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ABSTRACT  

Hierarchical Cu2O nanospheres with a Pompon Dahlia-like morphology were prepared by a one-pot synthesis 

employing electrostatic self-assembly. Nanocomposite analogues were also prepared in the presence of reduced 

graphene oxide (rGO). Photophysical properties of the hierarchical Cu2O nanospheres and Cu2O/rGO 

nanocomposite were determined, and their photocatalytic applications evaluated for photocatalytic 4-

chlorophenol (4-CP) degradation and H2 production. Introduction of trace (<1 wt%) rGO improves the apparent 

quantum efficiency (AQE) of hierarchical Cu2O for H2 production from 2.23 % to 3.35 %, giving an increase 

of evolution rate from 234 μmol.g-1.h-1 to 352 μmol.g-1.h-1 respectively. The AQE for 4-CP degradation also 

increases from 52 % to 59 %, with the removal efficiency reaching 95 % of 10 ppm 4-CP within 1 h. Superior 

performance of the hierarchical Cu2O/rGO nanocomposite is attributable to increased visible light absorption, 

reflected in a greater photocurrent density. Excellent catalyst photostability for >6 h continuous reaction is 

observed. 
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1. INTRODUCTION  

Global energy and health challenges arising from anthropogenic fossil fuel usage (and resulting climate change) 

and contamination of aquatic environments is driving the development of environmentally benign technologies 
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for energy production/storage and wastewater treatment.[1] Solar energy has emerged as a key resource to 

address such challenges,[2] both through direct electric power generation, and harnessing by semiconductor 

photocatalysts for aqueous phase H2 evolution, CO2 reduction and pollutant degradation, and antimicrobial 

coatings.[3, 4]  

 

Many transition metal oxide semiconductors possess tunable bandgaps and favourable conduction and valence 

band energies to efficiently separate photoexcited electron(e-)-hole(h+) pairs.[5] Significant research effort has 

focused on strategies to tune the photophysical properties of oxide semiconductors by modifying their 

surface/interface properties through crystal facet engineering, the formation of phase junctions or 

heterojunctions, and the incorporation of co-catalysts, with the goal of efficient solar light harvesting and 

improved charge carrier separation/energy matching (and hence high activity and selectivity) to the selected 

reactant and desired product.[6, 7] Copper (I) oxide is an abundant and low-cost p-type semiconductor with a 

direct (forbidden) band gap of 2.17 eV and optical band gap of 2.62 eV,[8] which is favourable for overall 

photocatalytic water splitting to produce H2 under visible light (600 nm) irradation.[9] Cu2O has a high 

optical absorption coefficient, with a high theoretical H2 conversion efficiency of 18 % for water splitting,[10] 

and power conversion efficiency of 20 %, and hence finds widespread application in photocatalysis 

environmental pollutant remediation[11-13] and solar cells.[14] However, the reduction and oxidation 

potentials of Cu2O lie within its bandgap resulting in poor photostability,[10] and rapid recombination of 

photogenerated charge carriers occurs.[15]  

 

Various structural modifications of Cu2O have been investigated to overcome these limitations, with different 

morphologies such as nano-wires[16], cubes[17], flowers,[18] and spheres,[19] offering significant 

improvements in photophysical properties for photocatalytic applications. Size and morphology of Cu2O 

nanostructures determine their resulting chemical and physical properties.[20] Hierarchical semiconductors 

have gained recent interest as they can offer additional control of electronic and optical properties.[21] We 

reported a hierarchical Cu2O photocatalyst comprised of individual nanoparticles assembled into porous 

nanocubes that exhibited a promising hydrogen productivity (water splitting) 15 mol g-1.h-1 corresponding to 

an apparent quantum efficiency (A.Q.E) of 1.2 % in the presence of a Pt co-catalyst.[22] Hierarchical structures 

also offer improved mass transport to confer higher photocatalytic activity,[23] although existing fabrication 

routes often employ disposable templates, high temperatures (170 C),[24, 25] and/or coatings, which increase 

catalyst production cost and time.[26]  

 

Graphene is a two dimensional monolayer of sp2 hybridised carbon atoms, which due to its unique physical and 

electronic properties, has attracted global scientific interest and investment since its formal discovery/isolation 

in 2004.[27, 28] The reduced form of the oxide of graphene, reduced graphene oxide (rGO), exhibits a high 

surface area, tunable band gap, and excellent electron mobility.[29] rGO surfaces also possess a variety of 
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chemically reactive oxygen functionalities that render it a versatile catalyst support and amenable to mixing 

with other semiconductors to form hybrid semiconductor composites with potentially superior photocatalytic 

properties.[30-32] Indeed, graphite and rGO nanosheets have been explored as supports for dispersing Cu2O 

and TiO2 respectively. The carbonaceous supports have been reported to facilitate photoexcited charge 

separation and hence improve photocatalytic activity and photostability of Cu2O),[11, 33] and is related to 

reports of thin protective carbon layers produced by glucose carbonisation which significantly increase the 

photocurrent density and photostability of Cu2O for photoelectrochemical water splitting.[34] 

