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Light emitting diodes (LEDs) have made tremendous progress in last 15 years and
have reached to a point where they are reinventing and redefining artificial lighting.
The efficiency and better control over light quality parameters have been the key
attributes of LEDs that makes them better than the existing lighting solutions.
Nevertheless, in their own realm they suffer from decrease in efficiency at higher
currents, i.e. the “efficiency droop” phenomenon. Thus, a better understanding
of the mechanisms leading to droop is of utmost importance. Moreover, the full
potential in terms of light quality, i.e. colour rendering index (CRI) and correlated
colour temperature (CCT) that can be offered by these devices can be further
improved with existing or alternative schemes and device configurations.

In this thesis, a novel phosphor covered approach is investigated towards im-
proving the CRI for indoor lighting applications. A monolithic di-chromatic LED
emitting at blue and cyan wavelengths is used to pump a green-red phosphor mixture
and a warm (CCT ∼ 3400 K) white light with a superior CRI of 98.6 is achieved.
An alternate phosphor free solution to achieve warm white light emission is also
studied. These monolithic di-chromatic QW devices emitting at blue and green
wavelengths under electrical pumping demonstrated tuneable emission from cool
(CCT ∼ 22000 k) to warm (CCT ∼ 5500 K) white light. A maximum CRI of 67,
which is the highest value demonstrated for such devices till date to the best of my
knowledge, is also achieved.

On the subject of efficiency of LEDs, temperature dependence of LEE and
IQE of commercial InGaN/GaN based blue LED is studied in light of a step-wise
processing procedure based on the ABC-model to determine these quantities. A
decrease in both IQE and LEE with temperature is noted. On the other hand,
efficiency decrease in the investigated AlGaInP based red LEDs under pulsed current
shows a shift in the onset of efficiency decrease towards higher current values with
decreasing pulse width with < 1% duty cycle. For sub-nanosecond pulses a linear
relation between applied peak current and peak output power is obtained. These
observations indicate device self-heating to be the major contributing factor for
efficiency decrease in AlGaInP LEDs.

Keywords: Internal quantum efficiency; Light extraction efficiency; Self-
heating; Phosphor-free; high pulsed current; temperature dependence; CRI; CCT;
Stealth dicing; sapphire dicing; ABC model; AlGaInP; monolithic LED
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1.1 Light emitting diodes

1.1 Light emitting diodes

Inorganic light emitting diodes (LEDs) are currently the most efficient light sources

that are used for indoor and outdoor lighting applications. These devices are funda-

mentally monochrome light emitters based on two material systems, InGaN/GaN

and AlGaInP. Emission across the whole visible spectrum from blue (based on

InGaN) to red (based on AlGaInP) can be achieved depending upon the composition

of indium (In) and aluminium (Al) in the respective alloy. The monochromatic

(emission spectrum width of about 20-50 nm) nature of emission of LEDs has made

targeted lighting efficient and versatile with better control on light parameters. On

the other hand, to generate white light either a broad band source emitting across

the visible spectral region or a combination of two or more monochromatic sources

of appropriate wavelength is needed. Given the narrow emission width of the LEDs,

white light emission is achieved using a few different approaches. The approaches

of interest are (a) monolithic, (b) phosphor-converted LED (pc-LED). The ability

of these sources to render true colours of an object is of critical importance for

adequate and appropriate visual appearance. While a source with a colour render-

ing index (CRI) of 70-80 is suitable for outdoor applications, CRI around 90-95 is

needed for indoor lighting, and much improvement in colour rendition is needed

for more critical applications like art galleries, museums, hospitals, and exhibitions.

The commercially available and simplest of the mentioned approaches is pc-LED

involving a short wavelength blue/violet pump LED absorbed by a single or mix

of phosphors for broad band emission creating white light due to colour mixing.

Though maximum CRI of 99.1 [1] has been demonstrated using phosphors with

emission band in red, green and blue spectral region, the issues due to the use of

phosphor to achieve broadband emission reduces the overall efficiency of the source,

which is further decreased with each added phosphor. The unavoidable Stoke’s

losses further reduces the efficiency along with inconsistent light quality due to

different degradation times of each phosphor. Thus better solutions are needed to

improve the efficiency of these sources by reducing the number of phosphors needed

while maintaining acceptable CRI. Next, the monolithic approach is a phosphor
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1.1 Light emitting diodes

