category
of vibrational nonlinearity, but can be used to intrinsically
exhibit nonlinearity. Within the context of kinetic energy
harvesting, mechanical property manipulation is often
the main focus. However, other properties can also be
manipulated to help harvest other domains of energy such
as acoustic, solar and electromagnetic Chen et al. (2014).
Mechanical metamaterials can include auxetic materials and
structures that have negative Poisson’s ratio Ren et al. (2018)
as well as materials with inherent bistable and self-locking
properties derived from origami style cellular structural
designs Kamrava et al. (2017).

Auxetics have already been demonstrated to help enhance
the power efficiency for harnessing direct contact kinetic
energy along with triboelectric Zhang et al. (2017) and
piezoelectric Li et al. (2017) generators. However, its
effectiveness to enhance more dynamic kinetic energy and
its vibrational frequency behaviour are yet to be fully
investigated. Thus far, the benefits of auxetics illustrated
are essentially that of mechanical displacement and/or force
amplifiers similar to the stacked amplifiers for piezoelectric
transducers Zhou and Zuo (2013).

Furthermore, Hwang and Arrieta Hwang and Arrieta
(2018) Hwang and Arrieta (2019) have proposed a bi-stable
lattice design that essentially array microscopic bi-stable
lattice cells together, where oscillatory wave of one snap-
through state can propagate along and trigger subsequent
snap-through states. This creates an inherently bi-stable
metamaterial at the constituent lattice cell level and give
rise to inherently frequency independent behaviour suitable
for harnessing broadband vibration. While the propagating
vibration waves can be triggered independent of input
frequency, the oscillatory behaviour is still inherently non-
resonant in nature. This new bi-stable lattice metamaterial
maximises and embodies the advantages of conventional bi-
stable structures and can potentially be used to capture low
amplitude broadband noise vibration as well.

Solution co-existence and control of high
energy orbits
Most nonlinear vibratory principles will have observe
bifurcation and co-existence of solutions for a particular
set of frequencies. Within the Duffing nonlinear resonant
bending regime, there are both low and high energy output
branches Daqaq (2010), which can manifest as apparent
hysteresis that limit practical implementation. Within the
context of bi-stable oscillators, the system with just about
sufficient energy to overcome the potential barrier can either
enter into the high energy inter-well snap-through states
or be trapped within the relatively lower energy intra-well
oscillations Daqaq et al. (2014). Furthermore, certain orders
of parametric resonance, such as the second order (n = 2), is

also co-located in the excitation frequency domain with the
fundamental mode direct resonance Jia et al. (2016), where
only one of the two potential resonant solutions can manifest
at a particular point in time.

Trying to sustain continued operation in high energy
orbits within the Poincaré map is non-trivial and many
studies have been devoted to understanding and controlling
the dynamics of these more desired vibratory regimes. For
spring nonlinearities, this includes employing impedance
damping modulation from the electrical domain as a means
of controlling the oscillatory trajectory in the high energy
branch Mallick et al. (2016), using piezoelectric actuation
impulses to perturb the oscillator into the high energy orbits
Lan et al. (2017) and utilising mechanical impulses from a
weakly coupled oscillator Remick et al. (2014) to achieve
similar high energy results.

Furthermore, mechanical impacts Zhou et al. (2015) has
been used to probabilistically increase the bi-stable snap-
through states and a nonlinearly coupled bi-stable Duffing
piezomagnetoelastic oscillator Erturk and Inman (2011a) has
been shown to expand the orbit size of the phase portraits. In
all these approaches, either through active control or careful
design with known boundary conditions, high energy orbits
can potentially be sustained and maximised.

Udani and Arrieta Udani and Arrieta (2017) proposed an
active control strategy for bi-stable systems that results in
basins of attraction to promote inter-well snap through states
by introducing controlled phase shift perturbations via the
primary transducer. Similarly, there have also been passive
mechanical designs McInnes et al. (2008); Jia and Seshia
(2013) that attempt to perturb the bi-stable potential barrier
in order to encourage high energy inter-well oscillations.

While active control schemes will require an investment
in energy, the objective is to harness more additional energy
from the high energy branches compared to a passive system,
taking into account the extra devoted control energy. As with
most energy harvesting scenarios, the power profitability of
any scheme will depend on the nature and condition of the
vibrational source. However, the implementation feasibility
and average power output comparisons of these schemes
still requirement further assessment in order to practically
evaluate the net profitability of using active control to sustain
high energy orbits, especially when exposed to a fast varying,
random and broadband real world vibrational source.