 

Herein we report the one-pot hydrothermal synthesis and photocatalytic application of hierarchical Cu2O 

nanospheres and corresponding Cu2O/rGO nanocomposites for 4-chlorophenol (4-CP) degradation and H2 

production under visible light. 4-CP was selected as a hazardous, recalcitrant organic compound present in waste 

water effluent from diverse industrial processes (e.g. pulp and paper, textile and petroleum sectors), and unlike 

organic dyes does not act as a catalyst photosensitiser. Intermixing rGO and hierarchical Cu2O nanospheres 

improved photocatalytic activities (and apparent quantum efficiencies) for both reactions relative to the 

nanospheres alone, without requiring a precious metal co-catalyst or external bias, associated with improved 

visible light absorption by the nanocomposite. In addition, photodegradation of 4-CP favoured less toxic organic 

oxidation products.  

 

2. EXPERIMENTAL 

2.1. Chemicals 

Copper (II) chloride (CuCl2, 97 %, Aldrich), polyethylene glycol (Alfa Aesar, MW600), sodium hydroxide 

(NaOH, Sigma), hydrazine monohydrate (H4N2.H2O, Alfa Aesar, 98 %), ethanol (Fisher chemicals, 9.8 %), rGO 

(Sigma), 4-Chlorophenol (C6H5ClO, Acros organics, 99 %), chlorohydroquinone (Sigma, 85 %) Chlorocatechol 

(Sigma, 97 %), fumaric acid (Sigma, 99 %), sodium sulfate (Na2SO4, Sigma, 99 %), sodium sulfite (Na2SO3, 

Sigma, 98 %), potassium bromide (KBr, Sigma, 99 %), Nafion (Sigma), H2O HPLC grade (Sigma), and 

acetonitrile HPLC grade (Sigma, 99.93 %) were used without purification. Deionised water was used for all 

solutions.  

 

2.2. Synthesis of hierarchical Cu2O/rGO  

A pompon Dahlia (flower)-like Cu2O/rGO catalyst was synthesised by solution phase chemistry under ambient 

conditions. GO (2 mg) prepared following a literature method[35] was ultrasonicated in 10 mL water for 30 

min, to which a mixture of 50 mL of 0.2 M copper chloride and 5 mL of 0.06 M PEG-600 was added and 

followed by a further 10 min ultrasonication. The resulting mixture was then heated to 60 C under stirring for 

30 min, resulting in a deep blue solution. Subsequently, 8 mL of 2 M NaOH was added into the preceding deep 

blue solution, and followed by the dropwise addition of 1 M aqueous hydrazine monohydrate (H4N2.H2O) (1 

mL in 5 mL of water) under stirring for an additional 5 min. The reaction mixture was then transferred to 20 

mL cold water in a multi-neck round-bottomed flask and purged under N2 for 30 min to promote the formation 
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of Cu2O (brownish-yellow colour change). The resulting solid was separated from the reaction mixture by 

centrifugation at 6000 rpm for 10 min, washed with H2O and then ethanol to remove residual PEG, and finally 

vacuum dried for 24 h and stored in a vacuum desiccator. Cu2O is formed through the initial complexation of 

Cu(II) ions with PEG and rGO, and subsequent precipitation as the Cu(I) oxide by hydrazine reduction in the 

presence of NaOH. Hydroxyl groups from PEG and rGO likely play an important role in controlling the Cu(II) 

ion density and directing the formation of hierarchical Cu2O structures. The above method was repeated in the 

absence of GO to prepare pure Dahlia (flower)-like Cu2O with morphologies akin to those reported by Kow et 

al.[36] In both cases, the final catalysts were a reddish-orange colour, and produced in ~540 mg yield. The 

theoretical rGO concentration in the hierarchical Cu2O/rGO nanocomposite was ~0.4 wt% 

 

2.3. Physicochemical Characterization 

Crystallinity and phase indexing was performed by powder X-ray diffraction (XRD) using a Bruker-AXS D8 

ADVANCE diffractometer operated at 40 kV and 40 mA and Cu K radiation (=0.15418 nm) between 2 10-

80 in 0.02 steps. X-ray photoelectron spectroscopy (XPS) was undertaken on a Kratos Axis HSi spectrometer 

with monochromated Al K X-ray source operated at 90 W and normal emission, with magnetic focusing and 

a charge neutraliser. Spectra were fitted using CasaXPS version 2.3.16, with energy referencing to adventitious 

carbon at 284.6 eV, and surface compositions derived through applying appropriate instrumental response 

factors. TEM microscopy was performed on a JEM-2100Plus microscope operated at 200 kV (Warwick 

University, UK); samples were dispersed in ethanol and ultrasonicated for 5 min and then drop coated on Cu 

grid coated with carbon film. Brunauer–Emmett-Teller (BET) surface areas were obtained by N2 physisorption 

at 77 K using a Quantachrome NOVA 4000e porosimeter on samples degassed at 120 C for 4 h. Surface areas 

were calculated over the relative pressure range 0.01-0.2, and BJH pore size distributions calculated from the 

desorption branch of the isotherm for relative pressures >0.35. Diffuse reflectance UV-vis absorption spectra 

(DRUVS) were recorded on a Thermo Scientific Evo220 spectrometer using an integrating sphere, and KBr as 

a standard, with band gaps determined between 200-800 nm. Steady state photoluminescence (PL) spectra were 

measured on a F-4500FL spectrophotometer using 560 nm excitation. Time-resolved photoluminescence 

(TRPL) spectra were measured on an Edinburgh Photonics FLS 980 spectrometer using pulsed picosecond LED 

light and 560 nm excitation. 