free one. A monolithic LED emits at more than one wavelength to generate white

light. These polychromatic devices are based on InGaN/GaN material system. The

first di-chromatic devices by Damilano et al. [2] in 2001 had MQW with different

In composition thus emitting in blue and yellow spectral range with a maximum

efficiency of 0.5% and correlated colour temperature (CCT) of ∼ 8000 K. Since then

different approaches involving different shape and size nanostructures, QW light

converter, dichroic filter, DBR resonant-cavity, nGaN/GaN/AlGaN dot-in-a-wire

core–shell white LEDs on Si substrate, wafer bonding of blue and green QW LED

[3] has been used to achieve efficient white light emission. All these approaches

unlike the MQWs involves complex fabrication processes. To date, monolithic LEDs

are far behind their counterparts, phosphor based white LEDs, in their efficiency,

CRI and CCT. These parameters are limited due to degradation of material quality

and increased polarization effects at higher In incorporation. Nevertheless, the

approach is attractive due to promise of higher efficiency and better light quality

that can be achieved with advancements in growth technology.

Apart from lighting, LEDs are used in automotive, indoor non-white lighting,

signage, displays and many more applications. For the devices used in these

applications, irrespective of the emission wavelength, internal quantum efficiency

is one of the most critical parameter. The highly efficient InGaN/GaN devices

emit in the blue spectral range. However, they suffer from the phenomenon of

efficiency droop, i.e. reduction of efficiency with increasing current density. The

physical processes leading to this droop are still under investigation. The Auger

recombination, carrier leakage and carrier delocalistion along with device self-heating

are different mechanisms that has been proposed. A similar decrease in efficiency as

a function of current is also associated with AlGaInP based LEDs. In this case, due

to different material properties, carrier leakage is considered to be the dominant

mechanism leading to reduction of efficiency. Nonetheless, further experimental

studies accompanied by theoretical estimations are needed to better understand the

physical mechanisms for efficiency droop in blue LEDs and decrease of efficiency in

red LEDs.
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1.2 Organisation of thesis

1.2 Organisation of thesis

In this thesis, first the white light sources using monolithic and pc-LED approach

with improved light quality parameters within the realm of individual approach are

demonstrated. Next, behaviour of efficiency as a function of current is investigated

experimentally for InGaN/GaN (blue) and AlGaInP (red) LEDs under different

operating conditions. This thesis is organised into 7 chapters which includes a brief

introduction (chapter 1) and conclusion (chapter 7).

In chapter 2, a brief review on history of III-V LEDs, schemes for white light

generation and efficiency droop mechanisms is presented.

In chapter 3, correlated colour temperature (CCT) and spectral behaviour of

di-chromatic LEDs with blue-green quantum well (QW) under continuous wave

current and pulsed pumping conditions is discussed. Highest colour rendering index

(CRI) of 67 from these phosphor-free devices is demonstrated. Furthermore, the

‘stealth dicing’ of sapphire, a substrate used for the growth of InGaN/GaN based

optical devices, using a femtosecond Ti:Sapphire laser (800 nm) is demonstrated.

A novel hybrid approach, comprising of dual wavelength LED and two phosphors

to generate warm white light with CRI of 98.6 and tuneable colour characteristics

is demonstrated in chapter 4.

In chapter 5, using a processing procedure based on the ABC-model, LEE and

IQE of blue LEDs from experimental EQE is determined and their temperature

dependence is discussed. It is shown that the model fits EQE (I) over 13 K - 400 K.

Furthermore, temperature dependence of LEE is demonstrated and mechanisms

involved are discussed.

The efficiency behaviour of AlGaInP LEDs under high current density 4.5

kA/cm2 in the pulsed regime is presented in chapter 6. The efficiency reduction

is attributed primarily to active region overheating, dominating over the electron

overflow and the Auger recombination. Furthermore, a low LEE is recognised as

the bottleneck for overall efficiency improvement
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2.1 Development of Light Emitting Diodes

2.1 Development of Light Emitting Diodes

Artificial lighting has been a hallmark of human evolution ever since wooden fire,

wig lamps, wax candles to tungsten filament bulbs and lately fluorescent tubes.

These light sources serve their purpose well with a wide range of applications in

different areas: for example, sodium discharge lamps are used for street lighting

because of their poor colour rendering and high efficiency, fluorescent lamps –

for illuminating work place and incandescent bulbs – for lighting houses. These

light sources are either based on “pyroluminescence”, i.e. radiation from gas or

vapour when excited by high temperature or “incandescence”, which is emission of

electromagnetic radiation when a material is heated to elevated temperatures.

