
Analysis of ommon attaks in LDPCC-based publi-key ryptosystemsN.S. Skantzosy�, D. Saady and Y. Kabashimazy Neural Computing Researh Group, Aston University, B4 7ET, UK� Institut for Theoretial Physis, Celestijnenlaan 200D, KULeuven, Leuven, B-3001 Belgiumz Dept. of Computational Intelligene & Systems Siene,Tokyo Institut of Tehnology, Yokohama 2268502, Japanemail: skantzon�aston.a.uk, saadd�aston.a.uk and kaba�dis.titeh.a.jpWe analyze the seurity and reliability of a reently proposed lass of publi-key ryptosystemsagainst attaks by unauthorized parties who have aquired partial knowledge of one or more of theprivate key omponents and/or of the plaintext. Phase diagrams are presented, showing ritialpartial knowledge levels required for unauthorized deryption.PACS numbers: 89.70.+, 03.67.Dd, 05.50.+q,89.80.+hI. INTRODUCTIONAn important aspet in many modern ommuniation systems is the ability to exlude unauthorized parties fromgaining aess to on�dential material. Although ryptosystems in general have an extensive history, until fairlyreently they have been based on simple variations of the same theme: information seurity among authorized partiesrelies on sharing a seret key whih is to be used for enryption and deryption of transmitted messages. While in thisway on�dentiality of the sent message may be seured, suh systems su�er from the (obvious) drawbak of non-seurekey distribution.In 1978 Rivest, Shamir and Adleman �rst devised a way to resolve this problem whih led to the elebrated RSApubli-key ryptosystem [1℄ (for historial auray, a similar system has been suggested years earlier in the BritishGCHQ but was kept seret). The idea behind publi key ryptosystems is to di�erentiate between the enryption- andderyption-keys; private key(s) are assigned to authorized users, for deryption purposes, while transmitting partiesonly need to know the mathing enryption (publi) key [2℄. The two keys are related by a funtion whih generates theenryption mehanism from the deryption key with low omputational osts, while the opposite operation (evaluatingthe deryption key from the enryption mehanism) is omputationally infeasible. Suh funtions are alled `one-way'or trap-door funtions; the RSA algorithm for instane, is based on the intratability of fatorizing large integersgenerated by taking the produt of two large prime numbers.The proliferation of digital ommuniation in the last few deades has brought in a demand for seure ommuni-ation leading to the invention of several other publi-key ryptosystems, most notable of whih are the El-Gammalryptosystem (based on the Disrete Logarithm problem), systems based on ellipti urves and the MEliee ryp-tosystem (based on linear error-orreting odes) [3℄. A ommon denominator of all publi-key algorithms is the highomputational omplexity of the task faing the unauthorized user; this is typially related to hard omputationalproblems that annot be solved in pratial time sales.A new publi-key ryptosystem based on a diluted Ising spin-glass system has been reently proposed in [4℄.The suggested ryptosystem is similar in spirit to that of MEliee and relies on exploiting physial properties ofthe MaKay-Neal (MN) low-density parity-hek (LDPC) error-orreting odes. In partiular, in the ontext ofMN odes it has been shown [4{6℄ that for ertain parameter values suessful deoding is highly likely, while forothers (partiularly when the number of parity-heks per bit and the number of bits per hek tend to in�nity) the`perfet' solution, desribing full retrieval of the sent message, admits only a very narrow basin of attration; iterativealgorithmi solutions lead in this ase, almost ertainly, to a deryption failure. One an use these properties todevise an LDPC based ryptosystem [4℄. The narrow basin of attration ensures that a random initialization of thederyption equations will fail to onverge to the plaintext solution while the naive approah of trying all possibleinitializations is learly doomed for a suÆiently large plaintext size. The `one-way' funtion relies on the hardomputational task of deomposing a dense matrix (the publi key) into a ombination of sparse and dense matries(private keys) [7℄.In this paper we examine the suggested ryptosystem from an adversary's viewpoint. We onsider an unauthorizedparty that has aquired partial or full knowledge of one or more of the private keys, and/or of the message, and weevaluate the ritial knowledge levels required for unauthorized deryption. In addition, we examine the deryptionreliability by authorized users due to the probabilisti nature of the ryptosystem.The paper is organized as follows: In the following setion we give an outline of the suggested ryptosystem. Insetion III we formulate unauthorized-deryption senarios with partial knowledge based on a statistial mehanial



2framework. In setion IV we derive the observable quantity that measures deryption suess of the unauthorized useras a funtion of the attak parameters and in setion V we examine various ases and present numerial results as wellas the related phase diagrams. In setions VI and VII we briey study the basin of attration of the ferromagnetisolution, and the reliability of the deryption mehanism (for authorized users), respetively. The impliation of theanalysis are disussed in setion VIII.II. DESCRIPTION OF THE CRYPTOSYSTEMThe ryptosystem suggested in [4℄ is based on the framework of MN error-orreting odes [5℄. An outline of theenryption/deryption proess is as follows.A plaintext represented by � 2 f0; 1gN is enrypted to the iphertext r 2 f0; 1gM (with M > N) using a predeter-mined generator matrix G 2 f0; 1g and a orrupting vetor � 2 f0; 1gM with P (�i) = p Æ�i;1 + (1 � p) Æ�i;0 for eahomponent 1 � i �M ; the Kroneker tensor Æab returns 1 when the arguments are equal (a = b) and zero otherwise.The generated iphertext is of the form: r = G� + � (mod 2) (1)The (M �N) matrix G together with the orruption rate p 2 [0; 1℄ onstitute the publi key.The enryption matrix G is onstruted by hoosing a dense matrixD (of dimensionalityM�M) and two randomly-seleted sparse matries A (of dimensionality M �N) and B (of dimensionality M �M) through G = B�1AD (mod2). The matries A and B are haraterized by K and L non-zero elements per row and C and L non-zero elementsper olumn respetively. The resulting dense matrix G is modeled as being haraterized by K 0 and C 0 non-zeroelements per row and per olumn respetively with K 0; C 0 ! 