 

2.4. Photoelectrochemical Characterization 

A three electrode photoelectrochemical cell was used, comprising a Pt wire counter electrode and Hg/Hg2SO4 

reference electrode. The photoelectrochemical measurements were converted to the reversible hydrogen 

electrode (RHE) using Eq. 1: 

 Ε 𝑉 𝑣𝑠.  𝑅𝐻𝐸 =  Ε
 𝑉 𝑣𝑠.  

𝐻𝑔

𝐻𝑔2𝑆𝑂4

+  Ε 𝐻𝑔

𝐻𝑔2𝑆𝑂4

+ 0.059 𝑝        1          

The working electrode was prepared by dropcasting 5 μL of a homogeneous colloidal suspension on a 3 mm 

diameter glassy carbon electrode. The colloid was prepared by 30 min sonication of a catalyst and Nafion 
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dispersed in a water/ethanol mixture (0.5 mL, 1:1 v/v). Nitrogen degassed 0.5 M Na2SO4 was used as the 

electrolyte with a pH of 6.8. Irradiation was performed using a 200 W Hg-Xe arc lamp ((Oriel Instruments 

66002, 420 nm). Nyquist plots were recorded under illumination and in the dark on an Autolab potentiostat 

with Nova software using a 10 mV AC signal applied between 100 kHz to 0.1 Hz, and Mott-Schottky plots 

were recorded at 1000 Hz (under illumination and in the dark) using a DC signal spanning -1 to 0 V in 10 mV 

potential steps. 

 

2.5. Photocatalytic H2 evolution 

Photocatalytic H2 production was performed using hierarchical Cu2O and Cu2O/rGO photocatalysts in a sealed 

quartz photoreactor (384 mL volume) with a 200 W Hg-Xe arc lamp (Oriel Instruments 66002) and 420 nm 

cut-off filter to remove UV light; the light intensity inside the reactor was 43.7 mW.cm-2. Catalysts (20 mg) 

were dispersed in 45 mL water with 5mL methanol as a sacrificial hole scavenger and sonicated for 5 min to 

obtain a uniform distribution. The photoreactor was then purged with He for 1 h in the dark to remove dissolved 

oxygen, prior to visible light irradiation. Aliquots of gas from the reactor headspace were periodically withdrawn 

during irradiation using a 1 mL gas syringe and injected into a Shimadzu Tracera GC-2010 Plus gas 

chromatography fitted with a Carboxen1010 capillary column (30 m×0.53 mm×0.1 µm) and barrier ionization 

detector (using a He carrier) for gas analysis. 

 

2.6. 4-CP photocatalytic degradation 

Photocatalytic 4-CP degradation was performed in a sealed quartz photoreactor (260 mL) using a 200 W Hg-

Xe arc lamp with 420 nm cut-off filter, and the temperature maintained at 25 C by a Huber Minichiller. Catalyst 

(20 mg) was dispersed in 50 mL of 7.78 ×10-5 M aqueous 4-CP solution by 7 min ultrasonication in the dark 

and stirred for a subsequent 120 min in the dark to equilibrate molecular adsorption. Aliquots (1 mL) were 

periodically withdraw from the reaction mixture for HPLC analysis. Post-reaction catalysts were separated by 

centrifugation at 8000 rpm for 10 min, and then vacuum dried and stored in a vacuum desiccator for 

characterisation. Concentrations of 4-CP and chlorohydroquinone (Cl-HQ), 4-chlorocatechol (4Cl-CC) and 

fumaric acid (FA) products were determined from multi-point calibration curves of reference compounds using 

an Agilent 1260 Infinity Quaternary HPLC equipped with UV diode array and refractive index detectors; an 

Agilent Zorbax Eclipse plus C18 column was employed at 35 °C using 1 mL/min of a 30 vol% acetonitrile/70 

vol% water (HPLC grade) mobile phase, and 280 nm detection. The extent of 4-CP removal, and product 

selectivity’s were calculated from Eqs. 2 and 3 respectively: 

% 4CP removal =  
4CP𝑖𝑛𝑖𝑡𝑖𝑎𝑙−4CP𝑓𝑖𝑛𝑎𝑙

4CP𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 × 100    2 

 

where, the 4CPinitial and 4CPfinal are the mols of 4-CP at the start and end of the irradiation period. 