Recently, solid state lighting (SSL) a new technology has entered the area of

lighting. SSL relies upon light emitting diodes for generation of on-demand light

of different colours. The colour selectivity is an important feature of LEDs since

the direct electronic transitions based on the energy bandgap of the semiconductor

material responsible for availability of discrete emission provides an unprecedented

control on perceived emission. More importantly, white light for general illumination,

due to the narrowband emission of LEDs, is achieved by exciting red, green and

blue parts of the emission spectrum using different LEDs emitting each colour or

by a broadband phosphor emitting in green red region pumped by a blue/UV LED.

The discrete emission is possible due to two material systems InGaN and AlGaInP.

A brief development history of these materials is presented in the subsequent

subsections.

AlGaInP is a quaternary alloy of the III-phosphide material system. In the

mole fraction configuration of ((AlxGa1−x)0.5In0.5P ) it is lattice matched to GaAs

thus allowing for superior epitaxial growth. Emission tunability in the red-yellow

spectral range is available with this alloy from ∼ 650 nm to ∼ 560 nm by varying

the aluminium (Al) concentration (x) from 0% (i.e. InGaP) to 53% with associated

direct bandgap energy difference of ∼ 1.9eV to ∼ 2.2 eV. Beyond 2.2 eV i.e > 53%

Al content the material becomes indirect due to crossover of Γ and X valleys leading

to X valley having conduction band minimum at lower energy w.r.t Γ valley.
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2.1 Development of Light Emitting Diodes

On the other hand InxGa1−xN alloy belongs to III-Nitride material system.

The workhorse of current day SSL, the highly efficient blue LED is based on InGaN.

This material system can potentially cover the entire visible spectrum while keeping

a direct bandgap all along for indium (In) composition of x = 0 with ∼ 3.5eV (∼

365 nm) energy bandgap of GaN to x = 1 (at least theoretically) emitting at ∼ 1.8

µm in near infra-red (NIR) with the energy bandgap of InN ∼ 0.7eV.

2.1.1 Brief history of AlGaInP LEDs

Electronic lighting was introduced in the early 20th century when H.J Round first

observed emission of light from silicon carbide (SiC) on applying electrical power in

1907. This phenomenon is now known as “electroluminescence”(EL). He observed

yellow, green, orange and blue emissions on application of voltage ranging from 10V

to 110V (Figure 2.1) [1].

Fig. 2.1 Electroluminescence report by H.J. Round [1]

Losev, working on these SiC rectifying diodes, reported that emission mechanism

for these devices is more ‘similar to cold electronic discharge’ and not incandescence

[2, 3]. SiC has an indirect bandgap and thus the electrical to optical efficiency is

very low, and the best SiC light-emitting diode (LED) with 0.03% of maximum

efficiency was ever reported [4]. The introduction of III-V compound semiconductors
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2.1 Development of Light Emitting Diodes

in the 1950’s paved the way for the first gallium arsenide (GaAs) based p-n junction,

epitaxially grown, infrared LEDs in 1962 [5–7]. In the same year, N. Holonyak

demonstrated the first visible (red) gallium arsenic phosphide (GaAsP) LED. He

engineered the bandgap of GaAs (1.424 eV), which is suitable for emission in the

infra-red region at about 870 nm, to emit at wavelengths lower than 870 nm by

incorporating phosphorus (P) by vapour phase epitaxy (VPE) [8]. In the following

years, it was found that radiative efficiency of GaAsP diodes decreases rapidly due

to direct – indirect transition of the bandgap with more than 44% phosphor content

[9–11] and high density of dislocations due to large lattice mismatch between a

GaAsP epilayer and a GaAs substrate [12].

In the 1960’s, a few groups were investigating gallium phosphide (GaP) as well.

First reports of GaP p-n junction LEDs came in 1963-1964 [13, 14]. Later, red and

green GaP-based LEDs doped with isoelectronic impurities zinc (Zn) and oxygen

(O), and nitrogen (N), respectively, were realized [15].

Another material under investigation for emission was aluminium gallium indium

phosphide (AlGaInP). First reports of emission on this material system came in

1985 and 1986 by various groups in Japan [15]. Initially with GaInP (50% Ga and

In) as the active region material with a lattice matched GaAs emission at 650 nm

was achieved. Later, with development of MOCVD technology for growing double

heterostructure and QW for Al containing materials emission at shorter than 650

nm was achieved. LEDs based on this material have undergone various structural

improvements which includes MQW [16] and strained MQW active regions [17, 18],

transparent p-type GaP window layer [19] and wafer bonding with transparent GaP

substrate [20], and truncated inverted chip geometry by Krames et al [21] to make

them more efficient. These LEDs have subsequently improved and is the only highly

efficient material to emit in the red-yellow region of emission spectrum.