1 (while K 0=C 0 = N=M is �nite). In fat, the densematrix G is of an irregular form due to the inverse of the sparse matrix B as well as the produt taken with the densematrix D; we will model the matrix G by a regular dense matrix to simplify the analysis. The parameters K;C andL de�ne a partiular ryptosystem while the matries A, B and D onstitute the private key.The authorized user may obtain the plaintext from the reeived iphertext r by taking the (mod 2) produtBr = A� +B�. Finding a set of solutions � and � suh that the equationA� +B� = A� +B� (mod 2) (2)is true will lead to andidate solutions of the deryption problem (of whih the most probable one will be detetedaording to a further seletion riterion). For partiular hoies of K and L, solving the above equation an beahieved via iterative methods whih have ommon roots in both graphial models and physis of disordered systemssuh as Belief Propagation [5℄ Belief Revision [8℄ and more reently Survey Propagation [9℄; where state probabilitiesfor the derypted message bits P (�; � jr) are alulated by solving iteratively a set of oupled equations, desribingonditional probabilities of the iphertext bits given the plaintext and vie versa. This problem is idential to thedeoding problem of a regular MN error-orreting ode; for the expliit iterative deoding equations see equations (55-56) as well as [5, 10℄.The unauthorized user, on the other hand, faes the task of �nding the most probable solutions to the equationG� + � = G� + � (mod 2) : (3)The above deryption equation is e�etively idential to the deoding problem of Sourlas error-orreting odes [11℄,with the publi matrix G being dense. Most notably, in the ontext of Sourlas odes, �nding solutions to (3) is stronglydependent on initial onditions: for all initial onditions other than the plaintext itself, the iterative equations of BeliefPropagation will fail to onverge to the plaintext solution [4{6, 12℄ suh that obtaining the orret solution for (3)without knowledge of the private key will beome infeasible. Obtaining the private keys by deomposing G into A, Band D is known to be a hard omputational problem even if the values of K, C and L are known [7℄.We would like to point to the fat that there may exist more than one triplet of matries fA;B;Dg suh thatG = B�1AD. with D being a dense matrix, �nding a set of matries A0, B0 and D0 suh that their ombinationprodues G = (B0)�1A0D0 requires an exponentially diverging number of operations, with respet to the system size,making the deomposition omputationally infeasible. For D = 1 (as was the original formulation in [4℄) �nding apair of sparse matries A0 and B0 suh that G = (B0)�1A0 requires only a number of operations that is polynomial inN , and the ryptosystem is therefore not seure.Other advantages and drawbaks of the new ryptosystem appear in [4℄.



3III. FORMULATION OF THE ATTACKAn essential ingredient of any ryptosystem is a ertain level of robustness against attaks. The robustness of theurrent ryptosystem against attaks with no additional seret information has already been reported in [4℄. In thissetion we study the vulnerability of the new ryptosystem to various attaks, haraterized by partial knowledge ofthe seret keys and/or the plaintext itself; the additional information manifests itself in a set of deryption equationssimilar to (2) in whih partial information of the seret keys (and plaintext) is used in onjuntion with the publilyavailable information of (3).The umulative information provided by the di�erent sets of equations will potentially allow for a suessful deryption.To this extent, knowledge of the matrix B is of utmost importane sine obtaining partial knowledge of the syndromevetor and equation (2) is only aessible through deryption using the matrix B. Let us onsider that an unauthorizeduser has aquired knowledge of a number of rows AM , BM and DM of the seret matries A, B and D (with? 2 [0; 1℄). Relation (2) then provides M � minfA; B ; DgM deryption equations (4) based on sparse matries.To analyze the attak we will thus from now on assume that a blok (M �M) of all matries is known to theunauthorized user with  2 [0; 1℄. In this ase, the produts PMj=1 Bijrj for i = 1; : : : ; M an be taken and theunauthorized user will arrive at the following deryption problem:private : (Â�)i + (B̂� )i = (Â�)i + (B̂�)i for rows i = 1; : : : ; M (4)publi : (G�)i + (I� )i = (G�)i + (I�)i for rows i = 1; : : : ;M (5)where we absorbed the matrix D using � ! D� and � ! D�; in pratie, after deryption, one will have to use ofthe inverted matrix D�1 to obtain the original plaintext. All solutions � and � will have to simultaneously satisfy(4) and (5). The matries Â and B̂ will be desribed by K and L non-zero elements per row. The average number ofknown non-zero elements per olumn in Â and B̂ will be denoted C and L, respetively. Sine  is the probability ofseleting a non-zero element in the known part of the private key it follows that C = C and L = L. For all olumnsj = 1; : : : ;M we will denote the number of non-zero elements in Â and B̂ by the random variables ~Cj(=PMi=1 Âij)and ~Lj(=PMj=1 B̂ij) whih are desribed by the distributions:P ( ~Cj ;C) = � C~Cj �  ~Cj (1� )C� ~Cj ~Cj = 0; : : : ; C (6)P (~Lj ;L) = � L~Lj �  ~Lj (1� )L�~Lj ~Lj = 0; : : : ; L (7)To failitate the statistial mehanial desription we will now replae the �eld f0; 1;+(mod 2)g by the more familiarIsing spin representation [11℄ f�1; 1;�g. Equations (4) and (5) will also be modi�ed: From the matries Â; B̂ and
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L� ~Lj~LjFIG. 1: The matrix B of dimensionality M �M used as a private key in deryption. The senario we onsider here is thatunauthorized users have aquired knowledge of M rows of the matrix. The (M �M) blok may have ~Lj = 0; : : : ; L non-zeroelements per olumn for all j.



