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Thesis summary 

Lipid-induced dysfunction of the liver is becoming increasingly prevalent and may be an 

essential link between obesity and type 2 diabetes (T2DM). Elevated circulating saturated fatty 

acids (FA) like palmitate have been shown to contribute to hepatic insulin resistance and 

chronic low-grade inflammation leading to T2DM while other plasma unsaturated FA appear 

protective. Strong emerging evidence point to the potentially protective effect of odd chain FA 

(OCSFA) on T2DM disease development; however, no study has looked at the cellular 

mechanisms underpinning its effect. The transcription factor PPAR alpha is involved in 

regulating hepatic lipid accumulation by upregulating genes responsible for FA transport and 

has been shown to alter hepatic insulin sensitivity, as well as an anti-inflammatory effect on 

monocytes. Therefore, the hypothesis that OCSFA predict fasting plasma glucose and their 

role in modulating hepatocyte and monocyte function (by activating PPAR alpha) has been 

examined. Analysis of the FA profile of a healthy and T2DM cohort showed that C15:0 

occurred in higher proportions in healthy controls compared to T2DM (median difference 

0.07%, p = 0.05) and was found to be negatively correlated with fasting blood glucose (p = 

0.002). In a model of terminally differentiated HepG2 cells, the data showed that C15:0 

ameliorated palmitate-induced dysfunction of glucose output (p < 0.001) and glycogen 

production (p < 0.001); and increased PPAR alpha transcriptional activity by 20% (p < 0.01). 

Furthermore, there was a 72% reduction in TNFα production in monocytes pre-exposed to 

C15:0 before LPS stimulation compared to controls (p < 0.01). Taken together, the potentially 

protective effect of C15:0 regarding T2DM development may be due to PPAR alpha-related 

attenuation of chronic inflammation and improvement of hepatocyte metabolism. 
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ABBREVIATIONS 

 

%wt Percentage weight  

µl Microlitre 

µM Micromolar 

ABCD1 ATP binding cassette subfamily D Member 1 

ABCD2 ATP binding cassette subfamily D Member 2 

ABCD3 ATP binding cassette subfamily D Member 3 

ABCD4 ATP binding cassette subfamily D Member 4 

ACAA2 Acetyl-CoA Acyltransferase 2 

ACAD10 Acyl-CoA dehydrogenase family, member 10 

ACADL Acyl-CoA dehydrogenase, long chain 

ACC Acetyl-CoA carboxylase  

ACC1 Acetyl-CoA carboxylase 1 or alpha 

ACC2 Acetyl-CoA carboxylase 2 or beta 
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ACOX1 Acyl-coenzyme A oxidase 1 

ACSL1 Long-chain-fatty-acid—CoA ligase 1 

ADC Atypical ductal cells  

ADP Adenosine diphosphate 

AFP alpha-fetoprotein  

AGE Advanced glycation end products 

ALA Alpha linolenic acid 

ANOVA Analysis of variance 

anti- DNP  Anti-2,4-Dinitrophenol 

APC Allophycocyanin 

ATP Adenosine triphosphate 

HRP  Horseradish peroxidase 

BC Biotin carboxylase  

BCA Bicinchoninic acid 

BCL3 Boron trichloride 

BF3 Boron trifluoride 

https://en.wikipedia.org/wiki/Bicinchoninic_acid_assay
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BHT Butylated hydroxytoluene 

BMI Body mass index 

BSA Bovine serum albumin 

BSAox Bovine serum albumin oxidised 

BSAred  Bovine serum albumin reduced 

c/EBPa  CCAAT/enhancer-binding protein alpha 

C3b  Complement receptor type 1 receptors 

CAT Catalase 

CD14 Cluster of differentiation 14 

CD16 Cluster of differentiation 16 

CD36 Cluster of differentiation 36/Fatty acid translocase 

CDKAL1 CDK5 regulatory subunit associated protein 1-like 1 

cDNA Complementary DNA 

CHD Coronary heart disease 

ChREBP Carbohydrate response element binding protein  

CPT1  Carnitine palmitoyltransferase 1 
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CPT2 Carnitine palmitoyltransferase 2 

CRP C-reactive protein  

CT  carboxyltransferase 

CT Method Threshold cycle 

DAG Diacylglycerol 

DHA Docosahexaenoic acid 

dHepG2 Differentiated HepG2 cells 

DMEM Dulbecco's modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNL De novo lipogenesis  

DNPH 2,4-Dinitrophenylhydrazine 

dsDNA double-stranded DNA 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 
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ELOVL2 Elongase 2 

ELOVL5 Elongase 5 

EPA Eicosapentaenoic acid 

EPIC European Prospective Investigation into Cancer and Nutrition 

ER endoplasmic reticulum  

ERK  extracellular signal-regulated kinase 

EVC-304 Umbilical vein endothelial cell line 

FA Fatty acid 

FABP Fatty acid binding protein  

FACS Fluorescence-activated cell sorting 

FADS1 Fatty acid desaturase 1 

FADS2 Fatty acid desaturase 2 

FAME Fatty acid methyl ester  

FASN Fatty acid synthase  

FB Fenofibrate 

FBS Foetal bovine serum  
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FCCP Carbonyl cyanide-4-phenylhydrazone 

Fc epsilon-RI high-affinity IgE receptor 

FDR False discovery rate 

Fe (II) SO4 Iron (II) Sulfate 

FFA Free fatty acid 

FID Flame ionisation detector 

FITC Fluorescein isothiocyanate 

FTO Fat mass and obesity-associated protein  

G0/G1 Gap 0/Gap 1 

G2/M Gap 2/Mitosis 

G6P Glucose-6-Phosphate  

GADPH Glyceraldehyde phosphate dehydrogenase 

GC Gas chromatography 

GK Glucokinase  

GLUT2 Glucose transporter 2  

GLUT4 Glucose transporter 4 
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GPC Glycerol-3-phosphocholine 

GPR120 G-protein coupled receptor 120 

GPR41 G-protein coupled receptor 41 

GPR43  G-protein coupled receptor 43 

GSK3β Glycogen synthase kinase 3 beta 

HCL Hydrogen chloride 

HDL High density lipoprotein 

HGF Hepatocyte growth factor  

HHEX Hematopoietically-expressed homeobox protein  

HLA human leukocyte antigen 

HNF Hepatocytic nuclear factors 

HNF1α Hepatocytic nuclear factor 1 alpha 

HNF1β Hepatocytic nuclear factor 1 beta 

HNF3β Hepatocytic nuclear factor 3 beta 

HNF4α Hepatocytic nuclear factor 4 alpha 

HNF6 Hepatocytic nuclear factor 6 



21 

 

HOMA-IR Homeostatic model assessment-Insulin resistance 

HPLC High-performance liquid chromatography 

HRP Horseradish peroxidase 

ICAM-1 (Intercellular Adhesion Molecule 1 

IgE Immunoglobulin E 

IGF2BP2 Insulin like growth factor 2 binding protein 2 

IƙB nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

IKKβ IκB kinase-β  

IKKβ inhibitor of nuclear factor kappa 

IL-1 Interleukin 1 

IL-10 Interleukin 10 

IL-4 Interleukin 4 

IL-6 Interleukin 6  

IL-8 Interleukin 8 

IL-1β  Interleukin 1 beta 

IRS-1 Insulin receptor substrate 1  
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IRS-2 Insulin receptor substrate 2 

JAZF1 Juxtaposed with another zinc finger protein 1 

JNK c-Jun N-terminal kinases 

KCNJ11 Potassium inwardly rectifying channel, subfamily J, member 11 

KPNA2 Karyopherin subunit alpha 2 

KPNB1 Karyopherin subunit beta 1 

LDL Low density lipoprotein 

L-FABP Liver specific fatty acid binding protein 

LPC Lysophosphatidylcholine 

LPS Lipopolysacharide  

MAT Malonyl-ACP by malonyl-CoA transferase  

MCP-1 Monocyte chemotactic protein 1 

MHO Metabolically healthy obese  

MLYCD Malonyl-CoA decarboxylase  

MMP-9 Matrix metallopeptidase 9 

MoD Median of difference 
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mRNA Messenger RNA 

MTT  3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MUFA Monounsaturated fatty acid 

NAD Nicotinamide adenine dinucleotide oxidised 

NADH Nicotinamide adenine dinucleotide reduced 

NADPH Nicotinamide adenine dinucleotide phosphate 

NAFLD Non-alcoholic fatty liver disease 

NASH Non-alcoholic staetohepatitis 

NCOA2 Nuclear receptor coactivator 2  

NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 

NHS National Health Service 

NLRP3  NLR family pyrin domain containing 3 

nm Nanometre 

NO Nitric oxide 

NOTCH2 Neurogenic locus notch homolog protein 2 

NOX3 NADPH oxidase 3  
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OCSFA Odd-chain saturated fatty acid 

OPD o-phenylenediamine 

OSM Oncostatin M 

P38MAPK  P38 mitogen-activated protein kinases 

p53 TP53 or tumor protein 

p65 Nuclear factor NF-kappa-B p65 subunit  

PAS Periodic acid-Schiff  

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PEA Palmitoylethanolamide 

pH Potential of Hydrogen 

PI-3K Phosphatidylinositide 3- kinase 

PKC Protein kinase C  

PKC-Ɵ Protein kinase C theta 

PMA Phorbol 12-myristate 13-acetate  

PPAR Peroxisome proliferator-activated receptor 
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PPARG Peroxisome proliferator-activated receptor gamma gene 

PPAR alpha Peroxisome proliferator-activated receptor alpha 

PPARγ Peroxisome proliferator-activated receptor gamma 

PPARδ  Peroxisome proliferator-activated receptor delta 

PPRE Peroxisome proliferator response element  

PUFAs Polyunsaturated fatty acids  

qPCR  Quantitative polymerase chain reaction 

RA Retinoic acid 

RIPA Radioimmunoprecipitation assay  

RNase  Ribonuclease free 

ROS  Reactive oxygen species 

RPMI 1640 Roswell Park Memorial Institute 1640 medium 

RR Relative risk 

RT-qPCR  Real-time quantitative polymerase chain reaction 

RXR Retinoid X receptor 

RxRa Retinoid x receptor alpha  
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SAT Subcutaenous adipose tissue 

SCD Stearoyl-CoA desaturase  

SCD1 Stearoyl-CoA desaturase 1 

SCD5 Stearoyl-CoA desaturase 5 

SEM Standard error of mean 

SFA Saturated fatty acid 

Sirt1 Sirtuin 1 

SLC30A8 Solute carrier family 30, member 8 

S-Phase Synthesis phase 

SREBP1c Sterol regulatory element binding protein 1c  

STAT3 Signal transducer and activator of transcription 3 

T2DM  Type 2 diabetes mellitus 

TBX3 T-box transcription factor 3 

TCA Tricarboxylic acid  

TCF7L2 Transcription factor 7-like 2 

TLR1 Toll-like receptor 1 
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TLR2 Toll-like receptor 2 

TLR4 Toll-like receptor 4 

TLRs Toll-like receptors  

TNFα Tumour necrosis factor α 

UK United Kingdom 

UN United Nations 

US United States  

USA United States of America 

VAT Visceral adipose tissue 

VCAM-1 Vascular cell adhesion protein 1  

VIF Variance inflation factor 

VLCFA Very long-chain fatty acids  

VLDL Very low density lipoprotein 

WAT White adipose tissue  

WFS1 Wolfram syndrome 1 

WHO World Health Organisation 
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β-ME 2-Mercaptoethanol 

ω3-PUFA Omega 3 fatty acid 

ω6-PUFA Omega 6 fatty acid 
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1.1 Type 2 diabetes 

There has been an alarming rise in the prevalence of diabetes over the last few 

decades. Statistics from the USA indicates more than 100% increase in diabetes 

incidence across all age groups between 1980 and 2011 [1]. The World Health 

Organisation (WHO) estimates that around 347 million people had diabetes in 2012, 

representing almost 10% of the global adult population. A more recent pooled analysis 

looking at data from more than 146 countries found that the global age-standardised 

prevalence of diabetes doubled in men (an increase from 4.3% to 9%) and increased 

by approximately 60% in women from 1980 to 2014 [2]. The same study also showed 

that the people living with diabetes rose from 108 million in 1980 to 422 million in 2014, 

age and population growth accounting for 40% of this rise. In the UK, the crude 

prevalence of diabetes increased by more than threefold between 1991 and 2014 as 

a result of an ageing population and a mean increase in survival from diabetes [3]. 

There are currently about 3.7 million confirmed diagnoses of diabetes with up to a 

million remaining undiagnosed and an expectation that more than 12 million people 

are at risk of developing the disease [4].   

The disease has become a global epidemic with a 50% rise in incidence in the last ten 

years. In 2012, a global survey estimated that 1.5-5.1 million deaths were caused by 

diabetes and the WHO predicts it will be the seventh leading cause of death by 2030 

[5]. Despite these daunting statistics, it is perhaps the economic burden of diabetes 

that has increased awareness towards it and other non-communicable diseases. It is 

estimated that the annual cost of diabetes (especially the complications) to the 
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healthcare system in the UK and US alone is in the region of £10 billion [6] and $250 

billion respectively[7, 8].   

The exact mechanism leading to diabetes mellitus is still unknown and widely debated 

[9]. However, it is well recognised that it is a disease of glucose homeostasis with two 

primary forms: Type 1, characterised by an absolute lack of insulin, accounting for 

10% of cases; and Type 2 (T2DM), characterised by a relative lack of insulin or insulin 

resistance, accounting for 90% of cases. Monogenic diabetes and gestational diabetes 

(a derangement in glucose metabolism occurring in pregnancy, with an increased risk 

of T2DM in later life) are other less commonly recognised variants. T2DM is the most 

researched type of diabetes and centres around a dysfunction in insulin. The 

pathogenesis of T2DM is complex, involving factors such as high energy 

environments, elevated free FAs and inflammation. The consequence of this complex 

interaction is an inability of the pancreatic β-cells to produce insulin which is 

complicated by the widespread development of insulin resistance in peripheral tissues. 

The relationship between T2DM, sedentary lifestyle, and the so-called “western diet” 

is well established, highlighting the importance of the environmental and social risk 

factors for diabetes [10]. The genetic factors contributing to the onset and progression 

of T2DM is, however, less characterised. 

Genetic factors have been consistently linked to an increased risk of T2DM. A family 

history of T2DM is a strong clinical predictor of the disease. Several genetic variants 

have been identified as reliable predictors of T2DM, independent of clinical risk factors.  

A review of genome-wide association studies over the last decade has revealed some 
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genes with a single-nucleotide polymorphism that appear to predict T2DM 

consistently. Some of the genes that have been shown to be predictive for T2DM at 

pre-diabetic states include: TCF7L2, PPARG, FTO, KCNJ11, NOTCH2, WFS1, 

CDKAL1, IGF2BP2, SLC30A8, JAZF1, and HHEX [11]. Despite this recent 

advancement in genetic studies, the specific mechanism by which these genetic 

factors interact to cause T2DM is still unknown. An increasing number of gene-specific 

candidate-driven studies for T2DM have identified more than 70 loci, mostly in non-

coding regions of the genome. Consequently, research is now shifting towards 

identifying variants that affect the activity of enhancer elements regulating target gene 

expression [12]. Therefore, the interaction between environmental factors and 

epigenetic modifications are now being investigated to determine not just the 

mechanism of disease but also to determine why patients differ in disease progression 

and response to drug therapy [13].  

T2DM is a highly heterogeneous disorder in onset and disease progression. A recent 

data-driven cluster analysis identified five different subgroups of individuals with T2DM 

with clear disease progression and risk of complications, highlighting the need for a 

more personalised approach to the management of T2DM [14]. Several publications 

from the Food4Me study have shown promise regarding the personalised 

management of T2DM tailored around the nutritional, environmental and genetic 

differences between individuals [15]. In these studies, personalised nutrition had a 

positive impact on behavioural change, which impacted on physical activity and other 

factors leading to the modification of obesity; regarded as one of the most important 

modifiable risks associated with T2DM.  



33 

 

1.2 Obesity 

Obesity defines a complex, multifactorial, and preventable state of abnormal or 

disproportionate accumulation of body fat [16]. It increases the risk of chronic 

metabolic diseases and presents a substantial economic burden regarding morbidity 

and mortality.  Regarding quantifying obesity, a body mass index (BMI) of more than 

30kg/m2 is considered obese. BMI is the most commonly used index for categorising 

disorders of weight, but it is not without bias in the context of predicting metabolic 

outcomes. The BMI cut-off for overweight and obesity is affected by several factors, 

especially age, gender, and race. For example, the BMI for Caucasians is significantly 

higher than that of Asians and people of sub-Saharan origin adjusted for body fat, age 

and gender, highlighting the need for population-specific BMI cut-off points for obesity 

[17]. Furthermore, BMI does not correctly account for muscle mass; therefore, a well-

built athlete with a healthy body fat composition can be erroneously classed as obese 

by BMI. Consequently, the waist circumference is recommended in clinical and 

research settings for categorising obesity, as it accounts for abdominal obesity [18]. A 

pooled analysis of over 1600 population-based studies from almost 200 countries 

shows an alarming increase in the global prevalence of obesity over the last four 

decades. The global age-standardised BMI increased by more than 3kg/m2 and 

2kg/m2 in men and women respectively from 1975 to 2014 [19]. This corresponded to 

a global tripling of obesity prevalence (from 3.2% to 10.4%) in men and a doubling 

(6.4% to 14.9%) in women. If this trend continues, at least 60% of the world’s 

population would be obese or overweight by 2030 [20]; which is grave consequence 

in the US where it is expected that 85% of the population would be overweight or 
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obese [21]. A United Nations (UN) report in 2013 shows that at least one in four 

residents of the UK are obese, with the expectation that at least half the population 

will be obese by 2050 [22]. Obesity arises as a result of energy surplus, where energy 

consumption is not matched by calories expended. Although the complex interaction 

between genetic, environmental and socioeconomic factors contribute to obesity, the 

growing obesity epidemic is more likely due to changes in diet and lifestyle. The 

unexpected rise in obesity in developing countries exemplifies this. In addition to the 

adoption of the ‘Western diet’, which is high in carbohydrates and fat and low in fibres, 

urbanisation, associated with rapid industrialisation and mechanised transportation 

has reduced physical activity, consequently leading to obesity. Importantly, the dietary 

and lifestyle risks of obesity are modifiable; however, the prevalence of obesity has 

not been improved by enhanced campaigns to increase awareness of healthy dietary 

and physical activity recommendations [23]. The importance of developing effective 

strategies to modify these risks, reversing the obesity trend, relates to the numerous 

diseases associated with diabetes. Obesity is associated with diabetes, 

cardiovascular disease, cancer and many other disorders [24].  

The link between obesity and T2DM received increased recognition in the early 1990’s 

and now appears to be well established. There are excellent scientific reasons for this. 

Firstly, the prevalence of obesity tightly mirrors that of T2DM in the last three decades 

[25]. Furthermore, the relative risk (RR) of T2DM increases exponentially with 

increasing BMI; from an RR of 1 at 22kg/m2  to 93.2 at a BMI of 35kg/m2 [26]. Moreover, 

interventions aimed at reducing obesity, like bariatric surgery, low-calorie diets and 

increased physical activity have been shown to either cure T2DM or induce remission 
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[27]. Therefore, focus has switched to identifying the complex mechanisms that 

underpin the relationship between T2DM and obesity. Many theories have been 

suggested, including obesity-induced inflammation associated with a high energy 

state which is characterised by hyperglycaemia and hyperlipidaemia. However, not all 

obese people have insulin resistance or metabolic disease, the so-called 

‘metabolically healthy obese (MHO)’ [28]. Despite high energy states, including 

hyperlipidaemia, the MHO show no signs of inflammation or hyperglycaemia. This 

contributes to the obesity-T2DM axis in two ways. Firstly, it confirms the importance 

of inflammation in the development of T2DM; however, it casts doubts on the 

requirement of obesity in the pathogenesis of T2DM. Secondly, it raised interest in the 

distribution of fat rather than its absolute quantity. Consequently, studies have found 

that visceral adipose tissue (VAT) fat predicts insulin resistance better than 

subcutaneous adipose tissue (SAT) fat, and within the SAT, abdominal distribution 

confers a higher risk of T2DM [29-31]. Naukkarinen and colleagues carried out a 

cross-sectional study where they measured several indices of metabolic disease 

including liver fat, markers of inflammation and insulin resistance in sixteen rare 

obesity-discordant monozygotic adult twin pairs to study the relationship between fat 

depots, MHO and metabolic disease [32]. In this robust study, the authors found liver 

fat accumulation, a downregulation of FA oxidation and a dysfunctional mitochondrial 

oxidative phosphorylation pathway as the differentiating factors between obese twins 

with insulin resistance MHO. Therefore, the liver is an essential organ in the 

pathogenesis of metabolic diseases. The factors that determine dysfunctional ectopic 

fat deposition are still poorly understood.  
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1.3 Liver 

The liver is a major organ involved in glucose homeostasis. The gut and liver account 

for a third of glucose handling in humans under postprandial conditions [33-35]. During 

periods of glucose excess, as seen in post-prandial periods, glucose is phosphorylated 

to Glucose-6-Phosphate (G6P) within hepatocytes and channelled towards energy 

production via the tricarboxylic acid cycle (TCA) or mitochondrial oxidative 

phosphorylation. The glycolytic product, pyruvate, is also directed towards FA 

synthesis (de novo lipogenesis) and the production of Nicotinamide Adenine 

Dinucleotide Phosphate (NADPH) through the Pentose Phosphate Pathway. 

Furthermore, excess glucose converted to G6P is stored as glycogen in a process 

driven by glycogen synthase and facilitated by insulin, which simultaneously blocks 

endogenous glucose production (gluconeogenesis) by 50% in healthy humans [36]. 

Conversely, in the fasted state, glucose homeostasis is maintained by liver-driven 

gluconeogenesis; glucose is produced from glycogen on a short-term basis and from 

lactate, pyruvate, glycerol, and amino acids, long-term, in a process that follows a 

downregulation of insulin and the liver is more ‘glucose-effective’ than muscle cells. 

Glucose effectiveness denotes the ability of glucose to stimulate its metabolism 

independent of insulin.  For example, glucose can move across hepatocyte membrane 

but not muscle cells through glucose transporter 2 (GLUT2), facilitated by glucokinase 

(GK), to suppress gluconeogenesis, independently of insulin signalling, in a bi-

directional manner dependent on glucose concentration. Whereas, muscle cells 

require glucose transporter 4 (GLUT4) in an insulin-mediated pathway. However, the 

liver is still very insulin sensitive, requiring insulin for glycogen synthase derive 
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glycogen [37]. The subtle distinction between liver and muscle handling of glucose is 

made because of the effect it has on obesity-induced insulin resistance (or high-fat 

diet-induced dysregulation of glucose homeostasis). In addition to glucose 

metabolism, the liver is capable of de novo lipogenesis (DNL), a mechanism that is 

important in obesity-related insulin resistance. The justification for targeting the liver 

over muscle cells is highlighted in clinical studies where the resolution of 

hyperglycaemia in T2DM subjects after short-term calorie restriction was related to 

improved hepatic glucose metabolism rather than insulin-mediated glucose 

metabolism in muscle cells [38]. Furthermore, Brøns and colleagues showed that 

hepatic gluconeogenesis-induced elevation of plasma glucose precedes muscle 

insulin resistance in a cohort of young healthy lean individuals fed a high-fat diet for 

five days [39]. Their results are also corroborated by other studies [40]. 

1.4 Hepatocyte 

The hepatocyte is the functional unit of the liver and accounts for up to 80% of liver 

cell mass. Hepatocytes are responsible for a wide range of metabolic activity, including 

carbohydrate, lipid and protein metabolism, as well as detoxification and immune 

surveillance. Hepatocytes are arranged around the portal-central axis. The metabolic 

functions of hepatocytes are highly differentiated and dependent upon their position in 

the portal-central axis. For example, periportal hepatocytes are mostly involved with 

gluconeogenesis, ammonia synthesis, cholesterol synthesis and FA degradation. 

Conversely, perivenous hepatocytes chiefly handle DNL, glycolysis and xenobiotic 

detoxification.  
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The diverse functions of hepatocytes necessitate a complex phenotype which is 

acquired progressively during foetal development by expression of a vast array of 

complement genes and maintained by tight regulation throughout adulthood [41]. 

Hepatocytes differentiate from hepatoblast upon stimulation by hepatocyte growth 

factor (HGF) and oncostatin M (OSM) in the early stages. TBX3 (T-box transcription 

factor 3) then stimulates hepatocyte maturation mediated expression of a host of 

transcriptional factors including several hepatocyte nuclear factors (HNF1α, HNF1β, 

HNF4α, HNF3β, AND HNF6) and c/EBPa (CCAAT-enhancer binding protein α). The 

final steps of hepatocyte maturation involve the repression of oncofetal genes (like 

alpha-fetoprotein, hexokinase 2, and pyruvate kinase M2) and the full expression of 

genes like albumin, transferrin, fatty acid synthase. Hepatocytes exist in vivo as mostly 

quiescent cells but are capable of de-differentiation into foetal forms in cases of liver 

injury; however, this process is tightly regulated to assume a differentiated state upon 

regeneration. Hepatocytes are unique in their ability to regenerate in response to injury 

by cell growth and division and by facultative-stem cell-mediated recovery which 

involves the recruitment of atypical ductal cells (ADC) also known as oval cells [42]. 

Abnormal proliferation leads to conditions like hepatocellular cancer. In in vitro 

hepatocyte models, HepG2 cells, an immortalised cell line is often used in place of 

primary hepatocytes because they are relatively inexpensive and are more 

proliferative. However, HepG2 cells show significant differences in gene expression 

and metabolic function compared to primary hepatocytes. For example, metabolic 

network flexibility analysis of HepG2 cells under different glucose conditions shows 

that in comparison to primary hepatocytes, hepatoma cells favour glycolysis over 
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oxidative phosphorylation, due to their highly proliferative nature. Furthermore, gene 

expression levels of markers of differentiation, like albumin, transferrin, and fatty acid 

synthase are usually low, while xenobiotic enzyme gene expression is often absent.  

However, the feedback responses to energy availability, insulin stimulation, and end-

products of glucose metabolism remain mostly the same. Moreover, HepG2 cells have 

been successfully differentiated by various methods to more closely resemble their 

primary counterpart in gene expression and functional phenotype. 

1.5 NAFLD 

Non-alcoholic liver fatty disease (NAFLD) describes a spectrum of disorders 

associated with the accumulation of fat in the liver in the absence of competing liver 

aetiologies [43]. It ranges from simple hepatic steatosis (liver fat accumulation) to 

steatohepatitis (NASH), where fatty deposits are associated with inflammation, and a 

small proportion may culminate in hepatic fibrosis, cirrhosis, or carcinoma. The current 

burden of NAFLD is as staggering as T2DM and obesity, and it is now increasingly 

recognised as the liver component of metabolic syndrome [44-47]. Indeed, up to  90% 

of people with NAFLD fulfil at least one component of metabolic syndrome, while up 

to a third fulfil three aspects of metabolic syndrome [48].  Many studies have reported 

a close association between NAFLD, obesity and T2DM. The prevalence of NAFLD in 

obese is as high as 90%, depending on the level of obesity [49-51]. Similarly, the 

prevalence of T2DM in a population of people with NAFLD was recorded to be as high 

as 85% (prevalence of T2DM and pre-diabetes combined) in one study [52] and 76% 

in another [50]; while another study showed that those with NAFLD are three times 

more likely to have T2DM [53].  The global prevalence of NAFLD is on the rise. In a 
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meta-analysis of 86 studies by Younossi and colleagues, the global prevalence of 

NAFLD was estimated from over eight million individuals in 22 countries, where 

NAFLD was diagnosed using a range of imaging studies [54]. The prevalence of 

NAFLD was estimated to be 25%; the prevalence of obesity and T2DM among people 

with NAFLD were 51% and 22% respectively. The prevalence of NAFLD is likely to be 

underestimated in this analysis considering the sensitivity of imaging is up to 20% less 

than the gold standard liver biopsy [55]. Moreover, NAFLD is ubiquitous among people 

with T2DM. In a meta-analysis by Dai and colleagues, the pooled prevalence of 

NAFLD among people diagnosed with T2DM was  60%, ranging from 29% to 87% in 

twenty-four studies involving more than thirty thousand participants [56].   

Further justification for the importance of NAFLD in T2DM lies with the value of early 

intervention. Peripheral insulin resistance is already established and indeed plateaus 

by the time T2DM is diagnosed [57]. It is hypothesised that the onset of hepatic lipid 

accumulation and insulin resistance precedes T2DM by five to ten years and 

peripheral insulin resistance is entirely reversible at this stage [57]. Therefore, early 

diagnosis of NAFLD could provide a useful opportunity to halt the progression of 

impaired glucose tolerance to T2DM. NAFLD provides a useful link between obesity 

and T2DM and the effect of circulatory FAs could be key. 

In patients with NAFLD, both saturated (SFA) and monounsaturated fatty acids 

(MUFA) are causally implicated in the pathogenesis of steatosis [58, 59]. However, 

SFA are more likely to induce hepatocellular dysfunction and a pro-inflammatory 

profile consistent with nonalcoholic fatty liver pathology [60]. Cellular dysfunction is the 

result of FAs promoting endoplasmic reticulum (ER) stress, uncoupling mitochondrial 
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respiration and increasing production of reactive oxygen species (ROS), culminating 

in hepatic inflammation and cell death [61-63]. In contrast to previous reports of SFA-

mediated steatosis, some MUFA has been shown to reverse the lipotoxic effect of SFA 

on hepatocytes in vitro, despite a paradoxical increase in lipid accumulation. This 

variation in metabolic consequence has been suggested to be due to the ability of 

different classes of FAs to behave differently as signalling molecules.  

1.6 Fatty acids 

FA are the basic building blocks of lipids. They are made of a carbon skeleton attached 

to a carboxylic acid functional group. Natural occurring FA are usually monocarboxylic 

acids and are classified by chain length, saturation, carbon number, and chain nature. 

Classification by saturation is perhaps the most biologically relevant sub-division of 

FAs. On this basis, FA are designated as either saturated or unsaturated based on the 

presence of double bonds. Palmitic acid is a sixteen-chain FA, and is the most 

abundant saturated FA in humans, accounting for up to 30% of total FAs in plasma. 

Unsaturated FAs contain at least one double bond. They are further classified as 

monounsaturated fatty acids (MUFA) because they contain one double bond, or 

polyunsaturated fatty acids (PUFA), which contains at least two double bonds. The 

most abundant MUFA is oleic acid (C18:1n9), which occurs in diet, but can also be 

synthesised de novo by desaturation enzymes introducing double bonds to its 

saturated counterpart octadecanoic acid (C18:0). FAs can be straight chain (like most 

free FA in human plasma), branched chain, cyclic, or substituted (addition of hydroxyl, 

epoxy, dicarboxy groups attached to straight chain FA), by chain nature. Traditionally, 

FA were classified by carbon chain length as either short-chain (C4-C6), medium chain 
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(C8-C12), long-chain (C14-C20), and very long chain (>C22). The clinical importance 

of FA classification by chain length is highlighted in disorders such as Refsum disease 

and Zellweger syndrome, where the presence of very long FA can be both diagnostic 

and prognostic [64]. However, a new classification has been added by carbon number, 

whereby FA are either odd-chain FA or even-chain FA, depending on the number of 

carbon atoms.  

Ancel keys helped to institute the epidemiologic link between lipids and cardiovascular 

disease as early as the 1940s. The link between fat and cardiovascular disease was 

then fully established in 1970 after the publication of results from Ancel Key’s ‘seven 

countries’ study, which then led to a series of nutritional recommendation to reduce 

dietary fat [65, 66]. However, the significance of FA classification in health and disease 

gained momentum afterwards when many publications showed the potential benefits 

of replacing saturated fats with PUFA [67]. However, growing evidence from re-

analysis of previous incomplete randomised control trials has shown that the effect of 

saturated fats on cardiovascular health, and the potential benefits of its replacement 

may have been overestimated [68]. Nevertheless, many in vitro and in vivo models 

have corroborated the lipotoxic effects of FA over the years. The deleterious effect of 

increased circulating FA, especially SFA on whole-body insulin resistance is well 

studied. Dresner et al. (1999) established that infusion of healthy human subjects with 

free fatty acids (FFA) resulted in insulin resistance in muscle cells [69]. Results from 

muscle biopsies from these subjects showed up to 60% reduction in glucose oxidation 

and glycogen synthesis associated with a 90% decrease in intramuscular G6P, 

suggesting a reduction in glucose transport across cells resulting from IRS-1 (insulin 
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receptor substrate 1) associated PI-3K (Phosphatidylinositide 3- kinase) activity. 

Subsequently, many other mechanisms of FA-induced insulin resistance in peripheral 

tissues have been described, including accumulation of lipid metabolites such as 

diacylglycerol (DAG) and ceramides. Similarly, in animal models, short-term high fat 

diet has been used to induce hepatic insulin resistance via many mechanisms 

including protein kinase C (PKC) activation [70] induced by accumulation of 

diacylglycerol (DAG) resulting in hepatic insulin resistance which occurs long before 

systemic insulin resistance or inflammation, suggesting the pivotal role of hepatic 

dysfunction on the development of T2DM [71]. Furthermore, Dan Gao and colleagues 

found a reduction in hepatic glycogen content as a result of a FA-induced increase in 

NADPH oxidase 3 (NOX3)-derived reactive oxygen species (ROS) in db/db mice fed 

high-fat diets and in palmitate-treated HepG2 cells, mediated via JNK and P38MAPK 

pathway [72]. Although evidence abounds on the general effect of FA on insulin 

resistance and consequently glucose metabolism, some studies have shown that 

there may be significant differences in metabolic outcome and signalling when 

unsaturated FA are used in place of the more commonly adopted palmitate treatment. 

There is so far no study done to understand if these differences exist within SFA with 

odd-numbered carbon chain length.  

Emerging evidence from large-scale longitudinal studies over the last decade has 

drawn attention to the role of odd-chain saturated fatty acids (OCSFA) on health and 

disease in humans. Research interest in OCSFA has evolved from investigating 

factors that affect their composition in ruminant milk to measuring their association 

with metabolic diseases in human studies. OCSFA were initially thought to be 
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physiologically unimportant and non-existent in humans. Therefore, they were used 

as internal standards for the chromatographic identification of other FA. Earlier 

research into OCSFA focused on factors that influenced their composition in ruminant 

milk because of their potential to impact the melting point of milk and animal fat in a 

chain length-dependent manner. Furthermore, OCSFA was found to reduce total SFA 

in milk significantly; therefore, research intensified to influence their composition in 

milk given nutritional policies to keep SFA intake below 30%. Incidentally, these 

studies would provide further insight into its de novo synthesis, including the role of 

foliage ratios, propionate, the gut bacteria, and adipocytes in ruminants. Further 

interests in OCSFA developed as some studies showed its antitumor effect in vitro 

and in vivo reproducible for breast and prostate cancer. The antitumor activity was 

reported to be closely linked to the downregulation of de novo lipogenesis; however, 

this was never replicated in human studies. In the early 2000’s, studies began to 

emerge correlating plasma OCSFA to dairy intake, which correlated positively with 

healthy eating habits and general lifestyle. Therefore, plasma OCSFA were used in 

nutritional studies as a marker for dairy intake. Despite this, it took some time to 

recognise their physiological importance for a few reasons. Most of the scepticism 

about the physiological significance of OCSFA have come from a lack of 

understanding regarding their metabolic fate in humans. The hypothesis regarding 

their catabolism have come from animals and bacteria, and these pathways are 

thought to be redundant in humans [73]. Peroxisome α-oxidation has been proposed 

but remains unproven in humans. However, some studies have shown that phytanic 

acid, a β-branched odd-chain fatty acid, can undergo both β-oxidation and α-oxidation, 
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offering fresh insight into the possible mechanisms for catabolising OCSFA [74, 75]. 

Furthermore, a recent in vitro study showed that OCSFA is produced in adipocytes 

during the early stages of differentiation, proposing a de novo lipogenesis pathway for 

OCSFA. Recent publications from the European Prospective Investigation into Cancer 

and Nutrition (EPIC) have shown an inverse correlation between the concentrations 

of OCSFA in plasma and red cell membranes and the incidence cardiovascular 

diseases and T2DM [76]. Other longitudinal and cross-sectional studies have also 

highlighted the potentially protective effect of OCSFA against a range of conditions 

such as T2DM and pre-diabetes, biotin deficiency, anorexia nervosa, atherosclerosis, 

disorders of propionate, and peroxisome disorders [77-84]. Although the benefits of 

OCSFA are clear from the studies above, the mechanisms by which they are 

protective is still unknown. Moreover, a recent study showed that OCSFA is 

heterogeneous in metabolism, biosynthesis, and relationship with glucose tolerance 

[85]. Therefore, further in vitro and in vivo studies are needed to define the benefit of 

specific OCSFAs. 

1.7 Fatty acid metabolism 

The liver plays a central role in the metabolism of FA [86]. Exogenous FA bound to 

albumin, are mostly transported into hepatocytes via FA transport proteins found in 

the membrane [87]. Intracellular trafficking of FA between organelles is further 

regulated by fatty acid binding proteins (FABP) [88]. The metabolic fate of intracellular 

FA is dependent upon several factors, including FA themselves, which act as 

signalling molecules. The most critical catabolic pathway for FA within the liver is 

mitochondrial β-oxidation, which results in the breakdown of FAs by two carbon atoms 
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in each cycle into acetyl CoA and carbon dioxide. This process is facilitated by 

activation of FAs into Acyl-CoA in the cytosol before transport into the mitochondria by 

carnitine palmitoyltransferase located in the mitochondrial membrane [89]. Minor 

pathways of FA oxidation, like α-oxidation and ω-oxidation, also occur in peroxisomes 

for odd-chain FAs and very long-chain FAs (VLCFA) respectively [90, 91]. FA 

produced de novo, or acquired exogenously, can also be directed towards other 

metabolic pathways, like acylation into cellular lipids (including triglycerides, 

phospholipids and lipoproteins), and elongation and desaturation into VLCFA and 

unsaturated FA respectively [92, 93]. These pathways are tightly controlled, with 

dysregulation leading to metabolic dysfunction such as an accumulation of lipids within 

hepatocytes (steatosis), which may lead to the clinical scenario of non-alcoholic fatty 

liver diseases (NAFLD) [94].  