2.1.2 Brief history of InGaN/GaN LEDs

The first p-n homojunction GaN blue LED with 1% efficiency was reported by

Akasaki et al. in 1992 [22]. The road to this first demonstration started with efforts

to grow Gallium Nitride (GaN) in 1968 at Radio Corporation of America (RCA) by
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2.2 Post growth singulation technology for LEDs grown on Sapphire

Maruska. He chose sapphire due to its robust nature to grow GaN, and the first

growth of single crystal GaN films was reported by him in 1969 [23]. These films

without any intentional doping were n-type. Zn and magnesium (Mg) were used to

achieve p-type doping. The first Mg-doped metal-insulator-semiconductor (MIS)

diodes were developed by Pankove and his team in 1972 [15]. In these devices Mg

as dopant was not exhibiting p-type conductivity, and the emission was related

to impact ionization and tunnelling [15]. After much effort Akasaki and his team

demonstrated p-type conductivity in GaN films by using Mg as p-type dopant,

which led to blue p-n junction LED in 1992. Low energy electron beam irradiation

(LEEBI) and post-growth annealing at high temperatures were reported as methods

to activate Mg dopants in these films by Amano et al. and Nakamura et al. [24, 25].

Most blue and UV LEDs that we see today have active region of InGaN. Metal

organic vapour phase epitaxy (MOCVD) was used to grow the first high-quality

indium gallium nitride (InGaN) layer on GaN with sapphire as substrate in 1992 by

Nakamura et al [26]. This technique is what is used currently to grow InGaN/GaN

structures. This growth mechanism led to the first double heterostructure (DH)

(p-GaN/n-InGaN/n-GaN) blue LED in 1993 [27]. Subsequently, single quantum well

(SQW) and multiple quantum well (MQW) LEDs based on InGaN/GaN established

this material system to be used as high brightness and high power blue LEDs.

Lately, 60% of wall-plug efficiency (WPE) for blue LED fabricated using thin GaN

technology at OSRAM was reported [28]. The performance of III-V visible LED

with traditional light sources summarising their development since 1962 until the

last decade has been reported by [29].

2.2 Post growth singulation technology for LEDs

grown on Sapphire

To date most of the GaN LEDs are grown on a c-plane sapphire wafer. These

LEDs needs to singulated after growth and fabrication process for encapsulation

which projects a need to break sapphire along the streets between devices on the

wafer. However, sapphire is the hardest material with Mohr’s index of ∼ 9, only
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2.2 Post growth singulation technology for LEDs grown on Sapphire

next to diamond. This makes sapphire dicing extremely challenging in terms of

speed of production and yield i.e. working devices post singulaion process. Two

basic techniques have been used to perform this task a) diamond sawing and b)

laser dicing. While sawing with a diamond blade was the first technology to be

used, it greatly reduces the wafer chip density primarily due to wide kerf width

typically around 100µm - 200µm. Since, it is a mechanical and contact process it

also produces a lot of heat, debris, and chipping. On the other hand laser dicing

is a non-contact process based on interaction of matter and radiation [30]. Laser

dicing can further be differentiated as (a) laser scribing and (b) stealth dicing.

Laser scribing is in principle an ablation process and is currently the workhorse

technology for industrial scale LED/LD singulation. Nanosecond (ns) pulse lasers

emitting in UV are traditionally used to scribe a line [31–34] either at the back

of the wafer with 355 nm laser or with a 266 nm laser from top, i.e the side with

devices, of the wafer. The back of the wafer is scribed with 355 nm ns laser or with

a 266 nm ns laser from top, i.e. the side with devices, of the wafer. However, due

to generation of heat a cooling system is required [35].