4G; I we onstrut the binary tensors A = fAhi1���iK ;j1���jLi; 1 � i1 < � � � < iK � N; 1 � j1 < � � � < jL � Mg andG = fGhi1���iK0 ;ji; 1 � i1 < � � � < iK0 � N; 1 � j � Mg. The elements of these tensors are Ahi1:::iK ;j1:::jLi = 1if Â and B̂ have respetively a row in whih the elements fi1; : : : ; iKg and fj1; : : : ; jLg are all 1 and 0 otherwise.Similarly, Ghi1:::iK0 ;ji = 1 if G and I have respetively a row in whih the elements fi1; � � � ; iK0g and fjg are all 1and 0 otherwise. The notation we used to indiate tensor elements, hi1 : : : iKi, denotes that the sites i1; : : : ; iK areordered and di�erent.The fat that the number of non-zero elements per olumn in Â; B̂ and G; I , respetively, are ~Ci; ~Li and C 0; 1, forall olumns, will be imposed by the onstraints:Xi2���iK ;j1���jLAhi1���iK ;j1���jLi = ~Ci1 8i1 = 1; � � � ;M (8)Xi1���iK ;j2���jLAhi1���iK ;j1���jLi = ~Lj1 8j1 = 1; � � � ;M (9)Xi2���iK0 ;j Ghi1 ���iK0 ;ji = C 0 8i1 = 1; � � � ;M (10)Xi1���iK0 Ghi1���iK0 ;ji = 1 8j = 1; � � � ;M (11)To ompress notation in what follows we will denote the set of indies involved in the tensors A and G by �K =hi1 � � � iKi and 
L = hj1 � � � jLi.For the system desribed in (4-5) the mirosopi state probability P (�; � ) an be written asP (�; � j�; �;A;G) = 1Z [�(�; � ; �; �;A) �(�; � ; �; �;G) �(�; �) �(� ; �)℄ e��H(�;� ) (12)(notie that the dependene on �; � is not expliit, but through the reeived vetor r) where Z is the partition funtionand H(�; � ) the energy: H(�; � ) = �F� NXi=1 �i � F� MXj=1 �j (13)with F� = 12 log 1�p�p� and F� = 12 log 1�p�p� . The �elds F� and F� represent prior knowledge of the statistis fromwhih the plaintext and the orrupting vetor are drawn, suh thatP (�i) = (1� p�)Æ�i;1 + p�Æ�i;�1 p� 2 [0; 1℄ (14)P (�j) = (1� p� )Æ�j ;1 + p�Æ�j ;�1 p� 2 [0; 1℄ (15)The indiator funtions �(�; � ; �; �;A) and �(�; � ; �; �;G) restrit the spae of solutions � 2 f�1; 1gN and � 2f�1; 1gM to those that obey equations (4) and (5):�(�; � ; �; �;A) = Y�K
L 241 + 12A�K
L( Yi2�K �i�i Yj2
L �j�j � 1)35 (16)�(�; � ; �; �;G) = Y�K0
L0 241 + 12G�K0
L0 ( Yi2�K0 �i�i Yj2
L0 �j�j � 1)35 (17)and �nally the terms �(� � �) 2 f0; 1g orrespond to�(�; �) = NYi=1 [(1� i) + iÆ�i;�i ℄ (18)�(� ; �) = MYi=1 [(1� di) + diÆ�i;�i ℄ (19)



5where the quenhed variables i; dj 2 f0; 1g model prior knowledge of bits of the plaintext and the orrupting vetorsuh that if for some i the plaintext bit �i is known then the thermal variable �i takes the quenhed plaintext value(and similarly for the orruption vetor �j and �j). For the distribution of i and dj we will onsiderP (i) = w� Æi;1 + (1� w�) Æi;0 w� 2 [0; 1℄ (20)P (dj) = w� Ædj;1 + (1� w� ) Ædj ;0 w� 2 [0; 1℄ (21)The system desribed by (12) represents a set of variables interating via multi-spin ferromagneti ouplings of �niteonnetivity, represented by a ombination of matries, in the presene of the random �elds �iF� and �jF� . At � = 1(whih orresponds to the Nishimori temperature [13℄) we will evaluate the free energy per plaintext bitf = � limN!1 1�N hlogZi� (22)The marosopi observable we are interested in alulating is the overlap m = limN!1 1N Pi �i�̂i between the plain-text and the Bayes Marginal Posterior Maximizer (MPM) estimate of the plaintext �̂i � signP�i=� �i p(�ijr) wherep(�ijr) is the mirosopi state probability (12). Disorder averages hi� are taken over the probability distributions(14,15,20,21) and over the distribution of the tensors A and G obeying the onstrains (8-11):hF (A)iA;f ~Ci;~Lig = 1N XfA�K
Lg NYi=1*Æ 24 X�K
L=i2�K A�K
L � ~Ci35+P ( ~Ci)� MYj=1*Æ 24 X�K
L=j2
LA�K
L � ~Lj35+P (~Lj) F(A) (23)hF (G)iG = 1N 0 XfG�K0
L0 g NYi=1 Æ 24 X�K0
L0=i2�K0 A�K0
L0 � C 035� MYj=1 Æ 24 X�K0
L0=j12
L0 G�K0
L0 � 135F(G) (24)where N and N 0 are the orresponding normalisation onstants.The parameters w� ; w� ; F� ; F� and  desribe the attak harateristis.IV. THE FREE ENERGY AND DECRYPTION OBSERVABLESThe alulation generally follows that of [6, 10℄. To perform the various disorder averages we begin by invoking thereplia identity hlogZi = limn!0 1n loghZni and making the gauge transformations �i ! �i�i, �i ! �i�i, A�K