Discussion on challenges,
recommendations and outlook
This paper has surveyed the research, theoretical back-
ground and advances in nonlinear vibration energy harvest-
ing (VEH) to-date, from the angle of dynamic vibratory prin-
ciples. The scope has primarily been limited to the mechani-
cal domain. Many nonlinear vibratory principles have been
borrowed from the more established vibration dynamics
field. This included Duffing oscillators, bistable systems,
parametric oscillators, stochastic resonance, mechanical fre-
quency conversion, physical stoppers, self-tuning mecha-
nisms and non-restoring mechanisms.

The use of nonlinearity in VEH has often been hailed as
a means to broaden the operational frequency bandwidth.
While this is certainly a key research motivation, various
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Table 1. Summary of advantages and disadvantages of various nonlinear vibratory principles explored for vibration energy
harvesting.

Vibratory 
principles Advantage Disadvantage 

Duffing 
oscillator 
and higher 
order 
nonlinear 
spring 

- Mildly wider bandwidth for band-limited 
vibrational excitations 

- Weakly nonlinear oscillators require no 
additional design complexity 

- Higher order springs have the theoretical 
potential to achieve ultra wide-band 

- No fundamental difference over linear 
oscillators when subjected to broadband 
noise excitations 

- Strongly nonlinear oscillators require 
design complexity 

- Hysteresis in frequency domain 
Bi-stable 
oscillator 

- Frequency independent response 
- Suitable for low frequency and large 

amplitude excitations 
- Suitable to respond to high amplitude 

broadband noise vibration  

- Non-resonant response 
- Inherent pre-stress bi-stability involves 

manufacturing complexity 
- System induced bi-stability involves 

design and mechanism complexity 
Parametric 
resonance 

- Provides both higher power and broader 
bandwidth than linear counterparts 

- Power and bandwidth can increase 
simultaneously with lower damping 

- Auto-parametric oscillators can be semi-
resonant towards broadband noise 
excitations at larger amplitudes  

- Design and simulation complexity 
- Assembly and tuning complexity to 

match internal frequency 
- Hysteresis in frequency domain 
- Zero response when Mathieu instability 

conditions not satisfied 
- Complex impedance matching required 

Stochastic 
resonance 

- Able to utilise broadband noise as part 
of the mechanism to output power 

- Independent of the bandwidth of the 
noise component of the excitation 

- Suitable for both low and high frequency 
vibration sources 

- Design and simulation complexity 
- Assembly and tuning complexity to 

satisfy Kramers’ rate 
- A clear sinusoidal signal is still required, 

which needs to be matched 
- Suitable only for large amplitude sources 

Frequency 
conversion 

- Suitable for harvesting low frequency 
and large amplitude vibration 

- Able to more efficiently interface with 
power conditioning electronics 

- Wear and tear from impact mechanism 
- Response is non-resonant in nature and 

relies on ring down oscillatory decay 

End stop 
effect 

- Broader bandwidth than linear 
counterpart above a certain amplitude 

- Suitable for harvesters that would 
otherwise provide excessive power 

- Wear and tear from impact mechanism 
- Energy/power loss from end stop 

damping effect 
- Hysteresis in frequency domain 

Self-tuning 
mechanism 

- Ability to match resonant frequency to 
ambient frequency within a small range 
without the need for drive power 

- Wear and tear for sliding mechanism 
- Limited range for centripetal loading 

Non-
oscillatory 
mechanism 

- Frequency independent response 
- Suitable for broadband low frequency 

excitations 

- Not suitable for moderate to high 
frequency vibration sources 

- Wear and tear expected from physical 
impacts and contacts 

 
 

nonlinearities have also been employed to address a wider
range of issues. Some of the main issues and challenges
nonlinear VEH aims to address include,

• narrow and confined operational frequency bandwidth
• low or limited average power and power density
• slow time-varying frequencies, slowly de-tunes

frequency-match
• fast time-varying frequencies, short transient states,

cannot attain full resonance
• shocks in noise excitations, short decay states, no

resonant build up
• broadband noise excitations, cannot achieve resonant

amplification
• switching between low and high energy orbits within

the Poincaré map

Some of these issues such as time-variation of excitation
frequencies and broadband shocks are often neglected by
researchers, as sinusoidal excitations are widely used in
laboratory characterisations. However, real world vibration
are rarely sinusoidal. Even for real world periodic
excitations, the spectrum often includes noisy broadband
signals. While Duffing has certainly enjoyed most of the
fame within the arena of nonlinear VEH, its initial broadband
promises have hardly fulfilled the earlier hype. The past
decade saw a rapid emergence and evolution of research
on these peculiar nonlinear strategies. A brief summary of
the advantages and disadvantages for each type of nonlinear
vibratory principles are presented in table 1.

