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, 03.67.Dd, 05.50.+q,89.80.+hI. INTRODUCTIONAn important aspe
t in many modern 
ommuni
ation systems is the ability to ex
lude unauthorized parties fromgaining a

ess to 
on�dential material. Although 
ryptosystems in general have an extensive history, until fairlyre
ently they have been based on simple variations of the same theme: information se
urity among authorized partiesrelies on sharing a se
ret key whi
h is to be used for en
ryption and de
ryption of transmitted messages. While in thisway 
on�dentiality of the sent message may be se
ured, su
h systems su�er from the (obvious) drawba
k of non-se
urekey distribution.In 1978 Rivest, Shamir and Adleman �rst devised a way to resolve this problem whi
h led to the 
elebrated RSApubli
-key 
ryptosystem [1℄ (for histori
al a

ura
y, a similar system has been suggested years earlier in the BritishGCHQ but was kept se
ret). The idea behind publi
 key 
ryptosystems is to di�erentiate between the en
ryption- andde
ryption-keys; private key(s) are assigned to authorized users, for de
ryption purposes, while transmitting partiesonly need to know the mat
hing en
ryption (publi
) key [2℄. The two keys are related by a fun
tion whi
h generates theen
ryption me
hanism from the de
ryption key with low 
omputational 
osts, while the opposite operation (evaluatingthe de
ryption key from the en
ryption me
hanism) is 
omputationally infeasible. Su
h fun
tions are 
alled `one-way'or trap-door fun
tions; the RSA algorithm for instan
e, is based on the intra
tability of fa
torizing large integersgenerated by taking the produ
t of two large prime numbers.The proliferation of digital 
ommuni
ation in the last few de
ades has brought in a demand for se
ure 
ommuni-
ation leading to the invention of several other publi
-key 
ryptosystems, most notable of whi
h are the El-Gammal
ryptosystem (based on the Dis
rete Logarithm problem), systems based on ellipti
 
urves and the M
Elie
e 
ryp-tosystem (based on linear error-
orre
ting 
odes) [3℄. A 
ommon denominator of all publi
-key algorithms is the high
omputational 
omplexity of the task fa
ing the unauthorized user; this is typi
ally related to hard 
omputationalproblems that 
annot be solved in pra
ti
al time s
ales.A new publi
-key 
ryptosystem based on a diluted Ising spin-glass system has been re
ently proposed in [4℄.The suggested 
ryptosystem is similar in spirit to that of M
Elie
e and relies on exploiting physi
al properties ofthe Ma
Kay-Neal (MN) low-density parity-
he
k (LDPC) error-
orre
ting 
odes. In parti
ular, in the 
ontext ofMN 
odes it has been shown [4{6℄ that for 
ertain parameter values su

essful de
oding is highly likely, while forothers (parti
ularly when the number of parity-
he
ks per bit and the number of bits per 
he
k tend to in�nity) the`perfe
t' solution, des
ribing full retrieval of the sent message, admits only a very narrow basin of attra
tion; iterativealgorithmi
 solutions lead in this 
ase, almost 
ertainly, to a de
ryption failure. One 
an use these properties todevise an LDPC based 
ryptosystem [4℄. The narrow basin of attra
tion ensures that a random initialization of thede
ryption equations will fail to 
onverge to the plaintext solution while the naive approa
h of trying all possibleinitializations is 
learly doomed for a suÆ
iently large plaintext size. The `one-way' fun
tion relies on the hard
omputational task of de
omposing a dense matrix (the publi
 key) into a 
ombination of sparse and dense matri
es(private keys) [7℄.In this paper we examine the suggested 
ryptosystem from an adversary's viewpoint. We 
onsider an unauthorizedparty that has a
quired partial or full knowledge of one or more of the private keys, and/or of the message, and weevaluate the 
riti
al knowledge levels required for unauthorized de
ryption. In addition, we examine the de
ryptionreliability by authorized users due to the probabilisti
 nature of the 
ryptosystem.The paper is organized as follows: In the following se
tion we give an outline of the suggested 
ryptosystem. Inse
tion III we formulate unauthorized-de
ryption s
enarios with partial knowledge based on a statisti
al me
hani
al



2framework. In se
tion IV we derive the observable quantity that measures de
ryption su

ess of the unauthorized useras a fun
tion of the atta
k parameters and in se
tion V we examine various 
ases and present numeri
al results as wellas the related phase diagrams. In se
tions VI and VII we brie
y study the basin of attra
tion of the ferromagneti
solution, and the reliability of the de
ryption me
hanism (for authorized users), respe
tively. The impli
ation of theanalysis are dis
ussed in se
tion VIII.II. DESCRIPTION OF THE CRYPTOSYSTEMThe 
ryptosystem suggested in [4℄ is based on the framework of MN error-
orre
ting 
odes [5℄. An outline of theen
ryption/de
ryption pro
ess is as follows.A plaintext represented by � 2 f0; 1gN is en
rypted to the 
iphertext r 2 f0; 1gM (with M > N) using a predeter-mined generator matrix G 2 f0; 1g and a 
orrupting ve
tor � 2 f0; 1gM with P (�i) = p Æ�i;1 + (1 � p) Æ�i;0 for ea
h
omponent 1 � i �M ; the Krone
ker tensor Æab returns 1 when the arguments are equal (a = b) and zero otherwise.The generated 
iphertext is of the form: r = G� + � (mod 2) (1)The (M �N) matrix G together with the 
orruption rate p 2 [0; 1℄ 
onstitute the publi
 key.The en
ryption matrix G is 
onstru
ted by 
hoosing a dense matrixD (of dimensionalityM�M) and two randomly-sele
ted sparse matri
es A (of dimensionality M �N) and B (of dimensionality M �M) through G = B�1AD (mod2). The matri
es A and B are 
hara
terized by K and L non-zero elements per row and C and L non-zero elementsper 
olumn respe
tively. The resulting dense matrix G is modeled as being 
hara
terized by K 0 and C 0 non-zeroelements per row and per 
olumn respe
tively with K 0; C 0 ! 1 (while K 0=C 0 = N=M is �nite). In fa
t, the densematrix G is of an irregular form due to the inverse of the sparse matrix B as well as the produ
t taken with the densematrix D; we will model the matrix G by a regular dense matrix to simplify the analysis. The parameters K;C andL de�ne a parti
ular 
ryptosystem while the matri
es A, B and D 
onstitute the private key.The authorized user may obtain the plaintext from the re
eived 
iphertext r by taking the (mod 2) produ
tBr = A� +B�. Finding a set of solutions � and � su
h that the equationA� +B� = A� +B� (mod 2) (2)is true will lead to 
andidate solutions of the de
ryption problem (of whi
h the most probable one will be dete
teda