On the other hand, the “stealth dicing” is a technique, proposed by Hamamatsu

Photonics K.K., Japan, where a tightly focused laser beam modifies the material

inside the wafer. Pulse widths of ns and ps [36] has been shown to dice sapphire

using stealth dicing. A periodic thermal modification of the material inside of

a small volume inside the wafer by ns and ps pulses induces the needed damage

due to thermal ablation. This technique is also limited due to low repetition rate

of Q-switched lasers and a need for cooling system. On the other hand when

performing stealth dicing with fs pulses the material modification is induced with

high intensity pulses by spending only nano joules of energy [37]. The short duration

of pulse greatly reduces the damage of the thin gold conductors induced by heat

around the affected zone since the pulse duration is smaller than the time scale for

ion-electron relaxation time [38]. This also gives additional benefits of high speed

processing with modern day Ti-Sapphire lasers with repetition rate of ∼ 80 MHz

[39] along with an eye safe environment for operating personnel operating the laser.
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2.3 Theory

Semiconductors are materials which offer partial resistance to the flow of current or

there electrical conductivity is between conductors and insulators. This conductivity

profile can be modified with appropriate doping of the material. Addition of an

acceptor impurity or the donor impurity atom to the otherwise intrinsic material

make them p- or n-type materials respectively while keeping them electrically

neutral. When such a p and n type semiconductors are combined a p-n junction

is formed. At the junction, due to diffusion of holes and electron from p-type and

n-type material respectively to the n- and p-type material, ionized acceptors and

donors are left creating a region depleted of carrier i.e. depletion region with a

built-in electric field preventing further diffusion. Such a device conducts when

external field greater than the built-in field is applied in a forward bias configuration

and will not conduct in a reverse bias configuration. For the point of view of LEDs,

the optical process of emission and absorption which are confined to this region

due to the availability of both holes and electrons are of interest. However, the

probability of optical processes to occur depends on the type of bandgap of the

semiconductor.

2.3.1 Energy bandgap

From atomic model theory we know that electrons can reside in one of the discrete

energy levels around the nucleus. Quantum numbers, n, l, m, and s are used

to properly define the energy level, orientation, magnetic moment and spin of

the electron respectively. When atoms combine together to form a crystal their

outermost shell splits and combine to form bands, called conduction and valence

band, where each band has number of discrete energy levels closely placed within

the band. In the conduction band (CB) the electrons can freely move around in

the crystal and conduct current, and in the valence band (VB) the movement of

electrons are restricted as a result of bonding among the atoms. The ability of

conducting current in a semiconductor is attributed to electrons and holes. Holes are

created only in the valence band due to absence of electrons from the quantum state,
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and are the charge carriers in the valence band. Like electrical conduction, optical

process also requires the two charge carriers, electron and holes, for generation of

radiation from a semiconductor material

For optical purposes the orientation of bands in the k-space and energy difference

between these two bands, i.e. the conduction band and valence band is of critical

importance. Based on position of bands in the E k-space we can have a direct and

indirect bandgap semiconductor.

A Direct bandgap semiconductor (Figure 2.2) is one for which the conduction

band minimum and valence band maximum occurs at the same k-value and the

momentum is conserved where, momentum (−→p ) is a vector given by

−→p = h

2π

−→
k (2.1)

where, −→
k is propagation vector of electron wave and is related to de-Broglie’s

wavelength λb,
−→
k = 2π/λb

Whereas, when CB minimum and VB maximum does not occur for the same

k-value in the E-k space for a semiconductor material it is known as indirect bandgap

material (Figure 2.2).

Fig. 2.2 Schematic for position of conduction band and valence band in E-k space
for a direct and indirect band gap semiconductor.
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2.3.2 Radiative and Non-radiative Recombination

Optoelectronic devices work on the principle of electron-hole recombination resulting

in emission of photon. An electron occupying a quantum state in the CB will

eventually lose its energy and combine with a hole in the VB. This transition

of electron can be accompanied with or without emission of photon depending

primarily on the bandgap of the semiconductor material.

Under non-equilibrium conditions, i.e. when electrons are excited from the VB

to the CB by external source, optical or electric, creating electron-hole pairs with

excess hole concentration in the VB and excess electron concentration in the CB,

recombination of these charge carriers can be radiative or non-radiative.

2.3.2.1 Radiative recombination

When electrons and holes recombine with emission of a photon, the process is called

radiative recombination. As recombination process is governed by principles of

conservation of energy and momentum, such a direct transition is possible in direct

bandgap semiconductors. In such semiconductors, mostly because of the same value

of momentum vector k, for both the CB minima and the VB maxima, a momentum

is conserved during the transition and since the transition is from the higher energy

CB to the lower energy VB, emission of a photon (Figure 2.3(b)) of frequency, ν,

proportional to the bandgap energy, conserves the energy.

