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Abstract

The principal contribution of this paper is to present the first method to sift through a large
number of firms in an industry to uncover which firms act as large spatial total factor productivity
(TFP) growth centers. We define a large spatial TFP growth center as a firm that is a large net
generator of spatial TFP growth spillovers, i.e., it is a source of large TFP growth spill-outs to other
firms vis-a-vis the size of the TFP growth spill-ins that permeate to the firm from other firms. We
use this definition because, other things being equal, firms would want to locate near a firm that is a
net generator of TFP growth spillovers. In the process of presenting the above method we make three
further contributions, two of which are methodological and the other relates to our application. First,
rather than follow the literature on spatial frontier modeling by considering spatial interaction between
firms in a single network, we introduce a more sophisticated model that is able to account for spatial
interaction in multiple networks. Second, we obtain bidirectional spatial TFP growth decompositions
by complementing a unidirectional decomposition in the literature, where the spillover components
are spill-ins to a firm, with a decomposition that includes spill-out components. Third, from a spatial
revenue frontier for U.S. banks (1998 — 2015), we find a number of cases where banks that represent
large spatial TFP growth centers have branches that cluster together, while in several states we find
no such clusters.
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1 Introduction

There has been a lot of methodological and applied non-spatial studies on the decomposition of total
factor productivity (TFP) growth (Diewert and Fox, 2017, Sun et al., 2015, Orea, 2002, Oude Lansink et
al., 2015, and Tsionas and Mallick, 2019, to name but a small selection of studies). There is, of course,
variation in the precise forms of the decompositions in this literature, but a typical decomposition of a
firm’s TFP growth may consist of returns to scale change, technical /economic efficiency change and tech-
nological change. Building on the more general parametric literature that models productivity spillovers
(e.g., Chandra and Staiger, 2007, Takii, 2005, and Girma and Wakelin, 2007), an emerging parametric
literature sets out the methodology to augment the decomposition of a firm’s own TFP growth with the
decomposition of the TFP growth spillovers it receives from other firms (Glass et al., 2013, and Glass
and Kenjegalieva, 2019, where the latter is denoted as G&K from hereon). As this literature exclusively
focuses on the TFP growth spillovers that gravitate to a firm, our first methodological contribution is to
propose a new spatial decomposition of TFP growth by augmenting the decomposition of a firm’s own
TFP growth with the decomposition of the TFP growth spillovers it transmits to other firms. By con-
joining this contribution with the aforementioned emerging literature we obtain asymmetric bidirectional
spatial decompositions of TFP growth.

Using a spatial stochastic frontier model, which in terms of spatial variables contains at least a spatial
lag of the dependent variable, otherwise known as a spatial autoregressive (SAR) variable, we obtain our
new spatial decomposition of TFP growth. In the spatial stochastic frontier literature the models only
consider spatial interaction within a single network (Druska and Horrace, 2004; G&K; Glass et al., 2013;
2016; 2018a; 2019; Tsionas and Michaelides, 2016; Gude et al., 2018; Orea et al., 2018; Horrace et al.,
2019). Our second methodological contribution extends this literature by introducing a spatial stochastic
frontier model that caters for multiple spatial networks via multiple spatial lags of the dependent variable,
which we then use to obtain our new spatial decomposition of TFP growth. For firms this will often be a
better representation of what is actually the case because, in practice, a firm may simultaneously belong
to a number of different networks.

Our third and principal contribution is to conjoin the asymmetric bidirectional measures of TFP
growth spillovers to introduce a methodology to uncover firms that act as spatial TFP growth centers
in an industry. We define a firm as being a spatial TFP growth center if the sum of the TFP growth
spillovers it transmits to other firms is greater than the sum of the spillovers it receives. We use this
definition of a spatial TFP growth center because, everything else being equal, a firm would want to
benefit from the net generation of TFP growth spillovers by locating near a center. As we also decompose
the asymmetric bidirectional measures of TFP growth spillovers into asymmetric bidirectional spillovers
of technological change, returns to scale change and efficiency change, these decompositions indicate the
components that are key in determining which firms act as spatial TFP growth centers in an industry.
As firm level data samples are typically large there are likely to be a large number of firms in empirical
applications who are net generators and net recipients of TFP growth spillovers. The issue then is which
firms are the largest net generators in a sample and which are largest net recipients.

Our fourth and final contribution is to provide an empirical application of our methodological ad-
vances to the U.S. banking industry. We complement G&K’s spatial cost frontier based application of
their spatial TFP growth decomposition by focusing on the income side of the industry. This involves
estimating a spatial stochastic revenue frontier with multiple networks for the period 1998 — 2015. By
using a translog functional form we calculate elasticities outside the sample mean, which we use to ob-

tain our new annual spatial TFP growth decomposition. This annual decomposition plays a key role in



uncovering which U.S. banks act as spatial TFP growth centers in the industry. In particular, we use
our annual decomposition to: (i) uncover which banks represent spatial growth centers in 2015, as the
final year of our analysis is the most relevant for future policy making; and (ii) investigate if there are
differences between these results for 2015 and those for two subperiods- pre-crisis (1998 —2007) and crisis
and beyond (2008 — 2015).

It is informative for bank regulatory authorities to know which banks represent the largest spatial
TFP growth centers and which banks are the largest net recipients of TFP growth spillovers. This is
because this information provides new insights into which banks play key roles in the productivity effects
that emanate from the linkages between banks. Such insights for policy makers suggests there is scope for
wider application of our methodology to other industries. Although our application is to banks across the
U.S., our methodology to uncover spatial TFP growth centers can also be applied to firms that cluster
in a particular location (e.g., the hi-tech enterprises in the Santa Clara Valley area of California and the
large scale manufacturing firms in the Pearl Delta area of China).

Our quantitative analysis of productivity centers is the first of its type. The two closest related
literatures to our analysis are the quantitative studies of hubs and a study by Pesaran and Yang (2019)
that analyzes how the sectors that make up a country’s production network affect its aggregate output.
We now turn to briefly discuss these two literatures and at the outset point out that in network theory a
hub-and-spoke network has a particular network structure, whereas here we are not so prescriptive about
the structure of bank branch networks. Irrespective of the particular form of a bank branch network, we
simply use banks that have overlapping branch networks to uncover the banks that act as productivity
centers.

There are two broad strands of the quantitative literature on hubs. The first strand is a large
methodological OR literature that analyzes the optimal locations of hubs in transportation and logistics
(T&L) networks (e.g., Alumur and Kara, 2008, Campbell and O’Kelly, 2012, Contreas, et al., 2011, and
Ishfaq and Sox, 2011). The second adopts a different approach because, rather than propose the location
of a hub, it analyzes the effect of hubs on a particular variable when the hubs can be selected prior to the
empirical modeling as they are well-known. Examples of the latter analyze the effect of hub-and-spoke
airline networks on fares (Brueckner et al.,, 1992; Borenstein, 1989) and airport congestion (Mayer and
Sinai, 2003), and the effect of universities as research hubs on the wider technological innovation in
industries and surrounding areas (Anselin et al., 1997, Cohen et al., 2002, and Fromhold-Eisebith and
Werker, 2013, to name but a few studies from this large literature). Our paper does not fit into either
strand of this quantitative literature on hubs because we do not consider T&L networks, or analyze the
effect of productivity centers that are easily observed and can therefore be selected in advance of the
modeling, which is not a common situation. Instead, the new line of enquiry we pursue considers the case
of a large number of firms in an industry when the firms that act as spatial economic performance centers
are not easily observed, which is often the case in practice. For this type of case we propose a resolution
by setting out the first method to sift through a large number of firms in an industry to uncover which
firms act as spatial TFP growth centers (i.e., those firms that are large net generators of TFP growth
spillovers). We use spatial TFP growth as our measure of spatial economic performance because TFP is
widely recognized as a comprehensive measure that incorporates both demand and supply phenomena.

There are parallels between our analysis and Pesaran and Yang (2019), but whereas our approach
operates at the micro level of a large number of firms, their method focuses on the macro level. In their
model sector-specific shocks affect the aggregate output of a country if there are “dominant” sectors,
where a sector is dominant if its outdegree is not bounded by the number of sectors in the country. Using
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output that is used as intermediate inputs by all the other sectors in the country. They then set out how
to use this information to estimate an exponent that measures the degree of dominance (or pervasiveness)
of a sector in the determination of a country’s aggregate output. In particular, this exponent controls
the rate at which the outdegree of a sector rises with the number of sectors in the country.

In the context of our micro setting, the above outdegree definition may not be appropriate for many
industries because firms may not use other firms’ outputs as intermediate inputs, and in industries where
they do, data on this interfirm economic interaction may not be in the public domain. For example,
banks interact in this way through interbank lending, but data on such lending is not publicly available.
This necessitates therefore that we use our alternative approach.

By way of an insight into our key empirical findings, based on our analysis of 2015, 1998 — 2007 and
2008 — 2015, we find that the banks which act as large spatial TFP growth centers tend to have branches
that cluster together in the same areas throughout our study period. In line with our expectations, these
areas are the northeast and cities elsewhere that are among the largest economies (e.g., Los Angeles
and Chicago). Over our study period we observe an increase in the clustering of the branches of the
banks that act as large spatial TFP growth centers, which indicates that these clusters are becoming
an increasingly prominent feature of the industry. That said, we find no evidence of banks that act as
large spatial TFP growth centers having clusters of branches in a number of contiguous states (Idaho;
Montana; North Dakota; South Dakota; Wyoming; Maine; Vermont; and New Hampshire).

Additionally, it is important to note that the basic principle of our method to uncover spatial TFP
growth centers is sufficiently general that it can be applied to any spatial measure. For example, we
could apply our method to uncover firms that act as spatial technical innovation centers in a sample
of hi-tech firms. A firm would be classified as a spatial technical innovation center if the sum of the
technical innovation spillovers it transmits to other firms are greater than the sum of the spillovers it
receives. The results from such an analysis could be used to improve the efficacy of public innovation
policies by targeting policies at firms that represent spatial technical innovation centers.

Specifically, we estimate a multi-network spatial Durbin stochastic frontier, where the spatial inter-
action between the banks in the multiple networks is accounted for by multiple sets of spatial lags of
the dependent and independent variables. In addition to, as we have noted above, the multi-network
aspect of the model being more representative of the links between U.S. banks, we estimate this model
specification for three further reasons, which we now turn our attention to.

First, although a spatial error/inefficiency specification (which contains a spatial lag of the distur-
bance/inefficiency) and SAR and spatial Durbin models all account for global spatial dependence (i.e.,
1st order and higher order neighbor spatial interaction), as we discuss in more detail in due course,
with the spatial error/inefficiency specification the only spillover elasticity in the model relates to the
disturbance/inefficiency.! In other words, with the spatial error/inefficiency specification, the only type
of spillover that is modeled is the impact on a firm’s dependent variable from the spillover of other firms’
disturbances/inefficiencies. From the SAR and spatial Durbin specifications, however, as well as being
able to obtain for our new spatial TFP growth decomposition the efficiency spillovers to (from) a firm
from (to) other firms, in contrast to a spatial error/inefficiency model and in line with the requirements
of our new decomposition, the spillover elasticities can also be related to the independent variables. As a
result of this property of the SAR and spatial Durbin specifications, we obtain the two further spillover
components for our decomposition (growth in technological change spillovers and growth in returns to

scale spillovers). Second, we favor the spatial Durbin specification over the SAR model because the

'For the further discussion of the spillover clasticity from a spatial error/inefficiency specification see footnote 7 in
subsection 2.3.



former includes spatial lags of the independent variables, while the latter omits these lags. The inclusion
of these spatial lags in the spatial Durbin specification accounts for local spatial dependence. This is a
further type of spatial dependence that is often found to be present in empirical applications and relates
to only 1st order spatial interaction between the independent variables of neighboring firms. Third, from
the SAR model the ratio of the own and spillover elasticities (referred to in the spatial literature as direct
and indirect elasticities) is the same for all the independent variables, which is implausible. This is not
the case though with the spatial Durbin specification because of the presence of the spatial lags of the
independent variables in the model.

The remainder of this paper is organized as follows. Section 2 has three parts. In the first part we
provide a general presentation of the structural form of our new spatial Durbin stochastic frontier model.
The second part sets out our approach to estimate the parameters of the structural model, the own (i.e.,
non-spatial) time-invariant and time-varying efficiencies, and the combined measure that draws together
these efficiencies. In the third part, as the structural form of our model does not yield interpretable global
spillovers, we present how we calculate a set of elasticities from the reduced form model (direct, indirect
spill-in and spill-out, and total), and then layout our method to compute the corresponding efficiencies.
In section 3 we set out our methodology to uncover the firms that act as spatial TFP growth centers in
an industry, which first involves presenting our method to obtain the asymmetric spatial TFP growth

decompositions. In section 4 we present the application to U.S. banks and in section 5 we conclude.