ording to a further sele
tion 
riterion). For parti
ular 
hoi
es of K and L, solving the above equation 
an bea
hieved via iterative methods whi
h have 
ommon roots in both graphi
al models and physi
s of disordered systemssu
h as Belief Propagation [5℄ Belief Revision [8℄ and more re
ently Survey Propagation [9℄; where state probabilitiesfor the de
rypted message bits P (�; � jr) are 
al
ulated by solving iteratively a set of 
oupled equations, des
ribing
onditional probabilities of the 
iphertext bits given the plaintext and vi
e versa. This problem is identi
al to thede
oding problem of a regular MN error-
orre
ting 
ode; for the expli
it iterative de
oding equations see equations (55-56) as well as [5, 10℄.The unauthorized user, on the other hand, fa
es the task of �nding the most probable solutions to the equationG� + � = G� + � (mod 2) : (3)The above de
ryption equation is e�e
tively identi
al to the de
oding problem of Sourlas error-
orre
ting 
odes [11℄,with the publi
 matrix G being dense. Most notably, in the 
ontext of Sourlas 
odes, �nding solutions to (3) is stronglydependent on initial 
onditions: for all initial 
onditions other than the plaintext itself, the iterative equations of BeliefPropagation will fail to 
onverge to the plaintext solution [4{6, 12℄ su
h that obtaining the 
orre
t solution for (3)without knowledge of the private key will be
ome infeasible. Obtaining the private keys by de
omposing G into A, Band D is known to be a hard 
omputational problem even if the values of K, C and L are known [7℄.We would like to point to the fa
t that there may exist more than one triplet of matri
es fA;B;Dg su
h thatG = B�1AD. with D being a dense matrix, �nding a set of matri
es A0, B0 and D0 su
h that their 
ombinationprodu
es G = (B0)�1A0D0 requires an exponentially diverging number of operations, with respe
t to the system size,making the de
omposition 
omputationally infeasible. For D = 1 (as was the original formulation in [4℄) �nding apair of sparse matri
es A0 and B0 su
h that G = (B0)�1A0 requires only a number of operations that is polynomial inN , and the 
ryptosystem is therefore not se
ure.Other advantages and drawba
ks of the new 
ryptosystem appear in [4℄.



3III. FORMULATION OF THE ATTACKAn essential ingredient of any 
ryptosystem is a 
ertain level of robustness against atta
ks. The robustness of the
urrent 
ryptosystem against atta
ks with no additional se
ret information has already been reported in [4℄. In thisse
tion we study the vulnerability of the new 
ryptosystem to various atta
ks, 
hara
terized by partial knowledge ofthe se
ret keys and/or the plaintext itself; the additional information manifests itself in a set of de
ryption equationssimilar to (2) in whi
h partial information of the se
ret keys (and plaintext) is used in 
onjun
tion with the publi
lyavailable information of (3).The 
umulative information provided by the di�erent sets of equations will potentially allow for a su

essful de
ryption.To this extent, knowledge of the matrix B is of utmost importan
e sin
e obtaining partial knowledge of the syndromeve
tor and equation (2) is only a

essible through de
ryption using the matrix B. Let us 
onsider that an unauthorizeduser has a
quired knowledge of a number of rows 
AM , 
BM and 
DM of the se
ret matri
es A, B and D (with
? 2 [0; 1℄). Relation (2) then provides 
M � minf
A; 
B ; 
DgM de
ryption equations (4) based on sparse matri
es.To analyze the atta
k we will thus from now on assume that a blo
k (
M �M) of all matri
es is known to theunauthorized user with 
 2 [0; 1℄. In this 
ase, the produ
ts PMj=1 Bijrj for i = 1; : : : ; 
M 
an be taken and theunauthorized user will arrive at the following de
ryption problem:private : (Â�)i + (B̂� )i = (Â�)i + (B̂�)i for rows i = 1; : : : ; 
M (4)publi
 : (G�)i + (I� )i = (G�)i + (I�)i for rows i = 1; : : : ;M (5)where we absorbed the matrix D using � ! D� and � ! D�; in pra
ti
e, after de
ryption, one will have to use ofthe inverted matrix D�1 to obtain the original plaintext. All solutions � and � will have to simultaneously satisfy(4) and (5). The matri
es Â and B̂ will be des
ribed by K and L non-zero elements per row. The average number ofknown non-zero elements per 
olumn in Â and B̂ will be denoted C and L, respe
tively. Sin
e 
 is the probability ofsele
ting a non-zero element in the known part of the private key it follows that C = 
C and L = 
L. For all 
olumnsj = 1; : : : ;M we will denote the number of non-zero elements in Â and B̂ by the random variables ~Cj(=P
Mi=1 Âij)and ~Lj(=P
Mj=1 B̂ij) whi
h are des
ribed by the distributions:P ( ~Cj ;C) = � C~Cj � 
 ~Cj (1� 
)C� ~Cj ~Cj = 0; : : : ; C (6)P (~Lj ;L) = � L~Lj � 
 ~Lj (1� 
)L�~Lj ~Lj = 0; : : : ; L (7)To fa
ilitate the statisti
al me
hani
al des
ription we will now repla
e the �eld f0; 1;+(mod 2)g by the more familiarIsing spin representation [11℄ f�1; 1;�g. Equations (4) and (5) will also be modi�ed: From the matri
es Â; B̂ and
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ryption. The s
enario we 
onsider here is thatunauthorized users have a
quired knowledge of 
M rows of the matrix. The (
M �M) blo
k may have ~Lj = 0; : : : ; L non-zeroelements per 
olumn for all j.