L !A�K
LQi2�K �iQj2
L �j and G�K0
L0 ! G�K0
L0 Qi2�K0 �iQj2
L0 �j . This will allow us to disentangle the variablesf�; �g from expressions involving the tensors A and G in (16,17). Replaing the Æ funtions in (23,24) by their integralrepresentations allows us to perform the tensor summations, leading to:h�A(�; � );�G(�; � ) i == 1NN 0 I QNi=1 dZidXi(2�)2N I QMj=1 dYjdVj(2�)2M� NYi=1DZ�( ~Ci+1)i X�(C0+1)i EP ( ~Ci) MYj=1DY �(~Lj+1)j V �2j EP (~Lj)� e( 12 )nPnm=0Ph�1����mi 1K! (PNi=1 Zi��1i �����mi )K 1L!(PMj=1 Yj��1j �����mj )L� e( 12 )nPnm=0Ph�1����mi 1K0!(PNi=1Xi��1i �����mi )K0(PMj=1 Vj��1j �����mj ) (25)



6In the above expression we an now identify the following order parametersq�1����m = NXi=1 Zi��1i � � ���mi r�1����m = NXi=1 Xi��1i � � ���mi (26)t�1����m = MXj=1 Yj��1j � � � ��mj u�1����m = MXj=1 Vj��1j � � � ��mj (27)whih we insert in (25) via suitably de�ned Æ funtions (giving rise to the Lagrange multipliers q̂�1����m , r̂�1����m ,t̂�1����m and û�1����m). To proeed with the alulation one needs to assume a ertain order parameter symmetry forthe above quantities and their onjugates for all m > 1. The simplest suh assumption renders all replia m-tuplesequivalent and all order parameters within this replia symmetri sheme need only depend on the number m. Thise�et an be desribed by the introdution of suitably de�ned distributions, the moments of whih ompletely de�nethe m-index order parametersq�1����m = q Z dx �(x) xm q̂�1����m = q̂ Z dx �̂(x) xm (28)r�1����m = r Z dy �(y) ym r̂�1����m = r̂ Z dy �̂(y) ym (29)t�1����m = t Z dx �(x) xm t̂�1����m = t̂ Z dx �̂(x) xm (30)u�1����m = u Z dy  (y) ym û�1����m = ûZ dy  ̂(y) ym (31)where all integrals are over the interval [�1; 1℄. The Nishimori ondition (� = 1), whih orresponds to MPMdeoding [14℄, also ensures that this simplest replia-symmetri sheme is suÆient to desribe the thermodynamiallydominant state [13, 15℄. Furthermore, it is worthwhile mentioning that extending the replia symmetri alulationto inlude the one-step replia symmetry breaking ansatz is unlikely to modify the loation of the transition pointsidenti�ed under the replia-symmetri ansatz, as has been reently shown in a similar system [16℄. Using the aboveansatz we perform the ontour integrals in (25), and trae over the spin variables; then, in the limit n! 0 we obtain:��f = Extr��CJ1a[�; �̂℄� CLK J1b[�; �̂℄� C 0J1[�; �̂℄� C 0K 0 J1d[ ;  ̂℄ (32)+CKJ2a[�; �℄ + C 0K 0 J2b[�;  ℄ + J3a[�̂; �̂℄ + CK LLJ3b[�̂;  ̂℄���CK + C 0K 0� log 2where the extremization is taken over the distributions de�ned in (28-31) and the various integrals J?? are given byJ1a[�; �̂℄ = Z dxdx̂ �(x)�̂(x̂) log(1 + xx̂) J1b[�; �̂℄ = Z dydŷ �(y)�̂(ŷ) log(1 + yŷ) (33)J1[�; �̂℄ = Z dxdx̂ �(x)�̂(x̂) log(1 + xx̂) J1d[ ;  ̂℄ = Z dydŷ  (y) ̂(ŷ) log(1 + yŷ) (34)J2a[�; �℄ = Z [ KYk=1 dxk �(xk) LỲ=1 dy` �(y`)℄ log(1 +Yk xk Ỳ y`) (35)J2b[�;  ℄ = Z dy  (y) [ K0Yk=1 dxk �(xk)℄ log(1 + yYk xk) (36)



7J3a[�̂; �̂℄ = Z C0Y0=1 d�̂(y0)8<:(1� )C *logX�=�[(1� ) + Æ�;1℄e�F���Y0 (1 + y0�)+;�+*Z [ ~CY=1 d�̂(x)℄*logX�=�[(1� ) + Æ�;1℄e�F���Y (1 + x�)Y0 (1 + y0�)+;�+ ~C9=; (37)J3b[�̂;  ̂℄ = Z dy  ̂(y) 8<:(1� )L*logX�=�[(1� d) + dÆ�;1℄e�F���(1 + y�)+d;�+*Z [ ~LỲ=1 d�̂(x`)℄*logX�=�[(1� d) + dÆ�;1℄e�F��� Ỳ(1 + x`�)(1 + y�)+d;�+~L9=; (38)where C = CX~C=0P ( ~C;C) ~C L = LX~L=0P (~L;L) ~L (39)Averages denoted h� � �i ~C and h� � �i~L are over the densities (6) and (7) with ~C = 1; : : : ; C and ~L = 1; : : : ; L. Funtionaldi�erentiation of (32) with respet to the densities of (28-31) results in the following saddle point equations:�̂(x̂) = Z [K�1Yk=1 dxk�(xk) LYl=1 dyl�(yl)℄ Æ "x̂� K�1Yk=1 xk LYl=1 yl# (40)�̂(ŷ) = Z [ KYk=1 dxk�(xk) L�1Yl=1 dyl�(yl)℄ Æ "ŷ � KYk=1 xk L�1Yl=1 yl# (41)�̂(x̂) = Z dy (y) [K0�1Yk=1 dxk�(xk)℄ Æ24x̂� yK0�1Yk=1 xk35 (42) ̂(ŷ) = Z [ K0Yk=1 dxk�(xk)℄ Æ 24ŷ � K0Yk=1xk35 (43)and �(x) = w� Æ[x� 1℄ (44)+(1� w�)C * ~C Z [ C0Y0=1 d�̂(ŷ0) ~C�1Y=1 d�̂(x̂)℄*Æ0�x� tanh[�F�� + ~C�1X=1 ath(x̂) + C0X0=1 ath(ŷ0)℄1A+�+ ~C�(x) = w� Æ[x� 1℄ (45)+(1� w� )L *~LZ d ̂(ŷ) [~L�1Yl=1 d�̂(ŷl)℄*Æ0�x� tanh[�F� � + ~L�1Xl=1 ath(x̂l) + ath(ŷ)℄1A+�+~L�(x) = w� Æ[x� 1℄ (46)+(1� w�) Z C0�1Y0=1 d�̂(y0)8<:(1� )C *Æ0�x� tanh[�F�� + C0�1X0=1 ath(ŷ0)℄1A+�+*Z [ ~CY=1 d�̂(x̂)℄*Æ0�x� tanh[�F�� + ~CX=1 ath(x̂) + C0�1X0=1 ath(ŷ0)℄1A+�+ ~C9>=>;