2 A Spatial Stochastic Frontier Model with Multiple Spatial Networks

2.1 General Presentation of the Structural Form of the Model

Before we formally present and discuss our model in detail, we provide an intuitive overview of its
new methodological feature. This feature extends the literature on spatial stochastic frontier models
that consider interactions between firms within a single spatial network (via a single spatial lag of the
dependent variable), to the more complex setting of multiple simultaneous spatial networks (via multiple
spatial lags of the dependent variable). The motivation for this extension is to represent the different
types of spatial linkages that simultaneously exist between firms that are in multiple networks, where
these networks may represent the different business segments of firms. In our model there are M spatial
networks that are indexed m € 1, ..., M. When we apply our model we favor a reasonably small M that
relates to reasonably distinct spatial networks. This does not detract from our model as it guards against
collinearity between some of spatial lags of the dependent variable when M is quite large. With this
in mind, in our application we use just two spatial weights matrices, which reflect the linkages between
the banks across two networks of very different branch types. To obtain the small M we construct one
spatial weights matrix by aggregating a number of branch types across a broader category. In further
applications of our model it may be necessary to aggregate networks using a similar approach.

To emphasize the generality of our model and estimator, the following presentation is for the general
case of a concave frontier rather than a specific concave frontier technology (e.g., a production, profit or
revenue frontier). Our model and estimator, however, is in no way constrained to a concave frontier and
can easily be adapted to convex frontier technologies (e.g., a cost frontier). The general structural form
of our panel data spatial Durbin stochastic frontier (SDSF) model with multiple simultaneous spatial

networks is given in Eq. 1, where the variables are logged.
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The panel data comprises observations for N firms over 1" time periods, which are indexed 7,7 € 1,..., N
Vi,jand t € 1,...,T. y; is the observation for the dependent variable (output, profit or revenue) for
the 4th firm in period ¢; « is the common intercept; 27, is the (1 x K) vector of observations for the non-
spatial regressors which are indexed k € 1, ..., K; and 3 is the associated vector of regression parameters.
x;; includes the variables which together with y;; represent the frontier technology.

The M spatial networks in our model represent different sources of spillovers and correspond to the M
(N x N) spatial weights matrices, which are indexed Wy, € W1, ..., Wyr. One must specify W1, ..., Wy
in advance of estimating the model, where the elements of Wy, are the non-negative constant i, j—th
spatial weights w;jm,. For the mth spatial network Wy, represents the spatial arrangement of the firms
and the strength of the spatial linkages between the firms. All the elements on the main diagonal of
W, are therefore set to zero because a firm cannot be spatially linked to itself in a network. As Wy,
is exogenous it is often specified using some measure of geographical proximity. Although this is also
the case in our empirical application to U.S. banks we adopt an innovative approach. This involves
constructing for each branch type a spatial weights matrix that represents the geographical overlap of
bank branch networks.

Once W7y, ..., Wy have been specified we can construct the two groups of spatial variables in our
model. The first group is the M spatial lags of the dependent variable, Zjvzl Wij1Yjts -es Zjvzl WijMYjt-

These spatial lags capture global spatial dependence in the M networks and are endogenous, which our

1
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this space is sufficiently general and f5?* is the most positive real characteristic root of Wy,. Specifically,

estimator accounts for. The associated parameters d1,...,0y € [ , where

W denotes a normalized specification of the mth spatial weights matrix, where the normalization we
use in our empirical application gives f{"®*, ..., fi7** = 1. For details of our approach to this normalization
see subsection 4.1. In our application and as is common in the empirical spatial literature Wy, before
normalization is asymmetric and may therefore have complex roots after normalization. For the case of
complex roots and using our notation, LeSage and Pace (2009) (LSP from hereon) prove that the lower
limit of 6,, is the inverse of f™ where f™ is the most negative real characteristic root of Wp,.

m m

The second group of spatial variables in our model are the M exogenous spatial lags of z, (i.e.,
/

Z;V:l Wij1 T4y ey Z;VZI wijng-t), where 91, ..., 9 are the associated vectors of parameters. These spatial
lags capture local spatial dependence in the M networks and together with the spatial lags of the
dependent variable shift the frontier technology. If we were to omit the M spatial lags of z, then Eq. 1
becomes the SAR model. We do not omit these variables because often local spatial variables are found
to be important determinants in the empirical spatial literature. Due to the inclusion of these local
spatial variables our model belongs to the class of spatial Durbin models.

The error structure in our model is €;; = &; + € = 0; + Vit — 1; — Ui, where g; = o; — 1; is the
time-invariant error and €;; = v — uy is the time-varying error. To distinguish between the four error
components our estimator relies on the components being independently distributed. We do not therefore
use firm fixed effects to account for unobserved heterogeneity because although they will be correlated
with the regressors which is appealing, the time-varying idiosyncratic errors will not be independently
distributed as they will also be correlated with the fixed effects.

G&K model unobserved firm heterogeneity using random effects which are independently distributed



because, as is standard, these effects are random errors. As a result, random effects are uncorrelated
with the regressors, which may not be the case in many applications. We therefore follow the spatial
stochastic frontier model with a single spatial network in Glass et al. (2018a) and also Debarsy (2012) and
Wang and Lee (2013) in the spatial literature where there is no inefficiency component(s), by modeling
unobserved firm heterogeneity using common correlated random effects. This approach allows the effects
to be correlated with the regressors while maintaining independently distributed error components and

involves specifying a firm common correlated random effect as

N N
0i =T + sz‘j@;fl + ot Z wisMTiEM + Ki. (2)
j=1 J=1
ki ~ N(0,02) is a random error and therefore represents the component of the firm specific effect that
is uncorrelated with the regressors. T, = %Zthl x}, and Zévzl wijmfg = %ZtT:l Z;vzl wijmxz-t, where
these means account for correlation between the firm specific effects and each of the regressors. Associated
with these means are the vectors of parameters ( and &1, ..., &

Turning to the inefficiency components of the error structure, n; ~ N* (0, ag) is own time-invariant
inefficiency and w;; ~ N (0, 03) is own time-varying inefficiency. Here 7; and u; are assumed to have
half-normal distributions, which is common in the stochastic frontier literature, although our estimation
procedure is sufficiently general to accommodate alternative distributional assumptions. The own in-
efficiencies from Eq. 1 are directly comparable to the inefficiencies from the corresponding non-spatial
frontier model, and following the spatial literature (e.g., Anselin, 2003) Eq. 1 represents the structural
form of our model as it includes the M SAR variables. In the reduced form model, which is used to
compute the elasticities and efficiency spillovers, the SAR variables do not feature.

One can test the appropriateness of the error structure in Eq. 1 for an empirical application using the
one-sided likelihood ratio test in Gouriéroux et al. (1982). This involves performing the test for each of
the error components, where the asymptotic distribution of the test statistic is a mixture of chi-squared
distributions, %Xg + %X% For G € {o,v,n,u} rejection of the null (3?; = 0) in favor of the alternative
hypothesis (3% > 0) constitutes evidence of the presence of the error component. Since both of the
nulls for the inefficiency components may not be rejected in an empirical application, our model has the
advantage of nesting the corresponding SDSF models that consider only time-invariant or time-varying
inefficiency. G&K use the same test for the firm specific random effect in their error structure, which is
akin to testing for the presence of the x; component in g; in our model. With our model, in addition to
applying this test to ¢;, we can go a step further by applying the test to the three types of component
that make up g;, i.e., k;, T, and Zévzl wijmf;. A significant k; component indicates that part of g; is
uncorrelated with the regressors. Significant Z; and/or Zjvzl w;jmT; points to zj, and/or Zj\[:l Wijm Ty

being significantly correlated with g;.

2.2 Model Estimation and the Own Efficiency Measures

. . _ N —_ N —_ -
We estimate the model in Eq. 3 as we treat z; and ijl W15, ey Zj:l WijMT; as auxiliary regressors.

G
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where now the time-invariant and time-varying errors are g; = k; — 1; and €;; = vy — U

Given Eq. 3 is more complex than a simpler spatial stochastic frontier model with a single SAR
variable and only one type of inefficiency (time-varying or time-invariant), we use a practical multi-step
maximum likelihood (ML) estimation procedure.? This procedure comprises three steps, where in step
1 we estimate the SAR parameters 01, ..., dps, the intercept o and the parameters on the other variables
(i.e., B, V1, ..., 00, C and &1, ..., &{ar). In steps 2 and 3 we estimate u;; and 7;, respectively. We now present
the salient features of our estimation procedure and in the Appendix we provide the technical details of
the log-likelihood function(s) for each step. To proceed we invoke the standard type of reparameterization
of Eq. 3 that is adopted in the stochastic frontier literature (e.g., Aigner et al., 1977). This involves using
0. = 0p40f and Ay = 0y /0, and 07, = 05407 and Ayy = 04/0y. It follows that 07 = 02,/ (1+ A2,);
o = a2 02 ) (14 2,); 02 = 02,/ (14 X2,): and 02 = 62,2,/ (14 3,).

We estimate the aforementioned parameters in step 1 by transforming the spatial stochastic frontier
model in Eq. 3 into the spatial model in Eq. 4. As a result of this transformation firms are not yet
permitted to be inefficient. In subsequent steps this is relaxed to estimate the time-varying and time-
invariant inefficiencies. To rewrite Eq. 3 as Eq. 4 we transform the intercept and the negatively skewed
time-invariant and time-varying errors €; and €;; as follows: o° = ov—pie; — e, € = €i+le; = Ki—Ni+[he;;
and €5, = €t + e, = Vit — Uit + [le,,, Where po, =E(7;) and p.,, =E(u;). As a result, the transformed
time-invariant and time-varying error components satisfy the zero-mean condition, i.e., & ~ N(0, 0'62?)

and €5, ~ N(0, aggt).?’

2This practicality is the result of breaking down the estimation problem into steps, which faciltates in each step conver-
gence of the log-likelihood function(s). Although this is beneficial, the cost associated with this practicality is the loss of
some statistical efficiency of the parameter and efficiency estimates from stepwise estimation of the model (vis-a-vis esti-
mation in a single step). See Gude et al. (2018) and Horrace et al. (2019) for ML methods that estimate spatial stochastic
frontier models all in a single step. Their models, however, consider one spatial network and only time-varying inefficiency
and are thus much simpler than our model, which is why we use a practical stepwise estimator.

30ur estimator extends to multiple spatial networks the multi-step ML estimator in Kumbhakar et al. (2014) for the
corresponding random effects non-spatial stochastic frontier model (i.e., our model with the means of the z variables and
their spatial lags and the spatial lags of  and y omitted). Simulated ML has also been used by Filippini and Greene (2016)
to estimate in a single step the corresponding non-spatial stochastic frontier model with common correlated random effects
(i.e., our model with the spatial lags of the means of the x variables and the spatial lags = and y omitted). Since the
focus here is on presenting our method to uncover firms that act as spatial TFP growth centers and given ML methods
are well-established approaches to estimate corresponding non-spatial stochastic frontier models, we do not formally pursue
the asymptotic properties of our estimator. It is clear though that the asymptotic properties of our estimator in the first
step (e.g., the consistency of the estimates of the parameters in Eq. 4) would not raise any issues. This is because these
properties would be the amalgamation of those for the pooled least squares estimator of the non-spatial model with common
correlated random effects (Pesaran, 2006), and the estimator of the SAR random effects model using ML (Lee and Yu, 2012).
It should also be noted that in the same way as the x variables in Eq. 4 must be uncorrelated with e and &5, to obtain
consistent estimates of the coefficients on these variables, the means of the x variables and their spatial lags must also be
uncorrelated with these error components to obtain consistent estimates of the coefficients on these auxiliary regressors.
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To give spatial econometrics greater economic foundation Corrado and Fingleton (2012) suggest
that more emphasis should be placed on using spatial techniques to estimate equations that are well
grounded in economic theory. We can also apply this research direction to address a particular issue
in spatial econometrics because such an approach can alleviate a potential problem with the identi-
fication of the spatial parameters in Eq. 4, i.e., the coefficients on both the local spatial variables
(Z;V:1 wiﬂx;t, s Z;Vﬂ wiij;t> and global spatial variables (Zjvzl Wij1Yjts - Z;V:1 wijMyjt). Identi-
fication of these spatial parameters can be problematic if «}, suffers from omitted variables, as there is a
tendency for the effect of these omitted variables to inflate the spatial parameters because the omitted
variables are spatially correlated. To circumvent this problem in our empirical application y;; and
are specified according to a well-established function from production theory, i.e., a translog revenue
function, where revenue is a function of first and second order output prices and input quantities and
interactions between these first order variables. Consequently, in our empirical model the local and global
spatial parameters are identified because according to economic theory no variables are omitted from ;.