The ability of the liver to synthesise FA underpins its importance in lipid metabolism. 

The de novo lipogenesis (DNL) is a critical pathway in the liver that is tightly linked 

with glucose metabolism [95, 96]. In fact, the primary product of the glycolytic pathway 

acts as substrates for DNL. Therefore, a substantial carbohydrate diet provides a large 

substrate for the DNL pathway resulting in increased lipid production [97-99]. The 

biochemical process of DNL can be summarised as the condensation of acetyl Co-A 

subunits on to a glycerol backbone in a multiplex reaction regulated by enzymes and 

signalling molecules such as insulin [100]. In the first irreversible step, malonyl-CoA is 

produced by carboxylation of acetyl-CoA, catalysed by acetyl-CoA Carboxylase 

(ACC), mediated by its two catalytic activities; biotin carboxylase (BC) and 

carboxyltransferase (CT). ACC is a complex multifunctional enzyme regulated 
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transcriptionally and encoded by two genes: ACC1 (Acetyl-CoA Carboxylase 1 or 

alpha) and ACC2 (Acetyl-CoA Carboxylase 2 or beta), both coding for two distinct 

ACC isoenzymes with different functions. ACC1 is primarily involved with DNL and 

under short-term regulation by citrate and palmitoyl-CoA. Whereas, the malonyl-CoA 

produced via ACC2 interacts with FA oxidation by blocking carnitine 

palmitoyltransferase I, the rate-limiting step for β-oxidation [101], making it an essential 

anti-obesity drug target. In addition to the transcriptional and allosteric regulation of 

ACC, the DNL is regulated by insulin and glucose through sterol regulatory element 

binding protein 1c (SREBP1c) and carbohydrate response element binding protein 

(ChREBP) respectively [102]. The malonyl-CoA produced by ACC is then converted 

to malonyl-ACP by malonyl-CoA transferase (MAT), and a series of NADPH-mediated 

reduction reactions follows culminating in the formation of acyl-CoA, which is 

converted to palmitate in another series of sequential elongation by 2 carbon atoms 

involving fatty acid synthase (FASN) [Figure 1.1]. Palmitate is then desaturated by 

stearoyl-CoA desaturase (SCD) to MUFA. Fructose can indirectly fuel DNL by the 

interaction of its substrates (dihydroxy-acetone-phosphate and glyceraldehyde 3-

phosphate) with glycolysis. Lipid accumulation is central to the development of 

NAFLD, and DNL is critical to this process. Radioisotope studies have shown that DNL 

contributes up to a quarter of liver fat in NAFLD [59, 103]. Adipocytes produce about 

60%, while 15% is from the diet. Although the majority of this fat is from adipocytes, 

the absence of obesity in some individuals with NAFLD, and the role of hepatic insulin 

resistance (and mitochondrial dysfunction) in the pathogenesis of T2DM (as previously 

discussed) in NAFLD suggests a more prominent role for DNL.  
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Figure 1.1: Schematic of the de novo lipogenesis pathway, showing the 
interaction between glucose metabolism and FA synthesis.  [104] 
GKRP, glucokinase regulatory protein; G6Pase, glucose-6-phosphatase, catalytic subunit; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; PKLR, pyruvate kinase, liver and RBC; PCK1, phosphoenolpyruvate carboxykinase1; LDH, lactate 
dehydrogenase A; DCT, dicarboxylate transporter; PDK2, pyruvate dehydrogenase kinase isozyme2; PDH, pyruvate 
dehydrogenase; SDHAP3, succinate dehydrogenase complex, subunit A; FASN, fatty acid synthase; SCD1, stearoyl-CoA 
desaturase 1; GPD1, glycerol-3-phosphate dehydrogenase 1 (soluble); MOGAT2, monoacylglycerol O-acyltransferase 2; 
DGAT2, diacylglycerol O-acyltransferase homolog 2. 

  



49 

 

1.8 Inflammation and T2DM 

The connection between T2DM, obesity, and inflammation has been a historic topic of 

hot debate. Early recognition of this paradigm started over a century ago when a series 

of case studies showed that the use of high dose aspirin effectively treated glycosuria, 

followed by intervention studies that showed complete independence from insulin after 

high dose aspirin therapy [105-107]. Although well-designed efficacy trials further 

validated the hypoglycemic action of salicylates, it was not until early 21st century that 

mechanistic studies were able to identify IκB kinase-β (IKKβ)/NF-κB axis as the 

molecular target for salicylate-induced modification of insulin resistance [108, 109]. 

Previous studies on the effect of salicylates had measured insulin secretion from 

pancreatic islet cells with poor outcomes [110]. Further evidence to support the theory 

of inflammation in the pathogenesis of T2DM comes from the observation of a higher 

risk of T2DM among individuals with other chronic inflammatory disorders such as 

rheumatoid arthritis [111]. More so, chronic inflammation and mitochondrial oxidative 

stress are hallmarks of adipocyte expansion and remodelling with obesity, which is 

highly correlated with T2DM [112]. This chronic low-grade inflammatory state is then 

able to start an inflammatory cascade which is fuelled by reactive oxygen species.  

Consequently, expanding adipocytes have been shown to overproduce tumour 

necrosis factor α (TNFα), which impacts directly upon insulin resistance. In fact, some 

studies have been able to show that administration of recombinant TNFα to cells or 

animals impairs insulin function, whereas, TNFα knockdown mice are partially 

protected from high-fat diet-induced insulin resistance [113, 114]. Furthermore, 

chronic systemic inflammation increases leptin-resistance STAT3 (signal transducer 
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and activator of transcription 3) activation/phosphorylation in the hypothalamus and 

the gut, affecting appetite and food intake, which then fuels insulin resistance [115, 

116]. More recent epidemiologic studies have now been able to establish a positive 

correlation between pro-inflammatory markers, like C-reactive protein (CRP), 

interleukin 6 (IL-6), interleukin 8 (IL-8), TNFα and the incidence of T2DM [117-121]. 

However, it is the mechanistic studies that have elucidated the specific links between 

inflammation and T2DM, especially the role of inflammatory cytokines. TNFα is able 

to stimulate the inhibitory phosphorylation of serine residues for insulin receptor 

substrate 1 (IRS-1) inhibiting downstream signalling and insulin sensitivity [122-125]. 

Furthermore, pro-inflammatory cytokines are able to induce insulin resistance by 

interacting with JNK (c-Jun N-terminal kinases), NF-ƙB and PKC-Ɵ. JNK is elevated 

in the liver with obesity, and upon activation by pro-inflammatory cytokines, or directly 

by FAs, it associates and phosphorylates IRS-1 on Ser307[126]. JNK knockdown in 

mouse models protects from development of hepatic insulin resistance, while 

overexpression produces the systemic effect of insulin resistance, underpinning its 

importance in T2DM pathogenesis [127, 128]. An accumulation of ceramides and 

other intermediates are known to interact directly with IKK (inhibitor of nuclear factor 

kappa), JNK, NF-ƙB and PKC-Ɵ. Ceramides can directly activate PKC-Ɵ which 

induces insulin resistance similarly to JNK, or by activating IKKβ. In addition to direct 

interaction with IRS-1, IKKβ activates NF-ƙB by phosphorylating its inhibitor (IƙB), 

which stimulates the production of pro-inflammatory cytokines [129].  

There has also been interest regarding monocytes and macrophage contribution to 

the inflammatory theory of T2DM. The chronic inflammation associated with increasing 
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adiposity stimulates MCP-1 (monocyte chemotactic protein 1), which enhances 

monocyte recruitment to adipocytes, creating a snowball inflammatory effect [130]. 

The theory that monocytes and macrophages, as chief players in innate immunity, 

drive differential response to inflammatory stimuli in healthy individuals compared to 

people with T2DM is gaining popularity [131]. Monocytes infiltrate and interact with 

many organs and tissues such as the liver, gut, pancreas and adipose tissue, and are 

involved with local and systemic response to inflammatory stimuli such as infections 

and hyperglycaemia [132, 133]. Monocyte and macrophage phenotypes have been a 

particular interest. A more precise distinction between pro-inflammatory and anti-

inflammatory monocytes and macrophages are now more possible due to improved 

flow cytometry techniques. Monocytes are classified as classical, intermediate, or non-

classical; depending on the expression of CD14 (cluster of differentiation 14) and 

CD16 (cluster of differentiation 16) on the cell surface [134, 135]. The classical 

monocyte subset represents 80% of circulating monocytes and expresses high levels 

of CD14 and deficient levels of CD16 (otherwise denoted CD14++/CD16- population). 

This subpopulation of monocytes express anti-inflammatory phenotype characterised 

by high phagocytic function, but quick resolution post-inflammation, with reduced 

TNFα and increased IL-β secretion. Intermediate monocyte subset is characterised by 

high levels of CD14, and higher levels of CD16 compared to classical monocytes 

(denoted as CD14+/CD16+ monocytes) and have been denoted pro-atherogenic. 

Along with intermediate monocytes, the non-classical monocytes (or CD14-/CD16++ 

sub-population) are associated with increased production of pro-inflammatory 

cytokines and are increased in infectious diseases as well as chronic metabolic 
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disorders [136-139]. Similarly, macrophages express a pro-inflammatory classically 

generated (M1), or anti-inflammatory alternatively generated (M2) macrophage 

phenotype depending on the inflammatory environment [140]. The M2 macrophage 

has also been subdivided into M2a, M2b, M2c, and M2d subsets on the basis of 

induced transcriptional changes [141, 142]. Evidence for the deleterious effect of M1 

macrophage leading up to T2DM abounds in literature. M1 macrophage numbers have 

been positively correlated with insulin resistance in models of high-fat feeding in 

rodents, and there is evidence of M1 macrophage recruitment around necrotic 

adipocytes in WAT (white adipose tissue [143-145]. Moreover, successful ablation of 

M1 macrophages was associated with improved insulin sensitivity [146]. In humans, 

the accumulation of M1 macrophages in adipose tissue is positively correlated with 

insulin resistance [147, 148]. Furthermore, M2 macrophages tend to replace M1 

macrophages after bariatric surgery, associated with more anti-inflammatory cytokine 

production and improved insulin sensitivity, highlighting their importance in the 

inflammatory pathogenesis of T2DM [149-151]. 

1.9 PPAR alpha 

Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear receptor 

protein encoded for by the PPARA gene. PPAR alpha is part of the subfamily of PPAR 

along with PPARγ (Peroxisome proliferator-activated receptor gamma) and PPARδ 

(Peroxisome proliferator-activated receptor delta) [152]. It was the first PPAR to be 

discovered and was named on the basis of being activated by chemicals that cause 

peroxisome proliferation [153]. Located on chromosome 22q12.2-13.1, PPAR alpha is 

a transcriptional factor and regulator of lipid metabolism [154]. It is abundant in tissues 
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with high FA oxidation activity, like the liver, where it has been proposed to link glucose 

and lipid metabolism with inflammation, making it an attractive target for T2DM 

research [155]. In fact, its agonists, like Fenofibrate, have been used successfully as 

hypolipidaemic agents for decades [156]. PPAR alpha is activated in a ligand-

dependent and independent manner [157, 158]. In the former, ligand-induced 

phosphorylation of receptors in the cytosol is followed by ligand-activated PPAR alpha 

translocation into the nucleus, forming a heterodimer with RXR (retinoid X receptor), 

which then attaches to the consensus sequence of peroxisome proliferator response 

element (PPRE) of target gene, activating transcription of target genes by direct 

genomic binding, in a process facilitated by co-factors and co-repressors [159]. 

Alternatively, a ligand-dependent activated PPAR alpha upon translocation to the 

nucleus binds indirectly to the target gene by forming complexes with other 

transcription factors which is probably regulated by histone acetylase and deacetylase 

activity [160]. Furthermore, a third mechanism (unbound nongenomic response) of 

action for ligand-dependent activation of PPAR alpha is described, where activated 

PPAR alpha’s activate protein kinase cascades resulting in phosphorylation of kinases 

involved in different signalling pathways, that depends on phosphatidylinositol 

signalling [159]. Mapping of PPAR alpha regulatory network in primary hepatocytes 

show that most of the transcription activity is mediated by direct binding to PPRE [159]. 

PPAR alpha regulation is controlled at different levels including ligand availability, 

receptor abundance, and posttranslational modification [161, 162]. Subcellular 

compartmentalisation and intracellular trafficking achieve further regulation of PPAR. 

There is evidence of different subcellular localisation of PPAR in different cell lines 
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[163]. For example, PPAR alpha is reported to be cytoplasmic in macrophages and 

endothelial cell lines like the EVC-304 [164, 165]. Although it is predominantly nuclear 

in hepatocytes, reports have suggested a cytoplasmic subpopulation in rat 

hepatocytes [165]. Some authors have reported that ligands and certain conditions 

can affect subcellular localisation of PPAR, which shunts across the nuclear 

membrane with the help of importins and calcium-dependent calreticulin [166, 167]. 

The knowledge of PPAR alpha regulation and localisation is essential in correctly 

quantifying and analysing PPAR alpha transcriptional activity. Most mechanistic 

knowledge on PPAR alpha activity has come from mice and rat models. There are 

some subtle differences between human and rodent hepatocytes regarding PPAR 

alpha activity. For example, PPAR is a known carcinogen in rodents, but this has not 

been reported in humans [168]. However, the critical beneficial metabolic functions of 

PPAR alpha remains the same in both species, vis: improvement of glucose and 

energy homeostasis, reduction in inflammation and attenuation of age-related 

dysfunction [169]. PPAR alpha contributes positively to T2DM by suppressing VLDL 

(very low density lipoprotein) and LDL (low density lipoprotein) production, while 

simultaneously raising HDL (high density lipoprotein) levels (a distinct feature in 

humans, not  seen in rodents) [170-172]. Furthermore, PPAR alpha potentiates FA 

oxidation by upregulating genes responsible for both mitochondrial and peroxisome 

oxidation of FAs. Further evidence of its benefits on old and emerging markers of 

insulin resistance reinforces its continuous usefulness [173-175] 
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2.1 Cell culture 

2.1.1 Reagents 

The THP-1 monocytic cell line (THP-1 ATCC® TIB-202™) and HepG2/C3A 

hepatocellular carcinoma cell line (C3A [HepG2/C3A, derivative of Hep G2 (ATCC HB-

8065)] ATCC® CRL-10741™) were obtained from the American Type Culture 

Collection (ATCC). Gibco modified Roswell Park Memorial Institute medium (RPMI 

1640) was obtained from Thermo fisher scientific (UK). The RPMI 1640 is supplied 

already supplemented with L-glutamine (2mM) and glucose (11.1mM). Foetal bovine 

serum, penicillin and streptomycin solutions were purchased from Sigma (UK).  Cells 

utilised for experiments were within passage 6-20. 

2.1.2 Background 

2.1.2.1 THP-1 cells 

THP-1 cells are a human monocytic cell line derived from the peripheral blood of a 1-

year-old male infant with acute monocytic leukaemia. The cell line expresses HLA A2, 

A9, B5, DRw1, and DRw2 antigens, as well as Fc and C3b receptors, but they lack 

surface and cytoplasmic immunoglobulins. They are phagocytic against latex and 

sensitised erythrocytes. THP-1 cells can also be differentiated into macrophages by 

incubation with either phorbol 12-myristate 13-acetate (PMA) or vitamin D3. PMA 

differentiation of THP-1 cells increases cell surface expression of both CD14 and 

CD16. 
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2.1.2.2 HepG2/C3A 

HepG2/C3A cells are a clonal derivative of HepG2 cells, acquired from the liver of a 

15-year-old male Caucasian with hepatocellular carcinoma. The C3A clone is an 

epithelial adherent cell line selected for strong contact inhibition of growth, high 

albumin production, high production of alpha-fetoprotein (AFP) and ability to grow in a 

glucose-deficient medium. Increasing confluence leads to marked reduction in AFP 

production with an increase in albumin secretion. The cell line expresses many genes 

and proteins similar to primary hepatocytes including, but not limited to: AFP, albumin, 

alpha1 antitrypsin, transferrin, cytochrome P450 enzymes. HepG2 cells can be 

differentiated into a quiescent phenotype very similar to primary hepatocytes by 

incubation with either DMSO or retinoic acid. 

2.1.3 Protocol 

2.1.3.1 THP-1 

The THP-1 monocytes were cultured in growth media made up of RPMI 1640 media 

with 2mM glutamine and 11mM glucose supplemented with foetal bovine serum (FBS) 

at a final concentration of 10% v/v, and penicillin (100 µg/ml)/ streptomycin (100 µg/ml) 

solution to a final concentration of 1% v/v. The THP-1 monocytes were cultured in 

75cm2 flasks (Corning® cell culture flasks) with vented caps incubated in a humidified 

environment at 37°C with 5% carbon dioxide. The THP-1 cells were seeded at 3 x 105 

cells/ml in 20ml of growth media and subcultured after 3 days, or when the cells reach 

a density of 8 x 105 cells/ml by centrifuging at 800g for 5 minutes and resuspending in 

fresh warm growth media prior to being counted by trypan blue staining on a Neubauer 

haemocytometer and diluted to the desired cell density. 
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2.1.3.2 HepG2/C3A 

HepG2/C3A cells were cultured in growth media made up of RPMI 1640 media with 

2mM glutamine and 11mM glucose supplemented with foetal bovine serum (FBS) at 

a final concentration of 10% v/v, and penicillin (100 µg/ml)/ streptomycin (100 µg/ml) 

solution to a final concentration of 1% v/v. The cells were cultured in 150cm2 flasks 

(Corning® cell culture flasks) with vented caps incubated in a humidified environment 

at 37°C with 5% carbon dioxide. The cells were seeded at 3 x 105 cells/ml in 30ml of 

growth media and subcultured after 5 days. To passage cells, old medium was 

discarded, and cells were washed three times with warm PBS or serum-free RPMI 

and then detached by adding 5ml of 0.2% Trypsin-EDTA solution incubated at 37°C 

for 5 minutes. 10ml of growth media was added to inactivate trypsin and aspirated 

gently into a 20ml universal. The cell suspension was centrifuged at 800g for 5 minutes 

and the cell pellet was re-suspended in warm growth medium prior to being counted 

by trypan blue staining on a Neubauer haemocytometer and diluted to the desired cell 

density. 

2.2 Differentiation of HepG2/C3A cells 

2.2.1 Background 

HepG2/C3A cells exhibit contact inhibition upon confluence becoming less 

proliferative and more quiescent. However, they still show important differences in 

gene expression and phenotype compared to primary hepatocytes. Primary 

hepatocytes are regarded as the gold standard and have more gene expression of 

albumin, transferrin and xenobiotic enzymes. Exogenous substances like DMSO and 

Retinoic acid have been used to differentiate HepG2 cells into more mature quiescent 
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phenotypes, but these processes may be associated with cellular stress and apoptosis 

[176]. On the other hand, growing cells in reduced cell media has been shown to offer 

a less stressful alternative for differentiation. 

2.2.2 Protocol 

Cells were seeded at a rate of 200 x 106 cells/ml in growth media supplemented with 

10% FCS as indicated above until they achieve 80% confluency. After three washes 

with sterile PBS, cells are re-supplemented with growth media supplemented with 2% 

FCS for 10 days with changing media every two days. 

2.3 THP-1 macrophage differentiation 

2.3.1 Reagents 

Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS) were obtained 

from Sigma (UK). 

2.3.2 Protocol 

THP-1 cells were seeded in 6 well plates at a rate at 1 x 106  cells/ml (total number of 

cells 3 x 106 cells).The cells were treated then primed for 6 hours with FAs (palmitate 

or pentadecanoic acid)  at 50µM, 150µM, and 300µM concentrations, or 5% BSA, 

followed by 320nM of PMA for 66 hours with total treatment time of 72 hours (Figure 

2.1) as previously described [324]. The resultant macrophage phenotype was 

determined by measuring the cytokine secreted. 
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2.4 Cell cycle analysis 

2.4.1 Reagents 

All reagents were obtained from Sigma (UK). Propidium iodide (PI) solution was made 

up at 50μg/ml in 0.1% Triton-X and 0.1% sodium citrate in distilled water. 

2.4.2 Protocol  

Upon cell treatments, cells were washed three times with PBS then centrifuged at 

800g for five minutes to obtain a cell pellet. The cells were then resuspended in 1ml 

of PI solution overnight, washed three times with PBS to remove excess PI and 

analysed under flow conditions (excitation 518nm and emission 617nm) until 20,000 

events was achieved (using Beckman Coulter Quanta or Epics XCL).  

Seed cells 
Treat with BSA or 

FA
Treat with 320nM 

PMA

6 hours 66 hours 

72 hours 

Figure 2.1: THP-1 macrophage differentiation protocol 
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2.5 Flow cytometry measurement of THP-1 cell surface antigen 

2.5.1 Reagents 

Mouse anti-human CD14 RPE-Cy5 conjugated monoclonal antibody (clone 61D3, Abd 

Serotec); Mouse anti-human CD16-RPE Cy5 conjugated antibody (clone 3G8, Abd 

Serotec); Mouse-anti-human CD36-FITC conjugated antibody (clone SMO); Mouse 

IgG1 isotype control FITC and RPE-Cy5 antibodies were all obtained from Abd 

Serotec (UK). 

 

2.5.2 Protocol 

Upon completion of experimental conditions, cells were harvested and suspended in 

ice-cold serum in eppendorfs for 15 minutes to block receptors. Subsequently, cells 

were again harvested by centrifuging at 800g for 5 minutes, at 4°𝐶 and washed thrice 

with ice-cold PBS. Then, the cells were suspended in 500mls of antibodies or isotype 

control (details of antibodies used in section 2.5.1) at saturation concentrations for 30 

minutes on ice in the dark before analysis of 20,000 events by flow cytometry 

(Beckman Coulter Quanta or Epics XCL). Data was analysed using the Flowing 

software (version 2.5). Median fluorescent intensity was used in preference to mean 

intensity as the data was not normally distributed and the median it is less likely to be 

influenced by outliers than mean values.  

2.6 Trypan blue exclusion staining 

2.6.1 Reagents 

Trypan blue reagent, Neubauer haemocytometer, cover slides, and microscope.  
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2.6.2 Protocol 

Cells suspended in growth media were diluted with trypan blue at a ratio of 1:2 and 

allowed to incubate at room temperature for 5 minutes. The suspension was mixed 

thoroughly by pipetting up and down several times. 10µl was added on to each side of 

a Neubauer haemocytometer and cells in 10 random square grids were counted. The 

cell density was determined by the formula: cells/ml = the average number of cells per 

grid x dilution factor x 104 and the viability was expressed in percentage as follows: 

percentage viability = the total number of viable cells (clear cells)/the total number of 

cells counted (included dead cells) x 100. Cell counting was done in technical 

replicates for each representative sample.  

2.7 Measurement of metabolic activity by MTT assay 

2.7.1 Reagents 

The assay reagent was prepared by dissolving (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) in PBS at a concentration of (5mg/ml). 50% DMSO 

was used to lyse the cells. 

2.7.2 Protocol 

100µl of cells at a concentration of 2 x 105 cells/ml were seeded into a 96-well plate 

and treated with FA conjugated to BSA. 10µl of 5mg/ml MTT was added to each well 

4 hours prior to the treatment endpoint and incubated in a cell incubator in the dark for 

a further four hours. DMSO was added to each well to a final concentration of 50% v/v 

to lyse the cells and the plate was placed on a rocker for one hour. The absorbance 

was read at a wavelength of 570nm on a microplate reader.  
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2.8 Determination of protein concentration by BCA 

2.8.1 Reagents 

Bicinchoninic acid solution (made up of bicinchoninic acid, sodium carbonate, sodium 

tartrate and sodium bicarbonate at pH 11.25), copper (II) sulphate pentahydrate (4% 

w/v) solution and 1mg/ml bovine serum albumin (BSA) protein standard solution 

purchased from Sigma-Aldrich. 

2.8.2 Protocol 

Prior to analysis, cell lysates and plasma samples were diluted 1:5 and 1:10 in PBS 

respectively. 10µl of the diluted samples were loaded onto a clear bottom 96-well plate 

in triplicates. A standard curve was created by adding 0µl, 2µl, 4µl, 6µl, 8µl, and 10µl 

of the 1mg/ml BSA protein standard in triplicates onto the 96-well plate. All wells were 

brought to a final volume of 10µl with PBS bringing the final concentration to 0mg/ml, 

0.2, 0.4, 0.6, 0.8, and 1mg/ml of protein respectively. 200µl of BCA solution (made by 

mixing BCA reagent with copper (II) sulphate solution at a ratio of 50:1) was added to 

each standard and sample well. The plate was incubated at 37°C for 30 minutes prior 

to measurement of absorbance at 570nm on an absorbance microplate reader. 

2.9 Conjugation of FA to bovine serum albumin 

2.9.1 Reagents 

FA-free bovine serum albumin (BSA) and sodium hydroxide were purchased from 

Sigma (UK). HPLC-grade ethanol (VWR, UK), palmitate sodium and pentadecanoate 

sodium were purchased from Nu-Check Prep (USA). Serum-free RPMI 1640 media 

was obtained from Gibco (UK). 
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2.9.2 Conjugation of FAs to BSA protocol 

200mM stock solution of the FAs were prepared by dissolving the corresponding FA 

in 2ml 70% ethanol, 0.1M NaOH, 30% distilled water at 60°C on a hot plate (112mg of 

sodium palmitate, 106mg of sodium pentadecanoate). The stock solution was stored 

in -20°C until required.  

A 5mM working solution was prepared by adding 0.5ml of the working solution to 

19.5ml of 5% BSA in serum-free RPMI 1640 media and stirred at 37°C on a hot plate 

for 4 hours, giving an FA/BSA ratio of 6:1. The solution was brought to a pH of 7.4 and 

sterilised through a 0.2µM filter. Sterile FA/BSA solution was stored at 4°C until 

required and warmed to 37°C before use. Working solutions were stored for up to one 

month. 

2.9.3 Cell treatment 

Stock solutions of FA were prepared and stored as previously described. To determine 

the metabolic activity and viability, cells were treated with 50µM, 150µM, 200µM, and 

300µM FA for 4, 6, and 24 hours. For all other experiments, cells were treated with 

300µM palmitate (C16:0), or 50µM pentadecanoate (C15:0) for 6 hours or 24 hours.  

2.10 Analysis of free fatty acid profile in plasma and cell lysates 

2.10.1 Reagents 

Chloroform, methanol, HCl and BHT (2, 6 – Di-tert-butyl-4-methylphenol) were 

purchased from Sigma and stored at room temperature.12% boron trichloride- 

methanol w/w (BCl3-methanol) was supplied by Sigma (UK) and stored at 4°C. Supelco 
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FAME 37 mix was obtained from Sigma (UK) and stored at -20°C. A stock solution of 

1mg/ml of the internal standards, undecanoic acid (C11:0) and heptadecanoic acid 

(C17:0), was made by dissolving 1mg of C11:0 or C17:0 in 1ml of ethanol and stored 

at -20° until required. A working solution of these internal standards were made by 

diluting the stock solution in chloroform/methanol up to a final concentration of 

0.2mg/ml. C11:0 and C17:0 were purchased from Sigma (UK). Choloroform/methanol 

was made up in the ratio of 2:1 with 0.01% BHT (2, 6 – Di-tert-butyl-4-methylphenol), 

wrapped with foil paper and stored in the fridge. A stock solution of 8% w/v HCl solution 

was made from 8.5ml of conc HCl and 41.5ml of methanol and stored in the fridge. 

FAMEs were analysed using the Agilent 7820A gas chromatography (GC) machine 

with an Omegawax 250 Fused silica Bonded polyethylene phase Capillary column 

[30m x 0.25mm x 0.25µm], and a flame ionisation detector (FID). 

2.10.2 Protocol  

2.10.2.1 Folch lipid extraction 

Plasma samples were added into a glass centrifuge tube using glass pipettes and 

mixed with 100µl of 0.2mg/ml internal standard (C11:0 and C17:0 solution). This was 

then made to a final volume of 600µl with 0.9% saline solution. 1.8ml of 

chloroform/methanol (2:1) with 0.01% BHT was added and vortexed for 30 seconds. 

The mixture was then spun down at 750g for 10 minutes forming three distinct layers. 

The chloroform layer (bottom layer) was eluted and placed into a glass vial after which 

it was dried down by liquid nitrogen and used immediately or stored at -80°C for future 

use.   
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2.10.2.2 Methylation of FA by HCl method 

Plasma samples were extracted by the Folch method as described above, then 0.2ml 

of toluene, 1.5ml of methanol and 0.3ml of 8% HCl solution were added to the dried 

lipid sample extract. The glass vial was sealed with a PTFE lid and heated on the 

heating block at 45°C for 1 hour for FFA methylation. Once methylation was complete 

and the mixture was left to cool to room temperature, 1ml of hexane and 1ml of water 

was added. The mixture was then vortexed and spun at 750g for 2 minutes after which 

the floating hexane layer, which contains the lipids, was eluted into a glass vial. This 

was subsequently dried down completely by liquid nitrogen and re-suspended in 20µl 

of hexane for FAME analysis. 

2.10.2.3 Methylation of FA by BCl3 method 

Plasma samples were added into a glass centrifuge tube using glass pipettes and 

mixed with 100µl of 0.2mg/ml internal standard. For cells, 1 x 106 cells were washed 

thrice with PBS and resuspended in 500µL of chloroform/methanol. Both plasma and 

cell lysates were made to a final volume of 600µl with 0.9% saline solution after which 

2ml of 12% BCl3-methanol was in a glass vial and heated on a heating block at 60°C 

for 10 minutes. After cooling to room temperature, 1ml of water and 1ml of hexane 

was added to the mixture and vortexed for 30 seconds. It was then spun at 750g for 2 

minutes and the top hexane layer eluted. This was then dried down and resuspended 

in 20µl of hexane. 1µl of the sample was injected into the GC for analysis. FA peaks 

were identified by comparing retention times and peak areas to that of the FAME 37 

mix.  
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2.11 Protein carbonyl determination 

2.11.1 Reagents 

Anti-DNP antiserum (mouse IgE), peroxidase labelled rat anti-mouse IgE, o-

phenylenediamine (OPD), NUNC-Immuno MaxiSorp 96 well plates, hydrogen 

peroxide, BSA, citrate phosphate buffer (50mM citric acid, 100mM sodium phosphate), 

2N sulphuric acid and Tween-20, sodium borohydride, trichloroacetic acid, ferrous 

sulphate, desferal, DNPH, Sephadex PD10 column, o- Phenylenediamine (OPD) 

tablets, and guanidine HCl were all purchased from Sigma-Aldrich (UK). 

2.11.2  Preparation of protein carbonyl standards 

40mg of sodium borohydride was added gently into 20ml of BSA (10mg/ml in PBS) in 

a sealed universal at room temperature. It was then allowed to fizz for up to 30 

minutes, as oxygen is eliminated. This was then referred to as reduced BSA (BSAred). 

It was subsequently neutralised by adding 1 N HCl using drops on pH paper. 

Afterwards, it was desalted using two separate PD10 columns of Sephadex G-25, 

which were pre-equilibrated with PBS according to manufacturer’s instructions. 

Finally, the protein content of the BSAred column eluate was measured using the BCA 

method and adjusted to 2 mg/ml with PBS. 

Oxidised BSA (BSAox) was then produced by a Fenton-type reaction using ferrous 

sulphate as follows: Freshly prepared iron solution was neutralised with sodium 

dihydrogen carbonate using a pH meter. The volume was then adjusted to 100ml to 

give an iron concentration of 10mM Fe (II) SO4.  
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0.1ml, 0.5ml and 2ml of the iron solution was then added to each of four separate 

tubes containing 5ml of BSA solution (10 mg/ml in PBS) and incubated for 30 min at 

room temperature. These were then termed BSAox solutions. Desferal was then 

added to a final concentration of 5 mM to chelate the iron and prevent any further 

oxidation. Four separate PD10 columns of Sephadex G-25, which were pre-

equilibrated with PBS according to manufacturer’s instructions, were then used to 

desalt the BSAox. The protein content in the BSAox column eluates was then 

measured using the BCA method and further adjusted to 2 mg/ml BSAox with PBS. 

The remaining BSA (10mg/ml in PBS) was then adjusted to 2mg/ml. This meant there 

were now five oxidised protein standards, vis: BSAox, BSA, BSAox0.1, BSAox0.5, and 

BSAox2. The carbonyl content was then measured by the colourimetric technique 

described in section 2.11.2.1. All the standards were then aliquoted and stored at -

20°C. 

2.11.2.1 Colourimetry method for protein carbonyl determination  

Half a millilitre of each of the albumin standards prepared above were aliquoted into 

Eppendorf tubes in duplicates for mixing with either 10mM DNPH in 2M HCl (in 

duplicates), or 2M HCl alone without DNPH (again in duplicates). This was incubated 

at room temperature for 1 hour, vortexing every 15 min. The proteins were then 

precipitated with a final concentration of 20% trichloroacetic acid (w/v) by adding 

0.25ml of 100% TCA to 1ml of each BSA solution above, which was then subsequently 

vortexed and centrifuged at 13,000g for 3 min. After discarding the supernatant, the 

pellets were washed three times with 1ml ethanol-ethyl acetate (1:1 v/v) and re-
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dissolved in 1ml of 6M guanidine HCl in 20mM potassium phosphate. The solution 

was vortexed and incubated for 30 minutes at 37°C to re-dissolve. After removing any 

remaining insoluble material by centrifugation (again at 13,000g for 1 minute), the 

supernatants were retained in a separate tube. The absorbance of the supernatants 

was measured at 360nm with a spectrophotometer, using plain 6M guanidine HCl in 

20mM potassium sulphate as blank. The carbonyl content was calculated using the 

molar absorption coefficient of 22000 M-1 cm-1 for aliphatic hydrazones. The protein 

content of the samples was measured using BCA method again and the carbonyl 

content of samples was recorded as nmol carbonyl/mg protein. 

2.11.2.2 Protein carbonyl ELISA 

Five carbonyl standards previously prepared as described in section 2.11.2.1 and all 

plasma samples were diluted to 20µg/ml with carbonate buffer. 50µl of each diluted 

standard and sample were loaded on a Nunc Maxisorb 96 well plate in triplicates and 

incubated at 37°C for 1 hour. After washing the wells three times with washing buffer, 

50µl of 1mM DNPH in 2M HCl was loaded in each well and incubated at room 

temperature in the dark for 1 hour. The wash step was repeated and the wells were 

blocked with blocking buffer overnight at -4°C. After another washing step, the plates 

were incubated with primary antibody (anti- DNP antiserum, mouse IgE), diluted 

1:2000 with blocking buffer, at 37°C for 2 hours. The plates were washed again and 

incubated with secondary antibody (peroxidase labelled rat anti-mouse IgE), diluted 

1:5000 in blocking buffer, at 37°C for 1 hour. After another washing step, the wells are 

developed with 50µl of OPD substrate (10ml 0.15M citrate phosphate buffer, 20mg 

OPD tablet and 10µl 8.8M hydrogen peroxide). with OPD substrate for approximately 
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15 minutes in the dark and the reaction with stopped with 2M sulphuric acid. The 

absorbance was read immediately on a microplate reader at 490nm wavelength.  The 

carbonyl content was interpolated from a standard curve of the absorbance of the five 

carbonyl standards and expressed as nmol/mg. 

2.12 Cytokine analysis 

2.12.1 Reagents 

Analysis of human TNFα, IL-10, IL-6, and C-reactive protein (CRP) were performed 

with representative ELISA kits purchased from Affymetrix (eBiosciences, UK). All the 

reagents needed for the ELISA were provided within the kits. ELISA kit numbers: CRP 

(88-7502-28), TNFα (88-7346-86), IL-10 (88-7106-86), IL-6 (88-7066-86). 

2.12.2 Protocol 

The protocol for all the ELISAs are the same and are therefore presented as one. The 

96-well plate was coated with capture antibody overnight at 4°C and washed 5 times, 

after which it was blocked with blocking buffer for 1 hour at room temperature. 

Following another wash step, the plates are incubated with standards and samples 

overnight at 4°C and washed again 5 times. Subsequently, the plates are incubated 

with detection antibody at room temperature for 1 hour and then incubated with Avidin-

HRP at room temperature for 30 minutes. Following another wash step, TMB solution 

is then added to the wells and incubated at room temperature for 15 minutes to allow 

for optimal colour development. The reaction was terminated by adding a stop solution 

and the absorbance reading is measured at 450nm using a microplate reader. The 
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concentration of cytokines in the sample was interpolated from an internal standard 

curve. 

2.13 Cell Lysis 

2.13.1 Reagents 

Radioimmunoprecipitation assay (RIPA) buffer (150 mM sodium chloride, 1.0% triton-

X, 0.5% sodium deoxycholate, 0.1% SDS, 50mM Tris, pH 8.0), protease inhibitor 

cocktail (Sigma-Aldrich, UK), 21-gauge needle, 1ml syringes (Appleton woods, UK). 

2.13.2 Protocol 

Treated cells were harvested by centrifugation at 800g for 5 minutes and washed with 

ice-cold PBS and centrifuged (HepG2/C3A cells trypsinized prior to this step). The 

pellet was lysed in 50µl RIPA buffer supplemented with 0.5µl protease inhibitor cocktail 

before lysis and incubated for 30 minutes on ice. The DNA in the lysate was then 

sheared using a 21-gauge needle attached to a syringe and centrifuged at 16,000xg 

for 30 minutes at 4°C to remove cellular debris.  