E = hν (2.2)

where,

E = energy gap

h = Planck’s constant

ν = frequency of photon

2.3.2.2 Non-radiative recombination

When recombination of electron and hole is not accompanied by emission of a photon

it is called non-radiative recombination. Such recombination is due to indirect
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Fig. 2.3 Carrier recombination mechanisms (a) deep level (SRH) non-radiative
recombination, (b) Radiative recombination and, (c) non-radiative Auger recombi-
nation.

transition of electron from the CB to the VB. This is the dominant process of

recombination in indirect bandgap semiconductors. For this recombination, energy

is dissipated in the form of lattice vibrations due to the difference in momentum

of the CB and VB which is compensated by lattice vibrations known as phonons

(Figure 2.4).

Spontaneous emission by radiative recombination is the preferred process for

LEDs. However, non-radiative recombination can never be eliminated completely

under practical circumstances. While non-radiative recombination is dominant over

the other in indirect bandgap semiconductors, they are always competing with

each other in direct bandgap semiconductors. The probability of recombination is

determined by carrier radiative and non-radiative lifetime, τr and τnr, respectively,

according to the equation

τ−1
R = τ−1

r + τ−1
nr (2.3)

where, τR = Total Recombination lifetime

τr = Radiative recombination lifetime

τnr = Non-radiative recombination lifetime
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Fig. 2.4 Phonon vibrations in lattice.

For direct bandgap semiconductors τr ∼ τnr (approximately of same order),

hence there is almost an equal probability of having both type of recombination.

For radiative recombination to dominate the condition is, τr « τnr. To achieve

this condition various physical mechanism that lead to non-radiative transitions,

which are - a) Auger recombination, b) Deep level recombination and c) surface

recombination needs to be reduced. For Auger recombination (Figure 2.3(c)), the

energy released during the transition leads to either excitation of an electron higher

up in the CB or pushing a hole deep into the VB. These newly excited carriers then

thermalise to release this energy. The probability of Auger recombination is carrier

concentration dependent according to the equation [15] -

RAug = Cn3 (2.4)

where, C = Auger coefficient.

This is considered as one of the main mechanism of efficiency droop in LEDs

[40]. Deep level recombination or Shockley-Read-Hall (SRH) recombination occurs

due to presence of energy levels within the forbidden gap. These energy levels occur

due to the presence of defects, like interstitial defects, point defects, impurity atoms,

or dislocations, in the semiconductor crystal. The energy structure of these defects

is different from bulk crystal and lies within the forbidden gap. These intermediate

energy levels act as efficient recombination centres by trapping the charge carriers
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(Figure 2.3(a)). They are more efficient if they are close to the middle of the

bandgap, so the position of these levels can greatly affect this recombination type.

Along with SRH, surface of semiconductor also contributes to non-radiative

transitions due to the presence of dangling bonds can either create energy states

in the forbidden gap or the re-arrangement of these bonds can substantially alter

the electronic band structure at the surface. In both cases the conditions there are

unwarranted energy states which acts as recombination centres and decreases τnr ,

thus promoting non-radiative recombination.

The SRH recombination rate and surface recombination probability depending

on carrier concentration is illustrated mathematically as

RSRH = An (2.5)

where, A = SRH and surface recombination coefficient

2.4 Parameters to Access LED performance

2.4.1 Efficiency

Emission of photons due to recombination of electron and holes in LEDs occurs only

in the active region (AR) of these devices. The AR of most modern day devices

have double-heterostructure’s (DH) and contains single or multiple quantum wells

(QWs), embedded between the n- and p- doped layers (schematics are shown in

chapters 3, 4 and 6) which confines the carriers due to their smaller bandgap thus

greatly increasing the probability of interaction between the electrons and holes.

The efficiency of this internal recombination process in the AR is termed as Internal

Quantum Efficiency (IQE) and is a critical parameter to gauge the performance of

the device.

IQE (ηint) is defined as the ratio of the number of photons generated in the AR

in unit time to the number of electrons injected in the AR in unit time.

ηint = Pint/hν

I/e
(2.6)
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where, Pint = Optical power generated inside the AR,

I = injection current,

e = charge of an electron,

h = Planck’s constant

Since the optical power referred to in the above expression cannot be measured

directly through experiments, it has to be estimated using indirect methods i.e.

using theoretical models such as ABC-model (section 2.6). However, on the other

hand optical power emitted in the free space from a LED is a measurable quantity

along with the injected current. Thus, a total optical efficiency termed as External

Quantum Efficiency (EQE) of a device can be determined.

EQE (ηex) is defined as the ratio of the number of photons emitted in unit time

to the number of electrons injected in unit time.