Using @) to denote the Hessian matrix associated with the log-likelihood function for the model in Eq.
4, it is well known that the variance-covariance matrix to calculate the standard errors of the parameters
is —Q~!. Calculating this Hessian, however, is not as straightforward as for the corresponding non-spatial
model. To calculate the Hessian we follow the approach of LSP for spatial non-frontier models, which
involves using a mixture of analytical and numerical methods. All the second order derivatives that
form the Hessian are computed analytically with the exception of 9>LL/d6%, ..., 9*LL/96%,, which are
calculated numerically. Calculating the second order derivatives of a log-likelihood function analytically
rather than numerically is far less sensitive to badly scaled data. Calculating ?LL/96%, ..., 0°LL/ 85]2\/[
numerically when N is large though, as is the case in our empirical application, simplifies matters
somewhat as it avoids a number of large matrix multiplications involving W1, ..., Wy.

As will become apparent in due course, the spatial multiplier matrix (In — 61 W71 — ... = ¢ MWM)_1
plays a key role in the reduced form of our model as it is where the global spillovers come from, where
In is the (VN x N) identity matrix. In our empirical application this matrix inversion does not pose any
problems and, as a result, we obtain the spatial multiplier matrix we need to calculate the direct, indirect
and total elasticities and efficiencies. See subsection 2.3 for discussion of the role of the spatial multiplier
matrix in the calculation of the direct, indirect and total elasticities and efficiencies.

Using &, from step 1, in step 2 we begin the process of splitting &;; into u; and vy by using ML
to obtain the estimate of \,,, which is then used to obtain the estimate of o,. See the Appendix
for technical details on this. We then also in step 2 use Xw,, Ouw and the relevant other estimates
to calculate the consistent estimate of own time-varying inefficiency w;; (conditional on €;), using the
following well-established Jondrow et al. (1982) (JMLS) estimator:

uv 1—®y Ouv

—~ 0uO0y 3 Ei)\uv
G = E (uiglen) = ( bir_ _ Eit ) (5)



Oy = P(eygAuw/0uw), where @ is the standard normal cumulative distribution function; ¢y =
& (€it Auw/Ouww), Where ¢ is the probability density function for the standard normal distribution; and
Eit = Ejp — ey -

In step 3 we use the same approach to estimate own time-invariant inefficiency 7; (conditional on &;)
as we use to calculate U;; in step 2. In brief, this involves using &} from step 1 to split &; into 7; and &;,
by calculating XW and subsequently o,, and then 7); via the JMLS method. Finally, in a similar way
to how we obtain g;; and &;, we scale @° to obtain the consistent estimate of the constant term, & =
a° + fle, + fie,,

We can transform the log form in Eq. 1 into its multiplicative form for level data by taking the
exponents of the terms in Eq. 1. For the inefficiency terms this is the widely used Battese and Coelli
(1988) method to transform an inefficiency estimate into the efficiency measure. For our model this
gives estimates of what we refer to as own net time-varying efficiency, NV E;; = exp (—u;), and own
net time-invariant efficiency, NIE; = exp (—7);). We use net to indicate that these efficiencies are net
of time-invariance and time-variance, respectively. Based also on the multiplicative form of Eq. 1, we
compute the estimate of own combined efficiency, GV E;; = exp [— (; + uit)] = NIE; x NV E;;, which
we refer to as own gross time-varying efficiency.® In line with simpler multiplicative models that contain

only an own time-varying/invariant measure of efficiency, NV E;, NIE;, GVE; € [0,1].

2.3 Bidirectional Elasticities and Efficiency Spillovers

For the corresponding non-spatial form of Eq. 1 and the local spatial form one can interpret the fitted
model as the estimated coefficients on the variables are elasticities.® As LSP note, however, the fitted
structural form of a spatial model, which in terms of spatial variables contains at least one SAR variable,
does not yield interpretable spillovers. This is because the spillover elasticities for the z variables from
such a model are a function of the SAR parameter(s). Following LSP, who developed the method to
interpret such models, we use the fitted parameters for the structural form of our model to calculate direct,
indirect and total elasticities, which are partially /entirely made up of a spillover. A direct elasticity is
interpreted in the same way as an elasticity from a non-spatial model, although a direct elasticity contains
a particular type of spillover known as feedback, which in empirical applications is typically found to be
small (e.g., Autant-Bernard and LeSage, 2011). Feedback is the portion of the effect of a change in an
independent variable for a particular firm that reverberates back to the same firm’s dependent variable,
via the impact on the dependent variables of the other firms in the sample.

Indirect elasticities are entirely due to spillovers and are calculated in two ways as they are bidirec-
tional. This gives rise to two interpretations of an indirect elasticity: (i) the effect on a firm’s dependent
variable when there is a change in an independent variable for all the other firms in the sample; and (ii)
the effect on the dependent variables of all the other firms in the sample when there is a change in an

independent variable for a particular firm. The mean indirect spill-in and spill-out elasticities across the

*In contrast to this upward scaling of a° for stochastic production, revenue and profit frontiers, for a stochastic cost
frontier @ = @° — fie; — Heyy-

®In the non-spatial parametric efficiency literature own GV E is referred to as own overall time-varying efficiency. We,
however, depart from this diction for non-spatial frontiers as we proceed beyond own efficiency measures. Having computed
own GV E and borrowing some terminology from the spatial literature, we compute direct, indirect and total GV E, which
are all spatial efficiencies as they are entirely/partially made up of a spillover efficiency. As a result, we avoid referring to
total GV E as total overall time-varying efficiency, which would be confusing. As we refer to a combined efficiency as a
gross measure, it is logical to refer to the time-invariant and time-varying components of a GV E measure as net efficiencies.
Additionally, own NIE, NVE and GV E should not be confused with the net and gross efficiencies in Coelli et al. (1999),
as the interpretations of net and gross in their model are entirely different to how we interpret net and gross here.

®The non-spatial form is Eq. 1 with the M spatial lags of x,, their means in g; and the M spatial lags of y;; omitted.
The local spatial form is Eq. 1 with the M spatial lags of y;; omitted.
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sample of firms (i.e., (i) and (ii) above, respectively) will be equal, but for an individual firm they will
differ in magnitude. Summing the direct and indirect elasticities for a variable gives a total elasticity. For
an individual firm the asymmetric bidirectional indirect elasticities lead to asymmetric measures of the
total elasticity for a variable. In the first part of our empirical application, our reported spatial frontier
is at the sample mean and is in terms of the mean direct, indirect and total elasticities across the firms
to concisely highlight that the fitted model is well-specified. In the second part we use the firm specific
parameters from the model to calculate indirect elasticities for individual firms outside the sample mean.
These elasticities are then used to obtain the asymmetric bidirectional TFP growth spillovers over the
study period, which play a key role in uncovering the spatial TFP growth centers.

The direct, indirect and total elasticities are calculated using the reduced form of our model, which

we move towards by rewriting the structural form in Eq. 1 using matrix notation:

Wixid W
yt:aH—:ﬂ;BjL( 12;V1 + > <1 1Yt +

+o+v—1n— uy. 6
"‘WMQJQT?M +6p Wy > e L= ! ( )

Here we drop the i and j subscripts from Eq. 1 to denote vectors of stacked cross-sectional observations,

¢t is an (N x 1) vector of ones and everything else is as previously defined. (61 Wiy + ... +0p Wnyt)

is then taken to the left-hand side giving (In — 61 W71 — ... — dy W)y and to obtain the following
reduced form we divide throughout by (In — 61 W1 — ... — oy W ):
In — W - Wiz +
— - .. T
Y = N L+ + ltll +otvi—n—u). (7)
_5MWM +WM-%'t'l9M

We present the method to calculate the direct and indirect elasticities for the kth exogenous inde-
pendent variable xy:. As we demonstrate in Eq. 8a, we differentiate Eq. 7 with respect to zj; to obtain
a matrix of direct and indirect elasticities for the firms. This matrix of partial derivatives is equal to
the matrix product on the right-hand side of Eq. 8b, where this product is independent of the time
index. As we noted above, to concisely show that our empirical model is well-specified we present it
in terms of mean elasticities across the firms. The mean direct elasticity is the mean of the diagonal
elements of the matrix product in Eq. 8b. The mean indirect spillover elasticity can be interpreted as the
mean spill-in/spill-out elasticity, which are equal in magnitude, and are the mean row/column sums of
the off-diagonal elements of the aforementioned matrix product.” Our approach to uncover spatial TFP
growth centers, however, uses asymmetric bidirectional indirect elasticities for individual firms. These
spill-in and spill-out elasticities are the individual row and column sums of the off-diagonal elements of

the matrix product in Eq. 8b.

" As we noted in the introductory section, the only mean spillover (i.e., indirect) elasticity from a spatial error/inefficiency
model relates to the disturbance/inefficiency. To simplify the discussion we focus on the spatial error model as it is a common
specification in the spatial literature. The spatial error model contains no inefficiency component(s) and regarding spatial
terms includes only a spatial lag of the disturbance (see the first equation in subsection 5.3 of Viton (2010) on page 11 for
the structural form of this model). In contrast to the reduced form of our model in Eq. 7, where the spatial multiplier
matrix pre-multiplies all the other components of the model, in the reduced form of the spatial error model the spatial
multiplier matrix only pre-multiplies the disturbance (see the final equation in subsection 5.3 of Viton (2010) on page 11).
Hence why the only indirect elasticity from this reduced form relates to the disturbance.
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Following the convention in the spatial econometrics literature (e.g., LSP), we conduct statistical
inference for the mean direct, indirect and total elasticities using the standard deviation of 1,000 Monte
Carlo simulations of each mean elasticity. Each simulation is based on drawing a set of parameter values
from the variance-covariance estimates that form the Hessian matrix, where each parameter value has
a random component drawn from N (0,1). Alternative approaches can be used to conduct statistical
inference by using sequences of a quasi-random nature such as Halton, Faure or Sobol sequences. Using
Halton sequences is appealing for reasons of conceptual simplicity and computational speed (Bhat, 2001).
For mixed logit models Bhat observes that using 75 Halton draws for statistical inference is more accurate
than using 2, 000 pseudo-random draws. To the best of our knowledge, however, there is no corresponding
study for any spatial econometric models and, as a result, this is an important area for future research.
Such research would provide the foundation for the use of alternative approaches to statistical inference
in the spatial literature going forward.

Based on how we calculate the direct and asymmetric bidirectional indirect and total elasticities, we
calculate the corresponding efficiency measures for each firm, which collectively we refer to as spatial
efficiencies because each of these efficiencies is partially /entirely made up of a spillover. Direct efficiency
is interpreted in the same way as own efficiency from a non-spatial or spatial frontier, but also includes
a further component as it is own efficiency plus efficiency feedback. Efficiency feedback occurs when,
for example, a change in a firm’s dependent variable due to a change in one of its independent variables
affects the dependent variables of the other firms in the sample and thus their efficiencies. Via the spatial
multiplier matrix this effect partially rebounds to the dependent variable and efficiency of the firm that
initiated the process. In line with the indirect elasticities for individual firms we calculate asymmetric
bidirectional indirect efficiencies, which are the sum of the efficiencies that spill-in (spill-out) to (from) a
firm from (to) all the other firms in the sample. We can therefore interpret the spill-in efficiency as being
the combined effect of the M networks on an individual firm’s efficiency, and the spill-out efficiency as
being the contribution of an individual firm to the efficiency of the M networks as a whole. Mirroring
the situation for the asymmetric indirect and total elasticities for individual firms we obtain asymmetric
total efficiency measures.

The direct and asymmetric bidirectional indirect and total efficiencies we calculate are all absolute
measures. Glass et al. (2016), on the other hand, calculate relative spatial efficiencies. Relative efficiencies
can be sensitive to the best performing firm in each period being an outlier, which one would need to
adjust for. Additionally, relative indirect spill-in and spill-out efficiencies do not indicate whether the
absolute magnitude of the efficiency spillover is substantive. As a result, there can be cases where it is

of no consequence whether the relative indirect efficiencies are high or low because the absolute indirect
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efficiencies used to calculate these relative measures are small. We therefore calculate absolute measures
of the direct and asymmetric bidirectional indirect and total efficiencies by adapting the method in G&K
for a single spatial network to our more complex setting of multiple networks.