2.14 PPAR alpha activation assay 

2.14.1 Reagents 

PPAR alpha Transcription Factor Assay Kit (ab133107) and a nuclear extraction kit 

(40410) were purchased from Abcam and Actif Motif respectively. 

2.14.2 Nuclear extraction protocol 

Cells were collected by centrifugation at 800g for 5 minutes (adherent cells were gently 

lifted with a cell scraper then centrifuged). 500µl of hypertonic buffer was added to the 
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cell pellet, resuspended by pipetting up and down several times, and incubating on ice 

for 15 minutes for cells to swell. The cells were lysed by adding 25µl detergent and 

vortexing for 1 minute. A sample of the cells was examined under the microscope to 

ensure lysis of cell membrane and expulsion of the nucleus (repeat lysis step if cells 

not lysed). The suspension was centrifuged at 16,000g for 15 minutes at 4°C. The 

supernatant was collected as the cytoplasmic fraction. The pellet was resuspended in 

50µl of complete lysis buffer and incubated on ice for a further 30 minutes after which 

5µl of detergent was added and then vortexed for 1 minute. The suspension was 

centrifuged at 16,000g for 30 minutes. The supernatant was collected as the nuclear 

fraction and stored at -80°C until required. Samples were diluted 1:20 before protein 

determination by BCA. 

2.14.3 PPAR alpha activity assay protocol 

The 96-well plate was purchased pre-coated with a dsDNA sequence containing 

PPRE. The samples were prepared and added to the plates along with a positive and 

negative control and then incubated overnight at 4°C. The plates were washed 5 times 

and a PPAR alpha primary antibody was added and incubated at room temperature 

for 1 hour. After another 5 washes, the plates were subsequently incubated with a goat 

anti-rabbit HRP conjugated secondary antibody at room temperature for 1 hour. 

Following another wash step, the developing solution was then added to the wells and 

incubated at room temperature for 45 minutes after which a stop solution is added and 

the absorbance reading is taken at 450nm using a microplate reader.  
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2.15 Quantification of glucose output 

2.15.1 Reagents 

Glucose (hexokinase) quantification assay purchased from Sigma-Aldrich (UK) 

includes glucose standard (10mg/ml) and a lyophilised glucose assay reagent. 

2.15.2 Protocol 

After the indicative treatment endpoint, cells were washed three times with PBS to 

remove glucose and then incubated for 16 hours in glucose production medium 

(glucose- and phenol red-free DMEM containing gluconeogenic substrates, 20 mmol/l 

sodium lactate, and 2 mmol/l sodium pyruvate). The lyophilised glucose assay buffer 

was reconstituted with 20ml of distilled water. Glucose standards (0.05mg/ml – 

5mg/ml) and samples (50µl) were added to a 96 well plate. The reconstituted glucose 

assay buffer (100µl) was added to each well. The plate was incubated for 15 minutes 

at room temperature prior to measuring absorbance at 340nm on a microplate reader. 

2.16 Glycogen content determination 

2.16.1 Reagents 

0.2M sodium hydroxide (NaOH), 30mM HCl, 0.1mg/ml of amyloglucosidase (Sigma-

Aldrich, UK) in 0.1M sodium acetate buffer pH 5.0, RIPA buffer, glucose assay kit 

(Sigma, UK). 

2.16.2 Protocol  

After the indicative endpoint, treated cells were glucose starved overnight to deplete 

glycogen stores and treated with RPMI media containing 11mM glucose for 48hrs with 

100nM insulin in the final 1hr of incubation. Cells were washed in ice-cold PBS and 
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immediately lysed with RIPA buffer as previously described. 5ml of 0.2M NaOH was 

added to the suspension and boiled for 1 hour. The samples were brought down to a 

final volume of 500µl with a concentrator. The samples were divided into aliquots; one 

used for glycogen content determination, the other two for protein determination and 

baseline glucose content determination as previously described. To the aliquot for 

glycogen content determination, 0.1mg/ml of amyloglucosidase was added and 

incubated overnight at room temperature. The glucose content was then determined 

by the hexose kinase method as previously described. The difference in glucose 

concentration between the first two aliquots gives the total glycogen content. In this 

thesis, one mole of glycogen corresponds to one mole of glycosyl units originating 

from glycogen. 

2.17 Oil red O lipid staining 

2.17.1 Reagents 

Oil Red O was obtained from Cayman (UK) and isopropanol from Fisher (UK). Mayer’s 

Haematoxylin solution and paraformaldehyde were obtained from Sigma (UK). 

2.17.2 Protocol 

Cells were grown in a 24-well plate and treated as previously described. After the 

indicative endpoint, cells were fixed with 4% paraformaldehyde in PBS for 10 min and 

then stained with 1.8 mg/mL oil Red O in 60% aqueous isopropanol for 15 min at room 

temperature. This was then rinsed five times with 60% aqueous isopropanol and PBS. 

Fixed cells were subsequently counterstained with Mayer’s haematoxylin solution for 

1 minute and viewed under a light microscope at x40 magnification. For quantitative 
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analysis of cellular lipids, isopropanol was added to each of the stained culture plates. 

The extracted dye was removed immediately by gentle pipetting and its absorbance 

was monitored at 495 nm using a microplate reader. Cellular neutral lipid content was 

normalised with cellular protein concentration. The protein concentration of each cell 

lysate was measured with BCA protein assay reagent as previously described. 

2.18 Periodic Acid Schiff staining for glycogen 

2.18.1 Reagents 

Periodic Acid-Schiff (PAS) staining was done using the kit (catalogue number: 395B) 

by Sigma, UK following manufacturer’s protocol. 

2.18.2 Background 

Histochemical determination of glycogen is based upon the periodic acid-Schiff 

reaction which was originally described by MacManus in 1948 [177]. The PAS reaction 

involves the oxidation of glycols within polysaccharides (like glycogen) to form 

dialdehydes which react with the Schiff reagent to form a purple-magenta colour. 

However, it is not specific to glycogen as it is able to react with mucopolysaccharides 

and basement membranes. 

2.18.3 Protocol 

Cells were grown in a 24-well plate and treated as previously described. After the 

indicative endpoint, cells were fixed for 10 minutes with 4% paraformaldehyde in PBS 

and stained with periodic acid solution for 5 minutes. After five washes, cells were 

stained with Schiff’s reagent for 15 minutes and counterstained with Mayer’s 
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haematoxylin solution for 1 minute and viewed under a light microscope at x40 

magnification. Staining intensity was quantified using ImageJ software. 

2.19 Extraction of total ribonucleic acid (RNA) 

2.19.1 Reagents 

Extraction of total RNA from cells was done using the RNeasy mini extraction kit 

(Qiagen, UK). Other materials used include sterile RNase-free pipet tips, 

microcentrifuge (with rotor for 2 ml tubes), 70% ethanol, a sterile syringe with 20-gauge 

needle (washed prior to use with 0.1M NaOH, 1mM EDTA and rinsed with RNase-free 

water) and β-mercaptoethanol (β-ME). 

2.19.2 Protocol 

2 x 106 cells were harvested as previously described and washed three times with 

PBS. The cells were centrifuged at 300g for 5 minutes and the PBS removed. 350µl 

of RLT (lysis) buffer supplemented with 3µl of β-ME was added and vortexed for 30 

seconds. A syringe attached to a 20-gauge needle was used to homogenise the 

sample. The lysate was then stored at -80°C until required or extracted immediately. 

350µl of 70% ethanol was then added to the homogenised lysate and mixed 

thoroughly by pipetting up and down several times. 700µl of the sample was then 

transferred (including any precipitate that may have formed) to an RNeasy spin column 

placed in a 2 ml collection tube and centrifuged for 15 seconds at ≥8000 x g (≥10,000 

rpm). The flow-through was discarded. 700µl of Buffer RW1 was added to the RNeasy 

spin column and centrifuged for 15 s at ≥8000 x g (≥10,000 rpm) to wash the spin 

column membrane. After discarding the flow-through, 500µl Buffer RPE was added to 
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the RNeasy spin column and centrifuged for 15 s at ≥8000 x g (≥10,000 rpm) again to 

wash the spin column membrane. After discarding the flow-through, the membrane 

was again washed with Buffer RPE and centrifuged for 2 min at ≥8000 x g (≥10,000 

rpm). The long centrifugation dries the spin column membrane, ensuring that no 

ethanol was carried over during elution of RNA, because residual ethanol may 

interfere with downstream reactions. The flow-through was discarded and the column 

placed in a new 2ml collection tube. The column was centrifuged again for 1 min to 

ensure no residual ethanol is left on the column. The collection tube was then replaced 

with a new 1.5 ml collection tube and 50µl of RNase-free water was added directly to 

the spin column membrane. RNA was eluted by centrifuging for 1 min at ≥8000 x g 

(≥10,000 rpm). The concentration and purity of the extracts were determined using a 

Nanodrop  (diluted in 10 mM Tris·Cl,* pH 7.0 and 10 mM Tris·Cl,* pH 7.5 respectively). 

The ratio at absorbance 260nm and 280nm (260/280) of 2 was used as a primary 

measure for RNA purity while a 260/230 absorbance ratio of 2.0-2.2 was used as a 

secondary measure of nucleic acid purity. 

2.20 Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) 

2.20.1  Reagents  

All primers were purchased from Thermo Fisher Scientific (UK) except the reference 

gene, YWHAZ, which was obtained from Qiagen (UK). The list of primers sequences 

can be found in table 2.1. The primer sequence for YWHAZ was not made available 

by Qiagen. SYBR green PCR master mix (Primer Design, UK), 96 well PCR plates, 

strip caps, nuclease free water, Quantitect reverse transcription kit (Qiagen, UK), PCR 

primers, Stratagene mx3000p qPCR thermocycler.  
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2.20.2 Protocol 

Reverse transcription was performed using a high capacity reverse transcription kit 

purchased from Qiagen, to convert extracted RNA to cDNA. A master mix solution 

was made from the reverse transcription kit components, consisting of per sample; 4µl 

reverse transcriptase buffer, 1µl Quantiscript reverse transcriptase and 1µl RT primer 

mix. The master mix was mixed by vortexing and 10µl added to 200µl PCR tubes. An 

equal volume of extracted RNA sample (containing 500ng RNA) was added to the 

PCR tubes. To control for possible genomic DNA contamination, the samples were 

also incubated with a master mix solution without the addition of the reverse 

transcriptase enzyme. The converted cDNA was diluted 1 in 10 with nuclease-free 

water and stored at -20°C until needed. The expression of specific mRNA was 

measured by RT-qPCR analysis of the diluted cDNA. A qPCR reaction stock solution 

was made by mixing for each sample: 0.5µl of the forward and reverse primers, 4µl 

nuclease free water and 10µl SYBR green master mix. To each well on a qPCR plate 

15µl of the reaction stock solution was added to 2µl of the diluted cDNA. A negative 

control was included in the experiment by using 2 µl of nuclease-free water instead of 

cDNA. The wells were sealed with strip caps and the plate loaded onto a Stratagene 

mx3000p qPCR thermocycler. The following PCR condition were used: 95⁰ C, 2 

minutes hold for 1 cycle; 95⁰ C, 10 sec hold + 60⁰ C, 30 sec hold, for 45 cycles; 1 cycle 

– 60⁰ C, 30 sec + 95⁰ C, 30 sec. The produced data was analysed using the 

comparative delta-delta CT method. In the delta-delta CT method, the CT value of the 

gene of interest is first subtracted from the CT value of the reference gene to obtain 

ΔCT for each experimental sample, then the difference between the ΔCT values of 
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each experimental gene and the control gene is determined (this is now called ΔΔCT). 

Finally, the formula 2^(-ΔΔCT) was used to calculate the fold change in the expression 

of the gene of interest [178]. Therefore, results are normalised as a fold change relative 

to untreated controls and normalising to the CT  value for the reference gene. Where 

multiple plates were used, a reference gene, negative control and untreated control 

was added to each plate for corresponding experimental genes of interest. 

Table 2.1: List of primers sequences1 used for RT-qPCR, including forward (F) 
and reverse (R) sequences.  

Oligo Name Sequence (5' to 3') 

ABCD1 (F) TACCGGGTCAGCAACATGG 

ABCD1 (R) TGGTCAGGTTGGAGTAGAGGT 

ABCD2 (F) GGATGGAAAAATCGTGAAAAGCA 

ABCD2 (R) ATGGCAATCATAAGCCACTTGA 

ABCD3 (F) GCTGGTGTCTCGAACATATTGT 

ABCD3 (R) ATCTTTCCTGCTACGACCAATG 

ACAA2 (F) CTGCTCCGAGGTGTGTTTGTA 

                                                      

1 Primer sequence for reference gene not made available by QIAGEN (UK) 
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Oligo Name Sequence (5' to 3') 

ACAA2 (R)  GGCAGCAAATTCAGACAAGTCA 

ACAD10 (F) GTACGAACCTGGGTTAAGCAG 

ACAD10 (R)  CAGCCATTCGATCAGCCTCT 

ACADL (R)  CGCAACTACAATCACAACATCAC 

ACDL (F) TGCAATAGCAATGACAGAGCC 

ACOX1 (F) AATCGGGACCCATAAGCCTTT 

ACOX1 (R)  GGGAATACGATGGTTGTCCATTT 

ACSL1 (F) CTTATGGGCTTCGGAGCTTTT 

ACSL1 (R)  CAAGTAGTGCGGATCTTCGTG 

CAT (F) TGGGATCTCGTTGGAAATAACAC 

CAT (R) TCAGGACGTAGGCTCCAGAAG 

CD36 (F) CTTTGGCTTAATGAGACTGGGAC 

CD36 (R) GCAACAAACATCACCACACCA 
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Oligo Name Sequence (5' to 3') 

CPT1A (F) ATCAATCGGACTCTGGAAACGG 

CPT1A (R)  TCAGGGAGTAGCGCATGGT 

CPT2 (F) CATACAAGCTACATTTCGGGACC 

CPT2 (R)  AGCCCGGAGTGTCTTCAGAA 

FABP1 (F) GTGTCGGAAATCGTGCAGAAT 

FABP1 (R)  GACTTTCTCCCCTGTCATTGTC 

FASN (F) AAGGACCTGTCTAGGTTTGATGC 

FASN (R)  TGGCTTCATAGGTGACTTCCA 

GSK3 (F) GTGCCCGAGACAGTGTACC 

GSK3 (R) ACACCTTGACATAGAGGATAGGG 

KPNA2 (F) GGCACTGTAAATTGGTCTGTTGA 

KPNA2 (R) CCTGGCAGCTTGAGTAGCTT 

KPNB1 (F) CCACTTTCCTTGTGGAACTGT 
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Oligo Name Sequence (5' to 3') 

KPNB1 (R) CTCTGCTGATATTGTGCCTTGA 

MLYCD (F) ACCTAGAACGGGTTACCTGG 

MLYCD (R)  CAGGGGTCGAACAGTGAGAA 

NCOA1 (F) AATGAATACGAGCGTCTACAGC 

NCOA1 (R) TTTCGTCGTGTTGCCTCTTGA 

PPARA (F) TTCGCAATCCATCGGCGAG 

PPARA (R) CCACAGGATAAGTCACCGAGG 

RXRa (F) GACGGAGCTTGTGTCCAAGAT 

RXRa (R) AGTCAGGGTTAAAGAGGACGAT 

SCD1 (F) CTCCACTGCTGGACATGAGA 

SCD1 (R)  AATGAGTGAAGGGGCACAAC 

SCD5 (F) TGCGACGCCAAGGAAGAAAT 

SCD5 (R) CCTCCAGACGATGTTCTGCC 
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Oligo Name Sequence (5' to 3') 

SLC25A20 (F) GACACGGTCAAGGTCCGAC 

SLC25A20 (R) GCAGCCATTCCCCGATATAGC 

SLC2A2 (F) GCCTGGTTCCTATGTATATCGGT 

SLC2A2 (R) GCCACAGATCATAATTGCCCAAG 
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3 CHAPTER 3: Fatty acid predictors of insulin resistance and 

methodological optimisations 
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3.1 INTRODUCTION 

The increasing burden of T2DM has been associated with an increase in sedentary 

lifestyle, an increasingly ageing population and a rise in the prevalence of obesity 

[179]. The ß-islet cells in the pancreas are responsible for the production and secretion 

of insulin, the primary regulatory hormone for glucose metabolism. An increase in 

body-mass index (BMI) and the consequent increase in adiposity contributes to an 

increase in FFAs in circulation and leads to a selective utilisation of these FFAs for 

energy, at the expense of glucose. Excess FFAs also suppress ß-islet cell function, as 

well as activate processes that lead to impaired cellular insulin signalling [180, 181]. 

Therefore, T2DM is thought to be due to pancreatic dysfunction resulting from a 

complex interplay of peripheral insulin resistance and reduced insulin secretion, 

consequently resulting in impaired glucose and FA uptake from the circulation and 

hyperglycaemia with associated hyperlipidemia [182]. The factors that contribute to 

the onset and complications of T2DM are complex and include genetic and 

environmental factors. 

Obesity has long been established as a modifiable risk factor for T2DM because most 

people with T2DM are obese; supported by the fact that the rise in prevalence of 

obesity has also coincided with a concomitant rise in prevalence of T2DM. Also, 

patients that have undergone bariatric surgery for obesity and/or modified their weight 

through diet or increased physical activity have observed an improvement in glycaemic 

control and reduced diabetic risk [183-188]. Epidemiologic and experimental studies 

have established an association between T2DM and obesity including complex 

interactions that involve mitochondrial dysfunction, deranged FA metabolism, pro-
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inflammatory cytokines and adipokines, energy overload, peripheral insulin resistance 

and ectopic fat deposition (especially liver fat and visceral adipose tissue) [189]. 

Although these interactions are not fully understood, recent studies have expanded 

further on the nature of adipocytes in T2DM. For instance, visceral adipose tissue 

(VAT) over subcutaneous adipose (SAT) was considered by some a more significant 

predictor of insulin resistance [190, 191]. Others suggested that abdominal SAT might 

be as important [31]. Perhaps this difference might also be explained by a diversity of 

immune response in these locations. There is evidence to suggest that diets rich in 

monounsaturated FA (instead of saturated FAs), as is the case with Mediterranean 

diets, can reduce the risks of T2DM even without changes in weight or physical activity 

[192-194]. Furthermore, animal studies show expression of anti-inflammatory 

macrophage phenotypes (M2) in the mesenteric adipose tissue after dietary oleic acid 

intake [195]. There is also evidence of the anti-atherogenic activity of MUFA but not 

saturated FA like palmitate, which preferably displays a pro-inflammatory and pro-

atherogenic phenotype that promotes insulin resistance [196-198]. 

It is a well-accepted fact that the concentration of total FFAs in the plasma increases 

with obesity, T2DM and age. However, knowledge of the distribution of specific FAs 

according to length and saturation is limited despite the view that structural diversity 

determines their functions. The cellular FA distribution, mainly found in phospholipids, 

ceramide and sphingomyelin in membranes, is determined by both dietary FA supply 

and metabolic enzyme activity, including elongases (encoded by the ELOVL genes) 

and desaturases [199]. How membrane phospholipids and the total FA lipidome 

change with age, obesity, insulin resistance, and T2DM is poorly understood. 
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Nevertheless, membrane FAs act as organisational platforms for insulin receptor 

signalling and as substrates for synthesis of anti-inflammatory and pro-resolving 

mediators of inflammation. Furthermore, there is substantial epidemiological evidence 

from the EPIC study linking the FA profile of erythrocyte membrane phospholipids and 

activity of desaturase enzymes with the incidence of T2DM [200]. 

Many obese people do not have T2DM, raising a conundrum about the metabolically 

healthy obese. A cross-sectional study designed to characterise metabolically healthy 

obesity in rare pairs of obesity-discordant monozygotic twins revealed the presence of 

liver fat as the most important predictor of insulin resistance [32]. The ectopic 

deposition of fat in the liver could be explained by SAT inflammation resulting in local 

mitochondrial dysfunction and associated failure to metabolise fat in SAT. Further 

mitochondrial dysfunction in T2DM can also be explained by an increase in reactive 

oxygen species (ROS) leakage from complex 1, which is usually due to nutrient excess 

from circulating glucose and FFAs. This results in a vicious negative feedback cycle 

that includes increased protein oxidation and a down-regulation of glyceraldehyde 

phosphate dehydrogenase (GADPH) as well as an increase in several pathways, that 

include but are not limited to increased formation of advanced glycation end-products 

(AGE); increase in the polyol pathway; increase in the hexosamine pathway; and an 

increase in activation of protein kinase C (PKC) [189, 201]. Figure 3.1 attempts to 

simplify the complex interactions that encompass T2DM. 

T2DM complications are heavily associated with inflammatory changes, especially in 

the vasculature. People with T2DM have a higher risk of myocardial infarction, stroke 
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and other cardiovascular disorders than the general population [202]. Because the 

treatment options for these complications are limited and sometimes palliative, it has 

become imperative to identify markers to predict these complications during the early 

stages of the disease and identify drug targets to help prevent them. Therefore, it will 

be useful to have a model to predict the onset of T2DM in the general population to 

aid focused prevention strategies. 

Much work has been done in developing risk prediction models for the onset of T2DM. 

This practice has been encouraged by evidence from different preventive strategies 

on people with impaired glucose tolerance or impaired fasting glycaemia in different 

countries [184, 190, 203]. Despite the different widespread use of weak prediction 

model methods, some risks have appeared consistently as possible predictors of 

diabetic outcomes [204]. Even though some of these prediction scores are never used 

in practice because the tests are not available for routine use, it has identified 

biomarkers and indices for further research. Regarding FA biomarkers, there has been 

a growing interest in the biological relevance of odd-chain saturated FAs (OCSFA) 

over the last decade. These FA were initially assumed to be metabolically irrelevant in 

humans and were therefore used as internal standards in lipid profiling by gas 

chromatography (GC). However, this narrative has been challenged by growing 

evidence showing a negative correlation between dairy intake and metabolic disease 

development, and emerging evidence pointing to an association between OCSFA and 

dairy intake [205]. Despite ongoing debate regarding the human ability to 

biosynthesise or indeed metabolise OCSFA, its relationship with T2DM prevention has 

been buttressed by publications from the European Prospective Investigation (EPIC) 



89 

 

study cohort [200, 206, 207]. However, the relationship between OCSFA and markers 

of inflammation are still not well characterised. 
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3.2 AIMS AND HYPOTHESIS 

This chapter aims to determine the role of FFAs as predictive biomarkers of fasting 

blood glucose and inflammation in T2DM with a particular focus on pentadecanoic 

acid (C15:0), one of the more abundant OCSFA in human plasma. The detection of 

OCSFAs in plasma samples is challenging because they are less abundant in blood 

compared to their saturated counterparts. Traditionally, FAs are recovered from 

plasma samples by a time-consuming two-step method of Folch extraction followed 

by methylation. This chapter will look at optimising a robust method for efficient plasma 

lipid extraction and analysis by a direct method. The direct method is less time-

consuming and requires less resources and has the potential to accurately quantify 

the lipid profile of patients with T2DM, with particular emphasis on OCSFAs, with the 

same efficiency as the two-step method.  

3.2.1 Aims 

1. To develop a method for reproducible plasma lipid extraction and identification 

of OCSFAs using gas chromatography 

2. To characterise the lipidome in patients with T2DM and age-matched controls 

3. To use FA profiles to develop a predictive model for fasting blood glucose and 

markers of inflammation 

4. To evaluate the protein carbonyl content as a marker of oxidative stress for the 

progression of T2DM. 
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3.2.1.1 Hypothesis 

1. The recovery efficiency of FAs from plasma will not differ between the direct 

method and two-step method. 

2. The concentration of C15:0 will negatively correlate with fasting blood glucose 

levels 

3. Markers of adiposity (leptin and BMI) will correlate positively with FAs 

4. FAs will positively correlate with marker of inflammation. 

 

 

Figure 3.1 : A simplified schematic of the interactions that lead to T2DM. CHD (Coronary Heart Disease), CRP (C-

reactive protein), T2DM (Type 2 diabetes) (Misra and Shrivastava 2013) 
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3.3 METHODS 

3.3.1 Protein carbonyl ELISA 

Protein carbonyls were detected in plasma by an ELISA based assay as described in 

section 2.11.2 

3.3.2 BCA assay 

A BCA assay was performed on all the samples to determine their protein 

concentrations. All reagents used were obtained from Sigma (UK). Briefly, 400 µl of 

copper (II) sulphate was added into 20 ml of BCA solution. A protein standard was 

aliquoted into a 96-well plate to correspond to 0, 0.2, 0.4, 0.6, 0.8 and 1.0 mg/ml of 

protein to generate a standard curve. 10 µl of representative samples were then 

aliquoted into separate wells in the 96-well plate in triplicates and 200 µl of the BCA 

solution was then added and left to incubate at 37°C for 30 minutes after which it was 

read on a microplate reader at a wavelength of 570nm. Protein concentration of 

samples were then interpolated from the standard curve.  

3.3.3 Folch lipid extraction from plasma 

A modified Folch method was employed for lipid extraction from plasma samples as 

described in section 2.10.2.  

3.3.4 Methylation of FFA  

 FAs in plasma were esterified to FA methyl esters (FAMEs) using either BCl3 or HCl 

method as described section 2.10.3.2. 
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3.3.5 Study population 

Plasma samples used in this thesis were taken from a cohort of T2DM patients and 

controls recruited in Birmingham. Ninety-six samples (47 controls and 49 T2DM, NHS 

ethics study number 11/WM/0288) were sampled randomly from this cohort for 

analysis. Details of the study population used for this study, the protocol, ethics, 

inclusion and exclusion criteria, has already been described [208]. Briefly, a random 

number was generated by excel and paired with each sample. This number was then 

sorted in ascending order, and the first 50 samples for each cohort were selected for 

the study. Five samples (3 control and 1 T2DM) were excluded from the analysis 

because there was no fasting glucose measurement recorded. Standard universal 

precautions were observed in collecting and extracting plasma samples from whole 

blood. Blood samples were collected in EDTA bottles and centrifuged at 300g for 10 

minutes to extract plasma. All study participants were recruited from the same 

community in Birmingham. Ethical approval was granted by the Aston University and 

Staffordshire NHS Research ethical committees.  

3.3.6 Statistical analysis 

Data were analysed using SPSS version 21 (Armonk, New York, USA). Descriptive 

analysis of biochemical data was performed for all variables with percentages and 

mean (standard deviation) as appropriate for normally distributed data, or median 

(range) for non-normally distributed data. A two-tailed, unpaired student’s t-test was 

used to compare means between two groups of normally distributed data, while a 

Mann-Whitney test was used in the same scenario for non-normally distributed data. 
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3.3.6.1 Statistical model 

The following steps were undertaken in model development. Missing values were 

analysed pairwise and data from all participants (controls and T2DM) were included in 

the regression analysis. 

1. Based on the hypothesis, C15:0 was fitted into a multiple linear regression 

model to predict the independent variable of interest. On the basis that FAs 

interact biologically, all FAs in our data were also included in the model as 

interactors and analysed in a backward stepwise method. Variables with a 

variance inflation factor (VIF) > 10 (to account for multicollinearity) and F 

statistic > 0.10 were removed from the next step of the model. Statistically 

significant variables remaining in the final step of the model were considered 

predictive of the independent variable and added to the next step in the model. 

2. Subsequently, a bivariate analysis was performed to determine the variables 

(baseline characteristics) which correlated significantly with the independent 

variable of interest. These variables were then used to adjust for the predictor 

variable of interest.  

3. Statistically significant FAs and variables from step 2 were then fitted into a 

generalised linear regression.
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3.3.7 Gas chromatography 

Table 3.1:  Details of the GC protocol used in the analysis of fatty acid methyl esters (FAME) 

Column  Omegawax 250  

Fused silica 

Bonded; poly(ethylene) phase 

Capillary column 

30m x 0.25mm x 0.25µm 

280
°
C maximum oven temperature  

Injection volume  1µl  

Inlet type  Splitless  

Injection port temperature  280
°
C  

Carrier gas velocity  35cm/sec at 40
°
C  

Splitless hold time  1 minute  

Start oven temperature  40
°
C  

Oven temperature programme  40
°
C hold 2 minutes, then ramp 50

°
C per minute to 260

°
C, hold 6.6 minutes (13 minutes runtime)  

Final oven temperature  260
°
C  

Standard mix used  SUPELCO 37 FAME mix  

Instrument  Agilent 7820A  

Data analysis software  ChemStation  
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Table 3.2: GC protocol for SUPELCO (recommended) method 

Column  Omegawax 250  

Fused silica 

Bonded; poly(ethylene) phase 

Capillary column 

30m x 0.25mm x 0.25µm 

280
°
C maximum oven temperature  

Injection volume  1µl  

Inlet type  Splitless  

Injection port temperature  250
°
C  

Carrier gas velocity  30cm/sec at 50
°
C  

Splitless hold time  0.75minute  

Start oven temperature  50
°
C  

Oven temperature programme  50
°
C hold 2 minutes, then ramp 4

°
C per minute to 220

°
C, hold 15 minutes (59 minutes runtime)  

Final oven temperature  220
°
C  

Standard mix used  SUPELCO 37 FAME mix  

Instrument  Agilent 7820A  

Data analysis software  ChemStation  
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3.4 RESULTS 

3.4.1 Gas chromatography optimisation 

The GC optimisation aimed to reduce analysis time, to allow increased sample 

throughput, without negatively affecting elution pattern, peak identification, resolution, 

and quantification. The optimised method used for this study was adapted from the 

protocol recommended by Supelco for use on the Omegawax 250 column for the 37 

FAME mix. Details of the protocol for both methods are found in Table 3.1. The first 

step of the optimisation involved increasing the oven temperature ramp at a rate of 

4°C per run until the maximum ramp rate the machine can handle without lagging was 

achieved. The outcome measured was the number of resolved peaks identified. It was 

expected that any optimum condition would resolve 35 peaks as stated on the Supelco 

FAME mix catalogue. For the Agilent 7820a, 52°C/minute was the highest oven 

temperature ramp rate that did not result in oven temperature lag. 50°C/minute was 

therefore used as the set ramp rate for this method.  

3.4.1.1 Inlet temperature 

To determine the optimum inlet temperature, temperatures within a range of +/-50°C 

of the recommended injection temperature (250°C) was tested. The outcome 

measures were the number of peaks and mean peak areas from each standard 

injection temperature run. A repeated measure one-way ANOVA was used to analyse 

the experiment with the 250°C run set as control (Figure 3.2). All the inlet temperatures 

yielded 35 peaks; hence, attention was then focused on the mean peak area from 

each run. The mean peak area increased with increasing inlet temperature as shown 

in Figure 3.2a (p < 0.001). Also, high molecular weight discrimination reduced with 
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increasing inlet temperature (Figure 3.2b), which is depicted by an increase in the 

mean peak areas of the last eight peaks (each FAME is represented by a single bar 

within each temperature run in Figure 3.2b) as temperature increases. Furthermore, 

the mean peak areas of inlet temperatures of 300°C and 280°C were statistically 

significantly higher than 250°C (p < 0.0001 and 0.04 respectively) as shown in Figure 

3.2c. 

The decision to stick with 280°C as the optimal inlet temperature was made based on 

the fact that there was no thermal degradation of any of the FAMEs. In comparison, 

several lower molecular weight FAMEs were degraded with the 300°C run (Figure 3.2: 

signal overlay of both runs). 
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Figure 3.2 : Effect of Inlet temperatures on FAME elution.  
The Supelco FAME 37 mix was run at the recommended Supelco protocol and the inlet temperature was altered for each run. Five separate 
standard runs were carried out for each set inlet port temperature. The FAMEs were analysed using the resultant peak areas from the GC. (a) The 
difference in total mean peak areas of each temperature runs. Data presented as Mean and 95% CI. **** represents a p < 0.00001, ** represents 
p = 0.001, and * p < 0.05 after a repeated measure one-way ANOVA with Geisser Greenhouse correction and Tukey post-test comparison. (b) 
Shows the mean difference and 95% CI between each inlet temperature run and the control (250°C).  

Inlet temperature 
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3.4.1.2 Splitless Purge Time 

In a splitless injection, excess solvent (and sometimes excess sample) in the inlet is 

purged through the split vent to prevent tailing of the solvent throughout the 

chromatogram that would otherwise prevent identification of analytes. Because 

different analytes have different boiling points and migrate at different speeds in the 

inlet, it is important that the purge time be long enough to capture as much sample as 

possible and short enough to prevent tailing of the solvent on an analyte. To determine 

the optimal splitless purge time for the study protocol, different purge times were 

plotted against mean peak areas of all analytes (Figure 3.3a) and analytes of interest 

(Figure 3.3b). The ‘analytes of interest’ were C4:0, C17:0 and C24:0, representing 

early, middle and late eluting FAMEs. There was a statistically significant linear 

increase in mean peak areas as split purge time increased from 0.5 minutes to 1.25 

minutes. The smallest observed difference in mean peak areas was between 0.75 and 

1.0 minute. However, this difference was also statistically significant (mean difference: 

451.6; 95% CI: 180-722; p = 0.0005). From these data, a splitless purge time of 1.25 

minutes looked to be the optimal choice, however, on further analysis of analytes of 

interest, C4 was observed to co-elute with the solvent when a splitless purge time of 

1.25 minutes was applied (Figure 3.3b). Therefore, 1 minute was set as the optimal 

splitless purge time. 

3.4.1.3 Final oven temperature 

Final oven temperatures of 200°C, 220°C, 240°C and 260°C were compared for the 

number of peak areas that could be identified (maximum oven temperature for column 
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= 280°C). Final oven temperatures of 200°C, 220°C and 240°C only eluted 34 peaks 

compared to the 35 peaks observed in the 260°C run. 

3.4.1.4 Other variables 

All other variables like inlet pressure, carrier gas velocity and flow rate were left at the 

recommendations of SUPELCO for use on the 37 FAME mix (Table 3.2). The FID 

detector temperature was increased from 260°C (SUPELCO recommendation) to 

300°C based on the recommendation of the Agilent 7820a GC manual (to set detector 

temperatures to at least 300°C to prevent soot collection). A splitless injection was 

used instead of a split because it was predicted that the samples to be analysed would 

be in minute quantities.  
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Figure 3.3 : Effect of altering Inlet splitless purge time on FAME elution.  
The Supelco FAME 37 mix was run at the recommended Supelco protocol and the splitless purge time was altered for 
each run. 5 separate standard runs were carried out for each set splitless purge time. The FAMEs were analysed using 
the resultant peak areas from the GC. (a) Shows the mean peak areas of all 37 FAME analytes between different splitless 
purge times. b) Shows peak areas for C4, C17 and C24 plotted against different splitless purge times. 
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3.4.1.5 New protocol vs SUPELCO recommended protocol 

The new protocol had a run time of 13 minutes compared to 59 minutes (SUPELCO), 

saving 46 minutes, which is enough time for just over three runs with the new protocol. 

To validate the new protocol, its variability and reliability were compared with the 

recommended protocol. The coefficient of variation (CV) for retention time was 

calculated for both protocols using data from 20 runs of Supelco FAME 37 mix (5 runs 

each on Day 1, 2, 8 and 9; to account for inter-run, inter-days and inter-week variation). 

The CV of the new and old protocol was 1.35% and 0.46% respectively (usually, a CV 

of 4% or less is an acceptable level of variation/precision for an instrument). To 

determine the reliability of the new protocol, the Cronbach's alpha internal consistency 

reliability estimate was calculated. The new protocol was found to be 99.6% reliable. 

3.4.1.6 Limit of detection 

To determine how sensitive the GC was in identifying small samples, the FAME  37 

mix was diluted serially with a factor of 10 until the GC could no longer identify 35 

peaks. This limit was reached with a 1:100 dilution which represents 2ng of C17:0. 

3.4.1.7 C17:0 standard curve. 

To determine how accurately the GC quantifies different concentrations of FAMEs 

after methylation, a standard curve was generated using C17:0 (internal standard). 

The peak area was used for quantification and found to be highly correlated to C17:0 

amount (R2 = 0.99) 
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Figure 3.4: Standard curve for C17:0 internal standard.  
1mg/ml solution of C17:0 was prepared in chloroform/methanol as previously described. A serial dilution was done to obtain 
0.2mg/ml, 0.4mg/ml, 0.6mg/ml and 0.8mg/ml C17:0 solutions. Three 100µl aliquots of each dilution were extracted by the 
direct method and derivatised using BCl3 and analysed by GC. The R2 for the curve was 0.99 
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measure the FFA recovery from both methods as represented by peak areas of 

FAMEs quantified by the GC. The peak area represents the quantity of FAMEs 

detected on GC. 

To measure the difference between both derivatisation methods, a Wilcoxon matched-

pairs test and a two-way ANOVA were applied to test the difference between the total 

FAME amount detected and the peak areas for individual FAMES respectively (Figure 

3.5). The two-step method had a higher average peak area (mean difference: 16.48; 

95% CI: -117.5 to 150.6) compared to the direct method, but this was not statistically 

significant (two-tailed p value = 0.58), even after excluding C17:0 (internal standard) 

from the analysis (p = 0.79). However, the direct method recovered more internal 

standard (C17:0) on average than the two-step method (OR: 1.6; p= 0.144) and was 

expected, therefore, to differ significantly for the amount of FAMEs detected as 

interpolated by C17:0. However, this was not exactly the case. Although the direct 

method had a higher FAME recovery (mean difference: 57.4ng, 95% CI: -254.6 to 

369.4; median of difference [MoD]: 33.8, 97.85% CI -25 to 86) compared to the two-

step method, this was not statistically significant (two-tailed p value = 0.16). 