8 (x) = w� Æ[x� 1℄ (47)+(1� w� )8><>:(1� )L hÆ[x� tanh(�F� �)℄i� +*Z [ ~LYl=1 d�̂(x̂l)℄*Æ0�x� tanh[�F� � + ~LXl=1 ath(x̂l)℄1A+�+~L9>=>;In general, the oupled set of equations (40)-(47) are to be solved numerially. Among the set of � that satisfyequations (4) and (5) we hoose the MPM estimate of the plaintext �̂i = signP�i=� �i p(�ijr) = signh�ii (thermalaverage) by using Nishimori's ondition (or � = 1) [13℄. Then, the overlap m = limN!1 1N Pi �i�̂i beomesm = w� + (1� w�) Z dh P (h) sign(h) (48)P (h) = Z C0Y0=1 d�̂(ŷ0)℄8<:(1� )C *Æ0�h� tanh[�F�� + C0X0=1 ath(ŷ0)℄1A+�+ *Z [ ~CY=1 d�̂(x̂)℄*Æ0�h� tanh[�F�� + ~CX=1 ath(x̂) + C0X0=1 ath(ŷy0)℄1A+�+ ~C9>=>; (49)from whih it an be seen that the perfet (ferromagneti) solution m = 1 is ahieved when w� = 1 (ompleteknowledge of the solution) or when �̂(x) = Æ[x � 1℄. This also implies that all densities involved in (32) �(x) =f�(x); : : : ;  ̂(x)g aquire the form �(x) = Æ[x� 1℄ giving a free energy of the formfFM = �C 0K 0 � CK� log 2� CK�F� h�i� (50)The physial meaning of the terms w? Æ[x�1℄ in (44-47) is that the aquired mirosopi knowledge gives a probabilistiweight at the ferromagneti state. The state m = 0 is obtained if w� = F� = 0 and �̂(x) = �̂(x) = Æ[x℄ (paramagnetisolution). V. PHASE DIAGRAMSIn this setion we obtain numerial solutions for various attak senarios. In all ases studied we assume anunbiased plaintext (p� = 1=2; F� = 0); for brevity we refer to the remaining bias parameter, the orruption leveldenoted p� in previous setions, simply as p. All experiments have been arried out using a regular ryptosystem withK = L = 2, being the original ryptosystem suggested in [4℄. In priniple, one an use any set of regular or irregularmatries, provided one identi�es the orresponding dynamial transition point. However, having been thoroughlystudied previously, the urrent onstrution serves as a partiularly suited benhmark.Solving the oupled equations (40-47) we typially observe that for suÆiently small values of p the ferromagnetistate m = 1 is the only stable solution whereas at a orruption value that marks the dynamial (spinodal) transitionps, an exponential number of solutions with m 6= 1 are reated (either suboptimal ferromagneti or paramagneti,depending on the values of (K;C;L)). For all p > ps perfet deryption will be diÆult to obtain. This transitionalso de�nes the orruption level below whih an unauthorized attaker, that have aquired partial information of theseret keys, will be suessful.We will onentrate on two main attaks: (i) The attaker has partial knowledge of the keys (primarily the matrixB). (ii) The attaker has partial mirosopi knowledge of the plaintext and/or orruption vetor.In �gure 2 we present a phase diagram desribing regions with perfet (m = 1) or partial/null (jmj < 1) deryptionsuess as evaluated from solving equations (32) and (48). We plot the dynamial transition orruption level ps asa funtion of the private key frational knowledge  for di�erent values of w� and w� (we have set p� = 1=2 whihorresponds to an `unbiased' plaintext). In the limit  = 0 (i.e., no knowledge of the matries), while m = 1 may be astable solution, the deryption dynamis is fully dominated by jmj < 1 states. For  = 1 the ryptosystem desribesa spei� MN ode and perfet deryption an our below ps.
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FIG. 2: Phase diagram of the spinodal orruption-rate against the frational knowledge of the private key  for a (K;C;L) =(2; 6; 2) ryptosystem for (w�; w� ) = (0; 0) (solid line) and (0:2; 0:2) (dashed line). Mirosopi knowledge of the plaintext andthe orrupting vetor enlarges the perfet deryption area, as expeted.