Using the reduced form of our model in Eq. 7, we can relate the own NIE, NVE and GVE

measures to the absolute measures of the direct and asymmetric bidirectional indirect and total

efficiencies. This involves recognizing from Eq. 7 that (Iy — 3 W71—...— 5MWM)_1 n = 17[T7fb’t,
(IN — 51W1 — .. — 5MWM)71 Ut = u};(;ft and (IN — (51W1 — ... — (5MWM)71 (7] + ut) = 7]};?1& + u%’ft are

(N x 1) vectors of absolute total (T'ot) net time-invariant, net time-varying and gross time-varying in-
efficiencies, respectively. The subscript In attached to these total inefficiency vectors indicates that the
inefficiency spillovers used in the calculation of the total inefficiencies are the inefficiency spill-ins to the
ith firm from all of the jth firms where i # j. Since from the structural form of our model in Eq. 1 own

NIE; = exp (—n;) and own NV E; = exp (—u;), the (N x 1) vectors of absolute total net efficiencies

that directly correspond to the absolute total net inefficiency vectors, nITT‘L’t and u?ﬁft, are NI Eﬁft =
(In— 01 W1 — ... — (SMWMY1 exp (—n) and NVE}‘CZ’% =(INn—01W1 —...— 5MWM)71 exp (—u). Sim-

ilarly, as own GV E; is NIE; x NVE;; = exp (—n; — ui), the (N x 1) vector of absolute total gross
time-varying efficiencies that mirrors the corresponding inefficiency vector, n}FnOt + u}rgft, is GVE};% =
(In — W1 — .. — 6y Wing) ™ X exp (=1 — ).

N VE}C;”% can be represented as follows and using the same form we can also represent NI E%gt and
GV E7S,.

NV E; NVERr+ ... +NVE[W NVEL

-1
In—01W;i—
N 51 1 E = . '.' . = . R (9)
. — 0 Wnm

NVEy ), NVEW+ - +NVERY /, NVELM ),

where the NV VEgt" component of the N VElTﬁ-t element denotes absolute direct NV E for the ith firm.

When ¢ # j the N VEiIﬂd component of the same element represents the absolute indirect NV E spill-in
to the ith firm from the jth firm, and N VE{gfft = Z;\le N VEiIﬁ”d is the sum of the absolute indirect
NV E spill-ins to the ith firm from all the jth firms. We are therefore additively decomposing the (N x 1)
vector N VEITTE”; into the (N x 1) vectors NVEP™ and N VE}%. In the same way we can decompose
NIE}? into NIEP™ and NIE[?, and GV E[?%, into GV EP™ and GV E[}S.

Typically Wy, ..., Wy will be asymmetric, which means (Iy — ;W1 — ... — 63 W) will also be
asymmetric. As a result, there will be asymmetric spill-ins and spill-outs of NV E, NITE and GVE. G&K
set out the methodology for NVE, NIE and GV E spill-outs, although they did not calculate these
measures in their empirical application, whereas in our application we do so to provide an empirical
demonstration of these spill-outs. Recall that an element of IV VE}F;”; is the horizontal sum of the
components in Eq. 9, whereas an element of N VEgZ?t is the vertical sum of these components. The
subscript Out denotes that the total efficiency vector is calculated using the sum of the absolute indirect
NV E spill-outs from all the ith firms to a jth firm (NVEg}ijt = Zf\il NVEifﬁd). We are therefore
additively decomposing the (1 x N) vector NV E}L° into the (1 x N) vectors NV EP" and NVEéZC;t.
In the same way we decompose the NT ngft and GVESZ’;J vectors.

Own NIE, NVE and GV E are standard measures of efficiency from a stochastic frontier model and
are therefore bounded in the interval [0, 1]. Direct, asymmetric bidirectional indirect and total NIFE,
NV E and GV E also have a lower bound of 0. All these spatial efficiency measures, however, have no

upper bound, but this in no way prevents the changes in these efficiencies from being included in our
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spatial TFP growth decompositions. This is because these spatial efficiency measures are scaled own
NIE, NVE and GV E. Consequently, if the relevant efficiency spill-in/spill-out, which represents an
efficiency performance multiplier, is sufficiently large, the direct/indirect/total NIE, NVE or GVE
measure will be greater than 1. In this situation the efficiency spill-in/spill-out is large enough to place

the firm beyond the corresponding own best practice frontier from Eq. 1.

3 Methodology to Uncover Spatial TFP Growth Centers

Our methodology to uncover firms that act as spatial TFP growth centers comprises three parts. The
first part relates to the specification of the technology that is modeled by the spatial Durbin frontier,
although our approach to uncover centers is in no way limited to a particular technology (cost, revenue,
etc.). The second part shows how the frontier model can be used to obtain asymmetric bidirectional
decompositions of two measures of spatial TFP growth. The two decompositions differ depending on
whether the spillover components represent spill-ins to a firm or spill-outs from a firm. In the third part,
the TFP growth spill-ins and spill-outs are combined to develop a method to uncover which firms act as

spatial TFP growth centers.

3.1 Spatial Revenue Frontier with Multiple Spatial Networks

We complement the G&K spatial cost frontier based application of their spatial TFP growth decompo-
sition by focusing in our application on the income side of a firm’s operations. We estimate a spatial
Durbin stochastic revenue frontier, which we present by tailoring the general presentation of our model
in Eq. 1 to the specific functional form we employ, where unless otherwise stated everything is as defined
for Eq. 1.

N N N

STLy | Y wiji (gje) s Y_wijt (pje)  Y_wign (&) | + -
i=1 =1 i=1
rit = & + TL(qit, pit, ti) + ’ N ’ N ! N +
+ST Ly wijn (qje) > Yo wign (Pje) s Y wijnr ()
=1 j=1 j=1

=

N

01 > wijirie + -
a + 0i + Vit — M — Wi, (10)
+5Mj;wijM7"jt

where all the variables are logged. r is a total revenue observation, and T'L (git, pit, t;) = wt; + %ct? +
0" qir + V' pit + %pgt'rpit + %yz’-tﬂyit + Pl Py + ' qirt + ¢'pirt and represents the variable returns to scale
translog approximation of the log of the revenue frontier technology. ¢;; is the (1 x H) vector of observa-
tions for the inputs which are indexed h € 1, ..., H; p;; is the (1 x L) vector of observations for the normal-
ized output prices which are indexed [ € 1, ..., L; and ¢, t? and the interactions with ¢ collectively represent
a non-linear time trend that measures non-neutral technological change. ST Ly + ...+ ST Lj; represent
M spatial lags of T'L (qit, pit, t;), where these lags together with 01 Zé\;l Wij1Tj¢ + oo 4+ Or Z;Vﬂ Wi MTjt
shift the frontier technology.® To be estimated, among other things, are various regression parameters
(o, w, %g, Wem and %gsm, where the sm subscript denotes a local spatial parameter for the mth network);
vectors of parameters (6/, ¢/, 7/, ¢/, 04, ¥l Ve and ¢,); and matrices of parameters (37, 1Q, ¥,

%Tsm, %Qsm and Wgy). From the properties of the translog function (Christensen et al., 1973) Eq.

®1n the functions denoted ST L1, ..., ST Ly in Eq. 10 the variables are in brackets to indicate that in addition to spatially
lagging the variables, we also spatially lag functions of the variables (e.g., qft).
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10 is twice differentiable with respect to a normalized output price, an input and the M spatial lags
of the normalized output prices and inputs. The resulting Hessian is symmetric due to the symmetry

restrictions placed on the parameter matrices.

3.2 Asymmetric Bidirectional Spatial TFP Growth Decompositions

In practice the approach to parametric non-spatial TFP growth decompositions involves first calculating
the components, which are then summed to obtain TFP growth. We also adopt this approach here, which
involves for the two spatial TFP growth decompositions we employ summing the direct and indirect
components to obtain two measures of total TFP growth. Our first decomposition corresponds with that
in G&K as it consists of direct and indirect spill-in components to a firm, which gives the same type of
total TFP growth measure. Here we use a more sophisticated spatial frontier with multiple networks, and,
as a result, total TFP growth and its direct and indirect components will differ in magnitude from what
we would obtain using the simpler spatial frontier with a single network in G&K. Despite our first and
second decompositions having the same direct components, the decompositions differ because the indirect
components in the second formulation gravitate in the opposite direction as they are spill-outs. As a
result, we obtain asymmetric bidirectional measures of total TFP growth from the two decompositions.

Our first decomposition is based on the direct and indirect spill-in translog revenue models and the
resulting total model. The forms of these models are given in Egs. 11 —13. These models are constructed
by incorporating the direct, indirect spill-in and total parameters (from the matrix product in Eq. 8b)
into the reduced form of our model in Eq. 7.° For our second decomposition we again use the direct

model and also the indirect spill-out model in Eq. 14 and the associated total model in Eq. 15.

. . 1 . -7 -] 1 H 1 H
rilt)w — wiDzrti + *CiD”‘t? + 07;Dzr it + wiDzr Dit + iq;tTPlrQit + §p;tQPlrpit+

2
Dir'

A O™ pir + 4P gty + P pits — nPT — (11)

1 ' ’ 1 1
Ind Ind Ind,2 | plnd Ind Ind Ind
TIngt = Win.iti + 593,#1 + O @it + V10 Pit + QQQtTIQ,iqz‘t + ipgtﬂlﬁ,ipit‘i‘

1 a,Ind Ind Ind Ind Ind
4t ¥in iPit + Ving Qitti + Pni Pitti — Ning — Win,its (12)

1 ’ ' 1 1
Tot Tot Tot,2 | pTot Tot / ~~Tot ! oTot
TImit = WIniti + 5Siniti + 01 Git + V1 Pit + §QitTIr?,iqit + §P¢tﬂhf,ipit+

2
1 g, Tot Tot’ Tot! Tot Tot
4t Pinilit T Vini Gitti + Pl i Pitti — Nns — Ulnits (13)
Ind __  Ind t. 1 Ind t2 glnd’ ) Ind . 1 / —rInd ) 1 / QInd )
TOut,jt = Wout,jti T 50ut,jti + 00ut,j%it + Yout jPit + 54it X Out,j¢it T 5Pitf ot jPit+
! aq,Ind Ind’ Ind' Ind Ind
4t ¥ Out jPit + YOut,j4itti + Pout,jPitti — Mout,j — WOut, jts (14)

9This is with the caveat that there are no direct, indirect and total intercepts in Eqs. 11— 13, which is also the case for the
other models we utilize for our second spatial TFP growth decomposition. We could obtain these intercepts using a similar
approach to how we calculate the corresponding revenue inefficiencies, but this would be an unnecessary complication. This
is because we are interested in the factors that lead to changes in the various measures of revenue (direct revenue, indirect
revenue spill-ins and spill-outs, and total revenue), whereas the associated intercepts are fixed parameters.
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An indirect spill-in elasticity measures the responsiveness of the revenue that spills over to the ith firm,
T{Zfﬁt, due to the spill-in effect on an ith firm’s independent variable. An indirect spill-out elasticity, on
the other hand, measures the responsiveness of the revenue that spills over to the jth firm, 7’(])’2‘%, it due to
the spill-out effect from an ith firm’s independent variable. Each total parameter is obtained by summing
the direct and indirect spill-in/spill-out parameters. Similarly, a firm’s asymmetric total inefficiencies are
the sum of its direct inefficiency and its indirect inefficiency spill-ins/spill-outs. Inefficiency spill-ins/spill-
outs have negative connotations, whereas in practice firms seek to exploit agglomeration economies, which
are the benefits from locating near one another in cities and industrial clusters. It is therefore logical to
transform the inefficiency spill-ins and spill-outs into efficiency measures using the method in subsection

2.3, which is the approach we adopt in our spatial TFP growth decompositions.

Dir ,.Ind Tot Ind Tot :
We do not observe r;;"", r Tnsit> TTmit> TOut.jt and TOut,jt- They can though, if necessary, be computed
: Tot __ ,.Dir Ind Tot _ .Dir Ind
using the above translog models, where TInit = Tit. + TInt and Towutjt = Tit + TOut it because for
Dir

rii"" ¢ = j. Note also that each observation in the direct, indirect and total translog models is not
pre-multiplied by the sum of the spatial weights. This is because the effect of the spatial weights is
incorporated within the direct, indirect and total parameters.

From our two decompositions we obtain the asymmetric bidirectional generalized Malmquist total
TFP growth indices (ATFP};% 41 and ATF ng; jt+1) by summing their components. We obtain our
two decompositions by following the corresponding non-spatial (i.e., own) TFP growth decomposition
(Orea, 2002). Accordingly, our first decomposition in Eq. 16 is the result of fully differentiating the
direct and indirect spill-in translog functions in Egs. 11 and 12.1° By replacing the full derivative of Eq.
12 in the first decomposition with the full derivative of the indirect spill-out translog function in Eq. 14,

we obtain our second decomposition in Eq. 17.