 

% Selectivity =  
mols Product

(4CP𝑖𝑛𝑖𝑡𝑖𝑎𝑙−4CP𝑓𝑖𝑛𝑎𝑙)
 × 100    3 
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3. RESULTS AND DISCUSSION 

3.1. Structure, photophysical and electronic properties  

The synthetic route to Pompon Dahlia-like Cu2O/rGO is illustrated in Scheme 1. The Cu(II)-PEG complex was 

added to graphene oxide to form a hybrid inorganic-organic nanostructure. Complexed Cu(II) ions were 

subsequently precipitated by NaOH (presumably as the hydroxide) and then reduced to Cu2O by hydrazine, in 

parallel with reduction of the graphene framework,[37] to form a hierarchical Cu2O/rGO nanocomposite. PEG 

likely acts as a structure-directing agent promoting the formation of discrete Cu2O nanoparticles which coalesce 

around rGO. A related (albeit template-free) aggregation of hollow Cu2O microstructures via hydrazine 

reduction is reported in the literature, however neither the photophysical properties nor catalytic performance 

were described.[38] 

 

 

Scheme 1. Synthesis of a Pompon Dahlia-like Cu2O/rGO nanocomposite photocatalyst. 

 

The morphologies of hierarchical Cu2O and the Cu2O/rGO nanocomposite were examined by TEM and SEM 

(Figures 1 and 2). TEM of hierarchical Cu2O shows ~400-500 nm aggregates of spherical Cu2O nanoparticles 

(mean size ~50 nm) in good agreement with SEM images (Figures S1). 
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Figure 1. (a-d) TEM images of Pompon Dahlia-like hierarchical Cu2O. Insets show particle size distributions 

(a) for the individual Cu2O nanoparticles and (b) for the aggregates, and (c) a corresponding SEM image of the 

aggregates. 

 

Corresponding TEM images of the hierarchical Cu2O/rGO nanocomposite also present semi-transparent 

graphene oxide sheets that exhibit folds and wrinkles (Figure 2a-d) which are in intimate contact with the Cu2O 

aggregates possibly driven by electrostatic interactions arising from reduction of the parent graphene oxide.[39] 

Cu2O aggregates and individual particles in the nanocomposite were slightly smaller than those of the free 

hierarchical Cu2O, being 250-400 nm (Figure 2a inset) and 15-30 nm (Figure 2c inset) respectively. Aggregates 

still exhibited a Pompon Dahlia-like morphology (Figure 2b inset and Figure S1).  
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Figure 2. (a-d) TEM images of Pompon Dahlia-like hierarchical Cu2O/rGO nanocomposite. Insets show particle 

size distributions (a) for the aggregates and (c) for individual Cu2O nanoparticles, and (b) a corresponding SEM 

image and (d) high resolution TEM image of the aggregates. 

 

Phase analysis by XRD confirmed the exclusive formation of crystalline Cu2O (Figure 3a) in the hierarchical 

Cu2O and Cu2O/rGO nanocomposite, indicated by peaks at 29.56°, 36.41°, 42.31°, 61.36°, and 73.50° 

associated with characteristic (110), (111), (200), (220), (311), and (222) reflections of pure Cu2O phase (JCPDS 

03-0898)[40] and lattice constants a=5.19; b=5.08, c=11.69 and =90.38. The absence of reduced graphene 

oxide reflections ~25  peaks is ascribed to its very low concentration (<0.4 wt%) in the nanocomposite.[41, 

42] Volume-averaged crystallite sizes calculated from the Scherrer equation reveal similar (15 nm) Cu2O 

nanoparticles for both materials, suggesting the rGO matrix exerts little impact on the precipitation and 

reduction of the copper precursor. Textural properties of the hierarchical Cu2O and Cu2O/rGO nanocomposite 

revealed identical, low BET surface areas of 13 m2.g-1 (Table 1) comparable to those previously reported for 

single crystal Cu2O-rGO composites,[43] and identical BJH pore size distributions (Figure S2) indicative of ~2 

nm mesopores presumably associated with voids between individual Cu2O nanoparticles in the aggregates. The 

mesopore volume of the nanocomposite was similar to that of the hierarchical Cu2O. Optical absorption 

properties of the two materials were studied by DRUVS (Figure 3b); although both exhibited broad absorbance 
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between 200-600 nm consistent with literature reports,[43, 44] the band edge of the Cu2O/rGO nanocomposite 

was red-shifted. Optical band gaps Eg were calculated from the corresponding Tauc plots (Figure 3c) using Eq. 

4: 

𝛼ℎ𝑣 = 𝐴(ℎ𝑣 − 𝐸𝑔)          4 

 

where A is the absorption coefficient and  the linear absorption coefficient determined from the Kubelka-Munk 

formalism in Eq. 5: 

𝑎 =
(1−𝑅)2

2𝑅
                5 

 

The resulting direct band gaps were 2.42 eV and 2.13 eV for hierarchical Cu2O and the Cu2O/rGO 

nanocomposite respectively. Since rGO shows weak adsorption >400 nm,[45] the red shift in the nanocomposite 

must arise from interfacial contact between rGO sheets and Cu2O and a change in the oxide valence band (VB) 

and/or conduction band (CB) energies, as previously reported.[46] Such band gap narrowing increase light 

absorption which could enhance visible light photocatalysis.[43] Note that the Cu2O band gap is reported to 

vary between 2.1-2.6 eV, being sensitive to quantum confinement effects and heterojunction formation.[14, 47] 

 

Table 1. Photophysical properties of Pompon Dahlia-like hierarchical Cu2O and Cu2O/rGO nanocomposite. 