4G; I we 
onstru
t the binary tensors A = fAhi1���iK ;j1���jLi; 1 � i1 < � � � < iK � N; 1 � j1 < � � � < jL � Mg andG = fGhi1���iK0 ;ji; 1 � i1 < � � � < iK0 � N; 1 � j � Mg. The elements of these tensors are Ahi1:::iK ;j1:::jLi = 1if Â and B̂ have respe
tively a row in whi
h the elements fi1; : : : ; iKg and fj1; : : : ; jLg are all 1 and 0 otherwise.Similarly, Ghi1:::iK0 ;ji = 1 if G and I have respe
tively a row in whi
h the elements fi1; � � � ; iK0g and fjg are all 1and 0 otherwise. The notation we used to indi
ate tensor elements, hi1 : : : iKi, denotes that the sites i1; : : : ; iK areordered and di�erent.The fa
t that the number of non-zero elements per 
olumn in Â; B̂ and G; I , respe
tively, are ~Ci; ~Li and C 0; 1, forall 
olumns, will be imposed by the 
onstraints:Xi2���iK ;j1���jLAhi1���iK ;j1���jLi = ~Ci1 8i1 = 1; � � � ;M (8)Xi1���iK ;j2���jLAhi1���iK ;j1���jLi = ~Lj1 8j1 = 1; � � � ;M (9)Xi2���iK0 ;j Ghi1 ���iK0 ;ji = C 0 8i1 = 1; � � � ;M (10)Xi1���iK0 Ghi1���iK0 ;ji = 1 8j = 1; � � � ;M (11)To 
ompress notation in what follows we will denote the set of indi
es involved in the tensors A and G by �K =hi1 � � � iKi and 
L = hj1 � � � jLi.For the system des
ribed in (4-5) the mi
ros
opi
 state probability P (�; � ) 
an be written asP (�; � j�; �;A;G) = 1Z [�(�; � ; �; �;A) �(�; � ; �; �;G) �(�; �) �(� ; �)℄ e��H(�;� ) (12)(noti
e that the dependen
e on �; � is not expli
it, but through the re
eived ve
tor r) where Z is the partition fun
tionand H(�; � ) the energy: H(�; � ) = �F� NXi=1 �i � F� MXj=1 �j (13)with F� = 12 log 1�p�p� and F� = 12 log 1�p�p� . The �elds F� and F� represent prior knowledge of the statisti
s fromwhi
h the plaintext and the 
orrupting ve
tor are drawn, su
h thatP (�i) = (1� p�)Æ�i;1 + p�Æ�i;�1 p� 2 [0; 1℄ (14)P (�j) = (1� p� )Æ�j ;1 + p�Æ�j ;�1 p� 2 [0; 1℄ (15)The indi
ator fun
tions �(�; � ; �; �;A) and �(�; � ; �; �;G) restri
t the spa
e of solutions � 2 f�1; 1gN and � 2f�1; 1gM to those that obey equations (4) and (5):�(�; � ; �; �;A) = Y�K
L 241 + 12A�K
L( Yi2�K �i�i Yj2
L �j�j � 1)35 (16)�(�; � ; �; �;G) = Y�K0
L0 241 + 12G�K0
L0 ( Yi2�K0 �i�i Yj2
L0 �j�j � 1)35 (17)and �nally the terms �(� � �) 2 f0; 1g 
orrespond to�(�; �) = NYi=1 [(1� 
i) + 
iÆ�i;�i ℄ (18)�(� ; �) = MYi=1 [(1� di) + diÆ�i;�i ℄ (19)



5where the quen
hed variables 
i; dj 2 f0; 1g model prior knowledge of bits of the plaintext and the 
orrupting ve
torsu
h that if for some i the plaintext bit �i is known then the thermal variable �i takes the quen
hed plaintext value(and similarly for the 
orruption ve
tor �j and �j). For the distribution of 
i and dj we will 
onsiderP (
i) = w� Æ
i;1 + (1� w�) Æ
i;0 w� 2 [0; 1℄ (20)P (dj) = w� Ædj;1 + (1� w� ) Ædj ;0 w� 2 [0; 1℄ (21)The system des
ribed by (12) represents a set of variables intera
ting via multi-spin ferromagneti
 
ouplings of �nite
onne
tivity, represented by a 
ombination of matri
es, in the presen
e of the random �elds �iF� and �jF� . At � = 1(whi
h 
orresponds to the Nishimori temperature [13℄) we will evaluate the free energy per plaintext bitf = � limN!1 1�N hlogZi� (22)The ma
ros
opi
 observable we are interested in 
al
ulating is the overlap m = limN!1 1N Pi �i�̂i between the plain-text and the Bayes Marginal Posterior Maximizer (MPM) estimate of the plaintext �̂i � signP�i=� �i p(�ijr) wherep(�ijr) is the mi
ros
opi
 state probability (12). Disorder averages hi� are taken over the probability distributions(14,15,20,21) and over the distribution of the tensors A and G obeying the 
onstrains (8-11):hF (A)iA;f ~Ci;~Lig = 1N XfA�K
Lg NYi=1*Æ 24 X�K
L=i2�K A�K
L � ~Ci35+P ( ~Ci)� MYj=1*Æ 24 X�K
L=j2
LA�K
L � ~Lj35+P (~Lj) F(A) (23)hF (G)iG = 1N 0 XfG�K0
L0 g NYi=1 Æ 24 X�K0
L0=i2�K0 A�K0
L0 � C 035� MYj=1 Æ 24 X�K0
L0=j12
L0 G�K0
L0 � 135F(G) (24)where N and N 0 are the 
orresponding normalisation 
onstants.The parameters w� ; w� ; F� ; F� and 
 des
ribe the atta
k 
hara
teristi
s.IV. THE FREE ENERGY AND DECRYPTION OBSERVABLESThe 
al
ulation generally follows that of [6, 10℄. To perform the various disorder averages we begin by invoking therepli
a identity hlogZi = limn!0 1n loghZni and making the gauge transformations �i ! �i�i, �i ! �i�i, A�K
L !A�K
LQi2�K �iQj2
L �j and G�K0
L0 ! G�K0
L0 Qi2�K0 �iQj2
L0 �j . This will allow us to disentangle the variablesf�; �g from expressions involving the tensors A and G in (16,17). Repla
ing the Æ fun
tions in (23,24) by their integralrepresentations allows us to perform the tensor summations, leading to:h�A(�; � );�G(�; � ) i == 1NN 0 I QNi=1 dZidXi(2�)2N I QMj=1 dYjdVj(2�)2M� NYi=1DZ�( ~Ci+1)i X�(C0+1)i EP ( ~Ci) MYj=1DY �(~Lj+1)j V �2j EP (~Lj)� e( 12 )nPnm=0Ph�1����mi 1K! (PNi=1 Zi��1i �����mi )K 1L!(PMj=1 Yj��1j �����mj )L� e( 12 )nPnm=0Ph�1����mi 1K0!(PNi=1Xi��1i �����mi )K0(PMj=1 Vj��1j �����mj ) (25)