Interestingly, the direct method also recovered more C15:0 compared to the two-step 

method (Figure 3.5a), but this was not statistically significant (mean peak area 

difference 144.6; 95% CI: -426 to 719).  
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Figure 3.5 : The effect of extraction and derivatisation approach of fatty acid quantification from plasma.  
Pooled plasma (500µl) were either derivatised and extracted in one step (Direct method) or extracted by modified Folch method prior 
to derivatisation (Two-step method). Three independent samples were derivatised with HCl as detailed in methods and analysed for 
each group. Derivatised lipids were separated by GC and detected as peak areas and compound amount. (a) A comparative recovery 
of FAMEs between the two methods showing log peak area for selected FFA identified. (b) Total FFA recovered determined against 
a standard curve of FAMEs and relative to internal standard.  A Two-Way Anova with repeated measures was used to test the 
difference between derivitisation methods and FAME peak areas for (a), and a Wilcoxon matched-pairs sign rank test was used to 
assess statistical significance for (b).  
Key for box and whisker plot: Vertical line within box represents median, cross within box represents mean, whiskers represent 
highest and lowest observations, box represents interquartile range, dots outside box represents an outlier. 
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3.4.2.2 Methylation methods 

To determine which methylation method to employ, two acid-catalysed 

transmethylation methods were compared. Three 500µl pooled plasma samples were 

aliquoted, extracted and derivatised separately by the direct method. Each sample 

was run thrice on the GC with identified FFA recorded as peak areas. C17:0 was 

added as an internal standard, and FAME amounts were interpolated from the areas 

of identified peaks on the chromatogram. The recovery amount for the two methods 

was analysed using a Wilcoxon matched-pairs sign rank test. 

After excluding C17:0 recovery from the analysis, the BCl3 method showed higher 

amounts of FAMEs compared to the HCl method (Figure 3.6b), with a MoD of 121.1 

(97.85% CI: 66.7 to 3047, two-tailed exact p < 0.001). The most statistically significant 

observed differences between both methods in terms of FA recovered were among 

C18:1n9 and C18:2n6 (two-tailed p value < 0.01 for both observations).  

3.4.3 Plasma sample volume 

Different volumes of plasma were compared to determine the lowest optimal volume 

required to identify and quantify FAMEs with no loss of sensitivity. Decreasing plasma 

volumes (500µl, 100µl and 50µl) were compared and analysed by repeated measure 

one-way ANOVA using the amount of FAMEs recovered as an outcome. To correct 

for identification and quantification bias due to dilution, a dilution correction was 

applied to the final lipid extract volume as follows: final lipid extracts from 500µl, 100µl, 

and 50µl plasma samples were dried down to 250µl, 50µl, and 25µl respectively.  
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As shown in Figure 3.7, the amount of FAMEs recovered reduces with increasing 

volumes of plasma samples used for extraction and methylation. A repeated measures 

one-way ANOVA analysis showed that there is a 92.57% chance that the differences 

in the mean FAME amounts observed between the different plasma volume groups in 

this study is real and not due to chance (p value= 0.015). The most considerable 

observed mean difference (and only statistically significant difference found) in FAME 

amount was between the 50µl and 100µl samples (mean difference: 9.912µg/ml; p = 

0.03). However, when C17:0 was removed from the analysis, there was no statistically 

significant difference in the FAME amounts recovered between all groups. The mean 

differences between 50µl samples compared to 500µl samples was 9.039µg/ml (p = 

0.06), and there was no significant difference in FAME concentrations between 500µl 

and 100µl samples (mean difference: -0.87µg/ml; p = 0.92).  
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Figure 3.6 : The effect of derivatisation methods on free fatty acid quantification from plasma.  
500µl of pooled plasma were either derivatised with HCl or BCl3.Three independent samples were derivatised and 
analysed for each group. Derivatised lipids were separated by GC and detected as either peak area of selected fatty 
acids (a) or total fatty acid recovery amount (b). Amount was calculated using a calibration table that measures 
individual response factors of each FAME based on an external standard run (FAME 37 mix) and the amount of C17:0  
internal standard in the sample. A Two-Way Anova with repeated measures was used to test the difference between 
derivitisation methods and FAME peak areas for (a), and a Wilcoxon matched-pairs sign rank test was used to assess 
statistical significance for (b).  
Key for box and whisker plot: Vertical line within box represents median, cross within box represents mean, whiskers 
represent highest and lowest observations, box represents interquartile range, dots outside box represents an outlier. 
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Figure 3.7 : The effect of plasma volume on FFA quantification by GC.   
BCl3 was used to derivatise three volumes of pooled plasma (50µl, 100µl or 500µl). Three independent samples 
were derivatised and analysed for each group. Derivatised lipids were separated by GC and detected as the 
compound amount. The amount was calculated using a calibration table that measures individual response factors 
of each FAME based on an external standard run (FAME 37 mix) and the amount of C17:0 internal standard in the 
sample. A dilution was applied to avoid identification bias. Dilution calculation resulted in diluting the final 
concentrations of 500µl and 100µl samples by 10 and two times the final volume of 50µl sample. Data presented 
as mean and 95% CI. Statistical analysis assessed by One-way ANOVA, applying a Geisser Greenhouse 
correction, with Tukey’s post-test comparison.  
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3.4.4 Baseline characteristics of study participants 

Participants from this study were sampled from an existing cohort of type 2 diabetics 

(T2DM) and healthy controls as detailed in the method section. 

There was no significant difference in the disposition of males or females between 

control and healthy cohorts. The diabetic cohort was significantly older (mean 

difference: 17.71years, p < 0.0001), with a higher BMI (mean difference: 8.85kg/m2, p 

< 0.0001), compared to the control cohort. A statistically significant higher difference 

was also observed with the visceral fat score in the diabetic cohort compared to the 

control (mean score difference: 6.69, p< 0.0001). Fasting plasma glucose, Leptin, 

soluble E-selectin, soluble thrombomodulin, C-reactive protein and protein carbonyl 

levels were higher in the diabetic cohort compared to healthy controls (Table 3.3). 

To estimate how well protein carbonyl levels and the plasma lipid profile predict T2DM 

or inflammation, a multiple linear regression model was developed comparing them 

(predictor variables) to fasting plasma glucose, leptin, BMI and markers of 

inflammation. The regression models were fit through a backward step method. The 

variance inflation factor (VIF) was used to detect colinearity, while the R squared 

values and chi-squared of each variable were used as factors to eliminate variables 

from the model.  Any variable with a VIF > 10 and chi-square > 0.05 was eliminated 

from the next step of the model. The best fit model was achieved when all the variables 

left in the model had a VIF <10, a statistically significant ANOVA and chi-square value. 
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Table 3.3: Baseline characteristics of study participants 
Statistically significant differences between control and diabetic cohorts were adjusted 
for during regression analysis.  

Healthy 
controls  
n=47  

Type 2 
Diabetes 
group 
n=49  

Total (n=96)  
Frequency/ 
Mean difference 

p value  

     

Gender   
-female 
-male  

15 (51.7%) 
14 (48.3%)  

13 (41.9%) 
18 (58.1%)  

28 (46.7%) 
592 (53.3%)  

0.44  

Age (years)  42.21 (12.63)  59.48 (14.25)  17.71  <0.0001  

Height(cm)  171.38 (1.95)  167.10 (1.76)  4.27  0.10  

Weight (Kg)  72.941 (2.65)  85.32 (8.43)  12.37  0.01  

BMI (Kg/m2)  24.45 (0.95)  30.31 (1.10)  5.85  <0.0001  

Visceral fat score 
(1-59) 

5.93 (0.63)  12.62 (0.86)  6.69  <0.0001  

Leptin ng/ml  8.41 (1.09)  1160 (180)  1151.59  <0.0001  

Soluble E-selectin 
ng/ml 

33.28 (4.59)  48.08 (4.7)  14.80  0.01  

Fasting plasma 
glucose (mmol/L)  

4.3 (0.13)  9.3 (0.8)  5.03  <0.0001  

CRP (µg/ml)  0.85 (0.14)  5.06 (0.75)  0.79  <0.0001  

Protein carbonyl 
(nmol/mg)  

2.75 (.08)  3.89 (0.17)  1.14  <0.0001  
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Table 3.4: Fatty acid concentration in plasma (expressed as a percentage of total 

FA) from fasting healthy controls and patients with T2DM.  

Comparisons between healthy controls and the T2DM group was performed using 

appropriate statistical tests: chi-squared tests for categorical variables, Student's t-test 

for normally distributed continuous variables and Mann–Whitney U-test for non-

normally distributed continuous variables 

FAME (% of total FA) 

Healthy controls  

 

Median(range)/ 

Mean (SD) 

 

n=47  

Type 2 diabetes group  

 

Median (range)/ 

Mean (SD) 

 

 

n=49  

p value  

C14:0a  0.95 

(6.39)  

1.07 

(3.43)  

0.34  

C15:0a 0.07 

(2.05)  

0.00 

(0.36)  

0.05  

C16:0a  20.01 

(44.81)  

21.82 

(100.00)  

0.33  

C16:1  2.13 

(1.14)  

2.56 

(1.36)  

0.14  

C18:0  5.25 

(2.88)  

4.98 

(2.73)  

0.64  

C18:1 27.47 

(6.70)  

29.33 

(10.15)  

0.32  

C18:2n6  33.44 

(12.36)  

26.51 

(12.26)  

0.01  

C18:3n6a  0.06 

(56.02)  

0.25 

(41.22)  

0.43  

C18:3n3a  0.48 

(1.48) 

0.60 

(38.59) 

0.25  
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3.4.5 Predicting fasting plasma glucose 

To find out how lipid profile and protein carbonyl level predict fasting plasma glucose, 

they were fitted into a model comparing them with the most significant predictors of 

fasting plasma glucose in our data, vis: age, gender and BMI (Table 8.1 in appendix). 

Pentadecanoic acid (C15:0), palmitic acid (C16:0), stearic acid (C18:0), linoleic acid 

(C18:2n6) and alpha-linolenic acid (C18:3n3) were found to be the only FA that 

predicted fasting plasma glucose in our model (Table 3.5). The correlation between 

fasting plasma glucose and these FAs in the model was 0.54, representing a moderate 

correlation, and the observations accounted for 22.6% of the variation in fasting 

plasma glucose after adjusting for chance agreement (R2 = 0.292, adjusted R2 = 

0.226). C16:0 had the largest predictive effect on fasting plasma glucose (0.843, 95% 

CI: 0.009 to 0.047), and along with C18:3n3, were the only FAs that predicted a unit 

increase in fasting plasma glucose. After adjusting for the effects of age, gender and 

BMI, only C15:0, C18:0 and C18:3n3 were found to be statistically significant 

predictors of fasting plasma glucose (Table 3.6). 

The lipidome and protein carbonyl levels were also tested in a model with leptin. It is 

not surprising to find that FFA that were negatively correlated with fasting plasma 

glucose is also positively correlated with plasma leptin (Table 3.7) since leptin 

correlates negatively with fasting plasma glucose. There was a moderate correlation 

(R 0.56) between the variables in the model and leptin, and these variables accounted 

for 26.4% of the variation in the data for leptin after chance adjustment. The model 

showed a negative correlation between protein carbonyls and leptin levels even after 

adjusting for age, gender, BMI and fasting plasma glucose (Table 3.8). 
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There was a strong correlation (R = 0.64) between FAs and BMI as shown in Table 

3.8. The FAs in the model accounted for 37.2% of the variability in BMI. The model for 

BMI showed a positive correlation with cis-13,16-docosadienoic acid (C22:2) and oleic 

acid (C18:1n9). Only linoleic acid (C18:2n6) showed a negative correlation (Table 3.9). 

These three FFAs were still statistically significant even after adjusting for age and 

gender (Table 3.10). 

Table 3.5: Predictors of fasting plasma glucose 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p 
value  

95% CI  

Constant  7.355  

 

< 
0.0001  

4.508 to 10.202  

C15:0  -0.879  -0.491  0.003  -1.453 to – 0.304  

C16:0  0.28  0.843  0.005  0.009 to 0.047  

C18:0  -0.077  -0.561  0.022  -0.143 to -0.012  

C18:2n6  -.006  -0.438  0.016  -0.011 to -0.001  

C18:3n3  0.235  0.428  0.010  0.059 to 0.411  

Model summary: R = 0.540; R
2
 = 0.292; Adjusted R

2 
= 0.226; outcome variable = Fasting plasma glucose  
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Table 3.6: Predictors of Fasting blood glucose. Adjusted for age, gender, and 
BMI 

Variable  Standardised 
coefficients  

p 
value  

95% 
CI  

C15:0  0.454  0.002  0.273-
0.754  

C18:0  0.938  0.038  0.882-
0.996  

C18:3n3  1.237  0.013  1.043-
1.463   

Age 1.037 0.126 0.990- 
1.086 

BMI 1.027 0.674 0.906- 
1.165 

Gender (male) 1.654 0.500 0.383- 
7.134 

Table 3.7: Predictors of Leptin 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p value  95% CI  

Constant  10.028  

 

0.003  3.534 to 16.522  

Protein carbonyl  -2.120  -0.373  0.003  -3.499 to -0.742  

C16:0  -0.031  -0.685  0.021  -0.057 to -0.005  

C18:0 0.108  0.577  0.015  0.022 to 0.199  

C18:2n6  0.007  0.341  0.062  0.000 to 0.014  

C18:3n3  0.235  0.428  0.010  0.059 to 0.411  

Model summary: R = 0.560; R
2
 = 0.314; Adjusted R

2 
= 0.264; outcome variable = Leptin  
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Table 3.8: Predictors of Leptin: Adjusted for fasting plasma glucose, BMI, age 
gender 

Variable  Standardised coefficients  p value  95% CI  

Protein carbonyl  0.093  <0.0001  0.25-0.345  

Fasting plasma glucose  0.716  0.011  0.553-0.927  

Gender (M)  0.046  0.006  0.005-0.405 

Age 0.981 0.547 0.920- 1.045 

BMI 0.992 0.934 0.828- 1.190 

C18:2n6 1.001 0.832 0.995- 1.005 

C18:3n3 1.059 0.562 0.572- 1.287 

 
Table 3.9: Predictors of BMI 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p value  95% CI  

Constant  28.392  

 

< 0.0001  25.527 to 31.257  

C15:0 -0.452  -0.182  0.096  -0.986 to 0.082  

C18:1n9  0.019  0.746  <0.0001  0.011 to 0.027  

C18:2n6  -0.016  -0.818  <0.0001  -0.022 to -0.011  

C22:2  0.181  0.225  0.038  0.059 to 0.411  

Model summary: R = 0.644; R
2
 = 0.414; Adjusted R

2 
= 0.372; outcome variable = BMI  
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Table 3.10: Predictors of BMI after adjusting for age, gender, fasting blood 
glucose and Leptin 

Variable  Standardised coefficients  p value  95% CI  

C18:2n6  0.983  <0.0001  0.978-0.989  

C18:1n9  1.021  <0.0001  1.013-1.027  

C22:2  1.215  <0.0001  1.151-1.281  

Age 0.969 0.492 0.886- 1.060 

Gender 1.689 0.647 0.179- 15.921 

Fasting plasma glucose 1.190 0.142 0.943- 1.501 

Leptin 1.025 0.791 0.853- 1.232 

 

3.4.6 Predictors of inflammation 

 To determine which FFAs predict inflammatory events, FFAs and protein carbonyl 

levels were tested against three markers of inflammation, vis: C-reactive protein, 

soluble thrombomodulin and soluble E-selectin. 

In one of the models, palmitoleic acid (C16:1) and an ω3 FA, cis-11,14,17-

eicosatrienoic acid (C20:3n3) were found to be moderately (R = 0.447) negatively 

correlated with soluble thrombomodulin (Table 3.11). On the contrary, C18:0 and 

C18:1n9 were positively correlated even after adjusting for possible confounders 

(Table 3.12). The FAs in the model accounted for only 14.2% of the variation within 

soluble thrombomodulin within the data. 

Soluble E-selectin was predicted by C15:0, C18:2n6 and C18:3n3. C15:0 and C18:2n6 

were negatively correlated with soluble E-selectin (Table 3.13). There was a weak 

correlation between the FAs in the model and soluble E-selectin (R = 0.43), and the 
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predictors could only account for 14.2% of the variation in soluble E-selectin. However, 

when these FFAs were adjusted for other inflammatory markers, the only FFA that 

predicted soluble E-selectin was C18:2n6 (Table 3.14).  

Only protein carbonyl levels and C18:3n3 were found to be correlated significantly with 

C-reactive protein, both showing positive moderate (R = 0.58) correlations (Table 

3.15). However, when adjusted for known predictors of inflammation, leptin also 

becomes negatively correlated with CRP (Table 3.16). 

 
Table 3.11: Predictors of soluble thrombomodulin 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p value  95% CI  

Constant  4.609  

 

< 0.0001  2.667 to 6.551  

C16:1  -0.056  -0.478  0.024  -0.105 to -0.008  

C18:0 0.028  0.320  0.072  -0.003 to 0.059  

C18:1n9  0.006  0.472  0.021  0.001 to 0.010  

C20:3n3  -0.037  -0.524  0.003  -0.062 to -0.013  

Model summary: R = 0.447; R
2
 = 0.220; Adjusted R

2 
= 0.142; outcome variable = soluble thrombomodulin  
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Table 3.12: Predictors of Soluble thrombomodulin. Adjusted for age, fasting 
blood glucose, CRP, soluble E-selectin and BMI 

Variable  Standardised coefficients  p value  95% CI  

C18:2n6  0.996  0.008  0.993-0.999  

C18:1n9  1.003  0.031  1.001-1.015  

C16:1  0.933  0.002  0.892-0.975  

C18:0 1.022  0.040  1.001-1.044  

Fasting blood glucose  1.307  0.008  1.072-1.593  

Age 1.006 0.729 0.972- 1.042 

BMI 0.989 0.827 0.892- 1.095 

Soluble E-selectin 1.017 0.098 0.997- 1.037 

CRP 0.817 0.083 0.651- 1.027 

Protein carbonyl 0.745 0.330 0.412- 1.348 

 

 
Table 3.13: Predictors of soluble E-selectin 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p 
value  

95% CI  

Constant  60.465  

 

< 
0.0001  

47.219 to 73.712  

C15:0  -3.168  -0.302  0.050  -6.338 to 0.001  

C18:2n6  -0.037  -0.434  0.002  0.060 to -0.014  

C183n3  1.081  0.336  0.048  0.010 to 2.150  

Model summary: R = 0.431; R
2
 = 0.186; Adjusted R

2 
= 0.142; outcome variable =  soluble E-selectin  
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Table 3.14: Predictors of soluble E-selectin: Adjusted for Age, BMI, Fasting 
plasma glucose, leptin, and CRP 

Variable  Standardised coefficients  p value  95% CI  

C18:2n6  0.960  0.004  0.934-0.987  

Age  0.616  0.004  0.442-0.858  

Fasting blood glucose  6.503  <0.0001  2.777-15.228  

BMI 1.217 0.740 0.381- 3.893 

Leptin 0.595 0.515 0.125- 2.843 

CRP 1.189 0.874 0.141- 10.032 

 

 
Table 3.15: Predictors of C-reactive protein 

Variable  Unstandardised 
coefficients  

Standardised 
coefficients  

p value  95% CI  

Constant  -3.776  

 

0.01  -0.668 to 0.884  

Protein 
carbonyl  

1.718  0.446  <0.0001  0.885 to 2.551  

C18:3n3  0.165  0.328  0.004  0.056 to 0.274  

Model summary: R = 0.588; R
2
 = 0.345; Adjusted R

2 
= 0.322; outcome variable = C-reactive protein  

 

 
Table 3.16: Predictors of CRP. Adjusted for Age, BMI, Fasting plasma glucose, 
and soluble E-selectin 

Variable  Standardised coefficients  p value  95% CI  

Protein carbonyl  3.017  0.032  1.101-8.264  

C18:3n3  1.179  0.003  1.056-1.316  

Leptin  0.851  0.031  0.735-0.985  

Age 1.020 0.483 0.966- 1.077 

Fasting blood glucose 0.973 0.836 0.751- 1.260 

Soluble E-selectin 1.016 0.471 0.973- 1.060 
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3.5 DISCUSSION 

This chapter describes the successful validation and application of reproducible and 

robust methods for determination of plasma FAs and protein carbonyls in populations 

of healthy adults and patients with T2DM.  

Many direct derivatisation techniques have been developed over the years to eliminate 

time spent on lipid extraction and potentially cut cost on reagents. Most of these 

techniques have been modifications of the method by Lepage and Roy (1984). This 

study compared a direct method, which involved methylation of plasma without prior 

extraction, with a two-step method that involved prior extraction by the modified Folch 

method. The direct method recovered more C17:0 standard compared to the two-step 

method. A logical explanation to this could be that C17:0 is possibly lost during the 

modified Folch extraction of lipids from plasma since this involves several extraction 

steps and manipulations (Sattler et al., 1991, Lepage and Roy, 1986). However, 

Amusquivar et al. (2011) showed that the direct method recovered less internal 

standard compared to the standard two-step method, leading to an overestimation of 

quantified FFAs. They explain that the high polarity of most internal standards used 

(C15:0 and C17:0) means that prior extraction with chloroform/methanol is more 

favourable, especially with increasing amounts of internal standards added 

(Amusquivar et al., 2011). Paradoxically, the direct method recovered less FAMEs on 

average than the two-step method, although this was not statistically significant. C13:0 

caused most of the variation between FAME recoveries between both methods. The 

twentyfold difference in recovery of C13:0 (shown in the appendix) between both 

methods suggests it is possibly due to an artefact. Artefacts are expected to be 
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produced with the modified Folch method due to the methylation of BHT (formation of 

methyl-toluene) that is added to extracting solvent and used to minimise oxidation. 

However, the artefact for methyl-toluene is usually expected to elute with C16:0 or 

C16:1 rather than C13:0. It is important to note that there are conflicting reports from 

literature reviewing both direct and two-step-method (Cavonius et al., 2014, 

Amusquivar et al., 2011, Castro-Gómez et al., 2014). Most studies comparing the two 

methods usually use methods partially modified in their labs, making it difficult to 

standardise or compare directly. However, in this study, both methods did not differ 

much, and the most likely cause of the variation could be as a result of artefact 

formation. 

The HCl method of FFA methylation offers the advantage of being safer and producing 

fewer artefacts, compared to the conventional boron trifluoride method (BF3). The HCl 

method is the reference method used in our laboratory. However, reports suggest that 

the BCl3 method is associated with less unwanted side reactions seen with BF3 and is 

as effective (Klopfenstein, 1971). Perhaps the most significant advantage of using 

either BF3 or BCl3 is that less time is required for derivatisation. It takes between 5-10 

minutes for full derivatisation of FFA with the BCl3 method compared to 60 minutes for 

the HCl method. This study found a statistically significant difference in the mean 

recoveries of FAMEs between both methods. The BCl3 method recovered more 

FAMEs on average than the HCl method, the most prominent difference being with 

the long chain FFA- especially those with 18 carbon atoms or more. The significant 

higher recovery of these long-chain FAs is unlikely due to methyl-toluene artefact since 

both methods were evaluated with the direct method. There is insufficient literature 
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covering the derivatisation of FFA with BCl3, although its efficacy has been compared 

to BF3 (Klopfenstein, 1971). The most cited limitation of BF3 is the shelf-life. Left for 

too long, even when refrigerated, it is notorious for producing artefacts with significant 

loss of PUFAs. Here, BCl3 recovery of PUFA was better than that of HCl. 

This study showed that there is no difference in FAME recovery when 50µl, 100µl, or 

500µl of plasma is derivatised. To correct for detection bias and water content, both 

50µl and 100µl samples were diluted to a consistent final volume of 500µl with PBS. 

Small amounts of water in plasma, glassware, reagents and the atmosphere can 

interfere with FAME formation, especially PUFAs (Christie, 2011); therefore it was 

important to account for this in the analysis. Because water is a stronger electron donor 

than most aliphatic alcohols, the presence of water favours the formation of 

intermediates and prevents the completion of the reaction. 

The second phase of optimisation that is described in this report is in use of 

instrumentation. In GC, the three most common consequence of an inappropriate inlet 

temperature is high molecular weight discrimination, sample decomposition and 

splitless purge time (Klee, 2015). These were the measures considered for optimising 

the GC protocol for this study. High molecular weight discrimination often occurs when 

the inlet temperature is too low and high molecular weight analytes fail to vaporise in 

the inlet; therefore, not adequately reaching the column. During the optimisation of this 

protocol, it was observed that peak areas towards the last third of the run increased 

with rising temperature. Another possible cause of high molecular weight 

discrimination, needle discrimination, was accounted for in this study by using the hot 
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needle injection technique. Optimal inlet temperature choice for this study also 

considered sample decomposition. Some low molecular weight highly volatile analytes 

are thermally labile and decompose at high inlet temperatures, which is usually 

observed on the chromatogram as several split peaks in the first third of the 

chromatogram. In this study, the inlet temperature showing the least discrimination 

was the 300°C run. However, the 280°C run was chosen as the optimal temperature 

because, unlike the former, it did not display any signs of thermal decomposition of 

any analytes (Restek, 2012).  

Finally, inject mode protocol was considered. The splitless purge time is the time 

between sample introduction and the opening of the split vent in splitless liners. When 

the split vent is open, the inlet is purged of any excess solvent to prevent solvent tailing 

throughout the chromatogram. The optimal splitless time is the amount of time 

required for all or most of the analytes to transfer to the head of the column, particularly 

high molecular weight analytes. One minute was determined as the optimal splitless 

purge time for the study protocol because it was just enough time to improve elution 

of high molecular weight analytes while preventing tailing of the solvent on the first 

analyte of interest (C4:0). 

With the conditions established for optimal separation and identification, the protocol 

was validated for sensitivity and reproducibility using conventional clinical chemistry 

approaches. These studies confirmed limits of detection and coefficients of variation 

that were suitable for subsequent sample analysis to test the hypothesis that specific 

FFA are predictors of T2DM.   
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It is accepted and backed by strong evidence, that plasma levels of FFA increases 

with obesity. This potentially results in insulin resistance, which consequently leads to 

increased lipolysis in a vicious cycle that explains the process of T2DM. This simplistic 

view has come under heavy scrutiny in recent times as evidence from several studies 

shows the relationship between FFA, obesity and T2DM is much more complicated.  

There are strong suggestions that the association between increased FFA and T2DM 

might be confounded by other metabolic predictors of T2DM like BMI and gender 

(Il’yasova et al., 2010). Therefore, here, the associations between FFAs and these 

metabolic predictors were examined.  

This study found a statistically significant positive correlation between C22:2 and 

C18:1n9 to BMI, while C18:2n6 returned a negative correlation (even after adjusting 

for age and gender). A systematic review of 43 studies suggests that there is no 

relationship between FFAs and BMI or body fat mass, and differences observed are 

mainly due to within-subject day-to-day variations in fasting FFAs (Karpe et al., 2011). 

An important observation from reviewing literature is that most studies that try to 

quantify the effect of FFAs on the metabolic predictors of T2DM focus on total FFAs 

or FFA categories like saturated vs unsaturated FFAs rather than individual effects of 

FFAs. Perhaps the variation in the effect of total FFAs in these studies can be 

explained by variations in the individual FFA profile.  It is interesting that this study 

found a positive correlation between docosahexaenoic acid and a negative interaction 

between linoleic acid with BMI. Lu et al. (2012) found that meal-related increase in 

docosahexaenoic acid and linoleic acid interacts with a long-chain FA receptor, 

GPR120, on ghrelin cells to inhibit ghrelin secretion. Ghrelin is a gastric peptide 
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hormone that regulates appetite and energy homeostasis. Interactions between 

plasma concentrations of these FAs with ghrelin have not been established; however, 

going by this evidence, a negative correlation between BMI and linoleic acid would not 

be surprising. It will be interesting to find out if the positive correlation of 

docosahexaenoic acid found here is an adaptation of the adipose tissue to increasing 

BMI (or obesity).  

The positive correlation found between alpha-linolenic acid (ALA) and fasting plasma 

glucose in this study has been considered in other studies. Dietary ALA has been 

found to be useful in decreasing insulin resistance in several studies (Lee et al., 2014, 

Hollander et al., 2014), while (Alssema et al., 2014) did not find any significant 

correlation between ALA and fasting blood glucose. ALA has been shown to reduce 

pancreatic islet cell damage in rats (Budin et al., 2007) and could be the possible 

mechanism by which it contributes to reduced fasting plasma glucose in humans. It is 

possible that the observed increase in ALA with increasing blood glucose levels is an 

adaptation to improve insulin secretion in those with high fasting blood glucose.  

The discovery of a negative correlation between pentadecanoic acid (C15:0) and 

fasting plasma glucose here (after adjusting for leptin, BMI, age, and gender) is in line 

with growing evidence from several prospective studies showing negative 

associations between OCSFA and metabolic disease development [78-80, 209, 210]. 

Historically, even-chain saturated FAs (SFA) are associated with increased risk of 

metabolic diseases, and the odd-chain SFA were regarded as physiologically 

unimportant. Consequently, odd-chain SFAs have been used mostly as internal 
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standards for lipid research. Following its use as a biomarker for dairy fat consumption 

[211, 212], evidence began to emerge on the possible beneficial effects of odd chain 

SFA on various disease states, including T2DM and coronary heart disease. The 

possible protective effect of OCSFA on T2DM development has been attributed to its 

dietary sources, like fish and dairy products, which correlate favourably with healthy 

eating habits and lifestyle [213]. However, there is a reversal in the ratio of C15:0 to 

C17:0 in these dietary sources (usually 2:1) in human plasma [214, 215], suggesting 

that there may be other sources of OCSFA, including the possibility of human 

biosynthesis [216]. In addition to plasma, OCSFAs have been detected in other tissues 

such as the brain and liver [217], highlighting the possibility of endogenous production 

and metabolism. In this study, dietary patterns were not analysed and the possible 

effect it would have on C15:0 levels or its association with insulin resistance cannot 

be quantified. Future in vivo and in vitro research will likely address the cellular 

mechanisms underlying the effect of OCSFAs on insulin signalling and glucose 

homeostasis (Benjamin Jenkins, 2015).  

Only age, fasting plasma glucose and protein carbonyl levels predicted leptin in this 

study. The relationship between protein oxidation (measured as protein carbonyls in 

this study) and leptin depends on the pathological state. Under normal physiologic 

conditions, leptin increases thermogenesis by inducing gene expression of PPARƳ 

co-activator 1-α (Pgc1a) and plays a vital role in energy homeostasis by inducing FA 

oxidation and lipolysis (Becerril et al., 2012). Furthermore, it stimulates nitric oxide 

(NO) which induces endothelium-dependent vasorelaxation. However, under 

pathological conditions, like obesity or diabetes, this vasorelaxation property is 
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impaired and could induce peroxy-nitrite oxidative stress (Chatterjee et al., 2013, 

Bełtowski, 2012).  

Conflicting reports exist in the literature on the relationship between linoleic acid 

(C18:2n6) and the pro-inflammatory soluble E-selectin, which is also a marker of 

vascular endothelial dysfunction. This study found a negative correlation after 

adjusting for other markers of inflammation. On the contrary, other in-vitro studies have 

shown that linoleic acid promotes the expression of soluble E-selectin, a cell adhesion 

molecule that is expressed in endothelial cells and induced by IL-1 and TNF-α 

(Matesanz et al., 2012, Chiang et al., 2012). 

After adjusting for other predictors of inflammation, fasting plasma glucose and four 

FFAs were significantly correlated with soluble thrombomodulin. Stearic acid (C18:0) 

and oleic acid (C18:1n9) positively correlated with soluble thrombomodulin, while 

palmitoleic (C16:1) and linoleic (C18:2n6) were negatively correlated with soluble 

thrombomodulin. Soluble thrombomodulin is a protein expressed on the surface of 

endothelial cells where it serves as a co-factor for thrombin-induced activation of 

protein C. It has been shown to reduce vascular inflammation in chronic kidney 

disease by downregulating VCAM-1, ICAM-1 and chemokines in TNF-expressing 

endothelial cells (Rajashekhar et al., 2012). It has also been shown to reduce 

apoptosis, improve NRF2 activity, and reduce diabetic nephropathy via anti-NF-

ҡB/NLRP3 inflammasome-mediated inflammation (Yang et al., 2014). The anti-

inflammatory properties of Oleic acid are well documented (Camell and Smith, 2013), 

while palmitic acid (C16:0) and Linoleic acid (C18:2n6) have been shown to depress 
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thrombomodulin activity in a dose-dependent fashion (Wang et al., 2006). Palmitoleic 

and not palmitic acid was correlated with soluble thrombomodulin in this study. There 

is no report in the literature showing any relationship between palmitoleic acid or 

stearic acid and thrombomodulin. It is possible that palmitoleic acid depresses 

thrombomodulin activity in the same manner as palmitate. Most reports in the literature 

suggest that stearic acid promotes more pro-inflammatory than anti-inflammatory 

phenotypes (Anderson et al., 2012, Lavrador et al., 2014, Stryjecki et al., 2012).  

In summary, this chapter described a throughput and sensitive method for extracting 

and analysing lipids from plasma, associated with improved recovery of OCSFAs. 

Here, we found that the OCSFA, C15:0, predicted plasma glucose level as well as 

known inflammatory markers leptin and soluble E-selectin in the context of obesity and 

T2DM. 
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4 CHAPTER 4: EFFECT OF FATTY ACIDS ON HEPATOCYTE 

FUNCTION 
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4.1 INTRODUCTION 

The liver is the largest visceral organ in humans with critical metabolic functions 

including glucose and lipid homeostasis [218]. It is comprised mostly (80%) of 

parenchymal cells (or hepatocytes), which are the metabolic unit of the liver, and non-

parenchymal cells, like kupffer and hepatic stellate cells. Valuable insight into liver 

activity and pathophysiology have come from both in vivo animal and human models 

as well as invitro hepatocyte models. Primary hepatocytes are regarded as the gold-

standard for gaining mechanistic insights into metabolic and regulatory pathways in 

cellular models [219-221]. However, cost, inter-donor variability, and the non-

proliferative nature of primary hepatocyte raise concerns about its use in vitro [222, 

223]. Consequently, hepatocyte cell lines have been developed to mitigate these 

challenges. Hepatocyte cell lines like HepaRG, HepG2, Hep3b, and Huh 7.0 cells have 

been used numerous times as invitro substitutes for hepatocyte models. HepG2 cells 

are the most commonly used hepatocyte cell lines and have been shown to have 

morphological and physiological differences compared to primary hepatocytes [224-

227]. For example, concerning organelle abundance, the mitochondria make up a 

significantly higher percentage of primary hepatocytes (25%) compared to HepG2 

cells (12%), while the reverse is the case for the nucleus in hepatocytes (12%) and 

HepG2 cells (25%) [228]. Subsequently, mitochondrial proteins are more abundant in 

hepatocytes; therefore, FA β-oxidation and oxidative phosphorylation are the common 

metabolic pathways in hepatocytes compared to glycolysis in HepG2 cells. 

Furthermore, HepG2 cell models are less useful in xenobiotic metabolism research 

because there is a marked difference in the mRNA expression and protein abundance 
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of enzymes responsible for drug metabolism (cytochrome P450 enzymes) between 

hepatocytes and HepG2 cells, with the latter having a deficient expression of these 

enzymes [225, 229]. It is plausible that these metabolic differences are due in part to 

the marked difference in age of the source of HepG2 cells (16-year-old) compared to 

the primary hepatocytes, which are usually sourced from over 65-year-olds. Despite 

these dissimilarities, HepG2 cells are still the most commonly used hepatic cell line for 

lipid research mainly because they have been shown to accumulate triglycerides 

similarly to primary hepatocyte in response to exogenous glucose and FA [230]. 

Moreover, HepG2 cells can be differentiated using different exogenous chemicals to 

further resemble primary hepatocytes phenotypically [231-233]. Furthermore, C3A, a 

clonal derivative of HepG2 cells, has been selected for its ability to become quiescent 

upon confluency, with increased secretion of albumin, assuming a phenotype more 

similar to primary hepatocytes compared to its parent cell [234].  

HepG2 cells have been used to investigate the mechanisms that underpin saturated 

FA-induced hepatotoxicity and insulin resistance [235]. While the mechanistic link 

between FAs, NAFLD, and T2DM is still heavily debated, peroxisome proliferator-

activated receptors (PPARs) have been suggested to play a significant role [236-239]. 

PPAR alpha is highly expressed in the liver and regulates genes involved in enhancing 

FA transport and mitochondrial β-oxidation [240-243]. Moreover, synthetic PPAR 

alpha agonists like fenofibrate have been used with varying degree of success for 

treating hyperlipidaemia [244, 245]. PPAR alpha activation has been shown to prevent 

intrahepatic lipid accumulation and even reverse the effects of steatohepatitis 
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(including insulin resistance) in mouse models and clinical studies [246-250]. 

Physiologically, specific FA, mainly PUFA, act as natural ligands for PPAR alpha [251].  

 

4.2 AIMS AND HYPOTHESIS 

Recent studies have shown an inverse relationship between OCSFA and T2DM 

development. However, the mechanisms underpinning this relationship is still 

unknown. The liver is heavily involved in glucose homeostasis, and insulin resistance 

is thought to occur in the liver before appearing peripherally. Furthermore, obesity is 

causally associated with insulin resistance and the effect of even numbered FAs on 

hepatic insulin resistance has been extensively studied by using a model of HepG2 

cells. Studies have shown that HepG2 cells show genotypic and phenotypic 

differences compared to primary hepatocytes and various differentiation methods 

have been applied in literature to mitigate these differences. Therefore, this chapter 

will aim to examine the differential effects of OCSFA on hepatocyte function and PPAR 

alpha activation using HepG2 as a model system. Glucose output, glycogen storage, 

and gene expression profiles for genes involved in lipid metabolism will be used as 

surrogate markers of hepatocyte function. 
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4.2.1 Hypothesis 

The hypotheses for this study are as follows: 

1. HepG2 cells cultured in low serum media will exhibit increased markers of 

differentiation 

2. C16:0 treated cells at indicative concentrations will accumulate more neutral 

lipids compared to C15:0 treated cells  

3. C15:0 treated cells will show no difference in glucose or glycogen content 

compared to controls 

4. The expression of mitochondrial and peroxisomal β-oxidation genes will be 

upregulated in C15:0 treated hepatocytes 

5. C15:0 will increase PPAR alpha transcriptional activity in hepatocytes 

4.2.2 AIMS 

The purpose of this chapter was to determine the differential effect of OCSFA on 

hepatocyte function and had the following aims: 

1. To determine the effect of OCSFA on glucose homeostasis and inflammation 

in hepatocytes 

2. To determine the effect of OCSFA on FA metabolism in hepatocytes 

3. To determine the differential effect of OCSFA on de novo lipogenesis 

4. To describe the role of PPAR alpha in OCSFA mediated effect on hepatocyte 

function 
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4.3 METHOD 

4.3.1 Differentiation of hepatocytes 

HepG2/C3A cells were differentiated by growing  in low serum as detailed in section 

2.2. 