ATFPLY, = ATCLY 1 + ARTSTY 1 + AGVE?nO;t—&-l
= ATFPP! + ATFP, |

1

= ATCR! + ARTSF! + AGV ERYy + ATCI, 1 + ARTSI G 1+

)

AGVEd, .. (16)

ATFngii,th = ATCtht,th + ARTS%Zi,th + AGVESZi,th
= ATFPRY + ATFPS 14

J
= ATC]Y, + ARTSHY) + AGVE[Y, + ATCEY iy + ARTSG 511+
AGVEGS 111 (17)

The components of our two spatial TFP growth decompositions are as follows.

1. ATC’};ZOZ 41 and AT C’ggtt jt+1 are the total technological change components for the ith and jth

firms, respectively. Each of these components relates to an upward or downward shift in the

0T here is slight abuse of terminology here because by full differentiation we mean total differentiation. To avoid confusion
with the total terminology we use from the spatial literature, we instead use full as the descriptor.
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relevant total frontier for a firm when there is total technological progress or regress for the firm.

To decompose AT C’}Cfit 41 and AT Cout jt+1 in Egs.

18 and 19 into their direct and indirect

technological change components, we use the following first order derivatives of the direct and

indirect spill-in and spill-out translog functions with respect to time.
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and AGVEOM jt+1 measure the rise or fall in the total gross time-varying efficiency
To decompose AGVE}Fnit 41

and AGVEng:’jt 41 into their direct and

indirect components we use Eqs 20 and 21.
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are the changes in the total returns to scale for the ith and jth

into their direct and indirect components we
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e denotes a revenue elasticity with respect to the Ath input of the ith firm, where these elasticities
are obtained from the direct, indirect and total translog functions. SFT°! denotes a total scale factor
and to illustrate for our first decomp051t10n SFTo zt+1 (Eh 1 eIn hite1 T 1) /ZhH:1 eITTfchtH. To
additively decompose ARTS%° n L i

and spill-out returns to scale, we weight the contributions of the direct and indirect spill-in and

, and ARTSOut it41 into changes in direct and indirect spill-in
spill-out input elasticities by the relevant total scale factor.

3.3 Combining Bidirectional TFP Growth Spillovers to Uncover the Centers

We define a firm as being a spatial TFP growth center if it is a net generator of TFP growth

spillovers. This is the case if ATFP, é”u‘ti i1 — ATF P}T?‘ft 41 > 0, where ATF éﬁf il = ATC&Z% g1t

Ind Ind Ind Ind Ind Ind
ARTSGu i1 + AGVEGS v and ATFPG = ATCRS + ARTSHS o + AGVERS, . We
adopt this definition for a spatial TFP growth center because, other things being equal, firms would
wish to locate near a firm that is a net generator of TFP growth spillovers. For other firms

ATFPéZ(tiﬁH*l ATFPI#%H

sample of firms is large in an empirical application so there will be a large number of net generators and

< 0 as they are net recipients of TFP growth spillovers. Typically, the

net recipients of spatial TFP growth spillovers. The interesting issue therefore is which of these firms
are the biggest net generators and which are the biggest net recipients.

Using the components of AT FP, éﬁ‘f i1 and ATFP Igft 41

which firms act as spatial TFP growth centers. We use these components to establish if a firm is a net

we uncover the key factors that determine

generator of spillovers of: (i) growth in technological change; (ii) returns to scale change; and (iii) gross
time-varying efficiency change. To illustrate, a firm is a net generator of returns to scale change spillovers

if ARTSE ;1 — ARTS{, | > 0.

4 Empirical Application to U.S. Banks

4.1 Data and Specification of the Linkages in the Spatial Networks

The data set is a rich balanced panel of annual observations covering the period 1998 — 2015 for 387

' This period is interesting because it includes very

medium-sized and large commercial U.S. banks.
different bank operating environments. To investigate the impact of the different operating environments
on which banks are the largest net generators of TFP growth spillovers, we use the parameters from our
fitted translog spatial revenue frontier to calculate elasticities outside the sample mean. Using these
elasticities we obtain our new annual spatial TFP growth decomposition. This annual decomposition

then forms part of the analysis to: (i) uncover which banks act as spatial TFP growth centers in 2015, as

"YWe construct our data sample by following Berger and Roman (2017) by classifying a U.S. bank with total assets
between $1 billion and $3 billion in 2015 as medium-sized, and a bank with total assets greater than $3 billion in 2015 as
large. Based on this classification both bank size categories are well represented in our data sample with 218 medium-sized
banks and 169 large.
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the final year of our analysis is the most relevant for future policy making; and (ii) investigate if there are
differences between these results for 2015 and those for two subperiods- pre-crisis (1998 —2007) and crisis
and beyond (2008 —2015). According to Berger and Bouwman (2013), the timeline of the U.S. subprime
lending crisis spanned the period 2007:Q3 — 2009:Q4. As they regard the majority of 2007 as being
pre-crisis and given we use annual data, we take 2007 as being the last year of the pre-crisis subperiod.
Moreover, we use balanced panel data (i.e., we consider the continuously operating medium-sized and
large banks over our study period) to make like-for-like comparisons between spatial TFP growth in
different years.

To specify the two spatial weights matrices in our spatial Durbin stochastic revenue frontier we use the
linkages between banks across two branch type networks- brick and mortar branches, BM, and all other
types of branches, O. We discuss in detail how we specify the spatial weights further in this section,
but in essence we use disaggregated information on the number of bank branches and their locations
to calculate the state level geographical overlap of banks’ branch networks. We therefore confine our
analysis to medium-sized and large banks, as their sufficiently extensive branch networks leads to a
sufficient amount of network overlap. As a result, there is not a lack of interconnectedness between the
banks in our spatial weights matrices, which would be the case if we also included the large number of
small U.S. banks.

We explored using an alternative study period and thus an alternative pre-crisis subperiod that go
back to 1994. This was for two reasons. First, the state branch location information we use to specify
the spatial weights matrices, which we will discuss further shortly, is available from 1994. Second,
the Interstate Banking and Branching Efficiency (IBBE) Act, otherwise known as the Riegle-Neal Act,
came into effect on June 1, 1997, which allowed a bank to open branches outside its state of origin.'?
This resulted in greater opportunities for banks to have overlapping branch networks leading to greater
potential spatial dependence between banks. Many states though implemented this Act in advance of
the effective date. See table 1 in Dick (2006) for the date when each state implemented the Act. For
example, Oregon was the first contiguous state to do so on 2/27/95, while twelve states were the last to
implement it on 6/1/97.13

Compared to a study period of 1998—2015, when we experimented using the period 1994—2015 we find
that dp is in line with our expectations as it remains positive and significant, while although dpas remains
positive it is not as we would expect because it becomes insignificant. This suggests for 1994 — 1997
that there was insufficient positive spatial revenue dependence between banks with overlapping brick and
mortar branch networks to yield a significant estimate of dgps for 1994 — 2015. We therefore chose to
begin our study period and pre-crisis subperiod in 1998. This is because our results suggest that it has
taken some time for banks to exhibit the significant positive spatial revenue dependence we associate
with banks that have overlapping multi-state brick and mortar branch networks.

The data for the dependent and independent variables in our spatial Durbin frontier (Eq. 10) is
at the level of the banking firm or bank holding company. All of this data was sourced from the Call
Reports which are available from the Federal Deposit Insurance Corporation (FDIC). Underlying the
specification of the output prices and inputs is the well-established intermediation approach to banking
(Sealey and Lindley, 1977). In panel A of table 1 we describe the dependent and independent variables
and provide summary statistics for the level data for our study period. In particular, the output prices

and inputs we include follows the input-output choices in a leading U.S. banking efficiency paper by

2 A1l but two states committed to the nationwide branching in the Act on or prior to the 6/1/97 federal deadline. The
two states that opted out ahead of this deadline were Montana and Texas.

3These twelve states are as follows: Colorado; Georgia; Hawaii; Illinois; Kansas; Kentucky; Louisiana; Minnesota;
Missouri; New Hampshire; Tennessee; and Wisconsin.
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Table 1: Description of the data and summary statistics

Panel A: Variable Descriptions Mean Std. Dev.
Total revenue (in 000s of 2005 U.S. dollars) (r) 869, 838 4,967,991
Price of loans (p1): Interest income from loans divided by loans 0.0628 0.0173
and leases

Price of securities (p2): Interest income from securities divided 0.0408 0.0267
by securities

Price of other activities (p3): Approximated by total non-interest 0.0140 0.0317
income divided by total assets

Fixed assets (in 000s of 2005 U.S. dollars) (g1): Value of 136,177 655, 340
premises and fixed assets

Labor (g2): Number of full-time equivalent employees 2,931 16,070
Total deposits (in 000s of 2005 U.S. dollars) (gs3) 10,953,887 68,987,060
Panel B: Features of the Two Branch Networks Mean Std. Dev.
Number of full service brick and mortar branches 38,659 13,580
Number of other full and limited service branches 4,990 1,643
Panel C: Selected Features of the Other Branch Network Mean Std. Dev.
Number of full service retail offices 3,288 1,198
Number of full service cyber offices 45 21
Number of limited service administrative offices 144 30
Number of limited service military facilities 14 4
Number of limited service mobile/seasonal offices 220 122
Number of limited service trust offices 38 18
Number of limited service drive-through facilities 1,237 285

Koetter et al. (2012).

Summarizing, there are three output prices and three inputs in our model. The output prices relate
to the prices of the following lending and non-lending activities of banks: loans (p1), securities (p2) and
non-interest income (p3). Total revenue (r) is the sum of the revenues from these outputs and the inputs
are fixed assets (q1), labor (g2) and deposits (g3), where q1, g3 and r are deflated to 2005 prices using the
CPI. The output prices are not deflated because as is evident from panel A of table 1 they are ratios.
All the variables are then logged, mean adjusted and, finally, we use one of the output prices (p1) as the
normalizing factor for r and the other output prices. By mean adjusting the data all the first order direct,
indirect and total input, time and normalized output price parameters can be interpreted as elasticities
at the sample mean. This is because in the first order partial derivatives of a translog function the terms

relating to the squared and interaction terms are zero at the sample mean.

We explored departing from the input-output choices in Koetter et al. by also including equity capital
as an input. Although this resulted in a model for our study period where, as we would expect, dp remains
positive and significant, dpas is no longer positive and significant and in line with our expectations, and
is instead negative and insignificant. An insignificant dps suggests that there is no substantive spatial
revenue dependence between banks that have overlapping brick and mortar branch networks, which we
feel is counterintuitive for banks that operate in the same markets. In line therefore with Koetter et al.
we omit equity.

For the reasons given in subsection 2.1, our modeling framework is intended for a reasonably small
number of fairly distinct simultaneous spatial networks. In practice, many cases, including our application
to U.S. banks, can be adapted to this setting by aggregating networks. In particular and as we noted
above, we focus on two distinct bank branch networks- the full service brick and mortar branch network
and the aggregated network of other types of full service and limited service branches. Other types of
branches can potentially cover up to twelve branch types, although there are only seven of the twelve in

our sample.'* We present in panel B of table 1 some summary statistics for the two branch networks we

Y“For the full list of the twelve other branch types see
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consider, and in panel C of table 1 we list the seven other branch types that feature in our sample and
provide some further summary statistics.

Our two-way split of the bank branch networks is logical for two reasons. First, the split differentiates
between the majority of branches in our sample (brick and mortar branches which account for 88.4% of
branches) and the relatively small number of other branch types. Second, the split distinguishes between
the different degrees of centralization of activities across the two branching networks. To illustrate, across
a large number of brick and mortar branches similar general activities are highly decentralized, whereas in
some other branch types there is a high degree of centralization of specialist activities. This explains why
in panel C of table 1, the sample means of, for example, the number of cyber offices and administrative
offices are small. A related issue we examine is whether the degree of SAR revenue dependence across
overlapping brick and mortar branch networks is greater than across overlapping networks of other
branches due to the dominance of brick and mortar branches in our sample. Alternatively, SAR revenue
dependence could be greater across overlapping networks of other branches due to the higher degree of
centralization of activities in some of the other branch types.

In our model the two specifications of W based on brick and mortar branches and other branch
types are denoted Wgn and W, respectively. Using information from the FDIC in the Summary of
Deposits on the state locations of banks’ brick and mortar branches and other branch types, in advance

of estimating the models we construct Wgns and W in the same way using the following four steps.

(i) Start with a matrix for each year and set all the cells on the main diagonal to zero because a bank

cannot be in its own neighborhood set.

(ii) For each state where the ith bank has chosen to locate the relevant branch type, we calculate the
ratio of the number of jth bank branches to the number of ¢¢th bank branches. This ratio represents
the state level branch intensity of the jth bank relative to the ith bank. The off-diagonal elements
are then calculated by summing these ratios across the states. A zero off-diagonal element signifies

no overlap between the branch type networks of the ith and jth banks.!®
(iii) Average the annual matrices from (ii) to obtain a matrix for the sample.