6In the above expression we 
an now identify the following order parametersq�1����m = NXi=1 Zi��1i � � ���mi r�1����m = NXi=1 Xi��1i � � ���mi (26)t�1����m = MXj=1 Yj��1j � � � ��mj u�1����m = MXj=1 Vj��1j � � � ��mj (27)whi
h we insert in (25) via suitably de�ned Æ fun
tions (giving rise to the Lagrange multipliers q̂�1����m , r̂�1����m ,t̂�1����m and û�1����m). To pro
eed with the 
al
ulation one needs to assume a 
ertain order parameter symmetry forthe above quantities and their 
onjugates for all m > 1. The simplest su
h assumption renders all repli
a m-tuplesequivalent and all order parameters within this repli
a symmetri
 s
heme need only depend on the number m. Thise�e
t 
an be des
ribed by the introdu
tion of suitably de�ned distributions, the moments of whi
h 
ompletely de�nethe m-index order parametersq�1����m = q Z dx �(x) xm q̂�1����m = q̂ Z dx �̂(x) xm (28)r�1����m = r Z dy �(y) ym r̂�1����m = r̂ Z dy �̂(y) ym (29)t�1����m = t Z dx �(x) xm t̂�1����m = t̂ Z dx �̂(x) xm (30)u�1����m = u Z dy  (y) ym û�1����m = ûZ dy  ̂(y) ym (31)where all integrals are over the interval [�1; 1℄. The Nishimori 
ondition (� = 1), whi
h 
orresponds to MPMde
oding [14℄, also ensures that this simplest repli
a-symmetri
 s
heme is suÆ
ient to des
ribe the thermodynami
allydominant state [13, 15℄. Furthermore, it is worthwhile mentioning that extending the repli
a symmetri
 
al
ulationto in
lude the one-step repli
a symmetry breaking ansatz is unlikely to modify the lo
ation of the transition pointsidenti�ed under the repli
a-symmetri
 ansatz, as has been re
ently shown in a similar system [16℄. Using the aboveansatz we perform the 
ontour integrals in (25), and tra
e over the spin variables; then, in the limit n! 0 we obtain:��f = Extr��CJ1a[�; �̂℄� CLK J1b[�; �̂℄� C 0J1
[�; �̂℄� C 0K 0 J1d[ ;  ̂℄ (32)+CKJ2a[�; �℄ + C 0K 0 J2b[�;  ℄ + J3a[�̂; �̂℄ + CK LLJ3b[�̂;  ̂℄���CK + C 0K 0� log 2where the extremization is taken over the distributions de�ned in (28-31) and the various integrals J?? are given byJ1a[�; �̂℄ = Z dxdx̂ �(x)�̂(x̂) log(1 + xx̂) J1b[�; �̂℄ = Z dydŷ �(y)�̂(ŷ) log(1 + yŷ) (33)J1
[�; �̂℄ = Z dxdx̂ �(x)�̂(x̂) log(1 + xx̂) J1d[ ;  ̂℄ = Z dydŷ  (y) ̂(ŷ) log(1 + yŷ) (34)J2a[�; �℄ = Z [ KYk=1 dxk �(xk) LỲ=1 dy` �(y`)℄ log(1 +Yk xk Ỳ y`) (35)J2b[�;  ℄ = Z dy  (y) [ K0Yk=1 dxk �(xk)℄ log(1 + yYk xk) (36)



7J3a[�̂; �̂℄ = Z C0Y
0=1 d�̂(y
0)8<:(1� 
)C *logX�=�[(1� 
) + 
Æ�;1℄e�F���Y
0 (1 + y
0�)+
;�+*Z [ ~CY
=1 d�̂(x
)℄*logX�=�[(1� 
) + 
Æ�;1℄e�F���Y
 (1 + x
�)Y
0 (1 + y
0�)+
;�+ ~C9=; (37)J3b[�̂;  ̂℄ = Z dy  ̂(y) 8<:(1� 
)L*logX�=�[(1� d) + dÆ�;1℄e�F���(1 + y�)+d;�+*Z [ ~LỲ=1 d�̂(x`)℄*logX�=�[(1� d) + dÆ�;1℄e�F��� Ỳ(1 + x`�)(1 + y�)+d;�+~L9=; (38)where C = CX~C=0P ( ~C;C) ~C L = LX~L=0P (~L;L) ~L (39)Averages denoted h� � �i ~C and h� � �i~L are over the densities (6) and (7) with ~C = 1; : : : ; C and ~L = 1; : : : ; L. Fun
tionaldi�erentiation of (32) with respe
t to the densities of (28-31) results in the following saddle point equations:�̂(x̂) = Z [K�1Yk=1 dxk�(xk) LYl=1 dyl�(yl)℄ Æ "x̂� K�1Yk=1 xk LYl=1 yl# (40)�̂(ŷ) = Z [ KYk=1 dxk�(xk) L�1Yl=1 dyl�(yl)℄ Æ "ŷ � KYk=1 xk L�1Yl=1 yl# (41)�̂(x̂) = Z dy (y) [K0�1Yk=1 dxk�(xk)℄ Æ24x̂� yK0�1Yk=1 xk35 (42) ̂(ŷ) = Z [ K0Yk=1 dxk�(xk)℄ Æ 24ŷ � K0Yk=1xk35 (43)and �(x) = w� Æ[x� 1℄ (44)+(1� w�)C * ~C Z [ C0Y
0=1 d�̂(ŷ
0) ~C�1Y
=1 d�̂(x̂
)℄*Æ0�x� tanh[�F�� + ~C�1X
=1 ath(x̂
) + C0X
0=1 ath(ŷ
0)℄1A+�+ ~C�(x) = w� Æ[x� 1℄ (45)+(1� w� )L *~LZ d ̂(ŷ) [~L�1Yl=1 d�̂(ŷl)℄*Æ0�x� tanh[�F� � + ~L�1Xl=1 ath(x̂l) + ath(ŷ)℄1A+�+~L�(x) = w� Æ[x� 1℄ (46)+(1� w�) Z C0�1Y
0=1 d�̂(y
0)8<:(1� 
)C *Æ0�x� tanh[�F�� + C0�1X
0=1 ath(ŷ
0)℄1A+�+*Z [ ~CY
=1 d�̂(x̂
)℄*Æ0�x� tanh[�F�� + ~CX
=1 ath(x̂
) + C0�1X
0=1 ath(ŷ
0)℄1A+�+ ~C9>=>;