4.3.2 Determination of metabolic activity 

Following treatment, the metabolic activity of dHepG2 cells was determined by the 

MTT assay as described in section 2.7. 

4.3.3 Determination of Albumin and Urea output 

Following differentiation, albumin and urea output were measured using a plate-based 

assay. 

4.3.4 Quantification of cellular growth and viability 

Cell growth and viability were measured using the trypan blue exclusion method 

method with the counting of cells using a haemocytometer as described in section 2.6. 

4.3.5 Quantification of intracellular neutral lipids 

Following treatment with FAs, the intracellular accumulation of neutral lipids was 

evaluated by Oil Red O staining as described previously [252] and detailed in section 

2.17. 

4.3.6 PAS staining for Glycogen 

Intracellular glycogen content was determined by PAS stain using a kit from Sigma 

(Product 395B) according to manufacturer’s instructions and as detailed in section 

2.18. 
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4.3.7 Glycogen content quantification 

A plate based assay was used to quantify the amount of glycogen stored in 

hepatocytes after an overnight fast and glucose stimulation as described in section 

2.16. 

4.3.8 Quantification of cytokines 

Following treatment, IL-8 and TNFα were quantified from supernatants by ELISA as 

described in 2.12. 

4.3.9 PPAR alpha transcription factor assay 

PPAR alpha activity in the nuclear fraction of cells was measured using a PPAR alpha 

transcription factor ELISA kit (Abcam, ab133107, UK) as described in section 2.14. 

4.3.10 mRNA analysis by RT-qPCR 

Following treatment, total RNA was isolated and converted to cDNA and then analysed 

by RT-qPCR as described in section 2.20. Relative gene expression was calculated 

using the delta delta ct formula 2-ΔΔCT 

4.3.11 Statistical analysis 

Data expressed as mean +/-  SEM for three independent experiments. Statistical 

significance was estimated using a repeated measures one way ANOVA with a 

Geisser-Greenhouse correction to correct for unequal variability of differences, and  

the Two-stage step-up method of Benjamini, Krieger  and Yekutieli [253] for gene 

expression data (displaying the false discovery rate – FDR), or a Dunnett test for 

testing significant difference between treatment and control or 300µM C16:0. Data 

obtained was analysed using GraphPad Prism (v7.0). FDR provides the same degree 
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of assurance as other multiple comparison methods, like Bonferroni, but are more 

powerful in detecting individual false positives primary because it does not provide a 

strong control for familywise error correction [254-256]. In this study, a strict FDR 

criteria of 1% (or p = 0.01) was set to further reduce the chance of false positives. 

 

 

 

 

 

 

 

 

 

 

 

 

 



139 

 

4.4 RESULTS 

4.4.1 Differentiation of HepG2 cells 

HepG2 cells are often used in translational research into the metabolic functions of 

hepatocytes. However, studies have shown that the metabolic behaviour of HepG2 

cells can differ from primary hepatocytes [257]. To improve representativeness in 

comparison to primary cells, various methods have been used to differentiate HepG2 

cells into more quiescent profiles. This includes the use of DMSO, retinoic acid, low 

serum media, among other methods. Here, HepG2 cells were differentiated with low 

serum containing media before experimental conditions as described in methods. In 

order to determine the effect of differentiation, gene expression levels of Albumin and 

Transferrin were measured (Figure 4.1a and 4.1b). The raw CT values for albumin and 

transferrin were lower than 30, showing a high abundance of these genes in the 

sample. CT values represent the number of cycles needed for the fluorescent signal to 

cross the required threshold and is inversely proportional to the amount of target gene 

in the sample. However, CT values are not indicative of expression levels or relative 

abundance; hence the need for ΔCT calculations which normalises for the amount of 

loaded sample by factoring in the CT values of the reference gene. From Table 4.1, it 

is clear that the ΔCT value for albumin and transferrin in the differentiated HepG2 cells 

(dHepG2) are higher compared to control cells (undifferentiated cells), showing that 

these genes become relatively more abundant with differentiation (Table 4.1). dHepG2 

cells showed a fourfold increase in albumin expression compared to control (mean 

difference 3.27; 95% CI 2.11 – 4.37, p < 0.001). Subsequently, albumin production by 

dHepG2 cells were on average 50% higher compared to control (mean difference 

49.9%; 95% CI 37% - 77%, p < 0.001). Gene expression of transferrin in dHepG2 cells 
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was approximately eightfold higher compared to control cells (mean 7.53; 95% CI 6.20 

– 8.90), while the amount of urea  excreted into the supernatant per cell was 2.5 times 

higher in dHepG2 cells compared to control (mean 2.53; 95% CI 2.30 – 3.00, p < 

0.001). Put together, dHepG2 cells showed consistent increases in markers of 

hepatocyte differentiation compared to controls.  

4.4.2 Effect of FAs on cell viability 

Following differentiation of HepG2 cells, it was then essential to understand if there 

was any toxic effect of FA on dHepG2 cells. To determine this, HepG2 cells were 

treated with varying concentrations of the FAs for 6 and 24 hours to represent acute 

and long-term effects of FAs on cells. The toxicity of PPAR alpha antagonist and 

agonist (fenofibrate and GW6471) were also examined at concentrations considered 

therapeutic according to literature (100µM and 10µM respectively) [258, 259]. Cell 

viability and cell count were measured by trypan blue exclusion method, while cellular 

metabolic activity was measured using the MTT assay. Three concentrations of each 

FA were used to represent the usual range of concentration of C16:0 found in healthy 

and diseased subjects (50µM, 150µM, and 300µM). 

The result shows that cells treated with the odd-chain FA (C15:0) showed an increase 

in metabolic activity compared to both control and C16:0 treated cells after 6hrs 

incubation (Figure 4.2a). C15:0 treated cells showed higher formazan reduction 

compared to control  by 24% (p < 0.01), 16.5% (p < 0.001), and 7.5% (p < 0.05) for 

50µM, 150µM, and 300µM concentrations respectively. This slight increase in 

metabolic activity appeared to be short-term as there was no significant difference in 

metabolic activity between C15:0 treated cells and controls after 24hrs of treatment 



141 

 

(Figure 4.2b). In fact, while metabolic activity increased by 5% in control cells between 

6hrs and 24hrs, C15:0 treated cells showed  a reduction by 15%, 9%, and 0.5% for  

50µM (p < 0.001), 150µM (p < 0.001), and 300µM (p > 0.05) concentrations 

respectively, between 6hrs and 24hrs. Palmitate (C16:0) at lower concentrations of 

50µM and 150µM did not appear to alter MTT reduction compared to controls after 

6hrs or 24hrs of treatment. Furthermore, there was a 5% (p < 0.001) and 8% (p < 0.05) 

increase in formazan reduction in cells treated with 50µM and 150µM C16:0 

respectively between 6hrs and 24hrs incubation. However, C16:0 at higher 

concentrations, normally found in disease states  like T2DM, significantly reduced 

cellular metabolic activity by 10% (p < 0.05) and 11% (p < 0.001) after 6hrs and 24hrs 

respectively compared to control cells, which is reversed by co-incubation with C15:0 

(Mean difference 0.3%, p > 0.05). There is a 4.4% increase in formazan reduction in 

300µM C16:0 treated cells between 6hrs and 24hrs incubation, but this was not 

statistically significant (p > 0.05). 

To ensure that changes to metabolic activity were not confounded by the possible 

toxicity of treatments to cells, cellular viability and cell growth were measured using 

the trypan blue exclusion method. There were no significant changes to indices of cell 

death after 24hrs incubation; either by trypan blue exclusion method (Figure 4.3a) or 

by flow cytometric estimation of propidium iodide intake (Figure 4.3b). Furthermore, 

FA treatments at different concentrations did not affect cell growth (Figure 4.3c), 

remaining at a total of five million cells for all treatments. The result also shows that 

treating cells at therapeutic doses of fenofibrate and GW6471 did not alter indices of 

cellular viability, metabolic activity or cell growth.  



142 

 

 

 

 

 

 

 

 

 

  

Figure 4.1: Culturing HepG2-3CA clone in low serum media increases markers of differentiation   

HepG2-3CA clones were seeded at 200,000 cells/ml and cultured until 80% confluency as outlined in methods, then  cultured in media 

containing 10% serum or  low serum media (2% FBS) for 10 days. The differentiated HepG2 cells (dHepG2) were washed thrice with ice-cold 

PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation (a and c), or further incubated in serum-free media for 24hrs 

for quantification of albumin and urea output in media (b and d). (a) Gene expression levels of albumin. (b) Albumin output in media per 

million cells. (c) Transferrin gene expression levels. (d) Urea output per 104 cells. Results are expressed as mean +/- SEM  (n=3 independent 

experiments performed in triplicate). Statistical comparison was done using a paired t test and *** represents a statistically significant 

difference at a two-tailed P value of <0.001. 
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Table 4.1: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest (Albumin and Transferrin) in the determination of hepatocyte 
differentiation. 
total RNA was isolated from differentiated and undifferentiated HepG2 cells and 
converted to cDNA and used to evaluate the levels of Albumin and transferrin genes 
by RT-qPCR using YWHAZ as reference gene. N represents number of independent 
experiments 

Gene YWHAZ Albumin Transferrin 
 

Mean CT SEM N Mean CT SEM N Mean CT SEM N 

Undifferentiated 25.6 0.1 3.0 26.8 0.6 3.0 27.7 0.2 3.0 

Differentiated 25.2 0.1 3.0 24.2 0.1 3.0 24.4 0.3 3.0 

 

Table 4.2: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest (Albumin and Transferrin) in the determination of changes to acute 
phase proteins by differentiated hepatocytes. 
total RNA was isolated from differentiated and undifferentiated HepG2 cells and 

converted to cDNA and used to evaluate the levels of Albumin and transferrin genes 

by RT-qPCR using YWHAZ as reference gene. N represents number of independent 

experiments 
Gene YWHAZ Albumin Transferrin 

  Mean CT SEM N Mean CT SEM N Mean CT SEM N 

Control (5% BSA) 25.8 0.1 3 21.8 0.2 3 23.4 0.4 3 

100µM Fenofibrate  25.4 0.1 3 17.8 0.2 3 21.9 0.4 3 

10µM GW6471 25.5 0.1 3 21.7 0.3 3 22.5 0.4 3 

50µM C15:0 25.5 0.2 3 17.6 0.2 3 19.1 0.5 3 

150µM 15:0 25.8 0.1 3 19.3 0.2 3 20.4 0.3 3 

300µM C15:0 25.8 0.1 3 19.7 0.2 3 20.3 0.4 3 

50µM C16:0 25.3 0.2 3 19.0 0.1 3 20.9 0.1 3 

150µM 16:0 25.2 1.2 3 19.0 0.2 3 20.3 0.2 3 

300µM C16:0 25.7 0.3 3 24.8 0.1 3 24.8 0.1 3 

150µM 15:0 + 150µM 16:0 25.1 0.1 3 18.8 0.2 3 20.5 0.2 3 

200ng/ml LPS 25.4 0.4 3 26.4 0.2 3 26.4 0.3 3 
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Figure 4.2: C15:0 is only associated with an increase metabolic activity of dHepG2 cells after 6hrs but not after 24hrs of incubation.  
dHepG2 cells were treated with fatty acids conjugated to BSA and analysed for metabolic activity using MTT reduction after 6 and 24hrs of 

exposure. Cells were exposed to varying concentrations of fatty acids conjugated to BSA, or control (5% BSA), and/or a PPARα 

agonist/antagonist (100µM FB, or 10µM GW6471) as outlined. MTT reagent was added to the media 4 hours prior to the end of the 

experiment. Cells were then lysed with lysis reagent overnight before analysis under absorbance spectrometry at 570nm. (a) Effect of fatty 

acid treatments after 6hrs and (b) 24hrs. Results are expressed as mean +/- SEM  (n=3 independent experiments performed in triplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-

test comparison.   Ψ represents a statistical significant difference between treatment versus control,  Ξ represents a statistical significant 

difference between treatment versus 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both 

control and 300µM C16:0. All symbols represent a statistical significance P value of < 0.05. 
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Figure 4.3: Fatty acid treatment at different concentrations do not affect cell viability or growth after 24hrs of exposure. 
dHepG2 cells were treated with fatty acids conjugated to BSA and analysed for viability, apoptosis, and cell number after 24hrs incubation. 

Cells were exposed to varying concentrations of fatty acids conjugated to BSA, or control (5% BSA), and/or a PPARα agonist/antagonist 

(100µM FB, or 10µM GW6471) as outlined. At the end of the experiment, cells were washed thrice with PBS and trypsinised. (a) To assess 

viability, cells were mixed 1:1 with Trypan blue before counting on a haemocytometer as outlined in methods. Data is expressed as percentage 

viable cells. (b) To estimate early apoptotis, cells at a concentration of 500, 000cells/ml were incubated with a hypo-osmotic flourochrome 

solution containing 50µg/ml of propidium iodide (PI) at 4°C  overnight then washed thrice with PBS  and analysed by flow cytometry with FL3. 

The percentage of apoptosis was quantified by measuring the number of hypoploid nuclei detected after 50,000 events on flow cytometry. 

Data is expressed as mean percentage of apoptotic cells. 50µM FCCP was used as a positive control.  (c) Cells were counted after experiments 

with a haemocytometer to determine if FA treatments had any effect of cell growth. Results are expressed as mean +/- SEM (n=3 independent 

experiments performed in triplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-

test comparison.   Ψ represents a statistical significant difference between treatments versus control (P value < 0.05). 
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4.4.3 C15:0 attenuates the palmitate-induced increase in markers of inflammation 

Accumulation of SFA in the liver is known to promote a pro-inflammatory environment 

with detrimental long-term consequences. The liver reacts to noxious stimuli by 

altering the levels of so-called acute phase proteins. These proteins are either 

produced in increased amounts (like pro-inflammatory cytokines), or become 

diminished (like albumin and, transferrin). So far, the results have shown that palmitate 

in high concentrations can limit cellular metabolic activity without necessarily affecting 

cell growth or apoptosis.To determine the immunological response of hepatocytes to 

FA, dHepG2 cells were incubated with varying concentrations of FAs conjugated to 

BSA for 24hrs, measuring levels of four acute phase reactants.  

As expected, dHepG2 cells treated with 200ng/ml LPS showed a classical acute phase 

reaction characterised by a threefold increase in the production of pro-inflammatory 

cytokines TNF-α and IL-8 (p value <0.001) with a similar reduction in gene expression 

for albumin and transferrin (Figure 4.4 and Table 4.2). Similarly, dHepG2 cells cultured 

with high concentrations of C16:0 showed a twofold increase in TNF-α and IL-8 output 

(p value <0.001) as well as a sixfold and threefold reduction in gene expression of 

albumin and transferrin respectively (p value < 0.01). There was no difference in gene 

expression levels or cytokine production when dHepG2 cells were incubated with 

varying concentrations of C15:0, or with low concentrations of C16:0 (50µM and 

150µM). Interestingly, co-incubating cells with both odd and even chain FAs showed 

no significant difference in the production of acute phase proteins compared to control. 
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4.4.4 C15:0 ameliorates palmitate-induced glucose dysfunction 

The liver plays a pivotal role in glucose homeostasis by prioritising glucose production 

during fasting and glycogen production from excess glucose in the fed state. To 

determine how FAs affect the ability of hepatocytes to maintain optimal glucose levels, 

dHepG2 cells were cultured with varying concentrations of C16:0 and C15:0 at 

different glucose concentrations simulating fasting and fed states as described in 

method. A plate based assay was used to measure glucose output and glycogen 

content as described previously. Cells treated with high concentrations of C16:0 

(300µM) showed a 54% increase in glucose output (Figure 4.5a) compared to control 

cells (% difference 54.5%; 95% CI 39.6% - 69.4%, p < 0.001). Conversely, there was 

no significant difference between cells treated with a similar concentration of C15:0 

(300µM) compared to control. In fact, there was no significant increase in glucose 

output in cells treated with 50µM and 150µM C15:0. In comparison with C15:0 treated 

cells, those incubated with 300µM C16:0 had a statistically significant higher glucose 

output by 64.0%, 53.5%, and 44.0% for 50µM, 150µM and 300µM C15:0 respectively 

(p < 0.001). Furthermore, when cells are co-incubated with both C15:0 and C16:0 up 

to a concentration of 300µM, there was no significant difference in glucose output 

compared to controls.  

dHepG2 cells treated with palmitate showed a reduction in glycogen content by 37.5% 

(Figure 4.5b and Figure 4.6) compared to controls (% difference 37.5%, 95% CI 13.8% 

- 61.2%, p < 0.01) in a fed state. On the other hand, there was a slight average 

increase in glycogen content in cells treated with different concentrations of C15:0 

compared to controls; however, this was not statistically significant. C15:0 treated cells 
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at concentrations of 300µM showed  a statistically significant increase in glycogen 

content by 41.5% compared to cells treated with similar concentrations of C16:0 (% 

difference 41.5%, 95% CI 1.9% - 81.1%, p < 0.05) and co-incubating cells with both 

C16:0 and C15:0 up to a concentration of 300µM had similar glycogen contents 

compared to control.  

RNA expression levels of glucose transporter 2 (GLUT2) and glycogen synthase 

kinase 3β (GSK3β) were measured to test the upstream effect of FAs on glucose 

transport and glycogen production/regulation (Figure 4.5c and 4.5d). The overall gene 

expression of GLUT2 was deficient in dHepG2 cells irrespective of treatment, 

compared to the reference gene (Raw CT values are shown in Table 4.3). However, 

dHepG2 cells had very high expression levels of GSK3β. Both C16:0 and C15:0 

treated cells upregulated the expression of GLUT2 compared to controls irrespective 

of concentration (False discovery rate -FDR- of <1%). GLUT2 transports glucose 

across the cell membrane in a bi-directional manner; therefore, it is difficult to interpret 

the results of this gene expression data in isolation without referencing the results of 

the glucose output assay detailed above. Both C15:0 and C16:0 at low concentrations 

(50µM and 150µM) downregulated GSK3β expression by up to twofold (FDR <1%), 

whereas FA treatment at 300µM concentrations showed an upregulation of GSK3β 

(FDR < 0.01%). Cells treated with 300µM C16:0 showed a 98% increase in gene 

expression of GSK3β compared to controls (FDR <0.01%), while those treated with 

300µM C15:0, although showing a 45% upregulation of GSK3β, did not meet statistical 

significance (FDR 1.6%). Cells treated with 300µM C16:0 had a 52% higher 

expression of GSK3β compared to cells treated with 300µM C15:0 (FDR < 0.001%).
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Figure 4.4 : C15:0 attenuates palmitate-induced increase in markers of acute inflammation.  
 dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for markers of early inflammation. Gene expression levels of albumin 

and transferrin were used to determine negative acute phase proteins, while positive acute phase response was measured by expression of IL-8 and TNFα 

levels. Cells were exposed to varying concentrations of fatty acids conjugated to BSA, or control (5% BSA), and/or a PPARα agonist/antagonist (100µM FB, 

or 10µM GW6471) as outlined. At the end of the experiment, cells were either (a) washed thrice with ice-cold PBS then lysed for total RNA extraction (5 

million cells) and RT-qPCR estimation, or (b) the supernatant is extracted for quantification of IL-8 and TNFα by ELISA as outlined. Results are expressed as 

mean +/- SEM  (n=3 independent experiments performed in duplicate for a and b, or triplicate in c and d).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-test comparison 

test (figure c and d), or the Two-stage step-up method of Benjamini, Krieger  and Yekutieli (figure a and b). Ψ represents a statistical significant difference 

between treatment and control,  Ξ represents a statistical significant difference between treatment and 300µM C16:0, and  φ represents a statistical 

significant difference between the treatment versus both control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted false 

discovery rate -FDR) of <1% for the two-stage step-up method of Benjamini, Krieger  and Yekutieli, or a statistical significance P value of  < 0.05 for Dunnett’s 

test. 
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Figure 4.5: C15:0 ameliorates palmitate-induced glucose dysfunction  
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for markers of glucose homeostasis.(a)  After 24 hours of FA 
exposure, cells were washed three times with PBS to remove any residual glucose in the media and then incubated for 16 hours in glucose production 
medium as outlined in methods. Insulin (100nmol/l; Sigma) was added during the last hour of incubation. A quantity of the medium was sampled for 
measurement of glucose concentration using a glucose hexose kinase assay kit (Sigma). Glucose concentration was normalized with cellular protein 
concentration. (n=3 independent experiments in duplicate, results expressed as mean +/- SEM). (b) After FA exposure for 24hrs, cells were glucose-
starved overnight in serum and glucose free RPMI media to deplete intracellular glycogen stores and exposed to RPMI media containing 11mmol/l 
glucose for 48hrs with 100nmol/l insulin in the final hour of incubation. Cells were washed and harvested using ice-cold 30mmol/l HCL for the glycogen 
assay as outlined in method (n=3 independent experiments in duplicate, results expressed as mean +/- SEM).  (c) and (d) Cells were washed thrice with 
ice-cold PBS then lysed for total RNA extraction (5 million cells) and RT-qPCR estimation of the gene expression levels of Glut2 and GSK3 respectively as 
upstream markers of glucose homeostasis (Results are expressed as mean +/- SEM   for n=3 independent experiments performed in duplicate). Statistical 
significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Tukey’s post-test comparison test 
(figure a and b), or the Two-stage step-up method of Benjamini, Krieger  and Yekutieli (figure c and d). Ψ represents a statistical significant difference 
between treatment and control,  Ξ represents a statistical significant difference between treatment and 300µM C16:0, and  φ represents a statistical 
significant difference between the treatment versus both control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted 
false discovery rate -FDR) of <1% for the two-stage step-up method of Benjamini, Krieger  and Yekutieli, or a statistical significance P value of  < 0.05 
for Dunnett’s test. 
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Figure 4.6: C15:0 increases intracellular glycogen content in C16:0 exposed cells.   
PAS staining of differentiated HepG2 cells exposed to FAs showing intracellular glycogen accumulation (pink). Control and 
C15:0 (a and b respectively) exposed cells show increased glycogen content compared to C16:0 exposed cells (c). Cells exposed 
to both C16:0 and C15:0 (d) Show higher glycogen content compared to cells exposed to C16:0 alone. 
  

a 

c 

b 

d 
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Table 4.3: Raw CT values for a reference gene (YWHAZ) and selected genes of 
interest (GSK3 and GLUT2) for determining the effect of FA on glucose and 
glycogen homeostasis in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of GSK3 and GLUT2 genes by RT-qPCR using YWHAZ as 
reference gene. N represents number of independent experiments. Reference values 
for each gene presented independently because experiments were performed on a 
separate plate. 

Gene YWHAZ (GSK3) GSK3 YWHAZ (GLUT2) GLUT2 

  Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N 

Control (5% BSA) 25.3 0.3 3 21.8 0.2 3 25.3 1.1 3 29.7 0.7 3 

100µM Fenofibrate  25.7 0.2 3 17.8 0.2 3 25.4 0.3 3 32.6 1.2 3 

10µM GW6471 25.9 0.0 3 21.7 0.3 3 25.6 0.3 3 32.6 1.0 3 

50µM C15:0 25.5 0.3 3 17.6 0.2 3 25.7 0.1 3 27.7 0.1 3 

150µM 15:0 25.6 0.2 3 19.3 0.2 3 25.5 0.4 3 28.0 0.4 3 

300µM C15:0 25.2 0.2 3 19.7 0.2 3 25.6 0.2 3 28.0 0.1 3 

50µM C16:0 25.6 0.5 3 19.0 0.1 3 25.5 0.1 3 27.5 0.2 3 

150µM 16:0 25.4 0.1 3 19.0 0.2 3 25.3 0.1 3 28.2 0.0 3 

300µM C16:0 25.6 0.0 3 24.8 0.1 3 25.3 0.1 3 28.0 0.1 3 

150µM 15:0 + 150µM 16:0 25.5 0.3 3 18.8 0.2 3 25.2 0.1 3 27.6 0.1 3 

Table 4.4: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest (L-FABP and CD36) for determining the effect of FA on lipid transport in 
dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of L-FABP and CD36 genes by RT-qPCR using YWHAZ as 
reference gene. N represents number of independent experiments. Reference values 
for each gene presented independently because experiments were performed on a 
separate plate 

Gene YWHAZ (L-FABP) L-FABP YWHAZ (CD36) CD36 

  Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N 

Control (5% BSA) 25.8 0.1 3 25.8 0.1 3 25.7 0.2 3 29.0 0.3 3 

100µM Fenofibrate  25.6 0.4 3 23.3 0.2 3 25.8 0.1 3 25.2 0.3 3 

10µM GW6471 25.7 0.1 3 25.8 0.2 3 25.8 0.1 3 29.1 0.2 3 

50µM C15:0 25.6 0.2 3 24.2 0.4 3 25.8 0.2 3 28.6 0.3 3 

150µM 15:0 25.5 0.1 3 24.3 0.5 3 25.1 0.2 3 26.8 0.1 3 

300µM C15:0 25.2 0.2 3 20.7 0.3 3 25.9 0.1 3 27.6 0.2 3 

50µM C16:0 25.6 0.5 3 23.1 1.0 3 25.1 0.0 3 27.3 0.1 3 

150µM 16:0 25.4 0.1 3 23.0 0.1 3 25.3 0.1 3 27.9 0.2 3 

300µM C16:0 25.6 0.0 3 23.3 0.2 3 25.6 0.2 3 25.2 0.2 3 

150µM 15:0 + 150µM 16:0 25.5 0.3 3 23.2 0.7 3 25.3 0.3 3 27.6 0.3 3 
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4.4.5 Palmitate is associated with higher intracellular lipid uptake and accumulation 

compared to C15:0 

The accumulation of neutral lipids is a standard physiological response to excess 

energy. However, extreme and prolonged accumulation has been linked with 

metabolic diseases like T2DM. To determine the degree of lipid accumulation within 

cells, an Oil Red O stain was adapted to a plate-based assay. Furthermore, gene 

expression of CD36 and liver-specific FA binding protein (L-FABP) were measured as 

markers of cellular FA trafficking. 

Both FA increased accumulation of neutral lipids compared to control irrespective of 

concentration (Figure 4.7). C15:0 treated cells saw an increase in oil red o stain 

absorbance by 7% (Pp < 0.05), 17%  (p < 0.01), and 23% (p < 0.001) compared to 

control cells for 50µM, 150µM, and 300µM respectively. Similarly, there was an 

increase by 12%, 23% and 50% for cells treated with 50µM (p < 0.01), 150µM (p < 

0.001), and 300µM (p < 0.001) C16:0 respectively compared to control. For lower 

concentrations of treatment (50µM and 150µM), C16:0 treated cells showed slightly 

higher accumulation of neutral lipids compared to C15:0 treated cells (4.8% and 5.6% 

higher in C16:0 compared to C15:0 for 50µM and 150µM respectively), but this was 

not statistically significant. However, there was a statistically significant increase in 

neutral lipids in cells treated with 300µM C16:0 compared to 300µM C15:0 (26.2%, 

95% CI 18.5% - 34.0%, p < 0.001).  

CD36 (FA translocase) modulates the rate of FA uptake by hepatocytes and 

contributes to the development of fatty liver. Both C16:0 and C15:0 upregulate CD36 

expression (Figure 4.8a). C15:0 increases CD36 gene expression levels in a dose-
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dependent manner compared to controls (62.1%, 183.2%, and 207.8% for 50µM, 

150µM, and 300µM C15:0 respectively, FDR < 0.001%). Furthermore, incubating cells 

with 300µM C16:0 dramatically increased CD36 gene expression up to 8 times more 

compared to control (FDR < 0.001%) and up to 4 times more compared to 300µM 

C15:0 (FDR < 0.001%). L-FABP promotes intracellular trafficking of FAs into cellular 

organelles. Similar to CD36 gene expression profile, all  FA concentrations used 

upregulated L-FABP gene expression (Figure 4.8b), especially cells treated with 

300µM C15:0, which showed a sixteenfold increase compared to controls (FDR < 

0.001%) and a fourfold increase relative to 300µM C16:0 treated cells (FDR < 

0.001%). Both CD36 and L-FABP genes are relatively abundant in dHepG2 cells as 

shown in Table 4.4.  
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Figure 4.7: Formation of neutral lipids is greater in the presence of C16:0 compared to C15:0.  
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for neutral lipid formation using the Oil Red O stain. Cells were washed 

three times with PBS after 24hrs incubation and then fixed with 1% paraformaldehyde at room temperature for 30 min prior to adding 60% isopropanol for 

5 min. Oil red O stain was then added for 5 minutes prior to washing in isopropanol before analysis under absorbance spectrometry at 490nm. Results are 

expressed as mean +/- SEM (n=3 independent experiments performed in triplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-test comparison.   

Ψ represents a statistical significant difference between treatment versus control, Ξ represents a statistical significant difference between treatment versus 

300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control and 300µM C16:0. All symbols represent a 

statistical significance P value of < 0.05. 
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Figure 4.8: Both C15:0 and C15:0 promote intracellular uptake and trafficking of lipids.  
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for markers of intracellular uptake and traffic of FA by looking at the 

total RNA expression of proteins responsible for intracellular uptake of FA (CD36) and cytoplasmic trafficking of FA into organelles (L-FABP). After 24hrs 

incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation of (a) CD36, or (b) L-FABP. 

Results are expressed as mean +/- SEM (n=3 independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up method of 

Benjamini, Krieger and Yekutieli (figure c and d). Ψ represents a statistical significant difference between treatment and control,  Ξ represents a statistical 

significant difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control 

and 300µM C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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4.4.6 C15:0 potentiates mitochondrial and peroxisomal beta-oxidation of FAs 

Intracellular FA have different metabolic fates. In most cases, FFA are catabolised in 

the liver to release energy mostly driven by mitochondrial beta-oxidation. Alternatively, 

FFA could be diverted towards triglyceride/neutral lipid formation and storage. In order 

to determine if a dysfunction in the catabolic pathway contributes to the increased 

accumulation of neutral lipids as seen previously, the gene expression levels of 

proteins involved in mitochondrial and peroxisomal beta-oxidation pathways were 

measured. 

All the FAs at varying concentrations increased gene expression of long-chain fatty 

acid co-ligase 1 (ACSL1) by as much as fourfold (Figure 4.9a) when treated with higher 

concentrations (300µM) of C15:0 and C16:0 (FDR <0.001%), or more than twofold 

when treated with lower concentrations (50µM or 150µM) of FA (FDR <0.001%). 

ACSL1  encodes the enzyme responsible for converting free long-chain FA to Acyl-

CoA esters, a step required for intra-mitochondrial trafficking of FA. Carnitine 

palmitoyltransferase 1 and 2 (CPT1 and CPT2) provide a shuttle system for the 

transfer of acyl-CoA esters of FA into the mitochondrial matrix. Gene expression levels 

of both CPT1 (Figure 4.9b) and CPT2 (Figure 4.9c) were upregulated by lower 

concentrations (50µM or 150µM) of C15:0 and C16:0 FA compared to controls (FDR 

< 0.001%). Cells treated with 50µM or 150µM C15:0 upregulated both CPT1 and CPT2 

by twofold higher than C16:0 cells treated with similar concentrations (FDR < 0.001%). 

There was no difference in gene expression levels of CPT1 and CPT2 between control 

cells and those treated with 300µM C16:0. Furthermore, cells treated with 300µM 

C15:0 showed a sevenfold and fourfold increase in CPT1 and CPT2 gene expression 
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level respectively compared with cells treated with 300µM C16:0 (FDR < 0.001% for 

both comparisons). CPT1 and CPT2 gene expression levels were restored with co-

incubation of C15:0 and C16:0 (fourfold and twofold increases for CPT1 and CPT2 

respectively, FDR < 0.001%). After establishing the effect of FAs on the gene 

expression levels of mitochondrial transport proteins responsible for trafficking FAs, 

the gene expression levels of enzymes involved in the final steps of mitochondrial 

beta-oxidation were examined: ACADL (long-chain acyl-CoA dehydrogenase), 

ACAD10 (acyl-CoA dehydrogenase family, member 10), and ACAA2 (Acetyl-

Coenzyme A acyltransferase 2). C15:0 treatment is associated with an upregulation 

of ACADL (Figure 4.10a) compared to controls (threefold, eightfold, and sixfold 

increase with 50µM, 150µM, and 300µM respectively; FDR < 0.001% for all 

comparisons). Lower concentrations of C16:0 (50µM and 150µM) were also 

associated with increases in gene expression for ACADL (Figure 4.10a) and ACAD10 

(Figure 4.10b). However, there was no significant difference in gene expression levels 

of ACADL, ACAD10 and ACAA2 (Figure 4.10c) between cells treated with 300µM 

C16:0 and controls. Even though C15:0 treatments upregulated gene expression 

levels of ACAD10 and ACAA2, there appears to be a negative correlation between FA 

concentration and level of gene expression (Figure 4.10b and 4.10c). Co-treating cells 

with C15:0 and C16:0 upregulated ACAD10 and  ACADL gene expression levels. 

Peroxisomal beta-oxidation acts as a secondary pathway for FA catabolism especially 

for very long chain and odd chain FAs and was assessed similarly to mitochondrial 

beta-oxidation above. Firstly, peroxisomal FA transporters were examined (Figure 

4.11a, 4.11b, and 4.11c). ATP Binding Cassette Subfamily D Member 1-3 (ABCD1, 
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ABCD2, ABCD3) gene expression levels were measured to assess the effect of FAs 

on peroxisomal very long chain FA transporters. Only C15:0, irrespective of 

concentration used, upregulated ABCD1 activity compared to controls Figure 4.11a). 

The addition of 300µM C16:0 downregulated ABCD2 and ABCD3 transporters 

compared to controls (eightfold and 45% reduction respectively, FDR < 0.001%). 

Whereas, all C15:0 treatments as well as lower concentrations of C16:0 treatments 

significantly upregulated gene expression of ABCD2 and ABCD3 in comparison to 

control. The first reaction in peroxisomal beta-oxidation is catalysed by Peroxisomal 

acyl-coenzyme oxidase 1, encoded by the gene ACOX1. All FA treatments 

upregulated ACOX1 gene expression (Figure 4.11d) compared to control apart from 

300µM C16:0. There was no correlation between the concentration of C15:0 with gene 

expression levels. During peroxisomal oxidation, catalase (encoded by the gene CAT) 

is usually produced to mop up hydrogen peroxide. All FA treatments resulted in an 

upregulation of CAT (Figure 4.11e), except 300µM C16:0. 
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Figure 4.9: C15:0 reverses palmitate induced reduction in mitochondrial uptake of fatty acids.  
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expression markers  of FA activation and transport within 

the mitochondria. After 24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR 

estimation of (a) ACSL1- responsible for activating FA for beta-oxidation by converting FA to fatty acyl-COA esters, or (b) CPT1 and (c) CPT2 both  responsible 

for intra-mitochondrial transport of fatty acyl-COA esters, and (d) SLC25A20- responsible for facilitating intra-mitochondrial fatty acyl transport by 

trafficking both carnitine-FA complexes and carnitine across the inner mitochondrial membrane. Results are expressed as mean +/- SEM  (n=3 independent 

experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up method 

of Benjamini, Krieger  and Yekutieli .   Ψ represents a statistical significant difference between treatment and control,  Ξ represents a statistical significant 

difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control and 

300µM C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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Table 4.5: Raw CT values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on lipid metabolism in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of CPT1, CPT2, SCD5, SCD1 and FASN genes by RT-qPCR using 
YWHAZ as reference gene. N represents number of independent experiments. 

Gene YWHAZ  CPT1 CPT2 SCD5 SCD1 FASN 

  Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N 

Control (5% 
BSA) 

25.1 0.1 3 30.3 0.2 3 31.1 0.3 3 29.8 0.0 3 25.9 0.1 3 25.5 0.1 3 

100µM 
Fenofibrate  

25.4 0.1 3 27.6 0.3 3 28.6 0.4 3 27.6 0.3 3 25.8 0.3 3 25.4 0.3 3 

10µM GW6471 25.5 0.0 3 30.8 0.3 3 33.6 0.1 3 30.0 0.4 3 26.3 0.2 3 26.0 0.3 3 

50µM C15:0 25.6 0.4 3 27.5 0.3 3 28.4 0.3 3 28.2 0.2 3 25.7 0.5 3 25.9 0.2 3 

150µM 15:0 25.7 0.2 3 27.8 0.1 3 28.7 0.5 3 27.2 0.3 3 26.1 0.3 3 25.3 0.3 3 

300µM C15:0 25.6 0.1 3 27.8 0.3 3 29.3 0.1 3 28.6 0.2 3 26.1 0.4 3 25.2 0.2 3 

50µM C16:0 25.4 0.2 3 28.4 0.2 3 28.9 0.1 3 28.5 0.4 3 26.2 0.1 3 24.8 0.5 3 

150µM 16:0 25.1 0.1 3 29.1 0.2 3 29.0 0.1 3 27.9 0.2 3 25.9 0.3 3 23.9 0.2 3 

300µM C16:0 25.6 0.1 3 30.8 0.2 3 31.5 0.4 3 31.7 0.2 3 26.3 0.3 3 24.4 0.2 3 

150µM 15:0 + 
150µM 16:0 

25.5 0.2 3 28.8 0.4 3 29.4 0.7 3 28.2 0.5 3 26.3 0.5 3 25.9 0.6 3 

 

 

Table 4.6: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on lipid metabolism in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of ACSL1, ACADL, ACAD10, MYLCD genes by RT-qPCR using 
YWHAZ as reference gene. N represents number of independent experiments. 