(iv) Normalize the matrix for the sample by dividing throughout by the largest element (i.e., normalize
by the largest eigenvalue). This normalization is appealing because it preserves the proportional
relationship between the spatial weights. As a result, the information on the absolute intensity of a
bank’s branch type network relative to the overlapping network of another bank is retained. This
normalization also aids the interpretation of the indirect elasticities. This is because the spillovers
to and from a bank will be positively related to the absolute intensities, rather some transformation
of these intensities. !

As the revenue of a bank in a particular time period depends on, among other things, the number

of branches which the bank has and their locations, it is reasonable to conclude for our spatial revenue

https://wwwb.fdic.gov/sod /definitions.asp?systemform=soddnld3&helpitem=brsertyp&baritem=1.

15Using matrix terminology the ith bank corresponds to a row of a W matrix and the jth bank relates to a column.
Additionally, as other branch types represent a small share of the total number of branches, we calculate the branch
intensities for the banks at the rather aggregate state level. This is to ensure there are sufficient overlapping networks of
other branch types in our sample.

16Tt is common to normalize the spatial weights in a W matrix by the row sums. This is appropriate when the spatial
weights are binary to reflect, for example, contiguous neighboring regions. This, however, is very different to the non-binary
spatial linkages between U.S. banks that we use. If we row-normalized our non-binary spatial weights the information about
the absolute branch network intensities would be lost. This is due to the normalizing factor not being the same for all the
weights.
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frontier model that Wy and W are exogenously determined. Exogenous multiple spatial weights
matrices is an assumption which our modeling framework is based on and is in line with the majority of
the spatial literature, although in this literature it is typical to consider the simpler standard case of a

single spatial weights matrix.'”

4.2 Estimated Spatial Revenue Frontier and the Elasticities

The estimated coefficients for our spatial Durbin revenue frontier with common correlated effects
(SDRF() are presented in table 2.'® As we have previously noted, the estimated SAR coefficients
cannot be interpreted as spillover elasticities. The interpretable spillover parameters from our model are
the indirect parameters. In table 3 we present the mean indirect parameters for our sample together with
the mean estimates of the direct and total parameters. Note that we do not use these mean parameters
to compute the spatial TFP growth decompositions and to uncover which banks act as spatial TFP
growth centers, and instead use the direct, indirect and total parameters for the individual banks. This
is because mean indirect spill-in and spill-out parameters are equal, whereas these parameters for indi-
vidual banks differ in magnitude and lead to the asymmetric indirect TFP growth spill-ins and spill-outs
we need to uncover which banks act as spatial TFP growth centers. We report the mean direct, indirect
and total parameters here, however, to concisely demonstrate that we use a well-specified model for our
spatial TFP growth decompositions.

Although a SAR coefficient cannot be interpreted as the elasticity of the spatial lag of the dependent
variable or, in other words, a spillover elasticity, it can provide useful information on the degree of
SAR dependence across the firms. For models with multiple SAR variables, a SAR parameter can be
negative because networks in the model overlap. In this case a network with a negative SAR parameter
is offsetting some of the positive SAR dependence across another overlapping network, where a negative
SAR parameter is interpreted as evidence of competition between firms in a spatial network (e.g., Kao
and Bera, 2013).

From table 2 we can see that the estimates of the SAR coefficients, 0y (0.167) and 6o (0.232), are
significant at the 5% and 0.1% levels, respectively. In the context of the spatial literature, the magnitudes
of these parameters points to non-negligible positive SAR revenue dependence between banks with brick
and mortar branches and other types of branches in the same state, which offers support for a spatial
approach to revenue modeling for U.S. banks. As dpas and dp are both positive our model indicates that
there is not, on average, a sufficient overlap between the two bank branch networks. This suggests that
the distribution across the states of a bank’s brick and mortar branches is statistically different from the
distribution of its other branch types. dpas though is noticeably less than dp, which suggests that the
dominance of brick and mortar branches in our sample is a smaller source of SAR revenue dependence
than the high degree of centralization of activities in some of the other branch types.

In table 2 a number of local spatial coefficients are significant at the 5% level or less (e.g., the

'71f there are the necessary methodological advances, an area for further work would be to replace our exogenous multiple
spatial weights matrices, which are based on geographical branch information, with endogenous specifications that are
constructed using business/economic factors such as branch deposits. The literature on endogenous spatial weights matrices
(Qu and Lee, 2015) is in its infancy and considers only a model for cross-sectional data with a single spatial weights matrix,
while also assuming that firms are 100% efficient. To fit our framework one would need to extend this model to panel data,
multiple spatial weights matrices and inefficient firms. We do not pursue these extensions here as we focus on introducing
a methodology for practitioners to uncover spatial TFP growth centers.

18With regard to our model specification, we omit spatial lags of ¢ for parsimony as these lags would model the spillover
of the same technological change phenomenon that is modeled by ¢, as t is the same for all the banks. Again for parsimony
and to simply illustrate the importance of the mean auxiliary variables, we only include means of the first order inputs and
normalized output prices as these are the key technology variables. We omit the mean of ¢ as it would be same for all the
banks and would not therefore account for any inter-bank heterogeneity.
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Table 2: Estimated spatial revenue frontier with two simultaneous spatial networks

Model Model Model

coeff coeff coeff
Constant 0.001 WEMG2 —-0.356*  Wpo (¢i)  0.119
Q1 0.012** WaMq3 —0.005 Wo (¢3) 0.125
3 0.095**  Wpmps 0.090 Wo (¢3)  —0.147*
q3 0.885*** WgemMmPps —0.064 Wo (QIQQ) —0.361**
P2 0.137*** Wewm (¢7)  —0.425"*  Wo (qigs) 0.086
D3 0.175%* WgwMm (¢3)  0.114 Wo (g2g3) 0.186
a —0.009"**  WgmMm(¢5) —0191  Wqo (p3)  —0.049*
q 0.036*** WawMm (q1q2)  0.016 Wo (p3) —0.061
qs 0.030*** WBM (Q1Q3) 0.733** Wo (pgpg) 0.120
q1492 —0.002 WgswMm (QQq3) —0.288 Wo (qlpz) —0.127
7143 0.005 Wewm (p3)  —0.115 Wo (q1p3)  0.198**
4293 —0.065***  WgwMm (p3)  0.064 Wo (q2p2) —0.168
P 0.004 WgMm (p2ps)  —0.485***  Wq (qaps3) 0.014
P 0.049*** WawMm (g1p2)  0.176 Wo (g3p2) 0.232*
P2p3 —0.047*** WBM (q1p3 —0.468*** WO (Q3p3) —0.220*
q1p2 0.054*** Wawm (¢2p2)  —0.043 Wo (qit 0.001
q1p3 0.008** Wanm (¢2p3 0.658™** Wo (g2t) —0.013
q2p2 —0.030"*  Wgnm (g3p2) —0.071 Wo (g3t)  0.013*
qap3 0.037*** WBM (Q3p3 —0.164 Wo (pgt) —0.006
q3p2 —0.020*  WgnMm (q1t)  0.025* Wo (pst)  0.010*
qsps —0.034*** WBM (QQt) —0.043** WBMT 0.167*
t 0.001* WawMm (¢st)  0.018 Wor 0.232%*
t2 —0.001***  Wpgm (p2t)  0.002 T 0.165***
qit 0.003*** Wgn (pst) —0.001 q —0.104***
gt —0.004**  Woq —0.014 (77} —0.002
qst 1x107* Wog —0.224* @ 0.144***
pat —0.006**  Wogqs —0.046 72 —0.029***
pst —3x107* Wops 0.204** 3 0.004
WaeMmq:  0.350%* Wops 0.027

Note: *, ** and *** denote statistical significance at the 5%, 1% and 0.1%
levels, respectively.

coefficients on Wgmq1, WBMm@2, Woge and Wops). This constitutes support for the spatial Durbin
model over the SAR specification as the latter omits local spatial variables. The same table reveals
that the coefficients on three of the five mean variables (g7, g3 and pz) are significant at the 0.1% level.
Using a x2 likelihood ratio test of the corresponding random effects model (SDRFR) against the SDRF¢
specification, we reject the null that all the coefficients on the mean variables in the SDRF¢ are zero at
the 0.1% level. This highlights the importance in our application of accounting for correlation between
the firm specific effects and at least the key exogenous regressors.

As we use mean adjusted data all the first order parameters of the direct, indirect and total translog
functions in table 3 are elasticities at the sample mean. Since direct parameters can be interpreted in the
same way as the standard own parameters from the corresponding non-spatial model, the monotonicity
properties of a non-spatial revenue frontier also apply to the direct elasticities from our model. It is

evident from table 3 that all the direct first order output price and input parameters are positive. This

YNote also that 7 in table 2 is the weight attached to the cross-sectional component of the data and is significant at the
0.1% level.
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Table 3: Direct, indirect and total parameters

Direct Indirect Total
parameter parameter parameter

¢ 0.012** 0.120%* 0.132%*
02 0.095%** —0.111% —0.016
a3 0.885*** 0.162%* 1.047%*
pa 0.138%* 0.053* 0.190***
p3  0.175%** 0.009 0.185***
¢ —0.009*** —0.138** —0.147*
@ 0.036*** —0.081 —0.045
¢ 0.030*** —0.075 —0.045
qig2  —0.002 0.116 0.114
qugz  0.006 0.235** 0.241**
q2q3  —0.066*** —0.034 —0.100
p3  0.004 0.035 0.038
pi  0.049* —0.052 —0.003
pops  —0.048*** —0.351%** —0.399***
q@1p2 0.054*** 0.107 0.162**
qips  0.008** —0.037 —0.029
qep2 —0.030** —0.047 —0.077
q2p3  0.037** 0.168** 0.205***
qsp2 —0.020* 0.042 0.023
qsps  —0.034*** —0.122% —0.155**
t 0.001* 1x1074 0.001*
t2 —0.001*** —1 x 1074 —0.001***
@it 0.003*** 0.008* 0.011**
got  —0.004*** —0.021%** —0.025%**
gt 1x1074 0.013** 0.013**
pat —0.006*** —0.004 —0.010**
pst =3 x107*  0.005 0.005

Note: *, ** and *** denote statistical significance
at the 5%, 1% and 0.1% levels, respectively.

is consistent with production theory as it indicates that our model satisfies the monotonicity properties
of the translog revenue frontier at the sample mean. These first order output price and input parameters
are significant at the 1% level or less, and the latter point to constant direct returns to scale (0.99).
Also from table 3 and in line with our expectations, the first order direct time parameter is positive and
significant, which suggests annual technological progress for the sample average bank.

Production theory does not predict the signs of the indirect and total elasticities for the output prices
and inputs. Tables 3 reveals that a large number of indirect parameters are significant, which once again
justifies our spatial approach to revenue modeling for U.S. banks. To illustrate, the only first order
indirect output price and input parameter that is not significant relates to ps. The indirect g1, g3 and
po parameters are all positive, whereas the indirect ¢o parameter is negative. The latter is because the
negative and significant Wgnmge and Woge parameters in table 2 more than offset the positive effect
of the two SAR parameters. As a result of the positive and significant direct and indirect ¢1, ¢3 and
po parameters, summing these parameters gives positive and significant total parameters. Interestingly,
the negative and significant indirect ¢o parameter offsets its positive and significant direct counterpart,

which results in a total parameter that is not significant.
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Table 4: Summary of the own, direct, indirect and total efficiencies

Own NVE Own NIE Own GVE GVEP™ GVEL%Y GVELY, GVEGS, GVEL

Mean 0.938 0.887 0.833 0.833 0.148 0.981 0.148 0.981
Median 0.943 0.902 0.846 0.846 0.075 0.932 0.022 0.881
Std. dev. 0.027 0.065 0.070 0.070 0.209 0.221 0.606 0.615

Note: GVEP™ = GVEP™

4.3 Estimates of the Different Revenue Efficiency Measures

In table 4 we summarize, among other things, the own NV E, NIE and GV E scores from the fitted
structural form of our SDRF.. Although the structural form of the SDRF. accounts for global SAR
and local spatial interactions, the own efficiencies do not include any form of efficiency spillover. On the
other hand, if the relevant type of efficiency spillover is present, the direct, indirect and total efficiencies
from the reduced form of the SDRF. will be partially/entirely made up of a spillover.