8 (x) = w� Æ[x� 1℄ (47)+(1� w� )8><>:(1� 
)L hÆ[x� tanh(�F� �)℄i� +*Z [ ~LYl=1 d�̂(x̂l)℄*Æ0�x� tanh[�F� � + ~LXl=1 ath(x̂l)℄1A+�+~L9>=>;In general, the 
oupled set of equations (40)-(47) are to be solved numeri
ally. Among the set of � that satisfyequations (4) and (5) we 
hoose the MPM estimate of the plaintext �̂i = signP�i=� �i p(�ijr) = signh�ii (thermalaverage) by using Nishimori's 
ondition (or � = 1) [13℄. Then, the overlap m = limN!1 1N Pi �i�̂i be
omesm = w� + (1� w�) Z dh P (h) sign(h) (48)P (h) = Z C0Y
0=1 d�̂(ŷ
0)℄8<:(1� 
)C *Æ0�h� tanh[�F�� + C0X
0=1 ath(ŷ
0)℄1A+�+ *Z [ ~CY
=1 d�̂(x̂
)℄*Æ0�h� tanh[�F�� + ~CX
=1 ath(x̂
) + C0X
0=1 ath(ŷy0)℄1A+�+ ~C9>=>; (49)from whi
h it 
an be seen that the perfe
t (ferromagneti
) solution m = 1 is a
hieved when w� = 1 (
ompleteknowledge of the solution) or when �̂(x) = Æ[x � 1℄. This also implies that all densities involved in (32) �(x) =f�(x); : : : ;  ̂(x)g a
quire the form �(x) = Æ[x� 1℄ giving a free energy of the formfFM = �C 0K 0 � CK� log 2� CK�F� h�i� (50)The physi
al meaning of the terms w? Æ[x�1℄ in (44-47) is that the a
quired mi
ros
opi
 knowledge gives a probabilisti
weight at the ferromagneti
 state. The state m = 0 is obtained if w� = F� = 0 and �̂(x) = �̂(x) = Æ[x℄ (paramagneti
solution). V. PHASE DIAGRAMSIn this se
tion we obtain numeri
al solutions for various atta
k s
enarios. In all 
ases studied we assume anunbiased plaintext (p� = 1=2; F� = 0); for brevity we refer to the remaining bias parameter, the 
orruption leveldenoted p� in previous se
tions, simply as p. All experiments have been 
arried out using a regular 
ryptosystem withK = L = 2, being the original 
ryptosystem suggested in [4℄. In prin
iple, one 
an use any set of regular or irregularmatri
es, provided one identi�es the 
orresponding dynami
al transition point. However, having been thoroughlystudied previously, the 
urrent 
onstru
tion serves as a parti
ularly suited ben
hmark.Solving the 
oupled equations (40-47) we typi
ally observe that for suÆ
iently small values of p the ferromagneti
state m = 1 is the only stable solution whereas at a 
orruption value that marks the dynami
al (spinodal) transitionps, an exponential number of solutions with m 6= 1 are 
reated (either suboptimal ferromagneti
 or paramagneti
,depending on the values of (K;C;L)). For all p > ps perfe
t de
ryption will be diÆ
ult to obtain. This transitionalso de�nes the 
orruption level below whi
h an unauthorized atta
ker, that have a
quired partial information of these
ret keys, will be su

essful.We will 
on
entrate on two main atta
ks: (i) The atta
ker has partial knowledge of the keys (primarily the matrixB). (ii) The atta
ker has partial mi
ros
opi
 knowledge of the plaintext and/or 
orruption ve
tor.In �gure 2 we present a phase diagram des
ribing regions with perfe
t (m = 1) or partial/null (jmj < 1) de
ryptionsu

ess as evaluated from solving equations (32) and (48). We plot the dynami
al transition 
orruption level ps asa fun
tion of the private key fra
tional knowledge 
 for di�erent values of w� and w� (we have set p� = 1=2 whi
h
orresponds to an `unbiased' plaintext). In the limit 
 = 0 (i.e., no knowledge of the matri
es), while m = 1 may be astable solution, the de
ryption dynami
s is fully dominated by jmj < 1 states. For 
 = 1 the 
ryptosystem des
ribesa spe
i�
 MN 
ode and perfe
t de
ryption 
an o

ur below ps.
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FIG. 2: Phase diagram of the spinodal 
orruption-rate against the fra
tional knowledge of the private key 
 for a (K;C;L) =(2; 6; 2) 
ryptosystem for (w�; w� ) = (0; 0) (solid line) and (0:2; 0:2) (dashed line). Mi
ros
opi
 knowledge of the plaintext andthe 
orrupting ve
tor enlarges the perfe
t de
ryption area, as expe
ted.
The intera
tion between the sparsely (4) and densely (5) 
onne
ted de
ryption 
omponents is non-linear and non-trivial; however, as a �rst approximation one 
an view the fra
tional matrix knowledge 
 as 
hanging the e�e
tivesparse 
omponent, whi
h is the main 
ontributor in the de
ryption pro
ess. To that end 
 will have a dire
t impa
ton the e�e
tive 
ode rate N=(M
), the average 
onne
tivity 
C and the 
onne
tivity distribution. It is 
lear thatat an e�e
tive 
ode rate 1 (
 = N=M = 1=3 in the 
ase of the parameters used in �gure 2) de
ryption is even nottheoreti
ally feasible. The reason �gure 2 points to a possibility of de
ryption below this value is due to additionalinformation brought in by the dense 
omponents we ignored in this simplisti
 des
ription.We also examined the e�e
t of prior mi
ros
opi
 knowledge of the plaintext/
orrupting ve
tor (w� ; w� > 0) on thearea of perfe
t de
ryption; whi
h 
learly in
reases with the knowledge provided, as expe
ted. Also this 
an be viewedas a 
hange to the e�e
tive 
ode rate. This time, the partial mi
ros
opi
 knowledge of either plaintext or 
orruptingve
tor (or both) serves to redu
e the e�e
tive number of variables and hen
e the 
ode rate itself; lower 
ode rate willtypi
ally allow for perfe
t de
ryption in worse 
orruption 
onditions as 
an be seen in �gure 2
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m = 1 m = 1