The interation between the sparsely (4) and densely (5) onneted deryption omponents is non-linear and non-trivial; however, as a �rst approximation one an view the frational matrix knowledge  as hanging the e�etivesparse omponent, whih is the main ontributor in the deryption proess. To that end  will have a diret impaton the e�etive ode rate N=(M), the average onnetivity C and the onnetivity distribution. It is lear thatat an e�etive ode rate 1 ( = N=M = 1=3 in the ase of the parameters used in �gure 2) deryption is even nottheoretially feasible. The reason �gure 2 points to a possibility of deryption below this value is due to additionalinformation brought in by the dense omponents we ignored in this simplisti desription.We also examined the e�et of prior mirosopi knowledge of the plaintext/orrupting vetor (w� ; w� > 0) on thearea of perfet deryption; whih learly inreases with the knowledge provided, as expeted. Also this an be viewedas a hange to the e�etive ode rate. This time, the partial mirosopi knowledge of either plaintext or orruptingvetor (or both) serves to redue the e�etive number of variables and hene the ode rate itself; lower ode rate willtypially allow for perfet deryption in worse orruption onditions as an be seen in �gure 2
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FIG. 3: Phase diagrams of the spinodal orruption-rates against the frational knowledge of the private key  for a (K;C;L) =(2; 6; 2) ryptosystem. Left piture: (w�; w� ) = (0:1; 0) (solid line) and (0; 0:1) (dashed line). Right piture: (w�; w� ) = (0:2; 0)(solid line) and (0; 0:2) (dashed line). For suÆiently large -values mirosopi knowledge of the orrupting vetor beomesmore important to the unauthorized user than that of the plaintext; this e�et beomes more emphasized as the fration ofknown bits inreases.
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FIG. 4: Left: Comparison between two di�erent ryptosystems with (K;C;L) = (2; 3; 2) (solid line) and (K;C;L) = (2; 4; 2)(dashed line). Smaller C-values orrespond to higher rate odes and lead to smaller regions in parameter spae where perfetderyption is possible. Right: Overlap m as funtion of the orrupting-rate p obtained from equation (48) for a (K;C;L) =(2; 6; 2) ryptosystem and along the line  = 0:8 for (w�; w� ) = (0:2; 0) (solid line) and (w�; w� ) = (0; 0) (dashed line).To understand the impliation of these results let us assume using the ryptosystem desribed in �gure 2 at aorruption level hosen of p = 0:1 (whih is hosen muh smaller that ps to inrease the deryption reliability). Inthis ase knowing about 70% of the matries (seret keys) will be suÆient for derypting the iphertext. True, thereis still a need to know the dense matrix D�1 for extrating the plaintext itself and the exposed fration of the seretkey is signi�ant; but still there is a weakness that may be exploited by a skillful attaker.To ompare the importane of prior mirosopi knowledge of plaintext versus that of the orrupting vetor weplotted in �gure 3 the phase diagram for (w� ; w� ) = f(0:1; 0); (0:2; 0)g and (w� ; w� ) = f(0; 0:1); (0; 0:2)gwhih desribetwo omplementary senarios (left and right �gures respetively). The e�et is quite similar, taking into aount theinformation provided by the two vetors (the plaintext is unbiased but of length N while the orruption vetor isbiased but of lengthM). For high -values mirosopi knowledge of the orrupting vetor beomes more informativethan that of the plaintext, an e�et whih beomes more emphasized as the fration of known bits inreases.In �gure 4 we ompare two ryptosystems with (K;C;L) = (2; 4; 2) and (K;C;L) = (2; 3; 2) for (w� ; w� ) = (0; 0).We see that smaller C values (i.e., higher ode rates) will redue the area of perfet deryption. On the one hand,this will inrease the seret information required for perfet deryption at eah orruption level; on the other hand itwill redue the orruption level that an be used and will expose the ryptosystem to attaks based on an exhaustivesearh of orruption vetors.The seurity of a ryptosystem may be ompromised without a full reovery of the plaintext; also partial reovery ofthe plaintext may pose a signi�ant threat. To study the e�et of partial knowledge of the matries and plaintext onthe ability to obtain high overlap between the derypted iphertext and plaintext, we onduted several experiments,an example of whih appears in �gure 4. Here we show the overlap obtained m as funtion of the orruption-rate pfor a spei� ryptosystem (K;C;L) = (2; 6; 2) along the line  = 0:8 and for two di�erent hoies of w� . Prior tothe dynamial transition points both iphertexts are derypted perfetly; this orresponds to orruption and partialknowledge levels below the solid and dashed lines of �gure 2.Above the dynamial transition point, new suboptimal solutions are reated and the overlap value obtained dete-riorates with the orruption level. However, the two di�erent hoies of w�-values lead to two di�erent deteriorationpatterns: while overlap in the system with no mirosopi knowledge of the plaintext deteriorates very rapidly, thesystem with w� = 0:2 provides solutions with high overlap values even if the orruption is high. As a onsequene, wesee that the e�et of mirosopi knowledge goes beyond a shift in the dynamial transition point; it also inuenesderyption beyond that point (in fat, it goes even beyond Shannon's limit).VI. BASIN OF ATTRACTIONThe inreasingly narrowing basin of attration for the ferromagneti solution, as the onnetivity values K;C andL ! 1, is entral to the seurity level o�ered by the ryptosystem. The e�et has been reported in a number ofpapers in the statistial physis [4, 12℄ and information-theory [5℄ literature; in this setion we will show that the