Gene YWHAZ  ACSL1 ACADL ACAD10 MYLCD 

  Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N 

Control (5% BSA) 25.4 0.2 3 30.1 0.2 3 29.2 0.6 3 27.1 0.2 3 31.2 0.4 3 

100µM Fenofibrate  25.8 0.1 3 28.8 0.5 3 28.6 0.3 3 26.1 0.7 3 31.3 0.3 3 

10µM GW6471 25.5 0.4 3 30.7 0.5 3 29.2 0.5 3 27.2 0.5 3 31.2 0.5 3 

50µM C15:0 25.6 0.2 3 28.8 0.3 3 27.7 0.2 3 25.6 0.2 3 31.2 0.6 3 

150µM 15:0 25.4 0.2 3 28.6 0.5 3 25.9 0.6 3 25.9 0.0 3 30.3 0.4 3 

300µM C15:0 25.2 0.2 3 27.8 0.3 3 26.5 0.6 3 25.9 0.4 3 30.3 0.3 3 

50µM C16:0 25.4 0.1 3 28.7 0.1 3 27.1 0.3 3 26.8 0.1 3 27.0 0.2 3 

150µM 16:0 25.5 0.4 3 29.0 0.4 3 27.5 0.0 3 26.3 0.8 3 31.1 0.7 3 

300µM C16:0 25.8 0.1 3 28.5 0.7 3 29.6 0.8 3 27.4 0.1 3 32.0 0.2 3 

150µM 15:0 + 
150µM 16:0 

25.7 0.2 3 28.9 0.2 3 26.4 0.5 3 26.8 0.1 3 31.5 0.3 3 
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Table 4.7: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on lipid metabolism in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of ACAA2, SLC25A20, CAT genes by RT-qPCR using YWHAZ as 
reference gene. N represents number of independent experiments. YWHAZ 
represents the reference gene CT values for ACAA2 and SLC25A20. 

Gene YWHAZ1  ACAA2 SLC25A20 YWHAZ (CAT) CAT 

  Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N 

Control (5% BSA) 25.3 1.1 3 26.0 0.0 3 25.7 0.1 3 25.6 0.2 3 33.2 0.1 3 

100µM Fenofibrate  25.4 0.3 3 25.2 0.3 3 23.9 0.6 3 25.4 0.3 3 29.6 0.3 3 

10µM GW6471 25.6 0.3 3 26.4 0.7 3 25.8 0.5 3 25.3 0.1 3 27.9 0.2 3 

50µM C15:0 25.7 0.1 3 25.7 0.2 3 24.4 0.1 3 25.8 0.2 3 30.0 0.1 3 

150µM 15:0 25.5 0.4 3 25.7 0.4 3 24.9 0.5 3 25.6 0.1 3 30.7 0.2 3 

300µM C15:0 25.6 0.2 3 25.9 0.3 3 24.3 0.3 3 25.6 0.0 3 30.7 0.1 3 

50µM C16:0 25.5 0.1 3 26.0 0.2 3 25.2 0.2 3 25.6 0.1 3 30.9 0.2 3 

150µM 16:0 25.3 0.1 3 26.2 0.1 3 23.9 0.0 3 25.4 0.5 3 30.8 0.6 3 

300µM C16:0 25.3 0.1 3 26.2 0.0 3 24.3 0.0 3 25.5 0.2 3 33.2 0.1 3 

150µM 15:0 + 
150µM 16:0 

25.2 0.1 3 26.1 0.0 3 24.2 0.0 3 25.5 0.3 3 30.3 0.6 3 
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Figure 4.10: C15:0 reverses palmitate induced reduction in fatty acid beta-oxidation. 
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expressionof enzymes in the mitochondria beta-oxidation 

pathway. After 24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation 

of (a) ACSL1- responsible for activating FA for beta-oxidation by converting FA to fatty acyl-COA esters, or (b) CPT1 and (c) CPT2 both  responsible for 

intra-mitochondrial transport of fatty acyl-COA esters, and (d) SLC25A20- responsible for facilitating intra-mitochondrial fatty acyl transport by 

trafficking both carnitine-FA complexes and carnitine across the inner mitochondrial membrane. Results are expressed as mean +/- SEM  (n=3 

independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up 

method of Benjamini, Krieger  and Yekutieli .   Ψ represents a statistical significant difference between treatment and control,  Ξ represents a statistical 

significant difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both 

control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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Figure 4.11: C15:0 potentiates peroxisomal oxidation of fatty acids  

dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expression markers for peroxisomal FA oxidation. After 

24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation of (a) ABCD1, 

(b) ABCD2, (c) ABCD3 - responsible for FA transport across the peroxisomal membrane, or (d) ACOX1,the first enzyme in the peroxisomal beta 

oxidation pathway, and (d) CAT, an enzyme responsible for mopping up hydrogen peroxide formed in the process of peroxisomal beta oxidation. 

Results are expressed as mean +/- SEM (n=3 independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up 

method of Benjamini, Krieger and Yekutieli .   Ψ represents a statistical significant difference between treatment and control,  Ξ represents a statistical 

significant difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both 

control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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4.4.7 C15:0 favours MUFA and ω-3 production 

De novo lipogenesis and the biosynthesis of PUFA are integral functional aspects of 

hepatocytes. Gene expression levels of key enzymes involved in de novo lipogenesis, 

FA desaturation and PUFA biosynthesis were measured to understand the 

mechanistic role of FAs in de novo pathways. 

De novo biosynthesis of FAs from acetyl-CoA is catalysed primarily by the enzyme 

fatty acid synthase (encoded by the gene FASN). Cells treated with C16:0 appear to 

upregulate FASN gene expression level compared to control in greater magnitude 

than cells treated with similar concentrations of C15:0 (Figure 4.12a). For example, 

cells treated with 300µM C16:0 increase FASN expression levels by up to two times 

more than cells treated with 300µM C15:0 (FDR < 0.001%). In fact, there was no 

statistically significant difference in FASN gene expression between cells treated with 

50µM C15:0 and controls (5.5% difference, FDR 31.2%). Conversely, cells treated 

with C15:0 upregulated MLYCD (malonyl CoA decarboxylase) gene expression levels 

more than C16:0 treated cells with similar concentrations (Figure 4.12b). Low 

concentrations of C16:0 (50µM and 150µM) did not affect MLYCD gene expression, 

while 300µM C16:0 downregulated MLYCD gene expression (FDR < 0.001%). The 

levels of stearoyl-CoA desaturase 1 and 5 (SCD1 and SCD5) gene expression levels 

were measured as a marker of MUFA production. Only 50µM and 150µM C15:0 

upregulated SCD1 gene expression levels (Figure 4.12c) compared to controls (by 

170% and 120% respectively, FDR < 0.01% for both comparisons). With SCD5 (Figure 

4.12d), 300µM C16:0 downregulated gene expression levels compared to control, 

while all other FA treatment upregulated SCD5 gene expression levels. To confirm the 
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effect of  C15:0 on MUFA production, cells were washed and extracted for FA analysis 

using gas chromatography. There was a statistically significant increase in MUFA 

content in C15:0 treated cells compared to both controls and cells treated with 300µM 

C16:0 (Table 4.12). There was a mean increase in MUFA concentration of 3.35µM, 

4.24µM, and 2.05µM compared to control for 50µM, 150µM, 300µM C15:0 treated 

cells (p < 0.05). Similarly, There was a statistically significant higher MUFA  production 

(difference of 3.24µM) in 300µM C15:0 cells compared to cells treated with a  similar 

concentration of C16:0.  

Gene expression levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2), as well 

as those of ELOVL2 and ELOVL5 (elongation of very long-chain fatty acid protein 2 

and 5),  were measured to assess the effect of free FA treatments on PUFA  production 

(Figure 4.13a and  4.13b). Only C15:0 treatment significantly affected FADS1 and 

FADS2 gene expression by upregulation, and the maximum effect was seen in cells 

having 150µM C15:0. Adding C15:0 to C16:0 treated cells also resulted in upregulation 

of both FADS1 and FADS2. Cells treated with 300µM of C16:0 downregulated 

ELOVL5 gene expression by 14% (FDR < 0.01%), but had no significant impact on 

ELOVL2 gene expression levels (Figure 4.13c and 4.13d respectively). C15:0 showed 

differential expression of ELOVL5 and ELOVL2. While it upregulated ELOVL5 (Figure 

4.13c), it was found to downregulate ELOVL2 (Figure 4.13d). Similarly, cells co-

incubated with C15:0 and C16:0 slightly upregulated ELOVL5 and downregulated 

ELOVL2 gene expression levels. To confirm the effect of the FA on the production 

PUFA, FA were extracted and analysed from cells as outlined in methods. While there 

was no statistical significance difference in the level of total PUFA within treatments, 
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C15:0 treated cells showed a statistically significant higher production of total ω-3 FAs 

compared to both controls (increased by 1.4µM, 1.34µM, and 2.32µM for 50µM, 

150µM, and 300µM C15:0 respectively, p < 0.05) and cells treated with 300µM C16:0. 

Furthermore, total levels of C22:6n3 were higher in C15:0 treated cells compared to 

controls and C16:0 treated cells. On the other hand, C15:0 treated cells were shown 

to produce significantly lower levels of total ω-6 FA compared to cells treated with 

300µM C16:0 (mean reduction by 1.21µM, 1.21µM. and 0.89µM for 50µM, 150µM, 

and 300µM C15:0 respectively, p < 0.05). 
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Figure 4.12:  C15:0 favours desaturation of fatty acids to MUFA in the de novo lipogenesis pathway 
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expression markers for enzymes in the de novo 

lipogenesis pathway. After 24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-

qPCR estimation of (a) FASN, a multi-enzyme protein responsible for FA synthesis, (b) MLYCD, an enzyme involved in the synthesis of Acetyl-CoA, (c) 

SCD1 and (d) SCD5 are isoforms of the enzyme catalysing the rate-limiting step of MUFA production. Results are expressed as mean +/- SEM (n=3 

independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up 

method of Benjamini, Krieger and Yekutieli .   Ψ represents a statistical significant difference between treatment and control,  Ξ represents a 

statistical significant difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment 

versus both control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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Figure 4.13: C15:0 favours further desaturation of dietary essential fatty acids to PUFA 
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expression markers for enzymes in the de novo lipogenesis 

pathway. After 24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation 

of (a) FADS1, (b) FADS2, (c) ELOVL2 and (d) ELOVL5, enzymes responsible for desaturation and elongation of ω-3 and ω-6 fatty acids. Results are 

expressed as mean +/- SEM (n=3 independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up method 

of Benjamini, Krieger and Yekutieli.   Ψ represents a statistical significant difference between treatment and control and φ represents a statistical 

significant difference between the treatment versus both control and 300µM C16:0. All symbols represent a statistical significance q value (adjusted 

false discovery rate -FDR) of <1%. 

0 .5

1

2

4

8

F a tty  a c id  tre a tm e n ts

F
A

D
S

1
 g

e
n

e
 e

x
p

r
e

s
s

io
n

 l
e

v
e

l

(f
o

ld
 c

h
a

n
g

e
 n

o
r
m

a
li

s
e

d
 t

o
 c

o
n

tr
o

l)











0 .5

1

2

4

8

F a tty  a c id  tre a tm e n ts

F
A

D
S

2
 g

e
n

e
 e

x
p

r
e

s
s

io
n

 l
e

v
e

l

(f
o

ld
 c

h
a

n
g

e
 n

o
r
m

a
li

s
e

d
 t

o
 c

o
n

tr
o

l)










0 .5

1

2

4

F a tty  a c id  tre a tm e n ts

E
L

O
V

L
5

 g
e

n
e

 e
x

p
r
e

s
s

io
n

 l
e

v
e

l

(f
o

ld
 c

h
a

n
g

e
 n

o
r
m

a
li

s
e

d
 t

o
 c

o
n

tr
o

l)

 










0 .2 5

0 .5

1

2

4

F a tty  a c id  tre a tm e n ts

E
L

O
V

L
2

 g
e

n
e

 e
x

p
r
e

s
s

io
n

 l
e

v
e

l

(
f
o

ld
 c

h
a

n
g

e
 n

o
r
m

a
li

s
e

d
 t

o
 c

o
n

tr
o

l)

 



 

a 

c d 

b 

0 .1 2 5

0 .2 5

0 .5

1

2

4

8

1 6

F a tty  a c id  tre a tm e n ts

G
L

U
T

 2
 g

e
n

e
 e

x
p

r
e

s
s

io
n

(f
o

ld
 c

h
a

n
g

e
 r

e
la

ti
v

e
 t

o
 c

o
n

tr
o

l)

 

     

C o n tro l (5 %  B S A )

1 0 0 µ M  F e n o fib ra te

1 0 µ M  G W 6 4 7 1

5 0 µ M  C 1 5 :0

1 5 0 µ M  1 5 :0

3 0 0 µ M  C 1 5 :0

5 0 µ M  C 1 6 :0

1 5 0 µ M  1 6 :0

3 0 0 µ M  C 1 6 :0

1 5 0 µ M  1 5 :0  +  1 5 0 µ M  1 6 :0



170 

 

Table 4.8: Raw CT  values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on peroxisomal oxidation of lipids in 
dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of ACAA2, SLC25A20, CAT genes by RT-qPCR using YWHAZ as 
reference gene. N represents number of independent experiments. YWHAZ1 
represents the reference gene CT values for ABCD1, ABCD2 and ABCD3. 

Gene YWHAZ  ACOX1 YWHAZ1 ABCD1 ABCD2 ABCD3 

  Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N 

Control (5% 
BSA) 

25.3 0.3 3 29.7 0.3 3 25.6 0.2 3 29.2 0.4 3 29.4 0.3 3 28.2 0.2 3 

100µM 
Fenofibrate  

25.7 0.2 3 28.4 0.3 3 25.4 0.3 3 28.5 0.4 3 27.7 0.4 3 26.7 0.6 3 

10µM GW6471 25.9 0.0 3 26.0 0.3 3 25.3 0.1 3 29.8 0.3 3 29.3 0.3 3 28.2 0.4 3 

50µM C15:0 25.5 0.3 3 27.5 0.1 3 25.8 0.2 3 27.2 0.6 3 27.1 0.4 3 27.5 0.5 3 

150µM 15:0 25.6 0.2 3 27.4 0.4 3 25.6 0.1 3 27.1 0.2 3 26.6 0.1 3 26.3 0.4 3 

300µM C15:0 25.2 0.2 3 28.4 0.4 3 25.6 0.0 3 28.0 0.2 3 27.2 0.5 3 26.9 0.5 3 

50µM C16:0 25.6 0.5 3 27.1 0.2 3 25.6 0.1 3 28.6 0.2 3 28.3 0.3 3 27.4 0.2 3 

150µM 16:0 25.4 0.1 3 26.3 0.4 3 25.4 0.5 3 28.8 0.5 3 28.4 0.6 3 28.6 0.5 3 

300µM C16:0 25.6 0.0 3 28.1 0.2 3 25.5 0.2 3 28.9 0.2 3 32.0 0.3 3 27.7 0.5 3 

150µM 15:0 + 
150µM 16:0 

25.5 0.3 3 26.2 0.5 3 25.5 0.3 3 29.0 0.3 3 28.4 0.2 3 26.8 0.3 3 

 

Table 4.9: Raw CT values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on PUFA synthesis in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 
evaluate the levels of ELOVL2, ELOVL5, FADS1, and FADS2 genes by RT-qPCR 
using YWHAZ as reference gene. N represents number of independent experiments. 
YWHAZ1 represents the reference gene CT values for FADS1 and FADS2, while 
YWHAZ0 represents reference values for the ELOVL genes. 

Gene YWHAZ0  ELOVL2 ELOVL5 YHWAZ1 FADS1 FADS2 

  Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N Mean 
CT 

SE
M 

N 

Control (5% 
BSA) 

25.8 0.0 3 27.8 0.0 3 26.4 0.4 3 25.2 0.2 3 24.6 0.0 3 27.3 0.0 3 

100µM 
Fenofibrate  

25.5 0.1 3 26.2 0.3 3 25.4 0.5 3 25.7 0.2 3 23.1 0.3 3 25.3 0.1 3 

10µM GW6471 25.9 0.0 3 27.7 0.5 3 26.7 0.1 3 25.2 0.1 3 24.7 0.3 3 27.3 0.4 3 

50µM C15:0 25.6 0.1 3 28.7 0.1 3 25.4 0.0 3 25.5 0.1 3 24.2 0.3 3 26.4 0.3 3 

150µM 15:0 25.4 0.4 3 28.3 0.5 3 25.1 0.6 3 25.8 0.1 3 23.6 0.1 3 25.7 0.1 3 

300µM C15:0 25.8 0.0 3 28.7 0.1 3 25.7 0.2 3 25.6 0.0 3 24.4 0.2 3 26.6 0.2 3 

50µM C16:0 25.1 0.1 3 26.8 0.5 3 25.5 0.3 3 25.3 0.1 3 24.6 0.2 3 27.4 0.5 3 

150µM 16:0 25.6 0.1 3 27.7 0.6 3 26.1 0.2 3 25.3 0.1 3 24.7 0.2 3 27.4 0.3 3 

300µM C16:0 25.1 0.1 3 27.1 0.2 3 26.0 0.1 3 25.7 0.1 3 25.0 0.2 3 27.9 0.1 3 

150µM 15:0 + 
150µM 16:0 

25.3 0.1 3 27.5 0.0 3 25.7 0.2 3 25.7 0.1 3 24.9 0.0 3 27.4 0.3 3 
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Table 4.10: Raw CT values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on PPARa activity in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 

evaluate the levels of PPARa and RxRa genes by RT-qPCR using YWHAZ as 

reference gene. N represents number of independent experiments 
Gene YWHAZ  PPARa RxRa 

  Mean CT SEM N Mean CT SEM N Mean CT SEM N 

Control (5% BSA) 25.7 0.2 3 27.5 0.3 3 28.5 0.2 3 

100µM Fenofibrate  25.8 0.1 3 24.6 0.0 3 28.6 0.2 3 

10µM GW6471 25.8 0.1 3 28.0 0.4 3 28.8 0.3 3 

50µM C15:0 25.8 0.2 3 26.6 0.3 3 28.2 0.4 3 

150µM 15:0 25.1 0.2 3 26.0 0.2 3 27.3 0.6 3 

300µM C15:0 25.9 0.1 3 27.2 0.1 3 28.5 0.2 3 

50µM C16:0 25.1 0.0 3 26.7 0.1 3 26.6 0.2 3 

150µM 16:0 25.6 0.2 3 27.9 0.1 3 28.3 0.5 3 

300µM C16:0 25.3 0.1 3 26.9 0.1 3 28.7 0.0 3 

150µM 15:0 + 150µM 16:0 25.3 0.3 3 27.1 0.2 3 27.2 0.5 3 

 

Table 4.11: Raw CT values for a reference gene (YWHAZ) and selected genes of 
interest for determining the effect of FA on PPARa activity in dHepG2 cells. 
total RNA was isolated from d HepG2 cells and converted to cDNA and used to 

evaluate the levels of KPNA2, KPNB1 and NCOA2 genes by RT-qPCR using YWHAZ 

as reference gene. N represents number of independent experiments 
Gene YWHAZ  KPNA2 KPNB1 NCOA2 

  Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N Mean CT SE
M 

N 

Control (5% BSA) 25.3 0.3 3 24.5 0.1 3 29.8 0.1 3 30.4 0.7 3 

100µM Fenofibrate  25.5 0.2 3 23.9 0.1 3 27.7 0.3 3 29.9 0.1 3 

10µM GW6471 25.5 0.1 3 25.1 0.2 3 29.9 0.2 3 31.4 0.3 3 

50µM C15:0 25.4 0.3 3 24.2 0.7 3 26.1 0.7 3 28.7 0.1 3 

150µM 15:0 25.3 0.4 3 24.0 0.5 3 26.0 0.4 3 29.0 0.5 3 

300µM C15:0 25.4 0.1 3 24.1 0.1 3 27.0 0.3 3 29.7 0.3 3 

50µM C16:0 25.4 0.3 3 24.3 0.5 3 25.0 0.5 3 30.4 0.2 3 

150µM 16:0 25.5 0.3 3 24.6 0.8 3 27.7 0.1 3 30.0 0.5 3 

300µM C16:0 25.4 0.3 3 25.0 0.3 3 29.9 0.3 3 30.4 0.5 3 

150µM 15:0 + 150µM 16:0 25.1 0.2 3 24.2 0.5 3 26.0 0.7 3 29.6 0.1 3 
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4.4.8 The metabolic activity of C15:0 is related to PPAR alpha 

PPARs, especially PPAR alpha, have been shown to be heavily involved in lipid 

homeostasis in the liver and other organs. To determine if the general effect of C15:0 

is mediated via PPAR alpha, cells were treated with corresponding concentrations of 

FAs in comparison to a PPAR alpha agonist (100µM Fenofibrate/FB) and antagonist 

(10µM GW6471). Firstly, PPAR alpha gene expression levels were measured (Figure 

4.14a). The agonist increased PPAR alpha gene expression levels by up to eightfold 

compared to control (FDR < 0.0001%), while the antagonist reduced gene expression 

by 9.5%, albeit not meeting statistical significance levels (FDR 15.8%). Cells treated 

with C15:0 upregulated PPAR alpha gene expression levels by up to 100% compared 

to controls, with the highest stimulation from 50µM C15:0. There was no significant 

change in gene expression of PPAR alpha between lower concentrations of C16:0 

and controls. However, treating cells with 300µM C16:0 downregulated PPAR alpha 

expression by 32.3% (FDR 0.03%) compared to controls, which was even higher than 

the antagonist. The retinoid x receptor alpha (RxRa) and nuclear receptor coactivator 

2 (NCOA2) gene expression levels were measured to investigate if FA stimulation was 

exclusive to PPAR alpha,or extends to co-activators. PPAR alpha agonist and 

antagonist did not have any effect on RxRa gene expression levels (Figure 4.14b). 

Cells treated with 300µM C16:0 showed downregulation of RxRa by almost twofold 

(FDR < 0.01%), whereas cells treated with lower concentrations of C16:0 (50µM) 

showed a twofold upregulation of RxRa (FDR < 0.01%). On the other hand, both high 

and low concentrations of C15:0 elicited a statistically significant upregulation of RxRa 

of up to 80% compared to control. The function of PPAR alpha is dependent upon 
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translocation into the nucleus. Therefore, the gene expression levels of two nuclear 

shuttling proteins, karyopherin subunit alpha 2 (KPNA2) and karyopherin subunit beta 

1 (KPNB1), were measured. As expected, the PPAR alpha agonist increased both 

KPNA2 (Figure 4.14c) and KPNB1 (Figure 4.14d) gene expression levels by 80% and 

fourfold respectively (FDR < 0.001%). Similarly, C15:0 treated cells significantly 

increased both KPNA2 and KPNB1 gene expression levels irrespective of 

concentrations used, even as high as twofold more than the PPAR alpha agonist with 

KPNB1. Low concentrations of C16:0 (50µM) was associated with an upregulation of 

both KPNA2 and KPNB1 expression levels. However, C16:0 at 300µM resulted in a 

downregulation of both KPNA2 and KPNB1 similar to the PPAR alpha antagonist. 

NCOA2 is recruited by nuclear receptors to promote downstream upregulation of their 

target genes. Here, the three concentrations of C15:0 used to treat the cells 

upregulated NCOA2 gene expression by more than twofold (FDR < 0.01% for all 

comparisons), similar to 100µM fenofibrate which showed a 40% increase (FDR< 

0.001%) in NCOA2 gene expression levels compared to control (Figure 4.14e). 

Incubating cells with 300µM C16:0 did not affect NCOA2 gene expression levels 

compared to control. Co-incubating cells with C15:0 and C16:0 increased NCOA2 

gene expression levels by 18% (FDR 0.01%). A PPAR alpha transcription assay was 

performed (Figure 4.15) which confirmed a downstream response to PPAR alpha 

similar to the gene expression data. Both FB and C15:0 increased PPAR alpha activity 

by approximately 20% (p < 0.05), while GW6471 and C16:0 reduced activity by 23% 

and 43% respectively (p < 0.01 for both observations). Addition of FB or C15:0 to 
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C16:0 treated cells partially ameliorated the downregulatory effect of palmitate by 6% 

(p > 0.05) and 15% (p < 0.05) respectively. 
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Figure 4.14: C15:0 ameliorates the downregualtory effect of C16:0 on PPARα nuclear transport and expression 
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for gene expression markers for PPARα expression and regulation. After 

24hrs incubation, cells were washed thrice with ice-cold PBS and lysed for total RNA extraction (5 million cells) and RT-qPCR estimation of (a) PPARα, a ligand 

activated transcription factor responsible for the catabolism of lipids, (b) RxRa, a nuclear receptor that facilitates  PPARα transcriptional activity,  (c) KPNA2 

and (d) KPNB1 are nucleorcytoplasmic proteins responsible for nuclear import of PPARα, (e) NCOA2 a PPARαtranscriptional protein coregulatory. Results are 

expressed as mean +/- SEM (n=3 independent experiments performed in duplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and the two-stage step-up method of 

Benjamini, Krieger and Yekutieli .   Ψ represents a statistical significant difference between treatment and control,  Ξ represents a statistical significant 

difference between treatment and 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control and 300µM 

C16:0. All symbols represent a statistical significance q value (adjusted false discovery rate -FDR) of <1%. 
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Figure 4.15: C15:0 improves palmitate inhibition of PPARα activity but does not completely ameliorate this effect.  
dHepG2 cells were treated with fatty acids conjugated to BSA for 24hrs and analysed for PPARα transcription activity. Cells were washed three times with 

PBS after 24hrs incubation followed by nuclear extraction as detailed in methods. PPARα transcription activity was measured by a plate-based assay as 

described with analysis under absorbance spectrometry at 450nm. Results are expressed as mean +/- SEM (n=3 independent experiments performed in 

triplicate).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-test comparison.   

Ψ represents a statistical significant difference between treatment versus control, Ξ represents a statistical significant difference between treatment versus 

300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control and 300µM C16:0. All symbols represent a 

statistical significance P value of < 0.05. 
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Table 4.12: FAME profile of dHepG2 cells treated with FAs 
FAMEs were isolated from dHepG2 cells and measured using GC. FAME data presented as percentage of total FA identified (mean 
+ SD for three independent samples). 

Fatty acid  
(% of total FA) 
Mean ± SD 

Control (5% 
BSA) 

100µM Fenofibrate 10µM 
GW6471 

50µM C15:0 150µM 15:0 300µM C15:0 50µM C16:0 150µM 16:0 300µM 
C16:0 

150µM 15:0 
 +  

150µM 16:0 
 

                                                                                                                                                                                                                                                                                                                                                                                               

C14:0 0.30 ± 0.01 0.32 ± 0.02 0.28 ± 0.03 0.31 ± 0.01 0.32 ± 0.02 0.31 ± 0.02 0.32 ± 0.02 0.32 ± 0.03 0.31 ± 0.02 0.30 ± 0.01 

C15:0 0.24 ± 0.02 0.25 ± 0.02 0.23 ± 0.01 0.38 ± 0.02 0.40 ± 0.01 0.24 ± 0.02 0.40 ± 0.01 0.26 ± 0.01 0.27 ± 0.01 0.30 ± 0.01 

C15:1 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.19 ± 0.01 0.17 ± 0.01 0.05 ± 0.01 0.17 ± 0.01 0.06 ± 0.02 0.06 ± 0.02 0.12 ± 0.01 

C16:0 32.03 ± 0.55§ 30.00 ± 0.29†§ 32.71 ± 0.63†§ 28.51 ± 0.16†§ 28.13 ± 0.94†§ 32.00 ± 0.85†§ 28.13 ± 0.94§ 31.93 ± 0.33§ 33.83 ± 0.24† 31.06 ± 0.12†§ 

C16:1 4.62 ± 0.55§ 5.23 ± 0.49§ 4.63 ± 0.41§ 5.16 ± 0.32§ 5.36 ± 0.18†§ 5.08 ± 0.23†§ 5.36 ± 0.18 5.34 ± 0.25† 6.00 ± 0.21† 5.10 ± 0.14§ 

C17:0 0.48 ± 0.03 0.49 ± 0.02 0.53 ± 0.08 0.72 ± 0.02 0.78 ± 0.01 0.47 ± 0.02 0.78 ± 0.01 0.53 ± 0.04 0.41 ± 0.02 0.65 ± 0.02 

C17:1 0.11 ± 0.01 0.11 ± 0.01 0.08 ± 0.01 0.24 ± 0.02 0.31 ± 0.02 0.10 ± 0.01 0.31 ± 0.02 0.09 ± 0.01 0.07 ± 0.01 0.16 ± 0.01 

C18:0 12.00 ± 0.85 11.6 ± 0.45 12.72 ± 0.46†§ 10.99 ± 0.23†§ 10.56 ± 0.16†§ 10.50 ± 1.02†§ 10.56 ± 0.16†§ 10.70 ± 0.16†§ 11.86 ± 0.24 10.23 ± 0.33†§ 

C18:1n9 37.27 ± 1.26§ 39.78 ± 0.22†§ 36.16 ± 0.24†§ 39.80 ± 0.21†§ 40.4 ± 0.57†§ 38.86 ± 0.54†§ 40.40 ± 0.57†§ 38.10 ± 0.16†§ 34.73 ± 0.38† 38.10 ± 0.32†§ 

C18:2n6 2.12 ± 0.13 2.16 ± 0.13 2.05 ± 0.13 2.17 ± 0.26 2.08 ± 0.3 2.23 ± 0.09 2.08 ± 0.30 2.25 ± 0.14 2.33 ± 0.20 2.33 ± 0.20 

C18:3n6 0.34 ± 0.02 0.33 ± 0.01 0.37 ± 0.04 0.34 ± 0.01 0.35 ± 0.01 0.33 ± 0.02 0.35 ± 0.01 0.32 ± 0.01 0.35 ± 0.05 0.38 ± 0.01 

C18:3n3 0.46 ± 0.02 0.46 ± 0.01 0.46 ± 0.01 0.46 ± 0.02 0.45 ± 0.01 0.42 ± 0.01 0.45 ± 0.01 0.44 ± 0.02 0.42 ± 0.02 0.43 ± 0.01 

C20:3n6 0.68 ± 0.02 0.67 ± 0.02 0.68 ± 0.02 0.66 ± 0.03 0.68 ± 0.01 0.63 ± 0.02 0.68 ± 0.01 0.66 ± 0.01 0.64 ± 0.01 0.62 ± 0.01 

C20:3n3 0.26 ± 0.04 0.29 ± 0.01 0.22 ± 0.01 0.55 ± 0.02 0.54 ± 0.03 0.27 ± 0.02 0.54 ± 0.03 0.28 ± 0.02 0.24 ± 0.03 0.34 ± 0.02 
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Fatty acid  
(% of total FA) 
Mean ± SD 

Control (5% 
BSA) 

100µM Fenofibrate 10µM 
GW6471 

50µM C15:0 150µM 15:0 300µM C15:0 50µM C16:0 150µM 16:0 300µM 
C16:0 

150µM 15:0 
 +  

150µM 16:0 
 

                                                                                                                                                                                                                                                                                                                                                                                               

C20:4n6 4.20 ± 0.29 4.03 ± 0.24 4.33 ± 0.2 3.60± 0.16§ 3.66 ± 0.12
†
§ 3.90 ± 0.16§ 3.66 ± 0.12§ 4.33 ± 0.20 4.66 ± 0.12 4.50 ± 0.16 

C20:5n3 0.42 ± 0.04 0.44 ± 0.05 0.41 ± 0.03 0.66 ± 0.01 0.65 ± 0.01 0.40 ± 0.06 0.65 ± 0.01 0.46 ± 0.09 0.36 ± 0.06 0.48 ± 0.11 

C22:1n9 0.05 ± 0.01 0.05 ± 0.01 0.08 ± 0.02 0.06 ± 0.01 0.10 ± 0.01 0.05 ± 0.01 0.10 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.07 ± 0.02 

C22:6n3 3.63 ± 0.24 3.36 ± 0.16 3.35 ± 0.12 4.50 ± 0.16†§ 4.46 ± 0.16†§ 3.63 ± 0.20†§ 4.46 ± 0.16 3.50 ± 0.32 3.00 ± 0.08 4.20 ± 0.21§ 

Total SFA 45.06 ± 1.38§ 42.67 ± 0.68† 46.49 ± 0.13†§ 40.93 ± 0.29†§ 40.21 ± 1.04†§ 43.53 ± 0.68†§ 40.21 ± 1.04†§ 43.75 ± 0.22†§ 46.7 ± 0.05† 42.55 ± 0.27†§ 

Total MUFA 42.11 ± 1.70§ 45.24 ± 0.73†§ 41.03 ± 0.31 45.46 ± 0.21†§ 46.35 ± 0.72†§ 44.16 ± 0.67†§ 46.35 ± 0.72†§ 43.64 ± 0.30†§ 40.92 ± 0.15† 43.56 ± 0.37†§ 

Total PUFA 12.14 ± 0.05 11.77 ± 0.2 11.90 ± 0.18 12.96 ± 0.25 12.90 ± 0.38 11.83 ± 0.38 12.90 ± 0.38 12.26 ± 0.34 12.02 ± 0.18 13.3 ± 0.14 

Total ω-3 4.78 ± 0.33 4.56 ± 0.24 4.45 ± 0.13 6.18 ± 0.15†§ 6.12 ± 0.20†§ 4.73 ± 0.30†§ 6.12 ± 0.20 4.69 ± 0.41 4.02 ± 0.16 5.45 ± 0.31§ 

Total ω-6 7.35 ± 0.34 7.21 ± 0.35 7.44 ± 0.06 6.78 ± 0.28§ 6.78 ± 0.34§ 7.10 ± 0.12§ 6.78 ± 0.34 7.57 ± 0.33 7.99 ± 0.29 7.84 ± 0.16 

OCSFA 0.72 ± 0.05 0.74 ± 0.03 0.76 ± 0.08 1.10 ± 0.01 1.19 ± 0.01 0.72 ± 0.01 1.19 ± 0.01 0.79 ± 0.05 0.68 ± 0.03 0.95 ± 0.02 

ECSFA 44.33 ± 1.41§ 41.92 ± 0.64†§ 45.72 ± 0.15† 39.82 ± 0.30†§ 39.02 ± 1.04†§ 42.81 ± 0.67†§ 39.02 ± 1.04†§ 42.95 ± 0.28†§ 46.01 ± 0.02†§ 41.6 ± 0.24†§ 

C16:1/C16:0 0.14 ± 0.01 0.17 ± 0.01 0.14 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.15 ± 0.01 0.19 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.16 ± 0.01 

C18:1n9/C18:0 3.12 ± 0.3 3.43 ± 0.15 2.84 ± 0.12 3.62 ± 0.07 3.82 ± 0.09 3.73 ± 0.37 3.82 ± 0.09 3.56 ± 0.03 2.92 ± 0.08 3.72 ± 0.15 

C17:0/C17:1 0.23 ± 0.04 0.22 ± 0.03 0.16 ± 0.02 0.33 ± 0.04 0.39 ± 0.02 0.21 ± 0.02 0.39 ± 0.02 0.16 ± 0.01 0.17 ± 0.03 0.25 ± 0.01 

† Represents a statistical significance of P< 0.05 for treatments vs control, while § represents a significant difference between treatment and C16:0 
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4.5 DISCUSSION 

The previous chapter described a negative correlation between C15:0 and plasma 

glucose in fasting blood samples, which is in keeping with an emerging theme in 

several large-scale longitudinal studies [200, 206, 207]. However, the cellular 

mechanisms by which C15:0 exert any metabolic effect remains unknown. This 

chapter aimed to identify a mechanistic pathway to explain the protective effect of 

OCSFA through changes to glucose and FA metabolism in the liver. The results show 

that C15:0 significantly ameliorated C16:0 induced insulin resistance in vitro, by 

increasing glycogen production and reducing gluconeogenesis; both mechanisms that 

contribute significantly to increased plasma glucose in T2DM [260-262]. Furthermore, 

C15:0 reduced TNFα and IL-8 secretion by C16:0 treated hepatocytes. Also, C15:0 

differentially modulates hepatocyte metabolic activity, favouring increased 

mitochondrial and peroxisomal oxidation of FA, which appears to be mediated via 

PPAR alpha.  

To understand the effect of FAs on hepatocyte function, HepG2 cells needed to be 

differentiated to closely resemble primary hepatocytes, which are more quiescent and 

are characterised by increased expression of markers such as albumin, urea, as well 

as phase I and phase II enzymes [41]. Here, we found that growing the cells in low 

serum media induced hepatocyte differentiation with an increase in markers of 

differentiation, including albumin, transferrin, and urea, with no effect on cellular 

viability. Traditionally, retinoic acid (RA) and its derivatives are more commonly used 

to induce cell cycle arrest and cellular differentiation [263-266], by various 

mechanisms, which include the regulation of cyclin-dependent kinases, p53, p21, 
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retinoic-X receptor (RXR) amongst others, leading to cell cycle arrest predominantly 

in the G0/G1 phase. However, low serum has been shown to be as effective resulting 

in less toxicity to cells [267, 268] as RA also induces apoptosis, especially at high 

concentrations. The other justification for using low serum to induce quiescence in this 

study is that RA interferes with lipid metabolism by transactivating the PPAR 

alpha/RxRα heterodimer [269], which would have confounded the determination of FA 

effect on PPAR alpha transcription.  