Sample Crystallite 

sizea 

/ nm 

Particle 

sizeb 

/ nm 

BET 

surface 

areac 

/ m2.g-1 

BJH 

mesopore 

volume 

/ cm3.g-1  

Band 

gapd 

/ eV 

CB edge 

potentiale 

/ eV  

VB edge 

potential 

/ eV 

Hierarchical 

Cu2O 

15.3 400-500 13 0.064 2.42 -1.12 +1.3 

Hierarchical 

Cu2O/rGO 

14.7 250-400 13 0.054 2.13 -1.03 +1.1 

aXRD, bTEM. cN2 porosimetry. dDRUVS. eCalculated from valence band XPS and DRUVS. 
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Figure 3. (a) XRD patterns, (b) DRUV spectra and (c) corresponding Tauc plots, and (d) N2 adsorption-

desorption isotherms of Pompon Dahlia-like hierarchical Cu2O and Cu2O/rGO nanocomposite. 

 

The surface copper oxidation state was quantified from high resolution Cu 2p XP spectra (Figure 5a), with the 

hierarchical Cu2O and Cu2O/rGO nanocomposite dominated by spin-orbit split doublets with 2p3/2 binding 

energies of 932.2 eV and 934.4 eV indicative of Cu2O and Cu(II) carbonate dihydroxide respectively, and a 

weak shake-up satellite at 943.4 eV associated with Cu(II) species. The absence of Cu(II) XRD features suggests 

that Cu2(OH)2CO3 arises from the post-synthetic reaction of Cu2O nanoparticle surfaces with the surrounding 

atmosphere.[48] Spectral fitting reveals that the surfaces of both hierarchical materials predominantly comprise 

Cu2O (Table S1) with that of the nanocomposite somewhat enriched (88 % versus 79 %). Corresponding C 1s 

XP spectra revealed almost identical distributions of three distinct chemical environments for both hierarchical 

materials at 284.6, 286.2, and 288.3 eV (Figure 5b), respectively assigned to the alcohol and ether functions of 

PEG and surface carbonate.[11, 49] A small increase in the sp2 carbon environment was observed for the 

Cu2O/rGO nanocomposite consistent with graphene incorporation (Table S2).[48] O 1s spectra were consistent 

with these assignments, exhibiting three distinct chemical environments at 531.4, 533.4, and 535.8 eV arising 
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from Cu2O, carbonate, and PEG ether species (Figure S3), with an enhanced Cu2O contribution for the 

nanocomposite consistent with a higher Cu(I):Cu(II) atomic ratio and less surface carbonate. 

 

Charge carrier separation and hence photocatalytic performance depend on the electronic band structure, band 

alignment and interfacial contact of photocatalysts.[50] Band energies were investigated by valence band XPS 

(Figure S4a-c); the VB potential maxima of hierarchical Cu2O and the Cu2O/rGO nanocomposite were +1.30 

and +1.10 eV respectively relative to the Fermi level, and corresponding CB minima edges (derived from the 

optical band gap and valence band XP spectra) were -1.12 eV and -1.03 eV for Cu2O/rGO. The CB minimum 

is therefore unaffected by formation of the Cu2O/rGO heterojunction, albeit more negative than previous reports 

(e.g. -0.42 for oxygen-deficient Cu2O nanoparticles[51]), and in both cases much greater than required for 

photocatalytic hydrogen production from water (−0.65 eV at pH 7).[52, 53]  

 

  

Figure 5. (a) Cu 2p and (b) corresponding C 1s XP spectra of Pompon Dahlia-like hierarchical Cu2O and 

Cu2O/rGO nanocomposite. 

 

3.2. Photocatalytic H2 production  

The photocatalytic activity of the hierarchical Cu2O and Cu2O/rGO nanocomposite for H2 evolution for 

sacrificial water splitting was assessed under visible light irradiation in the presence of methanol as a sacrificial 

hole scavenger (Figure 6a-b). No evolved oxygen was observed for either catalyst. Hydrogen productivities of 

18 μmol.g-1.h-1 and 31 μmol.g-1.h-1 were measured for the hierarchical Cu2O and Cu2O/rGO nanocomposite 

respectively, with negligible deactivation during 14 h operation. Increasing the methanol concentration to 10 

vol% conferred an almost quantitative increase in H2 productivity, which reached 234 μmol.g-1.h-1 for the 

hierarchical Cu2O and 352 μmol.g-1.h-1 for the hierarchical Cu2O/rGO nanocomposite, suggesting that charge 

carrier recombination is rate-determining for hydrogen evolution over both materials. The greater activity of the 

925935945955

C
u

 2
p

 X
P

 i
n

te
n

s
it
y

Binding energy / eV

277280283286289

C
 1

s
 X

P
 i
n

te
n

s
it
y

Binding energy / eV

Cu2O

Cu2O/rGO

(a) (b)