ηex = Pout/hν

I/e
(2.7)

where, Pout = Optical power emitted to free space, and the rest of the parameters

are as in (2.6)

In an ideal scenario, where all injected carriers reach the active region without

any losses, no carrier is lost to non-radiative recombination and all photons generated

in the active region are emitted to the free space, the IQE and EQE would be the

same. However, in real devices even under the assumption of unit injection efficiency

(ηinj), i.e. the fraction of injected carriers (electrons and holes) available in the AR

for recombination; photon emitted in the AR will be lost before they could reach

free space. This loss in extraction of photons to free space is due to several physical

mechanisms. First and foremost, according to Snell’s law, due to high refractive

index of the semiconductor the critical angle for the emitted light to escape is quite

small thus most of the generated light experiences the phenomenon of total internal

reflection. Next, the emitted light and the totally internally reflected light can be

absorbed at the metal contacts, by the substrate (depending on the absorption

spectrum), confinement layers, and/or within the active region. The re-absorbed

light, apart from the active region, is most likely to create a electron-hole which
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will recombine non-radiatively thus reducing the light extraction. Such losses are

accounted for under the light extraction efficiency(LEE) parameter.

LEE (ηext) is defined as the ratio of number of photons emitted to free space per

unit time to number of photons generated in AR per unit time.

ηext = Pout/hν

Pint/hν
= Pout

Pint

(2.8)

where, Pout = Optical power emitted to free space,

Pint = Optical power generated inside the AR

Another important parameter of performance is wall plug efficiency or power

efficiency (WPE) and is defined as the ratio of the output optical power to input

electrical power.

ηW P E = Pout

I × V
(2.9)

where, Pout = Optical power emitted to free space,

I = Injected current,

V = Voltage drop across the forward biased LED at current I

2.4.2 Light Quality parameters

Photometry is study of response of human eye to light or perception of light. This

restricts the wavelength range of interest to the visible spectrum (from 380 nm to

700 nm).

The basic photometric quantity is luminous intensity, measured in candelas (cd).

Luminous intensity is defined as: “a monochromatic light source emitting an optical

power of (1/683) watt at 555 nm into the solid angle of 1 steradians (sr) has a

luminous intensity of 1 candela (cd)” [15].

Luminous flux (φ)is optical power as perceived by human eye, measured in lumen

(lm). Illuminance is luminous flux per unit area, measured in lux. Luminance is

related to surface area and is defined as “the ratio of the luminous intensity emitted

in a certain direction (measured in cd) divided by the projected surface area in that

direction (measured in m2)” [15].

33



2.4 Parameters to Access LED performance

The Photometric quantities are estimated from the radiometric units using

luminosity function or a photopic eye sensitivity function, V(λ) introduced by CIE

in 1931 [15]. For example, luminous flux from radiant flux can be obtained as

follows [41]:

φ = 683.002 lum

W

∫ 780nm

380nm
φe(λ)V (λ)dλ (2.10)

where, φe(λ) = radiant flux or optical power

V (λ) = eye sensitivity function, and

683.002 is a pre-factor and the maximum luminous flux possible at the λ = 555 nm

V(λ) was later modified to accommodate for the initial underestimation of eye

sensitivity in CIE 1931 V(λ) for blue-violet region . V(λ) function describes the

human eye response within the wavelength range of 380 – 780 nm for any spectral

power distribution.

Luminous efficacy: The above discussion paves the way for describing another

type of efficiency for LEDs, known as luminous efficacy. It is measured in the

units of lumen per watt and is described as the ratio of luminous flux (φ) to input

electrical power (IV)

Luminous efficacy = φ

IV
(2.11)

Another parameter, luminous efficiency, which is described as the ratio of

luminous flux to radiant flux, is useful to gauge the perceptually useful light emission

from the emitted spectral power distribution function S(λ). The perception of light

is a subject of human vision. Human eyes have different cone cells broadly sensitive

to red, green and blue region of the visible spectrum under ordinary or daytime

light conditions. These cells allows for the colour distinction which is subjective

because the sensation of colour from the same source vary with each individual.

Towards this, the colorimetric response is quantified and standardised by CIE with

colour matching functions x̄(λ), ȳ(λ), z̄(λ) (fig. 2.6).
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Fig. 2.5 CIE 1931 x,y chromaticity diagram. Wavelength (λ) on the boundary
represented on the monochromatic colours. White colour is obtained at the centre
of the diagram (adapted from [15]).