jmj < 1 jmj < 1
FIG. 3: Phase diagrams of the spinodal 
orruption-rates against the fra
tional knowledge of the private key 
 for a (K;C;L) =(2; 6; 2) 
ryptosystem. Left pi
ture: (w�; w� ) = (0:1; 0) (solid line) and (0; 0:1) (dashed line). Right pi
ture: (w�; w� ) = (0:2; 0)(solid line) and (0; 0:2) (dashed line). For suÆ
iently large 
-values mi
ros
opi
 knowledge of the 
orrupting ve
tor be
omesmore important to the unauthorized user than that of the plaintext; this e�e
t be
omes more emphasized as the fra
tion ofknown bits in
reases.
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pm = 1

jmj < 1
FIG. 4: Left: Comparison between two di�erent 
ryptosystems with (K;C;L) = (2; 3; 2) (solid line) and (K;C;L) = (2; 4; 2)(dashed line). Smaller C-values 
orrespond to higher rate 
odes and lead to smaller regions in parameter spa
e where perfe
tde
ryption is possible. Right: Overlap m as fun
tion of the 
orrupting-rate p obtained from equation (48) for a (K;C;L) =(2; 6; 2) 
ryptosystem and along the line 
 = 0:8 for (w�; w� ) = (0:2; 0) (solid line) and (w�; w� ) = (0; 0) (dashed line).To understand the impli
ation of these results let us assume using the 
ryptosystem des
ribed in �gure 2 at a
orruption level 
hosen of p = 0:1 (whi
h is 
hosen mu
h smaller that ps to in
rease the de
ryption reliability). Inthis 
ase knowing about 70% of the matri
es (se
ret keys) will be suÆ
ient for de
rypting the 
iphertext. True, thereis still a need to know the dense matrix D�1 for extra
ting the plaintext itself and the exposed fra
tion of the se
retkey is signi�
ant; but still there is a weakness that may be exploited by a skillful atta
ker.To 
ompare the importan
e of prior mi
ros
opi
 knowledge of plaintext versus that of the 
orrupting ve
tor weplotted in �gure 3 the phase diagram for (w� ; w� ) = f(0:1; 0); (0:2; 0)g and (w� ; w� ) = f(0; 0:1); (0; 0:2)gwhi
h des
ribetwo 
omplementary s
enarios (left and right �gures respe
tively). The e�e
t is quite similar, taking into a

ount theinformation provided by the two ve
tors (the plaintext is unbiased but of length N while the 
orruption ve
tor isbiased but of lengthM). For high 
-values mi
ros
opi
 knowledge of the 
orrupting ve
tor be
omes more informativethan that of the plaintext, an e�e
t whi
h be
omes more emphasized as the fra
tion of known bits in
reases.In �gure 4 we 
ompare two 
ryptosystems with (K;C;L) = (2; 4; 2) and (K;C;L) = (2; 3; 2) for (w� ; w� ) = (0; 0).We see that smaller C values (i.e., higher 
ode rates) will redu
e the area of perfe
t de
ryption. On the one hand,this will in
rease the se
ret information required for perfe
t de
ryption at ea
h 
orruption level; on the other hand itwill redu
e the 
orruption level that 
an be used and will expose the 
ryptosystem to atta
ks based on an exhaustivesear
h of 
orruption ve
tors.The se
urity of a 
ryptosystem may be 
ompromised without a full re
overy of the plaintext; also partial re
overy ofthe plaintext may pose a signi�
ant threat. To study the e�e
t of partial knowledge of the matri
es and plaintext onthe ability to obtain high overlap between the de
rypted 
iphertext and plaintext, we 
ondu
ted several experiments,an example of whi
h appears in �gure 4. Here we show the overlap obtained m as fun
tion of the 
orruption-rate pfor a spe
i�
 
ryptosystem (K;C;L) = (2; 6; 2) along the line 
 = 0:8 and for two di�erent 
hoi
es of w� . Prior tothe dynami
al transition points both 
iphertexts are de
rypted perfe
tly; this 
orresponds to 
orruption and partialknowledge levels below the solid and dashed lines of �gure 2.Above the dynami
al transition point, new suboptimal solutions are 
reated and the overlap value obtained dete-riorates with the 
orruption level. However, the two di�erent 
hoi
es of w�-values lead to two di�erent deteriorationpatterns: while overlap in the system with no mi
ros
opi
 knowledge of the plaintext deteriorates very rapidly, thesystem with w� = 0:2 provides solutions with high overlap values even if the 
orruption is high. As a 
onsequen
e, wesee that the e�e
t of mi
ros
opi
 knowledge goes beyond a shift in the dynami
al transition point; it also in
uen
esde
ryption beyond that point (in fa
t, it goes even beyond Shannon's limit).VI. BASIN OF ATTRACTIONThe in
reasingly narrowing basin of attra
tion for the ferromagneti
 solution, as the 
onne
tivity values K;C andL ! 1, is 
entral to the se
urity level o�ered by the 
ryptosystem. The e�e
t has been reported in a number ofpapers in the statisti
al physi
s [4, 12℄ and information-theory [5℄ literature; in this se
tion we will show that the