Cu2O

Cu2O/rGO

Cu(I)

Cu(II)
Cu(II) satellite

O=C-O

958 948 938 928 283 280286289292

C-OH/C-O

C-C/C-H



12 

 

nanocomposite equates to an apparent quantum efficiency (AQE) of 3.35 % versus 2.23 % for the hierarchical 

Cu2O (Figure S5). Interfacing the Cu2O semiconductor with rGO nanosheets to form a heterojunction almost 

doubles the specific activity, consistent with greater visible light absorption.[54] Hydrogen production over the 

hierarchical Cu2O was superior to that of non-porous (13 μmol.g-1.h-1)[55] and Cu2O nanoparticles (10 μmol.g-

1.h-1)[9] of comparable size, and the AQE. higher than reported for Pt-decorated 500 nm Cu2O nanocubes (AQE 

= 1.2 %),[53] 375 nm hierarchical Cu2O nanocubes (AQE = 1.2 %),[56] and Pt-free 300-500 nm Cu2O powder 

(AQE = 0.3 %)[9] and 150 nm Cu2O nanostructures on a silicon wafer (AQE in water = 0.3 %) under visible 

light,[57] demonstrating advantageous photophysical properties of our Pompom Dahlia-like aggregates. 

Hydrogen production over various Cu2O photocatalysts is summarised in Table S3.   

 

Figure 6. Visible light photocatalytic H2 production over Pompon Dahlia-like hierarchical Cu2O and Cu2O/rGO 

nanocomposite with (a) 1 vol% and (b) 10 vol% methanol in water as a sacrificial hole scavenger. Reaction 

conditions: 0.02 g catalyst, 200 W Hg-Xe (420 nm).   

 

3.3. Photocatalytic 4-CP removal  

Visible light photocatalytic degradation of 4-CP was subsequently studied over the Pompon Dahlia-like 

hierarchical Cu2O and Cu2O/rGO nanocomposite (Figure S6). 4-CP was selected as a model recalcitrant organic 

compound that does not exhibit visible light absorption and hence cannot act as a photosensitiser which is 

problematic in mechanistic investigations of photocatalytic dye degradation.[58] Initial rates and AQE for 4-

CP removal (Figure 7a-b) by the nanocomposite were slightly higher than for the hierarchical Cu2O aggregates 

(0.18 versus 0.16 mmol.g-1.min-1, and 59 versus 52 % respectively). However, the conversion of 4-CP reached 

95 % for hierarchical Cu2O/rGO after 60 min reaction, compared with 73 % for the Cu2O aggregates alone (and 

only negligible photolysis in the absence of any catalyst), likely associated with increased light absorption. 

There are no reports of 4-CP photodegradation over Cu2O/rGO photocatalysts, however the present activity far 
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exceeds other semiconductor photocatalysts (Table 2), even those employing UV light and/or high power light 

sources. 

  

Figure 7. Visible light photocatalytic 4-CP degradation over Pompon Dahlia-like hierarchical Cu2O and 

Cu2O/rGO nanocomposite: (a) initial rates of 4-CP removal and (b) corresponding apparent quantum 

efficiencies after 15 min reaction; and (c) 4-CP removal efficiency and product selectivity after 60 min reaction. 

Experimental conditions: 0.02 g catalyst, 50 mL of 7.78 ×10-5 M aqueous 4-CP, 200 W Hg-Xe arc lamp (420 

nm). 

 

The major products of 4-CP decomposition were chlorohydroquinone (CL-HQ), 4-chlorocatechol (4Cl-CC), 

and fumaric acid (FA) (Figure 7c). Formation of polyoxygenated intermediates is consistent with a radical 

mechanism involving photogenerated holes transferred to adsorbed water or surface hydroxyls to form hydroxyl 

radicals (OH), or the reaction of photoexcited electrons with oxygen to produce OH via H2O2, although direct 
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Table 2. Comparison of 4-CP removal efficiency over different photocatalysts.  

Photocatalyst Experimental details Rate 

constant 

/ 10-2min-1 

Reference 

N-Doped 

TiO2 

0.1 g catalyst, 500 W Xe lamp (λ>420 nm), 100 mL of 

10 mg L-1 4-CP, 180 min.  

4.6 [59] 

TiO /WO3 1.2 g/L catalyst, 50 W lamp (λ>435 nm), 2×10-4 M 4-

CP, 180 min.  

0.84 [60] 

TiO2 – CoPc 

nanocomposite 

0.1 g catalyst, 128 W Lightex LT50 lamp, 100 mL of 

0.013 M 4-CP, 30 min. 

0.042 [61] 

Combustion 

synthesized TiO2 

1 g/L catalyst, 250 W Xe lamp (λmax 470 nm), 0.15 

mmol/L 4-CP, 240 min.  