11basin of attration shrinks as the onnetivity inreases, to a value of O(1=K) as K;C !1.To provide a rough evaluation of the basin of attration (BOA) for obtaining the ferromagneti solution we fous onEq. (2) in the limit K;C !1. BOA learly depends on the algorithm used; here we fous on the Belief Propagation(BP) algorithm, whih is empirially known to be the best pratial algorithm for solving problems of the urrenttype. As far as we explored, no other shemes suh as the naive mean �eld and the Belief Revision algorithms exhibitbetter performane than BP, whih implies that our onsideration on BP is at least of a ertain pratial signi�ane(Survey Propagation [9℄ has not yet been tested for these systems).Let us represent prior knowledge on plain text � and noise � (in Ising spin representation) as the prior probabilitiesP oi (�i) = exp(F�i�i)2 osh(F�i) ; (51)P oj (�j) = exp(F�j�j)2 osh(F�j) ; (52)respetively. Here, the parameters F�i and F�j express on�dene of the prior knowledge per variable, whih is ageneralization of the global prior terms F� ; F� used earlier. Notie that this representation inludes the ase thatertain bits are ompletely determined by setting jF�ij(or jF�j j) ! 1, enabling us to over various senarios. Inthe following, we assume that the fration of ompletely determined bits is less than 1 when N;M ! 1. Givenprior probabilities (51) and (52), and the indiator funtion �(�; � ; �; �;A) whih is the alternative to parity hekequation (2), the Bayesian framework provides the posterior probabilityP post(�; � ) = �(�; � ; �; �;A)QNi=1 P oi (�i)QMj=1 P oj (�i)Z ; (53)where Z is the normalization onstant. Using Eq. (53), one an determine the best possible ation for minimizingthe expeted value of a given ost funtion [14℄. As a ost funtion, we selet here the Hamming distane betweenthe orret plain text � and its estimates �̂, L(�̂; �) = N �PNi=1 �̂i�i; this seletion naturally o�ers the maximizer ofposterior marginal (MPM) deoding �̂i = sign(m�i ) as the optimal estimation strategy, wherem�i = X�;� �i P post(�; � ); (54)is the average of spin �i over the posterior probability and sign(x) = 1 for x > 0 and �1, otherwise.Computational ost for an exat evaluation of the spin average (54) inreases as O(2N+M ), whih implies thatMPM deoding is pratially diÆult. An alternative approah is to resort to an approximation suh as BP. In theurrent ase, this means to iteratively solving the oupled equations (for details of the derivation see [5, 10℄)m̂��i = J� Yl2L�(�)nim��l Yj2L� (�)m��j ; m̂��j = J� Yl2L�(�)m��l Yk2L� (�)njm��k; (55)m��i = tanh(F�i + X�2M�(i)n� ath(m̂��i)); m��j = tanh(F�j + X�2M� (j)n� ath(m̂��j)); (56)where J� � �Ql2L�(�) �lQj2L� (�) �j�, L�(�) and L� (�) are the sets of indies of non-zero elements in �th row ofA and B, respetively, and M�(i) and M� (j) are similarly de�ned for olumns of A and B, respetively. L�(�)nidenotes a set of indies in L� other than i, and similarly for other symbols. The variables m�=��i and m̂�=��i representpseudo posterior averages of �i (or �j) when the �th hek J� is left out, and the inuene of a newly added J� on �i(or �j), respetively (see [5, 10℄ for details). Using m̂��i, the posterior average m�i is obtained asm�i = tanh(F�i + X�2M�(i) ath(m̂��i)): (57)Let us investigate the ondition neessary for �nding the orret solution by iterating Eqs.(55) and (56) in the limitK;C ! 1. For this purpose, we �rst employ the gauge transformation �im��i ! m��i, �im̂��i ! m̂��i, �jm��j ! m��j ,�jm̂��j ! m̂��j and J� �Ql2L�(�) �lQj2L� (�) �j� ! 1. This deouples the quenhed random variables �i and �j fromEq.(55), as J� beomes independent of the quenhed variables, and the BP equations an be expressed asm̂��i = Yl2L�(�)nim��l Yj2L� (�)m��j ; m̂��j = Yl2L�(�)m��l Yk2L� (�)njm��k; (58)



12m��i = tanh(F �i �i + X�2M�(i)n� ath(m̂��i)); m��j = tanh(F �j �j + X�2M� (j)n� ath(m̂��j)): (59)The expression of the orret solution is also onverted to m��i = 1 and m��j = 1. Notie that any state whih isharaterized by dereasing absolute values jm��ij < 1 � " and jm��ij < 1 � " for an arbitrary �xed positive number" > 0 is attrated to a loally stable solution m̂��i � 0, m̂��j � 0, m��i = tanh(F �i �i) and m��j = tanh(F �j �j) for K !1in a single update sine produts on the right hand sides of Eq. (58) vanish. To provide a rough evaluation of theBOA for the orret (ferromagneti) solution m��i = 1 and m��j = 1, let us assume that m��i and m��j are randomlydistributed at 1 � "(K) and �(1� "(K)) with probabilities 1� p(K) and p(K), respetively, where "(K) and p(K)are small parameters to haraterize the BOA for a large K. Under this assumption, m̂��i and m̂��j are distributed at�(1� "(K))K+L � �(1� "(K))K with probability (1� (1� 2p(K))K+L)=2 � (1� (1� 2p(K))K)=2, respetively. Ifeither (1� "(K))K or (1� 2p(K))K is negligible, the absolute values of m��i and m��j beome suÆiently smaller than1, and therefore, the state is trapped in a loally stable solution in the seond iteration [19℄. This implies that theritial ondition is given by "(K) � O(1=K) and p(K) � O(1=K) for large K. In terms of the marosopi overlap,this means m0r � 1�O(1=K). VII. RELIABILITYUnlike most of the ommonly used ryptosystems whih are based on a deterministi deryption proedure, the ur-rent ryptosystem relies on a probabilisti deryption proess. The evaluation of deryption suess for an authorizeduser is therefore as important as assessing the level of robustness against attaks.In pratial senarios, deryption suess generally depends on the plaintext size. Analysis of �nite size e�ets inthe belief propagation based deryption proedure is diÆult. A prinipled alternative that we pursue