Just like most engineering problems, there is rarely a
one-size-fit-all solution. Almost always, selection of a most
suitable method depends on the application specification
and the vibration environment. Table 2 discusses a few
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Table 2. General guidance, challenges and recommendations for various vibration scenarios. However, a more nuanced study is
needed for any specific application case.

Vibration 
environment Application examples Potentially suitable 

mechanisms 
Challenge comments and 

recommendation 
Single fixed 
frequency 

Fixed frequency motors, e.g. 
fixed speed compressor and 
pump motors.  
Single structures, e.g. bridge. 

Auto-parametric, linear or 
Duffing oscillator 

Challenge: to match ambient 
frequency. If well-matched, 
auto-parametric oscillator 
can provide the best power.  

Single 
variable 
frequency 

Variable frequency drives 
(VFD). E.g. VFD pumps and 
compressors. Motors for 
electric cars, boats & drones. 

Duffing oscillator, End-stop 
effect, Self-tuning 
mechanism 

Challenge: to follow 
frequency shift.  
Self-tuning mechanism, if 
designed to the right band, is 
most suitable. 

Multiple fixed 
frequency 

Fixed frequency motors with 
higher harmonics and chassis 
vibration. 

Multiple array of linear, 
Duffing or auto-parametric 
oscillator. Frequency 
conversion. 

Challenge: to capture all key 
vibration peaks in the band. 
Frequency converter can 
help to re-focus peaks. 

Multiple 
variable 
frequency 

Variable frequency 
drives/motors with higher 
harmonics. 

Multiple array of Duffing 
oscillator, oscillator with 
end stop or self-tuning. 

Challenge: to follow multiple 
frequency shifts. Can use 
array of multiple self-tuning 
oscillators for key peaks. 

Multiple 
closely placed 
frequencies 

Engineering structures and 
infrastructural assets with 
truss, tunnels & rail bridges. 

Coupled array of linear, 
Duffing or auto-parametric 
oscillators. Oscillators with 
end stop or self-tuning. 
Frequency conversion. 

Challenge: to recover the 
entire active spectrum. 
Can use coupled array of 
finely tuned oscillators 
targeting each frequency. 

Narrow band-
limited noise 
excitation 
(~0.1 kHz) 

Engines in cars, motorbikes 
& small boats. 
Chassis and engine support 
structures. 

Bi-stable oscillator. Coupled 
array of linear, Duffing or 
auto-parametric oscillators. 
Oscillators with end stop or 
self-tuning.  

Challenge: fast time-varying 
& short transient state 
frequencies, difficulty to 
attain steady resonances. Bi-
stability is more suitable. 

Wide band-
limited noise 
excitation  
(~1 kHz) 

Aero-engine body for 
aircraft. Rocket body. Engine 
body for train or ship. Power 
plants and refineries. 

Bi-stable oscillator. Bi-
stable oscillator coupled to 
linear, Duffing or auto-
parametric oscillator. 

Challenge: same as above. 
Where amplitude is ample, 
can use bi-stability with 
coupled oscillators. 

Wide band-
limited noise 
excitation 
with defined 
frequency 
peaks 

Aero-engines and aero-
chassis for passenger planes, 
jets and helicopters. Engines 
and chassis for trains, ships 
or motorsports. Pump or 
compressor engine. 

Stochastic resonator. Bi-
stable oscillator. Bi-stable 
oscillator coupled to linear, 
Duffing or auto-parametric 
oscillator. Self-tuning 
mechanism. 

Challenge: same as above. 
Can use stochastic driven bi-
stability coupled oscillators. 
With noise, frequency peaks 
and a threshold, stochastic 
resonance can be used. 

Wide band 
low-
frequency 
noise/shocks 
(<< 100 Hz) 

Footfall shocks, human or 
animal motion (few 1’s Hz); 
Traffic induced vibration, car 
or bus body, wheel shocks 
(few 10’s Hz). 

Non-oscillatory mechanism, 
stochastic resonance, bi-
stable oscillator, self-tuning 
mechanism. 

Challenge: large and quick 
frequency variations, 
difficult to match or 
maintain resonance. Non-
oscillatory is most suitable. 