11basin of attra
tion shrinks as the 
onne
tivity in
reases, to a value of O(1=K) as K;C !1.To provide a rough evaluation of the basin of attra
tion (BOA) for obtaining the ferromagneti
 solution we fo
us onEq. (2) in the limit K;C !1. BOA 
learly depends on the algorithm used; here we fo
us on the Belief Propagation(BP) algorithm, whi
h is empiri
ally known to be the best pra
ti
al algorithm for solving problems of the 
urrenttype. As far as we explored, no other s
hemes su
h as the naive mean �eld and the Belief Revision algorithms exhibitbetter performan
e than BP, whi
h implies that our 
onsideration on BP is at least of a 
ertain pra
ti
al signi�
an
e(Survey Propagation [9℄ has not yet been tested for these systems).Let us represent prior knowledge on plain text � and noise � (in Ising spin representation) as the prior probabilitiesP oi (�i) = exp(F�i�i)2 
osh(F�i) ; (51)P oj (�j) = exp(F�j�j)2 
osh(F�j) ; (52)respe
tively. Here, the parameters F�i and F�j express 
on�den
e of the prior knowledge per variable, whi
h is ageneralization of the global prior terms F� ; F� used earlier. Noti
e that this representation in
ludes the 
ase that
ertain bits are 
ompletely determined by setting jF�ij(or jF�j j) ! 1, enabling us to 
over various s
enarios. Inthe following, we assume that the fra
tion of 
ompletely determined bits is less than 1 when N;M ! 1. Givenprior probabilities (51) and (52), and the indi
ator fun
tion �(�; � ; �; �;A) whi
h is the alternative to parity 
he
kequation (2), the Bayesian framework provides the posterior probabilityP post(�; � ) = �(�; � ; �; �;A)QNi=1 P oi (�i)QMj=1 P oj (�i)Z ; (53)where Z is the normalization 
onstant. Using Eq. (53), one 
an determine the best possible a
tion for minimizingthe expe
ted value of a given 
ost fun
tion [14℄. As a 
ost fun
tion, we sele
t here the Hamming distan
e betweenthe 
orre
t plain text � and its estimates �̂, L(�̂; �) = N �PNi=1 �̂i�i; this sele
tion naturally o�ers the maximizer ofposterior marginal (MPM) de
oding �̂i = sign(m�i ) as the optimal estimation strategy, wherem�i = X�;� �i P post(�; � ); (54)is the average of spin �i over the posterior probability and sign(x) = 1 for x > 0 and �1, otherwise.Computational 
ost for an exa
t evaluation of the spin average (54) in
reases as O(2N+M ), whi
h implies thatMPM de
oding is pra
ti
ally diÆ
ult. An alternative approa
h is to resort to an approximation su
h as BP. In the
urrent 
ase, this means to iteratively solving the 
oupled equations (for details of the derivation see [5, 10℄)m̂��i = J� Yl2L�(�)nim��l Yj2L� (�)m��j ; m̂��j = J� Yl2L�(�)m��l Yk2L� (�)njm��k; (55)m��i = tanh(F�i + X�2M�(i)n� ath(m̂��i)); m��j = tanh(F�j + X�2M� (j)n� ath(m̂��j)); (56)where J� � �Ql2L�(�) �lQj2L� (�) �j�, L�(�) and L� (�) are the sets of indi
es of non-zero elements in �th row ofA and B, respe
tively, and M�(i) and M� (j) are similarly de�ned for 
olumns of A and B, respe
tively. L�(�)nidenotes a set of indi
es in L� other than i, and similarly for other symbols. The variables m�=��i and m̂�=��i representpseudo posterior averages of �i (or �j) when the �th 
he
k J� is left out, and the in
uen
e of a newly added J� on �i(or �j), respe
tively (see [5, 10℄ for details). Using m̂��i, the posterior average m�i is obtained asm�i = tanh(F�i + X�2M�(i) ath(m̂��i)): (57)Let us investigate the 
ondition ne
essary for �nding the 
orre
t solution by iterating Eqs.(55) and (56) in the limitK;C ! 1. For this purpose, we �rst employ the gauge transformation �im��i ! m��i, �im̂��i ! m̂��i, �jm��j ! m��j ,�jm̂��j ! m̂��j and J� �Ql2L�(�) �lQj2L� (�) �j� ! 1. This de
ouples the quen
hed random variables �i and �j fromEq.(55), as J� be
omes independent of the quen
hed variables, and the BP equations 
an be expressed asm̂��i = Yl2L�(�)nim��l Yj2L� (�)m��j ; m̂��j = Yl2L�(�)m��l Yk2L� (�)njm��k; (58)



12m��i = tanh(F �i �i + X�2M�(i)n� ath(m̂��i)); m��j = tanh(F �j �j + X�2M� (j)n� ath(m̂��j)): (59)The expression of the 
orre
t solution is also 
onverted to m��i = 1 and m��j = 1. Noti
e that any state whi
h is
hara
terized by de
reasing absolute values jm��ij < 1 � " and jm��ij < 1 � " for an arbitrary �xed positive number" > 0 is attra
ted to a lo
ally stable solution m̂��i � 0, m̂��j � 0, m��i = tanh(F �i �i) and m��j = tanh(F �j �j) for K !1in a single update sin
e produ
ts on the right hand sides of Eq. (58) vanish. To provide a rough evaluation of theBOA for the 
orre
t (ferromagneti
) solution m��i = 1 and m��j = 1, let us assume that m��i and m��j are randomlydistributed at 1 � "(K) and �(1� "(K)) with probabilities 1� p(K) and p(K), respe
tively, where "(K) and p(K)are small parameters to 
hara
terize the BOA for a large K. Under this assumption, m̂��i and m̂��j are distributed at�(1� "(K))K+L � �(1� "(K))K with probability (1� (1� 2p(K))K+L)=2 � (1� (1� 2p(K))K)=2, respe
tively. Ifeither (1� "(K))K or (1� 2p(K))K is negligible, the absolute values of m��i and m��j be
ome suÆ
iently smaller than1, and therefore, the state is trapped in a lo
ally stable solution in the se
ond iteration [19℄. This implies that the
riti
al 
ondition is given by "(K) � O(1=K) and p(K) � O(1=K) for large K. In terms of the ma
ros
opi
 overlap,this means m0
r � 1�O(1=K). VII. RELIABILITYUnlike most of the 
ommonly used 
ryptosystems whi
h are based on a deterministi
 de
ryption pro
edure, the 
ur-rent 
ryptosystem relies on a probabilisti
 de
ryption pro
ess. The evaluation of de
ryption su

ess for an authorizeduser is therefore as important as assessing the level of robustness against atta
ks.In pra
ti
al s
enarios, de
ryption su