here is basedon evaluating the average error exponent of the urrent ryptosystem; this provides the expeted error-level at anygiven orruption level when maximum likelihood deoding is employed, and therefore represents a lower bound to theexpeted error-rate. Moreover, the orruption levels employed are far below the ritial (thermodynami) transitionpoint, we therefore assume that belief propagation deryption will provide similar performane to maximum likelihooddeoding; learly, the lower bound will beome looser as we get lose to the dynamial transition point.The average blok error rate PB(p) (i.e., erroneous derypted plaintexts) takes the formPB(p) = e�ME(p) ; (60)where E(p) is the average error exponent per noise level p and M the length of the iphertext (in the partiular aseof LDPC odes we assume that short loops, whih ontribute polynomially to the blok error probability [17℄, havebeen removed). The quantity PB(p) represents the probability by whih andidate solutions f�; �g are drawn fromthe set of those satisfying equation (4) (with  = 1; authorized deryption) other than the ones orresponding to thetrue plaintext and orrupting vetor, � = � and � = �, respetively. To evaluate this probability we introdue theindiator funtion 	(�) = lim�!1 lim�1;2!�� hZ�11 (�;�1) Z�22 (�;�2)i�1=�2=� (61)where � = f�; �;Ag olletively denotes the set of quenhed variables. The power � 2 [0; 1℄ is used in onjuntionwith the partition funtionsZ1(�;�1) = X� 6=� X� 6=� e��1H(�;� ) Z2(�;�2) =X� X� e��2H(�;� ) (62)to provide an indiator funtion as explained below. The Hamiltonian H(�; � ) is given by (13) and the trae over spinvariables is restrited to those on�gurations satisfying equation (4). The above partition funtions Z1 and Z2 di�eronly in the exlusion of the true plaintext and orrupting vetor in the trae over variables; this enables us to identifyinstanes where the maximum likelihood deoder hooses solutions that do not math the true (quenhed variable)vetors. The Hamiltonian (13) is proportional to the magnetizations m�(�) = 1N Pi �i and m� (� ) = 1M Pi �i.Therefore, if the true plaintext and orrupting vetors have the highest magnetizations (deryption suess), theBoltzmann fator exp[��H(�; � )℄ will dominate the sum over states in Z2 in the limit � ! 1 and 	(�) = 0.Alternatively, if some other vetors � 6= � and � 6= � have the highest magnetizations of all andidates (deodingfailure), its Boltzmann fator will dominate both Z1 and Z2 so that 	(�) = 1. Separate temperatures �1;2 and powers�1;2 have been introdued to determine whether obtained solutions are physial or not (values of these parameterswill be obtained via the zero-entropy ondition).
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pFIG. 5: Reliability exponent (63) as a funtion of the orruption level p for the ase K = L = 2 and rates R = 1=2 (dashedline) and R = 1=4 (solid line).To derive the average error exponent E(p) we take the logarithm of the above indiator funtion averaged withrespet to the disorder variables � = f�; �;AgE(p) = limM!1 1M log h	(�)i� (63)The evaluation of (63) is similar in spirit to the analysis of setion IV. For details of this alulation we refer thereader to [18℄ where we also study and ompare the reliability and average error exponents of various low-densityparity-hek odes.Results desribing E(p) for authorised deryption of the ryptosystem [4℄ are presented in �gure 5 where we plotE(p) as funtion of the orruption level p for (K;C;L) = (2; 8; 2) (ode-rate 1/4) and (K;C;L) = (2; 4; 2) (ode-rate1/2) ryptosystems. It is lear that deryption errors deay very fast with the system size as we go away from theritial orruption level. For instane, in the ase of R = 1=4, using a orruption level of p = 0:13 (Shannon's limit isat p = 0:20) and a modest iphertext size of M = 1000 will result in a negligible blok error probability PB = 10�11.VIII. DISCUSSIONIn this paper we have analyzed several seurity issues related to the reently suggested publi-key ryptosystem of [4℄.The suggested ryptosystem is based on the omputational diÆulty of deomposing a dense matrix into a ombinationof dense and sparse matries (obeying ertain statistis) whih is a known hard omputational problem. We haveonsidered several attak senarios in whih unauthorized parties have aquired partial knowledge of one or more ofthe private keys and/or mirosopi knowledge of the plaintext and/or the `orrupting vetor'. The analysis followsstandard statistial mehanial methods of dealing with diluted spin systems within replia symmetri onsiderations.Of entral importane to the unauthorized deryption is the dynamial transition whih de�nes deryption suess inpratial situations. Our phase diagrams show the dynamial threshold as a funtion of the partial aquired knowledgeof the private key; they desribe regions with perfet- (m = 1) or partial/null deryption suess (jmj < 1).Publi-key ryptosystems play an important role in modern ommuniations. The inreasing demand for seuretransmission of information has lead to the invention of novel ryptosystems in reent years. To this extent andbased on the insight gained by statistial physis analyses of error-orreting odes a new family of ryptosystemswas suggested in [4℄. This paper onstitutes a �rst step in studying this lass of ryptosystems by onsidering thepotential suess of possible attaks.Several future researh diretions aimed at improving the seurity and reliability of this ryptosystem may in-lude studying the eÆay of irregular ode onstrutions and the use of novel deryption methods suh as surveypropagation [9℄ for pushing the dynamial transition point loser to the information theoreti limits.
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