Chronic low-grade inflammation has been suggested as a link between the 

progression from NAFLD to a state of insulin resistance. Mature hepatocytes can alter 

the expression of specific proteins including cytokines, independent of resident 

macrophages, in response to inflammatory and stress stimuli [270, 271]. Here, we find 

that palmitate-treated cells induce an acute phase reaction similar to LPS without 

inducing apoptosis or affecting cellular viability. Several studies have shown palmitate-

induced inflammation in hepatocytes mediated by several mechanisms including 

upregulation of NFƘB -by inducing oxidative stress [272], or toll-like receptors [273, 

274]- upregulation of NOD-like receptor protein 4 (NLRC4) and caspase-1 activation 

mediated maturation of cytokines [275],  amongst others. Others suggest that the toxic 

effect of palmitate can be explained by the intracellular accumulation of saturated 

phospholipids and intermediates (like ceramides) resulting in cellular dysfunction, 

especially in the mitochondria, due to an insufficient capacity to dispose of SFA by 

mitochondrial beta-oxidation, [276-278]. On the other hand, C15:0 treated cells 

increased metabolic activity, at least in the first six hours of treatment, corresponding 

to an increased mitochondrial succinate dehydrogenase activity (responsible for 
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reducing MTT), which may represent an increase in mitochondrial function- as 

evidenced by improved mitochondrial β-oxidation (Figure 4.10). Co-treating cells with 

C15:0 removed the toxic effect of C16:0. These toxic effects are absent in cells treated 

with oleate, a MUFA, despite significant lipid accumulation[63]. In fact, oleate protects 

C16:0 treated cells from insulin resistance and metabolic dysfunction via several 

mechanisms in different cell lines [279, 280], suggesting a differential effect of FA on 

cellular metabolic activity and viability. It was therefore interesting that the results in 

this chapter showed an increase in oleate production and an increase in the 

MUFA/SFA ratio in C15:0 treated cells (Table 4.12). Therefore, it is plausible that the 

protective effect of C15:0 in our study could be partially due to the mobilisation of 

C16:0 produced de novo, or acquired otherwise, into the less harmful MUFA, 

especially oleate. There is conflicting evidence from clinical studies on the benefits of 

a high MUFA/SFA ratio[281-284] mainly because these studies fail to distinguish 

between FAs from diet and de novo lipogenesis[285], and also mostly look at 

C16:0/C16:1 ratio as an indication for desaturase enzyme activity. However, clear 

benefits exist when diets high on MUFA are consumed in preference to high 

carbohydrate diets [286-289].  

After establishing the presence of inflammation in C16:0 treated cells, which is 

ameliorated by C15:0, it was essential to ascertain if this had any impact on glucose 

homeostasis vis-à-vis insulin resistance. The results revealed that C15:0 significantly 

ameliorated C16:0 induced decrease in glycogen production and increase in glucose 

output;  both mechanisms that contribute significantly to increased plasma glucose in 

T2DM [260-262]. A reduction in glycogen content in cells treated with high 
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concentrations of C16:0 was associated with an upregulation of GSK3β. GSK3β is 

known to inactivate glycogen synthase by phosphorylation, therefore, preventing 

glycogen production. In animal studies where hepatic steatosis is induced by high-fat 

diet, insulin resistance develops when there is a failure to inactivate GSKβ by 

impairment of insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2, in a 

process likely to involve PKC activation of JNK [290]. The importance of GSK3β in 

palmitate-induced insulin resistance is buttressed by studies which show an 

improvement in insulin sensitivity, glucose homeostasis and cellular viability by the 

knockdown, silencing or inhibition of GSK3β [291, 292]. Interestingly, the data also 

showed upregulation of GSK3β by cells treated with high concentrations of C15:0 

without affecting cellular glycogen content. The production of glycogen by an alternate 

pathway, possibly involving an insulin-dependent activation of glycogen synthase via 

glucose-6-phosphate, in C15:0 treated cells cannot be ruled out [293]. The data also 

showed upregulation of GLUT2 mRNA and gene expression by all FA treatments. 

However, only 300µM C16:0 treated cells showed a significant increase in glucose 

output in the supernatant. The upregulation of GLUT2 is an unreliable indicator for 

increased gluconeogenesis because the glucose transporter is bi-directional and non-

specific for glucose[294] and very likely to reflect any movement of glucose across the 

cell membrane irrespective of FA treatments or concentration. It is also plausible that 

the upregulation of GLUT2 seen here reflects the acute insulin-mediated uptake of 

glucose by FAs [295]. However, as shown in some studies, GLUT2 is indispensable 

for glucose uptake [296] and alternative mechanisms exist for glucose output [297, 
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298]. Therefore, it is difficult to interpret the results of the GLUT2 data with respect to 

insulin resistance. 

So far, we have seen that C15:0 reduced IL-8 and TNFα secretion by C16:0 treated 

hepatocytes. Previous studies have shown that lipid accumulation following C16:0 

treatment induces an immune-mediated metabolic dysregulation [252] with reduced 

insulin-stimulated glucose uptake mediated via PI3-kinase signalling [196]. Moreover, 

Lee, Jin-young and colleagues observed insulin resistance in C16:0 treated HepG2 

cells without significant lipid accumulation [299]. However, lipid accumulation features 

prominently in the pathway connecting inflammation and insulin resistance. Here, 

C16:0-induced increase in glucose output and reduced glycogen storage was 

associated with both raised inflammatory markers and lipid accumulation. It was 

important to understand the mechanisms that led to lipid accumulation in hepatocytes 

following FA treatment.  

Hepatic lipid accumulation is thought to arise as a result of an interplay between 

excess uptake, defective FA oxidation, de novo lipogenesis, and VLDL export [300]. 

In this chapter, the first three factors have been studied using gene expression data. 

To examine the differential effect of FA on lipid uptake, gene expression of CD36 and 

liver-specific fatty acid binding protein (FABP) were examined. There was a high basal 

expression of CD36 in dHepG2 cells (similar mRNA content as relatively abundant 

reference gene), which is in keeping with hepatocyte maturity and differentiation. 

Unsurprisingly, all FA treatments upregulated CD36 gene expression, but to different 

degrees, with cells treated with 300µM C16:0 appearing to exert to most effect. 
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Several factors are known to increase the expression of CD36 including age, a high-

fat diet, and insulin [301-303]. More specifically, SFA [304], MUFA [305], and PUFA 

[306] are all known to stimulate CD36 expression, to aid their cellular intake; however, 

there has been no report of differential sensing of FA by CD36 in the liver, despite 

limited evidence supporting this occurrence in other cells [307]. Similarly, all FA 

treatments in this study upregulated L-FABP. L-FABP plays an important role in 

trafficking cytoplasmic FAs into organelles, including the mitochondria and 

peroxisomes for β-oxidation, and the nuclei, where these FA could act as ligands for 

transcription factors [308]. In addition to FA, hypolipidaemic drugs like statins regulate 

L-FABP by interacting with PPAR alpha [309]. Therefore, it is possible that the 

differential upregulation of L-FABP by FA may be related to their individual ability to 

stimulate PPAR. It is difficult to predict the phenotypic expression and function of these 

FA transporters by their gene expression data. However, going by the data presented 

so far, high concentrations of C16:0 is associated with massive influx of FAs mediated 

by CD36 upregulation, which is not matched by a similar rise in L-FABP, leaving the 

possibility of cytoplasmic lipid accumulation leading to the formation of neutral lipid 

droplets and/or lipid intermediates such as ceramides, diacylglycerol, and 

lysophosphatidylcholine (LPC). Considerable but distinct upregulation of both CD36 

and L-FABP may partly explain the increased lipid accumulation noted in cells treated 

with high concentrations of C16:0, but does not explain why other FA treated cells, 

which similarly upregulated both CD36 and L-FABP, show comparable amounts of 

neutral lipid accumulation with control cells. Therefore, FA oxidation was explored to 

explain any differences in mitochondrial or peroxisomal metabolism in FA stimulated 
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cells. Here, cells treated with high concentrations of C16:0 show similar gene 

expression levels CPT1 and CPT2 as controls, which is disproportionate to the level 

of CD36 and L-FABP as seen earlier. CPT1 is usually considered the rate-limiting step 

for mitochondrial FA oxidation, and along with CPT2, is responsible for the transport 

of fatty acid acyl esters across the mitochondrial membrane, in a process involving the 

incorporation of carnitine to fatty acyl esters [310-312]. The importance of CPT1 to FA 

oxidation is reinforced by mice knockout studies where the deficiency of CPT1 results 

in lipid accumulation secondary to reduced mitochondrial FA oxidation [313], and in 

studies where in vitro inhibition of CPT1 by etomoxir produces the same outcome 

[314]. Palmitate usually stimulates CPT1 & CPT2, especially in lower concentrations. 

In fact, there is only limited direct evidence in support of a  downregulatory effect at 

concentrations as high as 750µM resulting in dysfunctional FA oxidation [315]. Here, 

the effect of palmitate is disproportionally equivocal to control suggesting a reduction 

in FA oxidation in these cells. However, in in vitro and mice models of palmitate-

induced insulin resistance, lipid accumulation is usually associated with generalised 

mitochondrial dysfunction and consequently reduced FA oxidation, ameliorated by 

MUFA and PPAR alpha [310, 316-319]. The results from this chapter also show that 

co-incubating cells with C15:0 and C16:0 ameliorates palmitate-induced dysfunction 

in genes involved in mitochondrial and peroxisomal β-oxidation, in a process that might 

be similar to how MUFA protect cells from palmitate-induced dysfunction. Additionally, 

the results suggest that C16:0 treated cells probably favour de novo lipogenesis by 

upregulating FASN gene expression. Put together, cells treated with high 

concentrations of C16:0 potentiate intracellular lipid traffic but show disproportionate 
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β-oxidation functionality, which in addition to increase de novo lipogenesis could 

explain increased intracellular lipid accumulation as observed. Conversely, C15:0 

treated cells appear to maintain normal levels of neutral lipids by increasing FA 

oxidation to account for the influx of FA and likely slight increase in de novo 

lipogenesis. 

The protective effect of C15:0 on palmitate-induced hepatocyte dysfunction has so far 

mirrored that of MUFA in literature. In this chapter, the result shows that C15:0 

increased the expression of both SCD1 and SCD5, suggesting that some of the 

protective effect of C15:0 may be the consequence of MUFA production. This is 

confirmed by a higher MUFA/SFA ratio in these cells compared to palmitate-treated 

cells. Interestingly, only C15:0 treated cells upregulated SCD1, which is more highly 

expressed in dHpG2 cells. Furthermore, an examination of ELOVL1, FADS1 and 

FADS2 show that C15:0 treated cells show a preference for the biosynthesis of ω-3 

PUFA as opposed to ω-6 PUFA, which are preferentially produced by C16:0 treated 

cells. Again, PUFA shows a comparable protective effect as MUFA in literature in the 

context of palmitate-induced hepatocyte dysfunction. Therefore, the ability of C15:0 to 

promote the production of MUFA and PUFA may underpin its overall effect on 

hepatocytes metabolically.  

The apparent hypolipidaemic effect of C15:0, especially in the context of increased FA 

oxidation (especially in the peroxisomes) raises the suspicion of PPAR involvement. 

Pararasa et al. (2013) have previously shown that the effect of FA on macrophage 

differentiation and phenotype was related to PPARγ [252]. It was therefore pertinent 
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to identify any associations between C15:0 and PPAR alpha, which is more 

predominantly involved with FA oxidation than other PPARs in the liver. As seen in the 

results, C15:0 treated cells appear to upregulate PPAR alpha upstream similar to the 

fenofibrate, a known PPAR alpha agonist, associated with a rise in RxRα expression, 

which is required to form the PPAR alpha/RxRα heterodimer prerequisite for 

transcriptional activity. Moreover, C15:0 at all concentrations upregulate KPNA2 and 

KPNB1, necessary for nuclear translocation of ligands and proteins. Importantly, 

C15:0 and fenofibrate exclusively increase gene expression levels of NCOA2, which 

amplifies the downstream transcriptional activity of target genes by histone acetylation 

[320, 321]. To verify the gene expression data, a transcription activity assay was 

performed which shows that C15:0 significantly increased PPAR alpha activity 

compared to control, similar to fenofibrate.The fact that PPAR alpha transcriptional 

activity was similar between C15:0 treated and fenofibrate treated cells suggested that 

the protective effect of C15:0 vis-a-vis the increase in MUFA content could be 

mediated via a PPAR alpha pathway. Moreover, C15:0 increased PPAR alpha activity 

in C16:0 treated cells more than fenofibrate and the addition of a PPAR alpha 

antagonist eliminated this effect. PPAR alpha activation has been shown to increase 

FA catabolism, β-oxidation, improve insulin resistance and reduce liver steatosis and 

inflammation in mouse models[322-324]. However, these effects were seldom 

observed in humans until recently when the use of a dual PPAR alpha/δ agonist 

(GFT505) showed a liver-specific reduction in insulin resistance[325]. Once activated, 

PPAR alpha regulates several genes to promote lipid metabolism. This study found 

many of these genes (CPT1, CPT2, SCD1, NCOA2, FADS1, FADS2) to be highly 
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upregulated with C15:0 treatment alone, or with C15:0 and C16:0. An upregulation of 

SCD1 is in keeping with our finding of an increased level of MUFA in C15:0 treated 

cells. Some PUFA acts as natural ligands for PPAR alpha [251] and would make sense 

if the PPAR alpha activation noted with C15:0 is partly due to the increased PUFA 

production elicited by C15:0. There is a suggestion from our results that C15:0 may 

be acting as a ligand for PPAR alpha. We cannot exclude effects on other PPARs due 

to their overlapping regulatory effects and redundancy.  

Gene expression for de novo lipogenesis pathway was marginally upregulated with 

C15:0 treatment in our study. This is in line with a recent study that identified de novo 

lipogenesis as an essential player in the generation of an endogenous ligand for PPAR 

alpha, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Taking 

this evidence together, it is plausible that in addition to PUFA production, C15:0 either 

acts directly as a ligand for PPAR alpha or induces the process of producing an 

endogenous PPAR alpha ligand, subsequently leading to PPAR alpha transcription 

and downstream target gene expression. 

This study is limited by relying on gene expression data to demonstrate metabolic 

mechanisms underpinning lipid metabolism. Gene expression by RT-qPCR provides 

information on the relative abundance of mRNA and is no way indicative of 

gene/protein function. Moreover, there are several other complex processes involved 

in gene regulation and function such as post-transcriptional and post-translational 

changes, that determine the physiologic and functional end-product of genes. These 

processes were not accounted for in this study. Consequently, fold change gene 
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expression data does not account for downstream production of target proteins or their 

activation and inhibition. Therefore, the degree of regulation at gene expression level 

does not necessarily reflect target protein expression or function. 

This study did not qualify or quantify the enzymes involved in lipid metabolism in 

hepatocytes or attempt to identify their phosphorylated product as a measure of 

regulation. Therefore, the results from this study are physiologically redundant and at 

best, provides a useful suggestion for future studies. 

In conclusion, this study attempted to demonstrate a cellular metabolic mechanism to 

explain the effect of OCSFA on palmitate-induced cellular dysfunction in a model of 

insulin-resistant hepatocytes. C15:0 treated cells showed a different metabolic 

outcome compared to its even chain counterpart (C16:0) in terms of glucose 

production, glycogen storage, and intracellular accumulation of neutral lipids. 

Furthermore, results from RT-qPCR suggest a differential gene expression profile 

between C15:0 and C16:0 in lipid metabolism. However, further studies are required 

to shed more light on the physiologic importance of these differences and to validate 

the mechanisms underpinning the effect of OCSFA on hepatocyte function. 
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5 CHAPTER 5: EFFECT OF FATTY ACIDS ON MONOCYTE 

FUNCTION 
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5.1 INTRODUCTION 

The mechanisms linking inflammation and insulin resistance are complex and mostly 

still held as hypotheses. Many factors have been identified as either inducers or 

modifiers of the inflammatory process leading to metabolic disorders, and monocytes 

and macrophages have been acknowledged as key players in this inflammatory 

process [326, 327]. 

The circulation of excess FFA is usually causally linked to the development of the 

chronic low-grade inflammation associated with T2DM and other metabolic syndromes 

[328-331]. A few clinical studies have shown a positive correlation between obesity 

indices, such as elevated FFA, and raised inflammatory markers like CRP [332-334]. 

Although the exact mechanism by which FAs induce and maintain inflammation is still 

mostly unknown, much work has been done in recent times to explore the mechanistic 

effect of FA on innate immunity. SFA have been shown to activate Toll-like receptors 

(TLRs), especially TLR2 and TLR4, both of which are implicated with LPS-induced 

pro-inflammatory changes [335, 336]. TLRs mediate the expression of IL-6 and TNFα 

[337-339], which have become useful biomarkers of inflammation in lipid research. 

Interestingly, UFA inhibit TLR mediated expression and signalling of pro-inflammatory 

activity [340-342] and it is still unknown if OCSFA will behave differently compared to 

the more abundant even chain SFAs like palmitate. TLRs and their associated 

cytokines are highly expressed in monocytes, making this peripheral immune cells an 

essential target for lipid research. 
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Monocyte diversity and macrophage polarisation are becoming increasingly important 

in the discussion around the immune induction of metabolic diseases [143, 343-348]. 

Monocyte and macrophage phenotypes are functionally distinct in innate-immune 

driven processes; therefore, a careful understanding of the different classes of 

monocytes and macrophages, their phenotypic differences, and the different factors 

that modulate these phenotypes can shed light on the occurrence of a low-grade 

inflammatory state prevalent in metabolic diseases. Monocytes are classified as 

classical, intermediate, or non-classical; depending on the expression of CD14 and 

CD16 on the cell surface [349, 350]. The classical monocyte subset represents 80% 

of circulating monocytes and expresses high levels of CD14 and very low levels of 

CD16 (otherwise denoted CD14++/CD16- population) [351, 352]. This subpopulation 

of monocytes express less TNFα and more IL-10 cytokines after LPS stimulation and 

are thought to be anti-inflammatory, with high phagocytic function, but quick resolution 

post-inflammation. Intermediate monocyte subsets are characterised by high levels of 

CD14, and higher levels of CD16 compared to classical monocytes (denoted as 

CD14+/CD16+ monocytes) and have been denoted to be pro-inflammatory in more 

recent studies. Along with intermediate monocytes, the non-classical monocytes (or 

CD14-/CD16++ sub-population) are associated with increased production of pro-

inflammatory cytokines and are increased in infectious diseases as well as chronic 

metabolic disorders [349, 353]. Similarly, monocytes differentiate into distinct classes 

of macrophages depending on the stimuli. M1 macrophages, like intermediate and 

non-classical monocytes, are associated with elevated levels of pro-inflammatory 

cytokines like IL-6 and TNFα [354, 355]. Whereas, M2 macrophages, induced in vivo 
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by T helper 2  cells, express an anti-inflammatory or pro-resolution phenotype, 

associated with increased secretion of IL-10 [354, 355].. There is a complex 

relationship between FAs and monocyte/macrophage differentiation, and there is a 

dearth of studies exploring the mechanisms by which FAs influence the diversity of 

monocytes and macrophages. Pararasa (2013) showed that palmitate cause 

differential alteration of macrophages by inducing a pro-inflammatory environment, 

resulting in the production of M1 macrophage, compared to oleate, an UFA, which 

tends towards M2 induction; highlighting the importance of FA class/type in immune 

modulation [356]. However, there has been no study looking at the possible difference 

in monocyte/macrophage induction or differentiation among OCSFAs in comparison 

with even chain SFAs.  

 

5.2 AIMS AND HYPOTHESIS 

There is a growing recognition of the contribution of monocyte phenotypes in normal 

healthy physiology and disease states. Recent studies have shown that FA classes 

may have different effect on monocytes and macrophages. Many of these studies 

have concentrated on the more abundant even chain FAs. However, with growing 

evidence in support of a protective effect of OCSFA on diseases like T2DM known to 

be associated with chronic inflammatory states, it has become imperative to elucidate 

the effect of OCSFA on monocyte function. The harmful effect of FAs on immune cells 

as shown in literature is usually mediated via disturbances in metabolic activity and an 

expression of a pro-inflammatory phenotype. However, work from several studies 

have shown that PPAR alpha antagonists induce an anti-inflammatory response in 
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immune cells. Subsequently, results from section 4.4.8 show that C15:0 increases 

transcriptional activity of PPAR alpha in hepatocytes. Therefore, this chapter aims to 

show the differential effect of OCSFA compared to palmitate on monocyte phenotype 

and function by exploring their influence on LPS stimulated monocytes.  

5.2.1 Hypothesis 

The Hypotheses for this study are as follows: 

1. C15:0 will increase metabolic activity in THP-1 cells 

2. C15:0 and C16:0 will show differential alteration in cell surface markers 

corresponding to different monocyte subsets 

3. C15:0 will ameliorate pro-inflammatory response to LPS in THP-1 cells 
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5.3 METHOD 

5.3.1 Determination of metabolic activity 

Following treatment, the metabolic activity of THP-1 monocytes was determined by 

the MTT assay as described in section 2.7. 

5.3.2 Quantification of cellular growth and viability 

Cell growth and viability were measured using the trypan blue exclusion method with 

the counting of cells using a haemocytometer as described in section 2.6. 

5.3.3 DNA cell cycle analysis by Flow Cytometry 

Following treatment, cell cycle analysis was performed following the method described 

by Phillips et al. (2003) as detailed in section 2.4 [357] 

5.3.4 Flow cytometry analysis of surface antigen expression 

Flow cytometry was used to quantify surface expression of CD14, CD16, and CD36 

as described in section 2.5. 

5.3.5 Differentiation of monocyte 

Following priming with FAs, THP-1 monocytes were differentiated to macrophages by 

stimulating with PMA as detailed in section 2.3. 

5.3.6 Quantification of cytokines 

Following treatment, IL-6, IL-10, and TNFα were quantified from supernatants by 

ELISA as described in section 2.12. 

5.3.7 Statistical analysis 

Data expressed as mean +/-  SEM for three independent experiments. FACS data 

expressed as median fluorescence intensity to account for the non-normally 
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distributed flow intensity data. Statistical significance was estimated using repeated 

measures one way ANOVA with a Geisser-Greenhouse correction to correct for the 

unequal variability of differences, and a Dunnett’s post-test for multiple comparisons. 

FACS data were analysed by a Friedman’s test with Dunn’s post-test for multiple 

comparisons. Data obtained was analysed using GraphPad Prism (v7.0) 
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5.4 RESULTS 

5.4.1 C15:0 increases metabolic activity 

THP-1 monocytes were cultured at 500,000 cells/ml with indicative concentrations of 

FA or control for 6hrs and 24hrs, to determine cellular metabolic activity. The result 

shows that C15:0 is associated with an increase in metabolic activity (Figure 5.1a) by 

13% (p < 0.001), 12% (p < 0.001), and 10% (p < 0.001) compared to control for 50µM, 

150µM, and 300µM C15:0 respectively after 6hrs of incubation. In comparison to cells 

treated with 300µM C16:0, this represents an increase in metabolic activity by 30% (p 

< 0.001), 27% (p < 0.001), and 24% (p < 0.001) for 50µM, 150µM, and 300µM C15:0 

respectively. Treating cells with C16:0 showed the opposite effect compared to C15:0 

treated cells. C16:0 decreased metabolic activity in THP-1 cells corresponding to a 

1.6% (p < 0.05), 2.7% (p < 0.01), and 11% (p < 0.001) decrease in metabolic activity 

after 6hrs compared to control for 50µM, 150µM, and 300µM C16:0 concentrations 

respectively. Interestingly, the decrease in metabolic activity with C16:0 is abolished 

when co-treated with C15:0. Over 24hrs, there was no statistically significant 

difference in metabolic activity between all C15:0 treated cells and controls (Figure 

5.1b). However, cells treated with C16:0 still showed a significant reduction in 

metabolic activity compared to control by 1.8% ( p < 0.05), 1.9% (p < 0.01), 11.6% (p 

< 0.001) for 50µM, 150µM, and 300µM C16:0 concentrations respectively. Again, this 

effect is abolished by co-treating with C15:0. Furthermore, as seen in figure 5.2, high 

concentrations of C16:0 reduces total cell count in monocytes as early as 6hrs after 

treatment.  
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5.4.2 C16:0 is associated with markers of cell death 

THP-1 cells were assessed for cell viability to exclude any toxic effect of FAs. As seen 

in previous results, C15:0 increases metabolic activity, while C16:0 decreases activity. 

To determine if this effect is confounded by the toxicity of FA to cells, propidium iodide 

was used to assess cellular viability. Viable cells with intact membranes usually 

exclude dyes such as trypan blue and propidium iodide; therefore, providing a means 

of checking viability. The ability of the fluorescent dye, propidium iodide, to intercalate 

with DNA, provides a useful means to measure the proportion of dead cells in any 

given sample. Apoptotic cells have reduced DNA content. It is evident from the results 

that cells treated with C16:0 show significantly increased levels of apoptotic nuclei in 

a dose-dependent manner (Figure 5.3a). There was a 9.3% (p < 0.05), 15.2% (p < 

0.001), and 22.4% (p < 0.01) increase in apoptotic nuclei found in cells treated with 

50µM, 150µM, and 300µM C16:0 respectively compared to control cells. There was 

an excellent linear correlation between treatment concentration of C16:0 and 

percentage increase in apoptotic nuclei (R2 0.99). In contrast, cells treated with varying 

concentrations of C15:0 had less apoptotic cells compared to controls. There was a 

44.2%, 52%, and 41% decrease in the number of apoptotic cells compared to controls 

in cells treated with 50µM, 150µM, and 300µM C15:0 respectively (all p values < 

0.001). 

5.4.3 FAs alter cell cycle dynamics of monocytes 

It is clear from the results shown so far that C16:0 inhibits metabolic activity and 

impacts negatively upon cell growth, probably by inducing apoptosis, whereas, C15:0  

appears to improve these indices. Therefore, it was important to investigate the effect 
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of these FAs on cell cycle dynamics (Figure 5.3). Generally, for C15:0 treated cells, 

there were more cells found in the G0/G1 phase with a reciprocal decrease in cells 

found in the S-phase. C15:0 treatment increased the proportion of cells found in the 

G0/G1 phase by 13% (p < 0.01), 16% (p < 0.001), and 13% (p < 0.001) for 50µM, 

150µM, and 300µM C15:0 respectively compared to control cells. In contrast, there 

were less cells found in the S-phase compared to control by 10% (p > 0.05), 13% (p 

< 0.05), 13% (p < 0.05) for 50µM, 150µM, and 300µM C16:0 respectively. Only 150µM 

C15:0 treated cells accounted for statistically significant fewer cells in the G2/M phase 

compared to controls among C15:0 treated cells (13% reduction, p < 0.05). There was 

no statistically significant difference in the proportion of cells in the G1/G0 or S-phase 

in C16:0 treated cells compared to controls. However, there was a dose-dependent 

decrease in the proportion of cells in the G2/M phase for C16:0 treated cells compared 

to control; 3.4% (p < 0.05), 11.4% (p < 0.01), 16% (p < 0.01) decrease for 50µM, 

150µM, and 300µM C16:0 respectively. 
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Figure 5.15.1: C15:0 is associated with a short-lived increase in metabolic activity in monocytes.  
THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA and analysed for metabolic activity using MTT 

reduction after 6 and 24hrs of exposure. Cells were exposed to varying concentrations of fatty acids, or control (5% BSA) as outlined. MTT 

reagent was added to the media 4 hours prior to the end of the experiment. Cells were then lysed with lysis reagent overnight before analysis 

under absorbance spectrometry at 570nm. (a) Effect of fatty acid treatments after 6hrs and (b) 24hrs. Results are expressed as mean +/- 

SEM (n=3 independent experiments). Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-

Greenhouse correction and a Dunnett’s post-test comparison.   Ψ represents a statistical significant difference between treatment versus 

control, Ξ represents a statistical significant difference between treatment versus 300µM C16:0, and  φ represents a statistical significant 

difference between the treatment versus both control and 300µM C16:0. All symbols represent a statistical significance P value of < 0.05. 
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Figure 5.2: High concentrations of C16:0 causes Monocyte growth arrest 
THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA and analysed for cell growth after 6 and 24hrs of 

exposure. Cells were exposed to varying concentrations of fatty acids, or control (5% BSA) as outlined.  To assess cell growth, THP1 cells were counted 

with a haemocytometer after (a) 6hrs or (b) 24hrs of fatty acid treatment.  Results are expressed as mean +/- SEM (n=3 independent experiments).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-test 

comparison.  Ψ represents a statistical significant difference between treatment versus control, Ξ represents a statistical significant difference 

between treatment versus 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both control and 300µM 

C16:0. All symbols represent a statistical significance P value of < 0.05. 
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5.4.4 C15:0 and C16:0 show differential alteration of cell surface antigen expression 

in THP-1 monocytes 

FA have been shown to induce phenotypic changes on monocytes, including antigen 

cell surface expression. It has already been shown from results above that OCSFA 

differs in its interaction with monocytes regarding cellular viability and metabolic 

activity. To determine if there was a distinction between C15:0 and C16:0 on monocyte 

cell surface expression, the levels of CD14, CD16, and CD36 were measured (Figure 

5.4) by FACS. High concentrations (300µM) of both FA significantly reduced CD14 

cell surface expression, but C16:0 (p < 0.001) by up to twofold more than C15:0 (p < 

0.01). There was no significant difference in the cell surface expression of CD14 

between control and the lower concentrations of C15:0 treated cells, or with cells 

treated with 50µM C16:0. However, there was a significant decrease in CD14 

expression in cells treated with 150µM C16:0 (p < 0.05). Furthermore, there was a 

negative linear correlation between the concentration of C16:0 and CD14 cell surface 

expression (R2 0.99). FA treatment did not affect CD16 cell surface expression (Figure 

5.4b) irrespective of chain length or concentration. High concentrations of C16:0 

(300µM) significantly increased the cell surface expression of CD36 (Rank sum 

difference 21, p < 0.05) compared to control (Figure 5.4c), and there was a positive 

linear correlation between the concentration of C16:0 and CD36 surface expression 

(R2 0.98). In contrast, there was no statistically significant change in CD36 expression 

for THP-1 cells treated with varying concentrations of C15:0.  
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5.4.5 Palmitate but not C15:0 increases pro-inflammatory cytokine production 

We have already seen from previous results that FA may modify monocyte phenotype 

by altering cell surface expression of CD14. Here, we determine if FA induce a pro-

inflammatory or anti-inflammatory environment by measuring the levels of cytokine 

production via ELISA as outlined in methods. THP-1 monocytes were incubated with 

varying concentrations of FA for 24hrs, after which the supernatant was extracted and 

measured for production of IL-6, IL-10, and TNFα (Figure 5.5). There was a definite 

linear correlation between FA concentration and TNFα production (R2 0.98 for C15:0 

and R2 0.94 for C16:0). 50µM C15:0 was associated with a 17% reduction in TNFα 

production compared to control (p < 0.05). There was no statistically significant 

difference in TNFα production between control and cells treated with 150µM and 

300µM C15:0, or any concentration of C16:0. LPS, used as a positive control, was 

associated with a fourfold increase in TNFα production (p < 0.001). IL-6 production 

followed a similar trend to TNFα (Figure 5.5b). Among all FA treatments, only 300µM 

C16:0 showed a significant difference in IL-6 production compared to controls (27% 

increase, p < 0.05). Furthermore, no FA treatment, irrespective of concentration, 

altered the production of the anti-inflammatory cytokine IL-10.  
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Figure 5.3: C15:0 causes cell cycle arrest at G0 phase and protects THP1 monocytes from palmitate induced apoptosis. 
THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA and analysed using flow cytometry for cell cycle 

arrest as outlined in methods. Cells were exposed to varying concentrations of fatty acids, or control (5% BSA) as outlined. (a) Apoptosis (b) 

G0/G1 phase (c) S-phase (d) G2/M phase. Results are expressed as mean +/- SEM (n=3 independent experiments).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-

test comparison.   Ψ represents a statistical significant difference between treatment versus control, Ξ represents a statistical significant 

difference between treatment versus 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both 

control and 300µM C16:0. All symbols represent a statistical significance P value of < 0.05. 
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Figure 5.4: Effect of fatty acids on the cell surface expression of CD14, CD16 and CD36. 

THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA and analysed using flow cytometry for cell surface 

expression of CD14, CD16 and CD36 as outlined in methods. Briefly, cells were exposed to varying concentrations of fatty acids, or control (5% 

BSA) and then incubated with anti-CD14, andti-CD16, and anti-CD36 antibodies. (a)MFI for CD14 (b) MFI for CD16  (c) MFI for CD36. Results 

presented for 3 independent experiments).  

Statistical significance was determined by a Friedman’s test and a Dunn’s post-test comparison.   Ψ represents a statistical significant 

difference between treatment versus control,  Ξ represents a statistical significant difference between treatment versus 300µM C16:0. All 

symbols represent a statistical significance P value of < 0.05. 
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Figure 5.5: C16:0 at high concentrations is associated with an increase in pro-inflammatory cytokines in THP1 monocytes. 
THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA or 200ng/ml of LPS. Supernatants were extracted 

after 24hrs of incubation and analysed for cytokines by ELISA. (a) TNFα secretion (b) IL-6 secretion (c)IL-10 secretion. Results are expressed as 

mean +/- SEM (n=3 independent experiments).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a Dunnett’s post-

test comparison.  Ψ represents a statistical significant difference between treatment versus control, Ξ represents a statistical significant 

difference between treatment versus 300µM C16:0, and  φ represents a statistical significant difference between the treatment versus both 

control and 300µM C16:0. All symbols represent a statistical significance P value of < 0.05. 
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5.4.6 Pre-treatment with C15:0 ameliorates pro-inflammatory response to LPS 

Previous reports have shown that C16:0 is associated with a pro-inflammatory 

response in monocytes and prior results in this chapter have shown that the C15:0 

treated cells show a different monocyte phenotype compared to C16:0 treated THP-1 

cells. To further understand how FA affect monocytes in a pro-inflammatory 

environment, THP-1 cells were pre-treated with FA for 6hrs then with LPS for 18hrs 

(total treatment time of 24hrs), followed by analysis of the supernatant for pro-

inflammatory cytokines TNFα and IL-6 (Figure 5.6). There was a sixfold increase in 

TNFα production with monocytes treated with LPS vs baseline control cells (p < 

0.001). Although cells treated with C15:0 + LPS showed higher levels of TNFα 

compared to controls (5% BSA no LPS), the levels of TNFα were significantly reduced 

compared to positive controls [5% BSA + LPS] (72%, 70%, and 65% reduction for 

50µM, 150µM and 300µM C15:0 respectively; p < 0.01). Whereas, C16:0 treated cells 

did not alter TNFα secretion compared to positive control. In fact, there was a slightly 

higher but statistically insignificant increase in TNFα secretion in cells treated with 

300µM C16:0 compared to positive control (6.5% increase, p > 0.05). The same trend 

was noted with IL-6 secretion (Figure 5.6b); C15:0 treated cells significantly reduced 

IL-6 secretion compared to positive control cells (p < 0.001), while there was no 

significant difference in IL-6 output between C16:0 treated cells and positive control.  
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5.4.7 C15:0 prime macrophages display an anti-inflammatory phenotype.  

THP-1 monocytes can differentiate into classical (M1), or alternative (M2) 

macrophages, broadly corresponding to a pro-inflammatory or anti-inflammatory 

phenotype respectively. THP-1 cells primed with FA for 6hrs were differentiated to 

macrophages with PMA for 48hrs. Cytokine analysis was performed on the 

macrophages to determine the phenotype. Cells primed with LPS was used as positive 

control for pro-inflammatory macrophage differentiation. TNFα secretion was 

increased by more than three folds in LPS primed macrophages (Figure 5.7a) 

compared to controls (5% BSA). Priming with C16:0 was associated with an increase 

in TNFα secretion compared to control cells primed with 5% BSA, corresponding to a 

pro-inflammatory phenotype- 21.6% (p > 0.05), 36.2% (p < 0.05), 68% (p < 0.001) 

increase for 50µM, 150µM and 300µM C16:0 respectively. There was no statistically 

significant difference in TNFα secretion between control and C15:0 primed 

macrophages. On the other hand, C15:0 primed macrophages appear to display an 

anti-inflammatory phenotype by increasing IL-10 secretion by 70% (p < 0.01), 54% (p 

< 0.05), and 65% (p < 0.001) for 50µM, 150µM and 300µM C15:0 respectively. There 

were no significant differences between control and C16:0 primed macrophages  
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Figure 5.7: C15:0 is associated with an anti-inflammatory macrophage phenotype. 
THP1 cells were pre-incubated with fatty acids or control conditions (5% BSA) for 6hrs then treated with PMA for 72hrs to induce 

macrophage differentiation as outlined in methods. LPS pre-treated cells were used as positive control. Supernatants were 

extracted after 24hrs of incubation and analysed for cytokines by ELISA. (a) TNFα secretion (b) IL-10 secretion. Results are expressed 

as mean +/- SEM (n=3 independent experiments).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a 

Dunnett’s post-test comparison.   Ψ represents a statistical significant difference between treatment versus control, Ξ represents a 

statistical significant difference between treatment versus 300µM C16:0,  φ represents a statistical significant difference between 

the treatment versus both control and 300µM C16:0. All symbols represent a statistical significance P value of < 0.05.  
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Figure 5.6: C15:0 ameliorates LPS induced increase in pro-inflammatory cytokines 
THP1 monocytes at a density of 5 x 105 cells were treated with fatty acids conjugated to BSA or control (5% BSA) for 6hrs then with 

200ng/ml LPS to make up a total of24hrs. Supernatants were extracted after 24hrs of incubation and analysed for cytokines by 

ELISA. (a) TNFα secretion (b) IL-6 secretion. Results are expressed as mean +/- SEM (n=3 independent experiments).  