From table 4 it is evident that the sample mean own NV E and NIFE scores are 0.938 and 0.887.
Multiplying these measures yields a sample mean own GV E of 0.833. When we test the fitted structural
form SDRF. for net time-invariant and net time-varying inefficiencies (n and u), we find that n and u

are significant as we reject each null at the 1% level (Ho : 67 = 0 and Hy : 7. = 0). A feature of the

sample mean own NV E, NIE and GV E scores is that they are relatively high, which is intuitive for
our sample of U.S. banks because in a number of sub-periods high revenue growth is widespread.

GV E is a more complete representation of economic performance than NIE or NV E, so in table 4
we also summarize the direct, indirect and total GV E results from the reduced form SDRF.. Although
in theory there can be efficiency feedback, this table reveals that the sample mean GV EP?" is 0.833 and
hence equal to the sample mean own GV E, which suggests that there is no efficiency feedback. This
finding is in line with G&K and Glass et al. (2019) who, using similar samples of U.S. banks to our
sample, essentially find no GV E feedback from spatial cost and spatial profit stochastic frontiers with a
single spatial network.

We can see from table 4 that the sample mean GV E!" is 0.148 and, as we highlighted in the

Ing
methodology, is equal to the sample mean GVEg}g e These sample means, although not huge, are

non-negligible with GVE{Q’CZ[- and, in particular, GVEg;‘f’ ; varying a lot across the banks. This is evident

from table 4 because although the standard deviation of GVE{% is large, it is slightly more than a third

of the standard deviation of GVEg;i i

In contrast to the symmetric bidirectional sample means of the indirect GV E scores, the GV E
spill-ins and spill-outs for individual banks are asymmetric. As a result, these spill-ins and spill-outs

for individual banks are more akin to the asymmetric median GVE}% and GVEé”u‘ti ; scores in table

4. For GVE}:{% and particularly GVEngij the median is less than the mean, which is consistent with

the distributions being positively skewed. This is intuitive for our sample because a relatively small
number of banks with very large GVE};"CZZ- and GVEéZdtJ is consistent with the number of banks that
have extensive branch networks, which, as a result, overlap with a lot of other networks. A larger number

of banks with small GVE};"% and GVEé’Zi ;» on the other hand, is in line with the majority of our sample

having much smaller branch networks, which leads to less overlap between the networks.
Note that GVEP™ + GVE[? = GVE] and GVEP"™ + GVEGWY . = GVEL .. We can see

In,i In,i Out,j"
therefore from table 4 that the sample means of GVE{;Ld and GVEg{i j push the sample mean GV ET°t

K Ing

and GVESZ% scores close to 1. Given how close the sample means of GVE}C;"; and GVEggf:j are to 1,

unsurprisingly GVE};ffi and/or GVEgZ’;,j greater than 1 is the case for a number of individual banks.

This indicates for these banks that GV EI"® and/or GVE(I)Z% ; have raised performance above the level

Ing
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of the own GV E frontier.

4.4 Spatial TFP Growth Decompositions with Asymmetric Bidirectional Spillovers

In figure 1 we present for the sample three annual average spatial TFP growth decompositions. In this
figure we express the spatial TFP growth decompositions as indices as we take the exponential of the
growth rates. In all three cases we decompose a spatial measure of TFP growth as each measure and its

components are partially/entirely made up of spillovers.

e First, we decompose the ATFPZ»D " measure into ATC’Z»D i ARTSZ-D " and AGVEiD i This measure
of spatial TFP growth and its components are partially made up of the same type of spillover as

they all contain feedback to a bank.

e Second, we decompose the ATFPI" measure into ATCI ARTSI and AGVEI™ and the

Ingi In, Ing In,
ATFPL  measure into ATCH ., ARTSS  and AGVESY . The ATFP{? and ATFPSY

measures of spatial TFP growth (and their corresponding components) differ as they are entirely
made up of spill-ins and spill-outs, respectively. In figure 1, however, we do not distinguish between
the inbound and outbound direction of the spillovers and thus between ATF Pi"? and ATF P(I)Zg j

Ing

and each of their corresponding components. This is because in this figure to concisely present

the decompositions of ATF Pﬁ;‘g and ATF P(I)Zij, for each year we average across the sample

giving ATFPII;Z? = ATF Pé’uﬁl’j, which is also the case for their corresponding components. As

we noted previously in the methodological part of the paper, to uncover firms that act as spatial
TFP growth centers we cannot use annual symmetric sample average indirect elasticities because
they yield ATFPI" = ATF P(I)Z? ;- We instead use annual asymmetric indirect elasticities for

Ing

individual banks, which we will provide evidence of further in this subsection. Using asymmetric
indirect elasticities is necessary to yield a group of banks with ATF Pg&f i ATFPI > 0, which

Ing
is our criterion to classify a bank as a spatial TFP growth center.

e Third, we decompose the ATF P measure into ATCL ARTST and AGVET and the

Ingi In, Ing In

ATFPOT{ZZ]. measure into ATC’gfij, ARTStht’j and AGVESZQJ. Recall that ATF Pt

Ing

ATFPP" + ATFP[Y and ATFPLY . = ATFPP" + ATFPLY . Since ATFPP”

ATFPJ»D", any difference between ATFP};% and ATFPgﬁ’j is entirely due to the difference

between ATF P{ﬁ‘f and ATF P(I)Zi ;- In figure 1 though ATF PI:’;L‘Z’; =ATF nga ;» which is also the
case for their corresponding components. This is because in this figure to concisely present the

decompositions of ATF P}% and ATF ng; ; for each year we average across the sample.

There are four overriding features of figure 1. First, as ATFP™? closely tracks ATFPT it is clear
that it is AT F P4 which is driving ATFPT and not ATFPP" . Second, there are a number of years
in our study period where AT F P is substantial, e.g., in 2005 — 2006 it is of the order of 8%. Third, in
terms of the components of ATF P it is evident that ART ST is basically the sole driver of AT F P"4
and, as a result, ARTST°" has a similarly important role in the calculation of AT FPT°!. Together these
findings highlight the importance of analyzing spatial returns to scale in U.S. banking (see Glass et al.,
2018b, for such an analysis). Fourth, as the two dark shaded areas in figure 1 represent the two recessions
in U.S. economic activity over our study period, we can see that there are clear downturns in ATF P4

during these recessions.?? There are not similar downturns in ATF PP in these recessions, which is

208trictly the dark shaded areas represent illustrations of the dates of the two recessions from the National Bureau of
Economic Research (NBER). The areas are only illustrative because we use annual data, whereas U.S. recessions are dated
by the NBER in months (quarters). The NBER dates of the two recessions in our study period are Mar (Q1) 2001-Nov
(Q4) 2001 and Dec (Q3) 2007-June (Q2) 2009.
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almost certainly because ATF P is more reflective of the economic environment in the U.S. banking
industry than ATEFPP". Our reasoning here is that AT F P is the result of spillovers between a bank
and its industry networks, whereas if we overlook the typically small feedback component, AT F PP
considers a bank net of its spatial interaction with other banks.

The key policy implication from the spatial TFP growth decompositions concerns the impact of
the suggestion that size caps should be imposed on very large U.S. banks. The background to this
suggestion relates to the key role of the “too-big-to-fail” (TBTF) status of very large U.S. banks in the
2008 financial crisis, as this status promoted excessive risk taking. To guard against a repeat of this risk
taking, the 2010 Dodd-Frank reforms involved: tightening the regulatory regime through, for example,
more stringent bank liquidity constraints; and establishing a formal process to resolve large bank failures
with the intention of ensuring that no bank is TBTF. Fisher and Rosenblum (2012), among others, argue
that Dodd-Frank could have gone further to prevent TBTF banks by introducing size caps on the very
large banks. From the perspective of a revenue based measure of TFP growth, our results do not support
such a policy. Our argument is that if such caps were introduced it would conceivably lead to negative
ART S because smaller banks would yield smaller spillovers. Based on our results this will then lead
to negative ATFPI™ and ATFPT! as ARTS™? is by far and away the biggest driver of both these
measures.

As we noted above, we use annual asymmetric indirect elasticities for individual banks to obtain an
annual asymmetry between ATFPg;?’ ; and ATF PII;Z’CZ-I for each bank. But we cannot concisely present
this annual asymmetry for individual banks for a sufficiently large proportion of the sample. For any
subset of the sample, however, the annual average ATF Péﬁil,j and ATF PII:’? are asymmetric. We
concisely demonstrate this asymmetry in figure 2 by presenting the annual average ATFPéZij and
ATF PII&? for the 1st and 5th quintiles of the AT F PIITZ? distribution in 2015. All the annual AT F P(I)Z‘i j

and ATFPII[Z"? in figure 2 for each quintile are therefore comparable because they are based on the same
subset of banks.

There is a lot of evidence in figure 2 of an annual asymmetry between ATFPéZ‘ij and ATFP]IS’?.
This is the case because in the blue shaded areas ATF PéZ‘i ;> ATF P[Igﬁ.l, which are the periods where
the 1st and 5th quintiles are, on average, net generators of TFP growth spillovers. In the red shaded
areas ATFP(I)Zi ; < ATF PII;ZCZ?, which are the periods where the 1st and 5th quintiles are, on average,
net recipients of TFP growth spillovers. Figure 2 also suggests that there are downturns in ATFP};?
for both quintiles around the two recessions. Interestingly, for the 1st quintile there is a downturn in
ATFPIIKC; that precedes and coincides with the second recession, whereas for the 5th quintile there is a

downturn in ATF PII;Z? that immediately follows this recession.

4.5 Spatial TFP Growth Centers and the Drivers

In figure 3 we present the geographical distribution of the branches of the banks that are net generators
of TFP growth spillovers in 2015, i.e., ATF Péﬁi i ATFPII;Z(Z > 0. The banks whose branches feature
in figure 3 are therefore classified as spatial TFP growth centers. In this figure we are particularly
interested in the red shaded areas as they represent the branches of the banks that are the largest spatial
TFP growth centers. As we would expect, figure 3 reveals that banks which represent the largest spatial
TFP growth centers tend to have branches that cluster together in parts of the northeast and in cities
elsewhere that are among the largest economies (e.g., Los Angeles and Chicago, to name but a couple).
In several smaller major state cities, however, a good example being Indianapolis, there are at best only
modest clusters of branches pertaining to banks that act as large spatial TFP growth centers. Having

established from figure 1 that the key driver of ATFP™® is the ARTS™? component, in figure 4 we
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Figure 1: Annual direct, indirect and total TFP growth decompositions for the sample
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Panel A: Asymmetric inbound and outbound indirect TFP growth
spillovers for the 5 quintile of the inbound distribution in 2015
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Panel B: Asymmetric inbound and outbound indirect TFP growth
spillovers for the 15t quintile of the inbound distribution in 2015
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Figure 2: Annual asymmetric bidirectional indirect TFP growth spillovers for selected quintiles
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Figure 3: Net generators of TFP growth spillovers in 2015

present for 2015 the geographical distribution of the branches of the banks that are net generators of
RTS growth spillovers. As figures 3 and 4 are clearly very similar, we conclude for 2015 that being a net
generator of RT'S growth spillovers is what determines whether a bank is a spatial TFP growth center.

The spatial TFP growth centers in figure 3 represents one part of the analysis of the net TFP growth
spillovers. This is because if there are banks that are spatial TFP growth centers there must be another
group of banks that derive net benefits from these centers. In figure 5 we focus on the other part of the
analysis as we present the geographical distribution of the branches of the banks that are net recipients
of TFP growth spillovers in 2015, i.e., ATF Péﬁ‘ij — ATF Pf;ﬁ < 0. In this figure we are particularly
interested in the dark shaded areas as they represent the branches of the banks that are the largest net
recipients of TFP growth spillovers. Comparing figures 3 and 5, we can see, as we would expect, that
the large net recipients tend to have branches that cluster near the branches of the banks that act as
large spatial TFP growth centers. This is less true in the northeast as the large net recipient banks do
not tend to have branches that cluster in this region. The large center banks with branches that cluster
in the northeast may instead be large spatial TFP growth centers because they have branches that are
near an international financial center.