0.049 [62] 

Mesoporous g-C3N4 40 mg catalyst, 300 W Xe lamp (λ>420 nm), 1.2 ×10-

4 M 4-CP, 60 min. 

5.26 [63] 

Pt/TiO2 0.5 g/L catalyst, 11 W Hg lamp (λ 200-280 nm), 0.5 

mM 4-CP. 120 min. 

0.41 [64] 

Cu2O/rGO, 20 mg catalyst, 200 W Hg-Xe arc lamp (λ ≥ 420 nm), 

50 mL of 4.2 ×10-2 mM 4-CP, 60 min. 

7.9 

 

 

Present 

work 

 

oxidation of 4-CP cannot be excluded. The hierarchical Cu2O/rGO favours deeper oxidation and the formation 

of FA (Figure 7c), consistent with more oxidizing equivalents potentially resulting from longer charge carrier 

lifetimes, and faster charge transfer kinetics (vide infra).[65] Futhermore, Cu2O/rGO exhibited excellent 

photostability over five consecutive reactions (Figure S7). 

 

3.4. Mechanistic studies 

Photocatalytic activity for CO2 reduction is also reported to increase following the addition of rGO to Cu2O,[12] 

being attributed to increased charge separation across the Cu2O/rGO interface. Charge separation and 

recombination effects were investigated in water suspensions using steady state photoluminescence and time-

resolved photoluminescence (TRPL) which showed very little difference between Cu2O and Cu2O/rGO (Figure 

S8a-b). It is reported that rGO acts as an electron trap in heterojunction nanocomposites,[66, 67]  and 

photoexcited electrons can transfer from the CB of Cu2O to rGO, leaving photogenerated holes in the Cu2O 

VB.[68] TRPL decay curves (Figure S8b) were best fit to a bi-exponential function ( Eq. 6).[69, 70] 

 

𝑓𝑖𝑡 = 𝐴 + 𝐴1𝑒𝑥𝑝
(−𝑡)

(1) + 𝐴2𝑒𝑥𝑝
(−𝑡)

(2)      6 
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where, A is the baseline correction constant, t is time, A1 and A2 are the contributions of the exponential factors, 

which include the lifetimes 1 and 2 of the two excited states. Both lifetimes are short lived consistent with 

direct radiative emission. The average charge carrier lifetime  was determined from Eq. 7:  

 = 𝐴112 + 𝐴222/𝐴11 + 𝐴22     7 

 

and shows that photoinduced charge carrier lifetimes are essentially identical for the Cu2O/rGO nanocomposite 

and hierarchical Cu2O (Table 3). We therefore find no evidence for significant interfacial charge separation 

across the heterojunction.[71] 

 

Table 3. TRPL fitting of Pompon Dahlia-like hierarchical Cu2O and Cu2O/rGO nanocomposite. 

 

Photoelectrochemical measurements showed transient photocurrents (Figure 8a) of the Cu2O/rGO composite 

was approximately double that of the Cu2O aggregates indicating more redox equivalents are available for 

photocatalytic reactions. Electrochemical impedance spectroscopy can also provide insight into photoelectrode 

phenomena.Ideally, an equivalent circuit can be found to model specific photophysical and 

photoelectrochemical phenomena. More generally, the radius of the impedance curve on a resulting Nyquist 

plot reflects the resistance in the system. Comparison of data acquired in the dark and under illumination show 

the reduced radius of the lower frequency feature of the Cu2O/rGO nanocomposite under illumination (Figure 

8b) indicating that the introduction of rGO facilitates electron migration across the electrode or at the 

electrode/electrolyte interface.[72] Corresponding Mott Schottky plots under illumination (Figure 8c) provide 

insight into the flat band potential and doping density. Negative slopes were obtained for the hierarchical Cu2O 

and Cu2O/rGO nanocomposite, consistent with p-type semiconductors. The x-axis intercept shows the flat band 

potentials of Cu2O and Cu2O/rGO nanocomposite are similar at around 1.1 V and 0.98 V, respectively, which 

compares to  0.55 V reported for a continuous film of cubic Cu2O nanocrystals.[72] A more positive flat band 

potential will increase the rate of oxidation of MeOH and water, supporting H2 production and 4-CP 

degradation, respectively (Figure 6). The slope of the linear portion of the curve in a Mott-Schottky plot is used 

to calculate the majority carrier density from Eq. 8: 

 

1

𝐶2 =
2

𝜀𝜀0ℯ𝑁𝐴
(𝑉 − 𝐸𝑓𝑏−

𝑘𝐵𝑇

𝑒
 )     8 

 

Photocatalyst 1 / ns 2 / ns A1/(A1+A2) 

/ % 

A2/(A1+A2) 

/ % 

 / ns 2 

Hierarchical Cu2O 1.601 2.056 23.6 76.4 1.97 1.441 

Hierarchical Cu2O/rGO 1.662 2.251 23.0 77.0 2.14 1.314 
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where 𝜀 is the dielectric constant (7.60 for Cu2O[73]), 𝜀0 is the permittivity of free space, ℯ is the electron 

charge, 𝑁𝐴 is the majority carrier density, 𝑉  is the applied potential, 𝐸𝑓𝑏is the flat band potential, 𝑘𝐵 is the 