Statistical significance was determined by a repeated measures one-way ANOVA with Geisser-Greenhouse correction and a 

Dunnett’s post-test comparison.   Ψ represents a statistical significant difference between treatment versus control,  Ξ represents 

a statistical significant difference between treatment versus 300µM C16:0,  φ represents a statistical significant difference between 

the treatment versus both control and 300µM C16:0, and Ʃ represents a statistical significant difference between the treatment 

versus  control, 300µM C16:0 and 200ng/ml LPS. All symbols represent a statistical significance P value of < 0.05. 
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5.5 Discussion 

Monocytes and macrophages play a critical role in innate immunity and are influential 

in the development and sustenance of several diseases [358, 359]. The onset of T2DM 

is likely to be multifactorial, involving complex mechanisms; however, the presence of 

chronic low-grade inflammation, induced by elevated levels of FA, has been 

continually observed and implicated as a possible bridge between those with 

borderline hyperglycaemia and full-blown diabetes [331, 360, 361]. There has been a 

surge in the study of monocytes and macrophages (clinical and in vitro studies) as 

chief players in innate immunity and the differential response to inflammatory stimuli 

in healthy individuals compared to people with metabolic disorders. In vitro 

experiments of monocytes have been performed using immortalised cell lines, the 

most popular being THP-1 cells. Several studies have reported glaring differences 

between primary monocytes and THP-1 cells while others have shown it to very 

closely replicate primary monocytes by phenotype and function [362-365]. The THP-

1 cells used in these studies will vary according to age, batch, passage numbers, 

among other factors, which may explain the disparity within results. However, THP-1 

cells are accepted as good monocyte models within lipid research. In this chapter, 

THP-1 cells have been used as a model to determine the effect of two classes of FAs 

on monocyte phenotype and function in the context of cell surface expression, 

macrophage differentiation and cytokine production.  

In general, the results show that cells treated with OCSFA maintain the same level of 

expression of CD14, CD16 and CD36 as controls, whereas palmitate-treated cells 

appear to have depleted CD14 expression, concurrently increasing CD16 and CD36 
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expression. There also appeared to be an effect of nutrient overload on CD14 

expression, evident by a reduction in CD14 surface expression with high 

concentrations of both FA, even though this effect was more pronounced in palmitate-

treated cells compared to its odd chain counterpart. As previously discussed, the cell 

surface expression of CD14 and CD16 determine monocyte phenotype regarding its 

overall ability to be pro/anti-inflammatory, which is in contrast to the previously 

misleading method of classifying monocytes by morphology alone. There has been an 

increased interest in monocyte classification over the last decade. Continuous 

attempts to better qualify monocyte populations has been warranted by their role in 

disease states. For example, the intermediate sub-population of monocytes and non-

classical monocytes are increased in bacterial and viral infections, stress, as well as 

in metabolic and inflammatory conditions such as rheumatoid arthritis, cardiovascular 

diseases, and chronic kidney disease [349, 353].  

The CD14 expression in this study did not change with low concentrations of FA 

(50µM); however, a differential effect is noticed as the concentration of FA begin to 

increase. At 150µM, palmitate-treated cells begin to show a reduction in CD14 

expression, trending even further downwards as concentrations reached 300µM. This 

is in contrast to C15:0 treated cells that only show a reduction in CD14 expression at 

300µM. CD14 expression reduces as monocytes move between the spectrum from 

classical to non-classical monocytes. CD14 is an important co-receptor for the 

detection of pathogens, with LPS being its principal ligand [366, 367].  Saresella et al. 

(2017) showed that “Western diet” characterised by high SFA content, is associated 

with a reduction in CD14 expression in monocytes [368], indicating that high energy 
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load is negatively correlated with CD14 expression. Conversely, Sun-Mi Kim et al. 

(2015) showed that consumption of a high cholesterol diet increases expression of 

CD14 [369]. There are many reasons why these and many other studies looking at the 

effect of diet on cell surface expression are not directly comparable, explaining the 

disparity in results, including differences in sample population and intervention used. 

More importantly, these studies differ in the methods used to quantify CD14 

expression; the anti-CD14 antibodies used, the gating strategy, and most importantly, 

the use of isotype controls (the former applies isotype controls, and the latter does 

not). The use of isotype control for FACS analysis divides opinions [370-373]. In this 

study, an isotype control, gate compensation and the use of blocking agent were 

employed for each analysis to minimise background signal and reduce the chance of 

false positives. Frey and De Maio (2007) provide further evidence in support of the 

fact that high energy load could lead to lower CD14 expression. They showed that 

treating macrophages with lovastatin to lower cholesterol increases membrane-bound 

CD14 expression [374]. Energy overload may partly explain why the CD14 expression 

is lower in palmitate-treated cells compared to C15:0 with higher concentrations of 

treatment. It is plausible that higher concentrations of C15:0 is required to overwhelm 

monocytes compared to palmitate as seen with hepatocytes in the previous chapter. 

The CD36 expression lends credence to this. Palmitate treated at high concentrations 

have a significantly higher CD36 expression compared to control and C15:0 treated 

cells at a similar concentration. CD36 interacts with oxidised low-density lipoproteins 

to increase the influx of lipids. Therefore, palmitate-treated cells are more likely to 

accumulate lipids leading to energy overload.  
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Neither C16:0 nor C15:0 affected CD16 expression in this study. The finding is similar 

to studies performed by Pararasa et al. (2013) in vitro, and Alshahrani et al. (2017) in 

vivo that showed no effect of SFA on CD16 surface expression [356, 375]. There is 

insufficient evidence from literature showing a direct link between diet or FA on CD16 

expression. However, many studies have shown that CD16+ cells express high levels 

of TLRs which is the primary driver of its pro-inflammatory phenotype [376, 377]. This 

is important to note because several studies have shown a direct association between 

saturated FAs and increased TLRs expression [378-381].  

Put together; one  may suggest that OCSFA induce a phenotype at least close to the 

classical monocyte sub-population, while palmitate at high concentrations influences 

a more intermediate or non-classical phenotype. However, there are several 

limitations to this interpretation.  

Firstly, this study was not designed to measure both CD14 and CD16 surface 

expression simultaneously. Traditionally, both surface antigens are measured at once 

using fluorescent dyes at distinct wavelengths (for example, FITC and APC). Three 

gates can then be set to quantify classical, intermediate, and non-classical 

populations. However, this is not without considerable challenge, and it is often difficult 

to optimise. Gating is very subjective and is likely subject to much variabilities, making 

standardisations difficult [382, 383]. More so, dye spillover may occur, especially when 

one dye is much brighter than the other (e.g. FITC and APC). In this study, appropriate 

compensation techniques were applied to mitigate dye spill over; however, 
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compensation is not standerdised across studies, making pooled analysis and 

interpretation across studies difficult.  

Secondly, the effect of the distinction in cellular viability on CD16 or CD14 cell surface 

expression cannot be ignored. Heidenreich (1999) showed that a reduction in CD14 

surface expression precedes apoptosis induced by IL-4 in monocytes [384]. 

Additionally, work by Fingerle-Rowson et al. (1998) and Ziegler-Heitbrock (2015) 

allude to the fact that glucocorticoid-induced stress prompts selective apoptosis in 

non-classical monocytes [385, 386]. Here, palmitate induces apoptosis and reduces 

CD14 expression at concentrations more than 150µM. Moreover, cells treated with 

high concentrations of palmitate begin to show reduced cell proliferation and growth 

(measured by cell count relative to control) even as early as 6hrs with no associated 

cell cycle arrest. Many studies confirm the cytotoxic effect of palmitate on THP-1 cells 

and even show that MUFA can protect THP-1’s from palmitate-induced toxicity. No 

previous study has demonstrated the effect of OCSFA on THP-1 viability or metabolic 

activity. Palmitate induces cell death by several mechanisms including activation of 

various caspases (3/4/5), increased MMP-9 expression, inhibition of Sirt1, an increase 

in mitochondrial ROS, and p53 pathway; all of which can be mediated by TLR4 

signalling [387-392].  

Put together; it is difficult to interpret these results as representative of monocyte sub-

population differentiation by cell surface markers. However, an examination of the 

functional ability to produce cytokines remains a viable indication for monocyte 

phenotype. Cytokine production was measured in monocytes and macrophages to 
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determine their functional phenotype after FA stimulation. The role of cytokines in the 

development of T2DM and its complications is well defined in the literature. There is a 

vicious cycle comprised of elevated metabolites, like glucose and FA, and increased 

adipokines that activate monocytes, leading to a rise in pro-inflammatory cytokines, 

which potentially instigates and enhances insulin resistance by various mechanisms. 

Kim and coworkers (2012) were able to show that hyperglycaemia triggers the 

acetylation of p65 and inhibition of histone deacetylase (HDAC) by activating histone 

acetylases (HAT) resulting in NF-ƙB activation, consequently leading to IL-6 and TNFα 

expression [393]. Subsequently, Kang et al. (2016) showed a strong correlation 

between TNFα in adipose tissue and HOMA-IR in obese people with prediabetes, with 

no macrophage infiltration or change in macrophage phenotype, suggesting that 

alterations in cytokine production precede any monocyte/macrophage phenotypic 

modifications [394]. The results from this chapter demonstrate an alteration in the 

baseline pro-inflammatory cytokine profile in cells treated with high concentrations of 

palmitate for 24hrs, which is consistent with the hypothesis of a low-grade 

inflammatory state stimulated by elevated FA. However, cells treated with similar 

concentrations of C15:0 did not show an elevation of pro-inflammatory cytokines, 

indicating that the inflammatory process triggered by palmitate is not entirely explained 

by a high energy state. There is evidence to suggest that cells have different 

cytotoxicity thresholds for different classes of FA, but the differences are usually more 

divergent, for example, there is a considerable difference between palmitate, MUFA 

and PUFA because of the double bonds linking the carbon atoms. On the other hand, 

the only distinguishing feature between palmitate and C15:0 is a single carbon atom. 
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This subtle difference has already been discussed in the previous chapter, and the 

observable difference in the inflammatory profile may be related to signalling ability or 

the distinction in the metabolic pathway as discussed. In addition to having a higher 

baseline level of pro-inflammatory cytokines, THP-1 cells primed with palmitate display 

a pro-inflammatory cytokine profile resembling an M1 phenotype [395], while PUFA 

priming show M2 anti-inflammatory phenotype. This is in keeping with what is seen in 

this chapter with palmitate showing an M1 phenotype; with an increase in TNFα 

secretion and no change in IL-10 secretion. Like PUFAs, C15:0 primed macrophages 

displayed an anti-inflammatory M2 phenotype, with raised IL-10 secretion. This 

discrepancy has not been elucidated previously. This interaction is likely to be more 

complicated in vivo as it is still unknown to what extent in vitro experiments in 

immortalised cells represent in vivo environments; however, this research presents a 

novel perspective regarding saturated FAs as a whole, as indeed, C15:0 is a SFA. 

After establishing that palmitate and C15:0 show differential effect on baseline 

cytokine levels and plausibly macrophage differentiation, it was pertinent to elucidate 

the effect of FA on monocytes in the event of ongoing inflammation. THP-1 cells were 

primed with FA 

 for 6hrs then treated with LPS to simulate an ongoing inflammatory response. 

Interestingly, but in keeping with previous results in the chapter, C15:0 primed cells 

exhibited an anti-inflammatory response contrasting with C16:0 treated cells. LPS is 

the main ligand for CD14 and stimulates an inflammatory response by triggering TLRs. 

Palmitate is known to stimulate TLRs with or without LPS (also known as sterile 
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inflammation); therefore the results were not surprising [396, 397]. The study failed to 

expound the exact mechanism that C15:0 mediates an anti-inflammatory response in 

LPS induced monocytes. There is a good reason to think that it is plausible it does so 

in similar fashion to ω3-PUFAs, which acts as regulators of inflammation. One of the 

ways ω3-PUFA regulates inflammation is by acting as a competitive substrate for ω6-

PUFA metabolism. ω6-PUFAs act as substrates for prostaglandins and leukotrienes 

and are therefore naturally pro-inflammatory. It is plausible that OCSFA acts 

competitively against its even chain counterpart to regulate inflammation. We saw from 

the hepatocyte chapter that palmitate-treated cells favour ω6-PUFA production, while 

C15:0 cells showed preferential production of ω3-PUFA. Perhaps the regulatory 

properties of C15:0 is mediated via ω3-PUFA production associated with all its 

downstream effects, including, but not limited to increased resolving lipids, competitive 

activation of GPR120, or downregulation of NF-ƙB via TLR4.  

Taken together, the results in this chapter indicates an exciting prospect for OCSFA 

as anti-inflammatory agents. Further research is required to elucidate the mechanisms 

that underpin this process and explore the role of gut microbiota in the metabolism 

and function of OCSFA in the context of the immune system.  
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6.1 General discussion 

The major aim of this study was to identify a relationship between FA and fasting 

plasma glucose, with particular focus on OCSFAs, and to explain the mechanistic link 

between energy excess, inflammation and insulin resistance.  

The contribution of FA to the development and maintenance of T2DM has been heavily 

studied in the past and continues to divide opinions. Recent improvement in GC and 

mass spectrometry technologies has amplified the search for FA biomarkers for 

diseases. In this study, a GC detection technique was optimised to allow for optimal 

detection of OCSFAs in small quantities of plasma. Furthermore, a multiple linear 

regression analysis was carried out to identify FA predictive of insulin resistance.  

In this study, elevated levels of ECSFA, like palmitate and stearate, were more likely 

to predict a unit rise in fasting plasma glucose in a multiple linear regression model 

despite no significant difference in absolute levels between control and T2DM cohorts.  

Hyperglycaemia is one of the consequences of insulin resistance, which is a state 

characterised by an inability to drive glucose into tissues. ECFA are known to correlate 

positively with insulin resistance in the literature. In fact, the most commonly held 

opinions on SFA and insulin resistance is influenced by palmitate, which is the most 

abundant SFA.  Animal knockdown studies along with in vitro cellular models of insulin 

resistance have highlighted the association between elevated palmitate levels and the 

development of ER stress, mitochondrial dysfunction, direct inhibition of insulin 

signalling, as part of many ways in which elevated palmitate levels results in the 

development of insulin resistance in tissues. Therefore, the relationship between 
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palmitate and insulin resistance is well established from a mechanistic point of view. 

However, in human studies, this distinct relationship is usually much more difficult to 

ascertain for various reasons, and the presence of metabolic disease, or even obesity, 

does not always translate to higher circulating levels (absolute) of palmitate, as seen 

in this study. There are a few reasons for this. Firstly, the circulating levels of FAs are 

amendable to diet and physical exercise and this is (at least the former) difficult to 

accurately quantify in large scale studies. Also, daily variations in plasma FA levels 

exist and the effect of age, stress, gender on FA levels cannot be ignored. Some 

authors have tried to mitigate these confounders by presenting and analysing results 

as percentage of total FA (%wt). However, this method is likely error prone because 

currently available lipid extraction and analysis methods are not robust enough to 

detect every FA in a given sample. Here, a multiple linear regression method was 

instead used to adjust for known confounders.  

The GC optimisation was targeted specifically to increase recovery of OCSFA to good 

effect. This meant that the OCSFA, C15:0, was more accurately assessed in our study. 

The concentration of C15:0 detected in this study is slightly higher than plasma levels 

found in previous other larger scale cross-sectional studies [80, 206], reinforcing the 

importance of the lipid extraction and FAME detection optimisation. Here, the 

concentration of C15:0 as a proportion of FAs measured was higher in controls 

compared to individuals with T2DM, which is consistent with other studies which show 

higher levels of C15:0 in healthy individuals compared to different disease states. For 

example, a nested case control design within the EPIC study looking at more than two 

thousand incident cases of coronary heart disease (CHD), found an inverse 
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relationship between plasma C15:0 levels and the development of CHD [398]. 

Subsequently, a multi-ethnic US cohort of just under three thousand participants found 

a 19% reduction in atherosclerotic risk with every unit increase in C15:0, which was 

found in higher concentration among controls [78]. In terms of epidemiologic evidence 

for the relationship between C15:0 and diabetes, three Australian studies found a 

negative correlation between C15:0 and indices of insulin resistance similar to the 

results in this study [79, 81, 399]. Furthermore, studies have reported gender and age-

specific differences in C15:0 plasma concentrations [400]. Interestingly, people who 

report healthy lifestyles, including non-smoking, moderate alcohol intake, and 

increased physical activity, usually have significantly higher levels of plasma C15:0 

[398]. The direct interpolation of C15:0 plasma concentration between health and 

disease is therefore likely to be confounded by lifestyle choices and modifications. 

Consequently, it was important to employ a multiple linear regression model to test the 

relationship between C15:0 and fasting plasma glucose, adjusting for age, gender, 

and BMI. Plasma glucose correlated negatively with C15:0 in this study, in line with 

many other longitudinal studies. Despite a clear correlation, it is difficult to pinpoint if 

this finding is a cause or consequence of plasma glucose levels.   

This study was a nested case control design within an already existing cohort that was 

not designed for FA analysis. Therefore, there was no dietary assessment in this 

study. It is impossible to comment on the likely impact of dietary habits on the FA 

profile of individuals within this study. Indeed, C15:0 levels have been correlated with 

dietary habits in previous studies [85]. However, diet alone is unlikely to fully explain 

the beneficial effect of C15:0 regarding T2DM prevention. An interesting observation 
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from literature regarding diet and OCSFA is the similarity in the dietary sources of ALA 

(an ω-3 PUFA) and OCSFA [401], both being abundant in dairy products and fish oil. 

To summarise, the clinical data from this study although limited by low sample size 

and a lack of dietary assessment, provides data in support of a correlation between 

C15:0 and fasting blood glucose, similar to other large cross-sectional and longitudinal 

studies. The close relationship between diet and C15:0 and the similarity between the 

dietary source of PUFA and C15:0 provides an explanation for the possible 

mechanism by which C15:0 is prevents T2DM in the absence of in vitro or animal 

studies to explain the mechanistic link between C15:0 and glucose homeostasis. 

There is substantial evidence suggesting a disparity in cellular metabolic response to 

SFA in comparison to their unsaturated counterparts. The metabolic switch in 

response to different classes of FA has been put forward as a possible reason for the 

differential effect of saturates in terms of insulin resistance. A distinction in metabolic 

activity was observed between OCSFA and palmitate in this study, including 

differences in the biosynthesis and catabolism of FA, as well as differences in PPAR 

alpha signalling.  

In this study, C15:0 induced an acute increase in metabolic activity, which is observed 

to normalise within 24hrs, in both hepatocyte and monocyte cell lines. The reduction 

of MTT to purple formazan is influenced by several factors including cell proliferation, 

availability of reduced products (like reduced glutathione), and increased 

mitochondrial number and function. In rapidly proliferating cells, like immortalised 

cancer cells, MTT reduction has long been correlated with cellular proliferation and 
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multiplication. However, there are a few reasons why the increase in MTT reduction 

found in this study is less likely to reflect proliferation. Firstly, MTT reduction in C15:0 

treated cells did not correspond to an increase in number of cells compared to control 

in both monocyte and hepatocyte cell lines. Furthermore, in hepatocytes, C16:0 

elicited a decrease in MTT reduction compared to control and C15:0 treated cells 

despite no significant changes in cell count after 6hrs or 24hrs. In addition, in THP-1, 

the observable reduction in cell count as a reflection of cellular proliferation, did not 

correlate with the magnitude of MTT reduction in C16:0 treated cells. The other 

possible explanation for the difference in MTT reduction is the presence of reducing 

enzymes. This study did not measure glutathione levels; therefore, it is impossible to 

comment on the likely effect of C15:0 on glutathione synthesis. However, previous 

studies have showed that oleate and palmitate are able to affect the levels of 

glutathione differently in THP-1  monocytes (Pararasa, 2013), while some authors 

have observed a direct association between glutathione synthesis/depletion with MTT 

reduction [402]. The use of MTT as a measure of cellular proliferation and viability 

relies on the assumption that mitochondrial activity is constant for all viable cells [403]. 

However, researchers have shown that mitochondrial activity is modulated by FA. 

Dietary PUFA has been shown to alter mitochondrial bioenergetics by several 

mechanisms, including modification of mitochondrial membrane composition and 

function, changes to mitochondrial redox state, as well as altering mitochondrial 

enzymes [404-408]. MUFA are also known to favourably alter mitochondrial function 

[409, 410], while palmitate induce mitochondrial dysfunction [411-413]. It is plausible 

that improved mitochondrial β-oxidation in C15:0 treated cells, as seen in this study, 
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is partially responsible for increases in metabolic activity. It is also plausible that C15:0 

increased metabolic activity by increasing the production of propionyl Co-A, an 

anaplerotic intermediate for the citric acid cycle [414, 415]. 

Normally, the liver reacts to excess FA by increasing lipid catabolism and reducing de 

novo lipogenesis. However, more energy demands lead to formation and 

accumulation of triglycerides, in a vicious cycle that ultimately results in inflammation 

and insulin resistance. In NAFLD, a condition that is common in people with T2DM, 

cellular lipid and glucose homeostasis is impaired, worsening on disease progression. 

Many studies have been able to directly correlate an impairment of FA oxidation with 

the development of fatty liver in animal and in vitro models of high fat diet and FA 

induced NAFLD. In chapter 4, the result show a difference in the gene expression of 

FA oxidation between C15:0 and C16:0 in hepatocytes; and considering the limitations 

of the methodology, it provides a limited understanding of the differences between 

OCSFA and its even chain counterpart, partly explaining why OCSFA may be 

protective with T2DM disease development or progression. Cells treated with high 

concentrations of palmitate showed marked lipid accumulation which can be partially 

explained by key differences between C16:0 and C15:0 treated cells in gene 

expression of β-oxidation enzymes. Here, cells treated with high concentrations of 

C16:0 show disproportionate expression of CPT1 and CPT2 genes. These two genes 

are typically overexpressed during fasting and other conditions that prompt increased 

FA oxidation. Bazhan and colleagues showed an age-related deficiency of CTP1 in 

adult C57B1 mice, which was not improved by fasting [416]; this deficiency resulted in 

age-related obesity and subsequently impaired glucose homeostasis. Similarly, 
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Fujiwara and colleagues showed that a downregulation of CPT2 is associated with 

steatohepatitis in mice fed a high fat diet [417]. CPT1 and CPT2 are integral 

components of the carnitine palmitoyltransferase system, which mediates the transfer 

of activated FA across the mitochondrial membrane for β-oxidation. Therefore, their 

upregulation, as seen with cells treated with C15:0 would be the expected response 

in high fat environments, to shift intracellular FAs towards mitochondrial β-oxidation. 

The same pattern of expression was observed for C15:0 and C16:0 treated cells with 

respect to gene expression of the enzymes that catalyse the final steps of 

mitochondrial FA β-oxidation. Again, C16:0 at high concentrations show equivocal 

expression of ACADL and ACAD10, and a downregulation of ACAA2. This correlates 

with the data showing reduced CPT1 and CPT2 expression and suggests a deficient 

β-oxidation, which would explain increased lipid accumulation. The ability of C15:0 to 

drive β-oxidation would explain why the clinical data in chapter 3 shows a statistically 

significant negative correlation between the concentrations of C15:0 and C16:0 and 

provides a reasonable explanation to why increase in dairy intake is associated with 

C16:0 levels in cross-sectional studies. Further robust in vivo studies would be 

required to fully explain a causal relationship between C15:0 and C16:0 levels. The 

alternate explanation for a negative correlation between C15:0 and C16:0 levels in 

studies would be the possibility of α-oxidation. Alpha oxidation involves a series of 

steps where FA are hydroxylated at the α-carbon after activation, requiring Iron and α-

keto-glutarate as co-factors, then followed by the removal of the terminal carboxyl 

group in a process involving thymine pyrophosphate and magnesium ions. The 

product of these steps is able to undergo normal β-oxidation. Alpha oxidation has been 
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proven to occur in humans but was previously thought to be confined to peroxisomes 

and the oxidation of phytanic acid. However, recent evidence suggests that SFA can 

undergo α-oxidation and the mitochondria is also heavily involved in this process; 

C16:0 and C18:0 can be converted to C15:0 and C17:0 as an endogenous source of 

OCSFA. However, the trigger for this event is unknown, but the gut microbiome has 

been implicated. An increase in α-oxidation as a consequence of C15:0 treatment may 

explain why mitochondrial activity (evidenced by increased FA oxidation and high MTT 

reduction) and peroxisome transport (ABCD genes) is upregulated in this study. 

Although, this is difficult to prove, it is plausible that the induction of an extra oxidative 

pathway amplifies FA oxidation, consequently leading to less lipid accumulation. 

Taken together, C15:0 may be acting as an activator of the α-oxidation pathway which 

amplifies β-oxidation, ultimately promoting the endogenous conversion of C16:0 to 

C15:0. This hypothesis is limited by the ratio of C16:0 to C15:0 (approximately 150:1) 

in plasma, even in healthy individuals. This shows that the intracellular relationship 

between C15:0 and C16:0 is likely to be complex and tightly regulated. The difference 

between C15:0 and C16:0 observed in this study only seem to appear at palmitate 

concentrations of 300µM. One limitation of this study is that it was not designed to 

explain the metabolic switch that occurred across different concentrations of C16:0. In 

fact, there is a dearth of published evidence in support of a metabolic switch induced 

by FA, but this is usually thought to be secondary to energy overload. Therefore, it 

was interesting that this switch only occurred with C16:0. C15:0 is only found in small 

quantities in plasma; however, this study employed concentrations as high as 300µM 

to eliminate the possibility that energy overload is responsible for the differential effects 
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of C16:0. This finding highly suggests that the differential effect found between C15:0 

and C16:0 is likely to be related to a difference in signalling pathway. PPAR alpha is 

heavily implicated in diet induced metabolic switch from glucose to FA energy 

dependence. PPAR alpha transcription mediates FA oxidation by enhancing genes 

involved with β-oxidation and mitochondrial function. It was therefore logical that 

PPAR alpha activity is explored as a possible mechanism by which C15:0 exerts its 

differential effect. Here, all concentrations of C15:0 induced PPAR alpha activity at 

gene expression and transcription level, which translated to PPAR alpha target gene 

expression. Conversely, C16:0 inhibited PPAR alpha transcription activity similar to 

the antagonist GW6471. Natural PPAR alpha ligands have been reported to include 

PUFA (like DHA and EPA), as well as palmitoylethanolamide (PEA). It is possible that 

C15:0 acts as a natural ligand, or as seen in this study, may induce PPAR alpha by 

increasing production of PUFA. Taken together, the differential effect of C15:0 and 

C16:0 can be explained by their stimulation of PPAR alpha. The “excess energy” 

environment created by C15:0 leads to effective sensing of PPAR alpha resulting in 

energy burning mediated via increased FA oxidation, while an improper PPAR alpha 

sensing by C16:0 results in defective FA oxidation, lipotoxicity, lipid accumulation, and 

eventually insulin resistance. Therefore, the potential impact of OCSFA on PPAR 

alpha as a mechanism that underpins anti-inflammatory process cannot be ruled out. 

In this study, palmitate-induced pro-inflammatory responses were abrogated by C15:0 

in hepatocytes, while LPS-induced inflammation was ameliorated by C15:0 in 

monocytes. Furthermore, C15:0 played a role in the differentiation of M2 macrophage 

phenotype. All these effects have been replicated in studies using PPAR alpha 
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agonists, suggesting a possible role of PPAR alpha in the anti-inflammatory phenotype 

observed with C15:0. PPAR alpha mediated inhibition of pro-inflammatory cytokines 

has been shown to be PPRE independent. Upon activation by a ligand, PPAR alpha 

binds to either p65 or the N-terminus JNK-responsive part of cJun, preventing them 

from binding to NF-ƙB response element, consequently leading to inhibition of TNFα 

and IL-6 expression [418]. Alternatively, a suppression of TNFα-induced IL-6 

transcriptional activity can be achieved by ligand-activated PPAR alpha-GR 

(glucocorticoid receptor) interaction coupled to p65 and p50 [419]. In addition, the anti-

inflammatory properties of C15:0 could be driven via increased PUFA, specifically ω-

3 PUFA, which also acts as natural ligands for PPAR alpha. 

The effect of propionate, a likely end-product of alpha-oxidation of OCSFA, merits 

discussion. Propionate has been shown to induce satiety and anti-inflammation in 

adipocytes by stimulating leptin [420] and GPR41/GPR43 receptors [421, 422]. It has 

also been shown to reduce fatty liver in a six month dietary intervention study of people 

with NAFLD [423]. In monocytes, it has been shown to reduce TNFα secretion induced 

via TLR1/2 as well as IL-6 induced via TLR4, but not LPS stimulated TNFα via TLR4 

[424]; showing that propionate production does not wholly explain the anti-

inflammatory properties of C15:0 (at least in monocytes). It is important to mention 

briefly the role of the gut microbiota, which produces propionate and other SCFA 

derivatives as a possible source or consequence of C15:0 mediated anti-inflammatory 

properties. Propionate is produced by the gut microbiome by several mechanisms 

including fermentation of fibres and it is directly correlated with C15:0 production. In 

an animal dietary intervention study where C3H/HeOuJ mice diets were supplemented 
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with propionate, C15:0 production increased after 22 weeks supplementation, 

associated with an attenuation of insulin resistance and fatty liver [425]. Consequently, 

neonates with propionic acidaemia have high circulating levels of C15:0, re-enforcing 

the link between C15:0 and propionate [77]. Moreover, emerging evidence shows that 

propionate upregulates PPAR alpha by ERK phosphorylation.  

6.2 Conclusion 

Taken together, the results obtained here suggest that the anti-inflammatory 

properties of C15:0 and its protection of hepatocytes from palmitate-induced 

consequence of insulin resistance is likely mediated via PPAR alpha and although 

there were observable differences in the abundance of MUFA and ω-3 PUFA between 

samples, the study was not designed to measure their metabolic impact. This study 

has also shown that C15:0 predicts fasting blood glucose in a healthy and T2DM 

cohort. Individuals with T2DM have significantly highly markers of inflammation, which 

can also be predicted by FAs.  

6.3 Future work  

Several studies will be required to supplement the work in this thesis. The link between 

OCSFA and T2DM is becoming well-established in literature. However, many of these 

studies have been conducted in small groups or as part of a nested cohort. 

Considering the relatively low abundance of OCSFA in plasma, and their variability, 

large samples are required to adequately power studies to detect significant 

associations with markers of inflammation and indices of glucose homeostasis. 

Moreover, sub-set analyses are challenging and limited by sample sizes. Therefore, a 
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meta-analysis of current data will be informative in providing a broader view of the 

associations especially within sub-sets, like people with prediabetes, or with poorly-

controlled T2DM with or without complications. In chapter 3, FAME profiles were 

measured with an optimised GC protocol. GC has been a useful tool in measuring 

FAME profiles for decades; however, mass spectrometry (MS) is a more sensitive 

approach for measuring FAME profiles especially with OCSFA and other FAs 

displaying low abundance. Future work will involve the optimisation of a GC-MS 

protocol for optimal identification and quantification of OCSFAs. Furthermore, a GC-

MS technique will allow quantification of isomers of C15:0 with specific focus on 

anteiso-C15:0, to differentiate between different sources of C15:0 (diet, de novo 

lipogenesis, and gut microbiome). 

In chapter 4, an attempt was made to identify cellular mechanisms underpinning the 

differential effects of C15:0 and C16:0 in hepatocytes. Future work will rely on a model 

of primary hepatocytes owing to the limitations of HepG2 cells as discussed. 

Furthermore, more robust methodology will be used to measure glucose and lipid 

homeostasis. The primary aim of the future work on hepatocytes will be to identify the 

metabolic fate of glucose and FAs after treatment with C15:0. A radioisotope study will 

be used to determine the metabolic fate of glucose and FAs in primary hepatocyte 

treated with C15:0. Subsequently, Western blot and MS techniques will be optimised 

to measure protein concentrations of enzymes identified in gene expression data to 

confirm downstream regulation and physiologic function. This thesis did not explore 

the potential modulation of cell surface receptors in hepatocytes by C15:0. Future work 

will aim to develop western blot and immunoprecipitation techniques to identify key 
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differences in insulin signalling in cells treated with C15:0, with particular focus on IRS-

1/AKT kinase-mediated insulin signalling. 

In chapter 5, this study showed that C15:0 displayed some anti-inflammatory 

properties in LPS stimulated THP-1 cells. Future work should focus on optimising 

techniques for isolating monocytes from plasma of healthy controls and T2DM to 

determine the effect of C15:0 on inflammation in both sub-sets. Specifically, the FACs 

protocol will be optimised to measure CD14 and CD16 expression simultaneously, to 

determine M1 and M2 monocyte sub-sets. The major focus of future work on 

monocytes will cover the downstream effect of the competitive activation of GPR120, 

or downregulation of NF-ƙB via TLRs by C15:0. 
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Table 8.8.1: Correlation matrix 

    Age BMI Visc Fat score FASTING 
BLOOD 
Glucose 

sol 
thrombomodu

lin ng/ml 

E-selectin 
ng/ml 

CRP ug/ml Protein 
Carbonyl 

Leptin 

Age Pearson 
Correlation 

1 0.216 .755** .298* 0.065 -0.126 .287* .348** .348** 

  Sig. (2-tailed)   0.100 0.000 0.021 0.620 0.336 0.026 0.006 0.007 

    96 95 94 96 96 96 96 96 95 

BMI Pearson 
Correlation 

0.216 1 .722** 0.246 0.051 0.231 .291* .290* .276* 

  Sig. (2-tailed) 0.100   0.000 0.060 0.703 0.079 0.026 0.026 0.036 

    95 95 94 95 95 95 95 94 94 

Visc Fat score Pearson 
Correlation 

.755** .722** 1 .407** 0.179 -0.004 .332* .348** .434** 

  Sig. (2-tailed) 0.000 0.000   0.002 0.178 0.977 0.011 0.007 0.001 

    96 95 94 96 96 96 96 96 95 

FASTING 
BLOOD 
Glucose 

Pearson 
Correlation 

.298* 0.246 .407** 1 .417** .318* 0.229 0.220 .630** 

  Sig. (2-tailed) 0.021 0.060 0.002   0.001 0.013 0.078 0.091 0.000 

    96 95 94 96 96 96 96 96 95 
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    Age BMI Visc Fat score FASTING 
BLOOD 
Glucose 

sol 
thrombomodu

lin ng/ml 

E-selectin 
ng/ml 

CRP ug/ml Protein 
Carbonyl 

Leptin 

sol 
thrombomodu
lin ng/ml 

Pearson 
Correlation 

0.065 0.051 0.179 .417** 1 0.240 -0.230 -0.112 .560** 

  Sig. (2-tailed) 0.620 0.703 0.178 0.001   0.065 0.077 0.392 0.000 

    96 95 94 96 96 96 96 96 95 

E-selectin 
ng/ml 

Pearson 
Correlation 

-0.126 0.231 -0.004 .318* 0.240 1 0.070 0.063 0.205 

  Sig. (2-tailed) 0.336 0.079 0.977 0.013 0.065   0.595 0.632 0.119 

    96 95 94 96 96 96 96 96 95 

CRP ug/ml Pearson 
Correlation 

.287* .291* .332* 0.229 -0.230 0.070 1 .489** 0.143 

  Sig. (2-tailed) 0.026 0.026 0.011 0.078 0.077 0.595   0.000 0.280 

    96 95 94 96 96 96 96 96 95 

Protein 
Carbonyl 

Pearson 
Correlation 

.348** .290* .348** 0.220 -0.112 0.063 .489** 1 .274* 

  Sig. (2-tailed) 0.006 0.026 0.007 0.091 0.392 0.632 0.000   0.035 

    96 95 94 96 96 96 96 96 95 

Leptin Pearson 
Correlation 

.348** .276* .434** .630** .560** 0.205 0.143 .274* 1 
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    Age BMI Visc Fat score FASTING 
BLOOD 
Glucose 

sol 
thrombomodu

lin ng/ml 

E-selectin 
ng/ml 

CRP ug/ml Protein 
Carbonyl 

Leptin 

  Sig. (2-tailed) 0.007 0.036 0.001 0.000 0.000 0.119 0.280 0.035   

    95 94 93 95 95 95 95 95 95 
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Table 8.8.2: Parameter estimates for CRP 

      
Paramete

r 
Estimates 

    

 

Parameter B 
Std. 
Error 

95% Wald 
Confidence 

Interval   
Hypothesi

s Test     Exp(B) 

95% Wald 
Confidenc
e Interval 
for Exp(B)    

      Lower Upper 
Wald Chi-

Square df Sig.   Lower Upper  
(Intercept) -7.381 3.0434 -13.346 -1.416 5.881 1 0.015 0.001 1.600E-06 0.243 

 
C182n6ct_1 

0.003 0.0025 -0.002 0.008 1.474 1 0.225 1.003 0.998 1.008 
 

Age 0.020 0.0278 -0.035 0.074 0.492 1 0.483 1.020 0.966 1.077  
FASTINGBLOODGlucose_
1 -0.027 0.1319 -0.286 0.231 0.043 1 0.836 0.973 0.751 1.260 

 
BMI_1 0.068 0.0610 -0.052 0.188 1.246 1 0.264 1.071 0.950 1.207  
ProteinCarbonyl_1 

1.544 0.5774 0.412 2.676 7.149 1 0.007 4.683 1.510 14.520 
 

LEPTINNgml 
-0.128 0.0820 -0.288 0.033 2.418 1 0.120 0.880 0.750 1.034 

 
Eselectinngml 

0.016 0.0219 -0.027 0.059 0.519 1 0.471 1.016 0.973 1.060 
 

C222_1 0.066 0.0233 0.020 0.112 7.949 1 0.005 1.068 1.020 1.118 
 

C181n9ct_1 
0.002 0.0028 -0.004 0.007 0.386 1 0.535 1.002 0.996 1.007 

 
(Scale) 8.550a 1.5742 5.960 12.266             
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Table 8.3: Parameter estimates for soluble thrombomodulin 

  



269 

 

Table 8.4: Parameter estimates for leptin 
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Table 8.5: Parameter estimates for BMI 
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Table 8.6: Parameter estimates for fasting plasma glucose 
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Table 8.7: Parameter estimates for soluble E-Selectin 

 