White noise 
excitation 

Seismic noise, large 
structural bodies.  

Bi-stable oscillator coupled 
to linear, Duffing or auto-
parametric oscillator. 

Challenge: very broadband 
and typically low amplitude. 
Resonance is implausible. 

 

key vibration scenarios and their respective application
examples, providing further comments on challenges and
design recommendations.

This tabulated design guidance is derived from the
experience and opinion of the Author based on this literature
survey at this point in time and the Author’s previous work
on real world vibration assessments Jia et al. (2017); Du et al.
(2017). Further future developments in respective nonlinear
VEH mechanisms might evolve this design guidance. Also,
the vibration environments categorised here are vastly
generalised. In reality, real world vibration profiles are much
more complex and may not neatly fit into a specific category.

Therefore, a more nuanced and case by case design process
is needed by a learned expert in order to determine the most
suitable vibratory mechanism to recover kinetic energy for a
particular given real world vibration profile.

Furthermore, some mechanisms are easier to design,
manufacture and calibrate than others, adding another
engineering cost dimension to the overall optimisation
process. For instance, given the presence of manufacturing
tolerances, it can be more costly to finely calibrate
individual auto-parametric oscillators to inherently possess
the 2:1 internal frequency ratio compared to the frequency
matching of linear oscillators to a given external frequency.
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Therefore, even if the vibration environment is a suitable
fit, the power density and bandwidth enhancements from
potentially employing an auto-parametric oscillator over a
linear oscillator should be balanced against the additional
engineering cost in determining its worthwhileness.

In recent years, miniature, efficient and low power switch-
mode power conditioning circuits Du et al. (2016b,a) have
also proven to be significantly more efficient than traditional
passive rectification circuits. For voltage amplitude range in
excess of 1 voltage, the extra conditioned electrical power
additionally recovered compared to that otherwise lost to
passive rectification during each cycle (up to several folds
in certain cases), typically exceeds the power consumption
of these active circuits (1’s µW to 10’s µW). However,
most of these active circuits are designed under sinusoidal
or relatively periodic excitations. Some work does exist on
assessing switch-mode circuit performance under real world
noisy vibration profiles Du et al. (2017), but the harvester is
still assumed to be linear in nature. Future work in energy
harvesting power conditioning research should also account
for mechanically nonlinear harvesters. A key difference in
consideration is the relatively unpredictable and potentially
sudden time period and range variations.

Nonlinear vibration energy harvesting is still a relatively
niche but continuously evolving field, and each individual
type of nonlinear phenomenon is as distinct from each
other as they are from linear oscillators. While some of
the previously promising advantageous attributes have since
been fundamentally challenged (such as the broadband
nature of Duffing oscillators), others have continued to fuel
ongoing research motivations. No single vibratory principle
can so far claim to be the ideal and generic solution for
vibration energy harvesting.

While linear oscillators still offer the most simplistic
design option, employing one or more nonlinear mechanisms
can potentially help to address a particular set of technical
challenges for specific target applications, depending on
the nature of the vibration spectra. Future research could
involve the nonlinear coupling and integration of various
nonlinear mechanisms. Going forward, the ultimate goal for
VEH to maximise power output while also being broadband
responsive remains an open challenge for ongoing and future
research.

Conclusion
Research into nonlinear vibration energy harvesting (VEH)
has witnessed a rapid growth in the past decade. While
Duffing is the most widely studied type of nonlinearity
fir VEH, the numerous types of nonlinear VEH are as
varied from each other as they are from linear systems.
Adding onto previous reviews in the literature that focused
on either the bandwidth issue or select few nonlinear
approaches such as Duffing and bi-stability, this paper has
reviewed 8 major types nonlinear vibratory principles and
mechanism that have previously been reported in the VEH
research field. This includes Duffing oscillators (and higher
order nonlinear springs), bi-stability (and multi-stability),
parametric resonance, stochastic resonance, mechanical
frequency conversion, mechanical end stop effect, self-
tuning mechanism and non-oscillatory mechanism. This

paper has covered underlying principles, advances in the
field, advantages and disadvantages, as well the application-
orientated vibration environment suitability discussion for
each of these vibratory principles. As often with any
engineering systems, there is no one-size-fit all solution
and the most appropriate approach almost certainly relies
on the environmental and application-specific conditions.
Therefore, researchers and designers attempting to develop
nonlinear VEH can use the summary overview provided in
this paper as an introductory guidance to navigate the varied
field of nonlinear VEH.
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