ess generally depends on the plaintext size. Analysis of �nite size e�e
ts inthe belief propagation based de
ryption pro
edure is diÆ
ult. A prin
ipled alternative that we pursue here is basedon evaluating the average error exponent of the 
urrent 
ryptosystem; this provides the expe
ted error-level at anygiven 
orruption level when maximum likelihood de
oding is employed, and therefore represents a lower bound to theexpe
ted error-rate. Moreover, the 
orruption levels employed are far below the 
riti
al (thermodynami
) transitionpoint, we therefore assume that belief propagation de
ryption will provide similar performan
e to maximum likelihoodde
oding; 
learly, the lower bound will be
ome looser as we get 
lose to the dynami
al transition point.The average blo
k error rate PB(p) (i.e., erroneous de
rypted plaintexts) takes the formPB(p) = e�ME(p) ; (60)where E(p) is the average error exponent per noise level p and M the length of the 
iphertext (in the parti
ular 
aseof LDPC 
odes we assume that short loops, whi
h 
ontribute polynomially to the blo
k error probability [17℄, havebeen removed). The quantity PB(p) represents the probability by whi
h 
andidate solutions f�; �g are drawn fromthe set of those satisfying equation (4) (with 
 = 1; authorized de
ryption) other than the ones 
orresponding to thetrue plaintext and 
orrupting ve
tor, � = � and � = �, respe
tively. To evaluate this probability we introdu
e theindi
ator fun
tion 	(�) = lim�!1 lim�1;2!�� hZ�11 (�;�1) Z�22 (�;�2)i�1=�2=� (61)where � = f�; �;Ag 
olle
tively denotes the set of quen
hed variables. The power � 2 [0; 1℄ is used in 
onjun
tionwith the partition fun
tionsZ1(�;�1) = X� 6=� X� 6=� e��1H(�;� ) Z2(�;�2) =X� X� e��2H(�;� ) (62)to provide an indi
ator fun
tion as explained below. The Hamiltonian H(�; � ) is given by (13) and the tra
e over spinvariables is restri
ted to those 
on�gurations satisfying equation (4). The above partition fun
tions Z1 and Z2 di�eronly in the ex
lusion of the true plaintext and 
orrupting ve
tor in the tra
e over variables; this enables us to identifyinstan
es where the maximum likelihood de
oder 
hooses solutions that do not mat
h the true (quen
hed variable)ve
tors. The Hamiltonian (13) is proportional to the magnetizations m�(�) = 1N Pi �i and m� (� ) = 1M Pi �i.Therefore, if the true plaintext and 
orrupting ve
tors have the highest magnetizations (de
ryption su

ess), theBoltzmann fa
tor exp[��H(�; � )℄ will dominate the sum over states in Z2 in the limit � ! 1 and 	(�) = 0.Alternatively, if some other ve
tors � 6= � and � 6= � have the highest magnetizations of all 
andidates (de
odingfailure), its Boltzmann fa
tor will dominate both Z1 and Z2 so that 	(�) = 1. Separate temperatures �1;2 and powers�1;2 have been introdu
ed to determine whether obtained solutions are physi
al or not (values of these parameterswill be obtained via the zero-entropy 
ondition).
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pFIG. 5: Reliability exponent (63) as a fun
tion of the 
orruption level p for the 
ase K = L = 2 and rates R = 1=2 (dashedline) and R = 1=4 (solid line).To derive the average error exponent E(p) we take the logarithm of the above indi
ator fun
tion averaged withrespe
t to the disorder variables � = f�; �;AgE(p) = limM!1 1M log h	(�)i� (63)The evaluation of (63) is similar in spirit to the analysis of se
tion IV. For details of this 
al
ulation we refer thereader to [18℄ where we also study and 
ompare the reliability and average error exponents of various low-densityparity-
he
k 
odes.Results des
ribing E(p) for authorised de
ryption of the 
ryptosystem [4℄ are presented in �gure 5 where we plotE(p) as fun
tion of the 
orruption level p for (K;C;L) = (2; 8; 2) (
ode-rate 1/4) and (K;C;L) = (2; 4; 2) (
ode-rate1/2) 
ryptosystems. It is 
lear that de
ryption errors de
ay very fast with the system size as we go away from the
riti
al 
orruption level. For instan
e, in the 
ase of R = 1=4, using a 
orruption level of p = 0:13 (Shannon's limit isat p = 0:20) and a modest 
iphertext size of M = 1000 will result in a negligible blo
k error probability PB = 10�11.VIII. DISCUSSIONIn this paper we have analyzed several se
urity issues related to the re
ently suggested publi
-key 
ryptosystem of [4℄.The suggested 
ryptosystem is based on the 
omputational diÆ
ulty of de
omposing a dense matrix into a 
ombinationof dense and sparse matri
es (obeying 
ertain statisti
s) whi
h is a known hard 
omputational problem. We have
onsidered several atta
k s
enarios in whi
h unauthorized parties have a
quired partial knowledge of one or more ofthe private keys and/or mi
ros
opi
 knowledge of the plaintext and/or the `
orrupting ve
tor'. The analysis followsstandard statisti
al me
hani
al methods of dealing with diluted spin systems within repli
a symmetri
 
onsiderations.Of 
entral importan
e to the unauthorized de
ryption is the dynami
al transition whi
h de�nes de
ryption su

ess inpra
ti
al situations. Our phase diagrams show the dynami
al threshold as a fun
tion of the partial a
quired knowledgeof the private key; they des
ribe regions with perfe
t- (m = 1) or partial/null de
ryption su

ess (jmj < 1).Publi
-key 
ryptosystems play an important role in modern 
ommuni
ations. The in
reasing demand for se
uretransmission of information has lead to the invention of novel 
ryptosystems in re
ent years. To this extent andbased on the insight gained by statisti
al physi
s analyses of error-
orre
ting 
odes a new family of 
ryptosystemswas suggested in [4℄. This paper 
onstitutes a �rst step in studying this 
lass of 
ryptosystems by 
onsidering thepotential su

ess of possible atta
ks.Several future resear
h dire
tions aimed at improving the se
urity and reliability of this 
ryptosystem may in-
lude studying the eÆ
a
y of irregular 
ode 
onstru
tions and the use of novel de
ryption methods su
h as surveypropagation [9℄ for pushing the dynami
al transition point 
loser to the information theoreti
 limits.
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