As the magnitudes of the net TFP growth spillovers in the red and dark shaded areas in figures 3 and
5 are substantive, we examine these net spillovers in more detail by providing an insight into the banks
that are the largest net generators and largest net recipients. Recall that Berger and Roman (2017)
classify a U.S. bank with total assets between $1 billion and $3 billion in 2015 as medium-sized, and a
bank with total assets greater than $3 billion in 2015 as large. Based on this bank size classification,
in 2015 the largest 15 net generators and the largest 15 net recipients are an interesting mix of large
and medium-sized banks. In summary, both bank size categories are well represented in the largest 15
net generators as there are 7 medium-sized banks in this group. There are fewer medium-sized banks
in the largest 15 net recipients as this group includes 9 large banks. Among these groups is at least
one bank with total assets in the top 5 in the industry in 2015 as JP Morgan Chase is one of the 15
largest net recipients, and Bank of America and Wells Fargo are among the 15 largest net generators.
The smallest banks in the largest 15 net recipients are Woori America Bank ($1.45 billion) and First
Bank and Trust Company ($1.50 billion), where their total assets in 2015 are in parentheses. In the
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Figure 4: Net generators of returns to scale growth spillovers in 2015
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Figure 5: Net recipients of TFP growth spillovers in 2015
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Panel A: Pre-crisis (1998 — 2007)

or Less or More

Figure 6: Net generators of TFP growth spillovers over the two subperiods

largest 15 net generators the smallest banks are- Midwest Bank ($1.64 billion); Bear State Bank ($1.46
billion); Peoples Bank ($1.48 billion); First National Bank Texas ($1.41 billion); and Moody National
Bank ($1.09 billion). Such findings are informative for U.S. banking authorities as they provide new
insights into the different sizes of banks that play key roles in the transmission of productivity spillovers.

Using figure 6 we examine to what extent the large spatial TFP growth centers in 2015 (figure 3)
are similar to those for other portions of our study period. In particular, in panels A and B of figure
6 we present the geographical distributions of the branches of the banks that are, on average, classified
as spatial TFP growth centers over two subperiods- pre-crisis (1998 — 2007) and crisis and beyond
(2008 — 2015). To construct figure 6 we use the branch networks for what is approximately the median
year in each subperiod (2002 and 2011).

Comparing the locations of the branches in figures 3 and 6 of the banks that act as large spatial TFP
growth centers, where these locations are represented by red shaded areas, gives rise to two key findings.
The first is that throughout our study period the banks that act as large spatial TFP growth centers have
branches that tend to cluster together in the same locations (the northeast and cities elsewhere with large
economies). This indicates that figure 3 is a robust reflection of the branch locations of the banks that
act as large spatial TFP growth centers in other portions of our study period. Our second key finding
is the increase in the size of the red shaded areas in figure 3, vis-a-vis those in figure 6 (particularly
those in panel A). In other words, over our study period we observe an increase in the clustering of the

branches of the banks that act as large spatial TFP growth centers, which indicates that these clusters
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are becoming an increasingly prominent feature of the industry. As we observed from figure 4 for 2015,
for both subperiods we find that being a large net generator of RT'S growth spillovers is what determines

whether a bank represents a large spatial TFP growth center.?!

5 Concluding Remarks

Our quantitative analysis of productivity centers is the first of its type. The two closest related literatures
to our analysis are the quantitative studies of hubs and a study by Pesaran and Yang (2019). The
quantitative literature on hubs has thus far focused on uncovering the optimal locations of hubs in
transportation and logistics (T&L) networks, or on estimating the impact of hubs on a particular variable
when the hubs are selected in advance of the modeling because they are well-known. We add a new
dimension to this literature because our paper does not fit into either of these two strands, as we do
not consider T&L networks or analyze the effect of productivity centers that are easily observed and
can therefore be selected in advance of the modeling. Instead we consider a large number of firms in an
industry when it is not immediately obvious which firms act as spatial economic performance centers,
which is often the situation in practice. Our principal contribution therefore is to set out the first method
to sift through a large number of firms to uncover which firms act spatial TFP growth centers. We use
spatial TFP growth as our spatial measure of economic performance as TFP is widely recognized as a
comprehensive measure that incorporates both demand and supply changes. A feature of our method is
that it is not confined to spatial TFP growth and can be easily applied to any spatial measure to uncover
firms that represent various types of spatial center. For example, one could estimate a spatial model
of the number of patents for a sample of hi-tech firms and use the patent spillovers from the model to
uncover which firms represent technical innovation centers.

There are parallels between our analysis and Pesaran and Yang’s study, but whereas our approach
operates at the micro level of a large number of firms, their method focuses on the macro level. In
particular, they analyze how the sectors that make up a country’s production network affect its aggregate
output. Their model is based on each sector using the outputs of other sectors as intermediate inputs,
but in the context of our micro setting this may not be appropriate for many industries. This is because
firms may not use the outputs of the other firms’ in the industry as inputs, and in industries where they
do, data on this interfirm economic interaction may not be in the public domain. For example, banks
interact in this way through interbank lending, but data on such lending is not publicly available, which
necessitates that we use our alternative method.

By developing and applying our method to uncover spatial TFP growth centers we make three further
contributions. The first two are methodological and are extensions of the method in G&K for their spatial
TFP growth decomposition, while the third relates to our application. First, as a spatial stochastic
frontier model must first be estimated before one can implement a spatial TFP growth decomposition,
rather than follow G&K and estimate a spatial stochastic frontier model with a single SAR variable,
we introduce a more sophisticated model that contains multiple SAR variables. Via the multiple SAR
variables our new model accounts for spatial interaction in multiple networks, which is likely to be more
representative of what is actually the case because a firm may often simultaneously belong to a number
of networks. Second, we obtain asymmetric bidirectional spatial TFP growth decompositions. We do
so by complementing the unidirectional decomposition in G&K, where the spillover components are

spill-ins to a firm, with the corresponding decomposition that includes spill-out components. Third, we

2IFor brevity we do not present the corresponding maps of the branch locations of the banks that are net generators of
RT'S growth spillovers over the two subperiods. These maps are available from the corresponding author on request.
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complement G&K’s application of their unidirectional decomposition to U.S. banks using a spatial cost
frontier, by focusing on the income side of the industry via bidirectional decompositions from a spatial
revenue frontier.

From our application we find that the banks which act as large spatial TFP growth centers tend
to have branches that cluster together in the same areas throughout our study period. As we would
expect, these areas are the northeast and cities elsewhere that are among the largest economies (e.g.,
Los Angeles and Chicago). Over our study period we find that the clusters of branches of the banks
that act as large spatial TFP growth centers increase in size, which indicates that these clusters are
becoming an increasingly prominent feature of the industry. We do, however, observe several smaller
major state cities where at best the clusters of branches of the banks that act as large spatial TFP growth
centers are modest. We cited Indianapolis as a good example where the large center banks have at best
a modest cluster of branches, which is also what we observe in Pittsburgh, Tulsa, El Paso, Columbus

(OH), Cleveland (OH) and Albuquerque.
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Appendix: Technical Details of the Model Estimation Procedure
The log-likelihood function for Eq. 4 is as follows.

NT
LL=—=-log (2m§%) + Tlog Iy — 0, Wy — ... — 627 Wi —
i N N 42
Zwijlmg'tﬂl + ... 01 Ewijlyjt + ...
Lo J}/ 6 _ Jj=1 _ Jj=1 _
1 N T | Yit it N N
552 5 +ZwZ]M:th19M +5M2w,~jMyjt , (A1)
Oco i=1t=1 J— j=1

70 — Z w1761 —
Jj=1

j=1

.= Z wijMf;fM — 6;?

where I is the (N x N) identity matrix and T'log [In — 61 W1 — ..

. — 0y W | represents the contribu-

tion to the log-likelihood from the Jacobian of the transformation from €5, to ;:.>* Following the simpler
model with a single SAR variable and as is standard in the spatial literature, the transformation from
€5, to y;r accounts for the endogeneity of the M SAR variables (Anselin, 1988, pp. 63; Elhorst, 2009).
Differentiating Eq. Al with respect to €7, solving this derivative for 7, and substituting in for € in
Eq. Al yields (after rearranging) the concentrated log-likelihood function for step 1 of the estimation
procedure (Eq. A2). This function is with respect to 3, ¥, 6, ¢ and &, where we use ¥, § and £ to

collectively denote ¥4, ..., 95, 01,...,0p and &1, ..., .
NT
LLc ( 5’59%5’ > =~ log (27m ) +Tlog[In — 01 W1 — ... — 0y Wnm| —
- N . 2
Zwij1$;-§’l91 4+ ... 01 Zwmyﬁ + ..
— —
1 N T yzt - xztﬂ - ! N - ” N
— Z +ZwijM$9*t?9M +0p szgMyjt )
2050tz 1t=1 j=1 j=1
i N
(= 2 win T — e — YD wigMT M
L j=1 J=1 -
(A2)

where an asterisk denotes the transformations of y;; and z, into the quasi-differenced Variables in Eqs

A3 and A4. The resultlng transformed error €5 is in square brackets in Eq. A2, where Z*

and Zj:l Wijm T} = 7 Zt:l Zj:l WijmT ;-

Vi =yit — (L —1) nym
t=1
I£3 1 I
Ly = :L“ (1 - T) Tt Izt?

TZtl

(A3)

(A4)

where 7 denotes the weight attached to the cross-sectional component of the data and 0 < 72 =

0520 / (TU?O +ago> < 1. For the reasons given in subsection 2.1 we rule out 7 =
it i it

0 to prevent our

model collapsing to the fixed effects specification. When 7 = 0 we can see that the transformed mean
variables get eliminated from Eq. A2 and the x transformation of the other variables becomes the

demeaning procedure used to estimate a fixed effects model.

22To simplify the notation in Eq. Al we subsume a° into x},.
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To obtain the estimates of 41, ...,y we use the concentrated log-likelihood function in Eq. A5.

NT
LLc (01,...,00) =@ — Tlog [(ef — 01e} — ... — Onrehy) (e — d1el — ... — dueds)] +

Tlog |IN — 51W1 — . 5MWM| s (A5)

where @ is a constant that does not depend on d1,...,05. ej and ej,...,e},; denote vectors of or-
dinary least squares (OLS) residuals from regressing y; and (It ® Wi)y;,..., (It ® Wpn)yS on
Z; = {X:,WlXig,...,WMX:,X*,Wli*,...,WMX*}. Here the variables are denoted as stacked
cross-sections for ¢ € 1,..,T, It is the (T x T') identity matrix and ® denotes the Kronecker prod-
uct. As Eq. A5 can only be solved numerically because closed form solutions for 4y, ...,y do not
exist, before we begin the iterations of Eq. A5 and in line with the approach of Pace and Barry
(1997) for the simpler case of a spatial model with a single SAR variable and no inefficiency compo-
nent(s), we calculate log|In — 01 W1 — ... — Iy Wpm| for a large number of combinations of values of

01,00 € {ﬁ
min( {0, fF)

tions of values of 6y, ...,03s based on 0.001 increments over the above feasible range.
Using p to collectively denote the 3, 91, ....,9, ¢ and &1, ..., Ear vectors of parameters and given the

estimates of d1,...,0,7, the estimators of p and 030 are as follows.
it

,1|. In particular, we calculate log [In — 31 W1 — ... — d3y W] for combina-

. Wy =1 s F=o1 (I Wiy — ...

p="bo—Oib — ..~ Onrbar = (2727) " 2 | —(5]1\/[((;‘T®® leﬁtyf ’ (88)
=~ 1 * * * * * *
O'ggt = ﬁ (60 - 5161 — . — (SMeM), (60 - 5161 e — 5M€M) y (A?)

where bg and by, ..., bys are the slope estimates from the OLS regressions of yf and (It @ W1)yf, ..., It ®
Wwm)y; on Zf. Given the estimates of p and afc_,t, we calculate the estimate of 7 using the following
concentrated log-likelihood function.

NT N
LLo(T) = 5 log [e7"*] + 5 log 72, (A8)

where an element of the vector £°* is €3}, which, as we noted above, is given in square brackets in Eq.
A2.

We use the following concentrated log-likelihood function to estimate Ay, in step 2, and thus begin
the process of splitting &;; into estimates of the idiosyncratic error v;; and own time-varying inefficiency
Uit

~ NE g;?t)\uv 1 XX ~02
LLC’()‘MJ) = *NTlogo-uv + Z Z log |:]- - < G >:| - 252 Z Eit » (Ag)

i=1t=1 uv Opvi=1t=1

where £52 is from step 1, ® is the standard normal cumulative distribution function and

s L%wz Lo 2a 1Y (A10)
T = \NTE m(1+A%,) '

Substituting Xm, from maximizing LLc(Ayy) into Eq. A10 gives the maximum likelihood estimate of
ow- As noted in subsection 2.2, we then also in step 2 use /):m,, 0w and the relevant other estimates to
calculate the consistent estimate of own time-varying inefficiency w;; (conditional on £;;). In particular,
we compute U;; using the well-established Jondrow et al. (1982) estimator.

In step 3 we split £; into own time-invariant inefficiency 7); and the random error component of the firm
specific effect that is uncorrelated with the regressors ;. We do so by using the corresponding approach
to step 2, which involves using &7 from step 1. Accordingly, using the corresponding equation to A9
LLc(Aye) is maximized to compute Xnm which is then used to calculate o, using the corresponding
equation to A10. Xm@ and &,,;, among other things, are then used to calculate the consistent estimate of
n; (conditional on ¢;) using the corresponding equation to 5 in subsection 2.2.
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