Boltzmann’s constant and T is the temperature. The majority carrier densities were similar at 1.5 x 1019 cm-3 

and 1.7 x 1019 cm-3 for hierarchical Cu2O and Cu2O/rGO respectively, both higher that for Cu2O 

(3.07 x 1017 cm−3), CuO (2.41 x 1018 cm−3), and Cu2O/CuO bilayered composite (2.58 x1018 cm−3) photoanodes 

prepared by thermal oxidation[72], though less than for electrodeposited/annealed p-type Cu2O-CuO thin 

films[74] (at 1.3 x 1020 cm−3). Together with the similar flat band potentials, these values suggest there is little 

difference in either charge transfer rates or the driving force for charge separation between our two catalysts (in 

contrast to Cu2O/CuO bilayered composites[72]). Hence the higher photoactivity of the hierarchical Cu2O/rGO 

nanocomposite for hydrogen production and 4-CP degradation compared to hierarchical Cu2O appears solely 

associated with its broader absorption of visible light, and not reduced recombination. 

 

Figure 8. a) Transient photocurrent, b) EIS (Nyquist) plot at 0 V vs. RHE, c) Mott-Schottky plot of Cu2O, 

Cu2O/rGO, and Cu2O/rGO (200 W Hg-Xe arc lamp and 0.5 M NaSO4 electrolyte), and d) proposed charge 

transfer mechanism for Cu2O/rGO. 
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A tentative mechanism for photocatalytic 4-CP oxidative degradation over the hierarchical Cu2O/rGO 

nanocomposite is illustrated in Scheme 2. Under illumination, electrons (e-) within the Cu2O valence band are 

photoexcited into the Cu2O conduction band, and subsequently migrate to rGO sheets. Resulting Cu2O valence 

band holes (h+) may then react with hydroxyl ions from the aqueous solution to form OH radicals, while 

photoexcited electrons trapped by rGO react with dissolved oxygen to form superoxide O2
- radicals. The latter 

may further react with water to produce additional OH through redox reactions. Reactive intermediates 

identified by HPLC included chlorohydroquinone (Cl-HQ), chlorocatechol (Cl-CC) and fumaric acid (FA), 

indicating that the 4-CP photooxidation pathway processes according to Scheme 2, with OH• radicals the key 

oxidant (Eqs. 9-15). 

 

Scheme 2: Proposed 4-CP photodegradation pathway. 

 

𝐶𝑢2𝑂/𝑟𝐺𝑂 + ℎ𝑣 → 𝐶𝑢2𝑂/𝑟𝐺𝑂∗(ℎ𝑉𝐵 
+ + 𝑒𝐶𝐵

− )       9 

𝐶𝑢2𝑂/𝑟𝐺𝑂∗ (ℎ𝑉𝐵
+ ) + 𝐻2𝑂 → 𝐶𝑢2𝑂/𝑟𝐺𝑂 (𝐻𝑂∙) + 𝐻+     10 

𝐶𝑢2𝑂/𝑟𝐺𝑂∗(𝑒𝐶𝐵
− ) + 𝑂2 → 𝐶𝑢2𝑂/𝑟𝐺𝑂(𝑂2

−∙)       11 

𝐶𝑢2𝑂/𝑟𝐺𝑂(𝑂2
−∙) + 𝐻+ → 𝐶𝑢2𝑂/𝑟𝐺𝑂∗(𝐻𝑂2

∙ )       12 

𝐶𝑢2𝑂/𝑟𝐺𝑂∗(𝐻𝑂2
∙ ) + 𝐶𝑢2𝑂/𝑟𝐺𝑂∗(𝐻𝑂2

∙ ) → 𝐶𝑢2𝑂/𝑟𝐺𝑂(𝐻2𝑂2) + 𝑂2   13 

𝐶𝑢2𝑂/𝑟𝐺𝑂(𝐻2𝑂2) + ℎ𝑣 → 𝐶𝑢2𝑂/𝑟𝐺𝑂∗(2𝐻𝑂∙)       14 

𝐶𝑢2𝑂/𝑟𝐺𝑂∗(𝐻𝑂∙) + 4𝐶𝑃 + ℎ𝑣 → 𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑠 + 𝐻2𝑂  15 

 

  

4. CONCLUSIONS 

A hierarchal Cu2O/rGO nanocomposite was fabricated by electrostatic self-assembly and subsequent low 

temperature hydrothermal processing. The resulting nanocomposite comprised 300-500 nm aggregates of 15-

30 nm Cu2O nanocrystals arranged in a Pompom Dahlia (flower)-like structure, in contact with 1 wt% of rGO 

nanosheets. This architecture offers broad visible light absorption and excellent stability, resulting in high 

activity for photocatalytic H2 production from water-alcohol, and 4-CP degradation predominantly to (low 

toxicity) fumaric acid, without recourse to precious metal co-catalysts. Such hierarchical Cu2O/rGO 
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nanocomposites may provide a low cost approach to solar fuels and chemical (via CO2 reduction) production, 

and the environmental remediation of recalcitrant wastewater pollutants.  
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