Colorimetry gives the qualitative and quantitative description of colour based

on human perception. In 1931, to quantify colour perception, CIE described a

colour diagram for a 2 degree observer, also known as chromaticity diagram (Figure

2.5). It is a two dimensional diagram with x and y coordinates depicting the colour

of the light source. There is also a third z coordinate, which is removed after the

normalization of tristimulus values (X,Y,Z), to obtain these x, y and z coordinates,

for a standard 2D representation of the diagram. Together, these coordinates give

a unique description of the chromaticity of the light source and are calculated as

follows:

x = X

X + Y + Z
(2.12)

y = Y

X + Y + Z
(2.13)
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z = Z

X + Y + Z
= 1 − x − y (2.14)

Where the tristimulus values X,Y and Z quantifies the stimulation response of

the red, green and blue cone cells for a given spectrum. These values are obtained

from inner product of the colour matching functions x̄(λ), ȳ(λ), z̄(λ), and spectral

power distribution function S(λ) as given below:

X =
∫

x̄(λ)S(λ)d(λ) (2.15)

Y =
∫

ȳ(λ)S(λ)d(λ) (2.16)

Z =
∫

z̄(λ)S(λ)d(λ) (2.17)

300 400 500 600 700 800 900

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

z( ) 
y( ) = V( ) 

 

 

C
ol

or
 m

at
ch

in
g 

fu
nc

tio
ns

x(
)

y(
)

z(
)

Wavelength (nm)

x( ) 

1931 CIE x y z colour 
matching functions

Fig. 2.6 Colour matching functions x̃(λ),ỹ(λ),z̃(λ) CIE 1931.

36



2.4 Parameters to Access LED performance

2.4.2.1 Correlated colour temperature (CCT)

Colour temperature may look like a strange parameter, however to quantify colour,

a relationship between colour and temperature based on blackbody radiation is

established. Planckian blackbody radiation spectrum, characterised by temperature

of a black-body, is used as independent standard to quantify white light source with

a single parameter of temperature (in kelvins). The intensity of the radiation from

the blackbody is a function of wavelength and temperature, and was determined in

1900 by Max Planck [15] given by the relation

I(λ, T ) = 2hc2

λ5
1

ehc/λkBT − 1 (2.18)

According to Wein’s law, at a given temperature the radiation spectrum of a

black-body has a unique wavelength corresponding to its peak intensity as given by

the relation

λpeak = 2880 µm K

T
(2.19)

As the temperature of the blackbody increases the radiation pattern shifts from

the infra-red to the visible spectrum. The chromaticity coordinates corresponding

to radiation pattern at different temperatures can be calculated using the equations

2.12 - 2.14, which constitute Planckian locus, as shown in figure 2.7. A, B, C, E

and D65 are the standard illuminants defined by CIE (1978) and are depicted in

figure 2.7 along with their colour temperatures.

Correlated colour temperature or CCT is used for the light source that doesn’t

fall on the planckian locus. “Correlated colour temperature is the temperature of

the Planckian radiator whose perceived colour most closely resembles that of a

given stimulus at the same brightness and under specified viewing conditions [42]”.

On the uniform chromaticity diagram (CIE 1960) the chromaticity point with a

similar CCT, given by the isothermal lines perpendicular to the planckian locus

(as shown in figure 2.8), determines the colour or chromaticity of the light source

under test.
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from [15]).

2.4.2.2 Colour rendering index (CRI)

Colour rendering index (CRI) is an important parameter quantifying the capability

of rendering colours of the object illuminated by a light source [43]. The maximum

rating value of CRI has been defined as 100 for the planckian blackbody reference

source that is assumed to have perfect colour rendering capabilities. CRI of a

test white light source is determined by comparing it with colour rendering of a

reference source. The reference source can be a planckian black body radiator

with same colour temperature (if chromaticity coordinates of test source falls on

the planckian locus) and CCT (if they fall off the planckian locus) or a standard

reference illuminant can be used [43]. According to the CIE guide, general CRI

(Ra) (calculated according to the relation 2.20) is determined using the special CRIi

(calculated according to the relation 2.21) of the 8 standard test colour samples .

The 8 test samples are subset of the larger set of colour samples introduced by Prof.
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Albet H. Munsell in the Munsell colour system.

CRI = 1
8

8∑
i=1

CRIi (2.20)

CRIi = 100 − 4.6∆E∗
i (2.21)

where, ∆E∗
i represents colour difference of a test sample when illuminated with

a reference and a test source. The pre-factor 4.6 is for Ra of 60, for more information

on calculation of CRI please refer to chapter 19 in [15] and the references within.

Apart from the eight samples, to further gauge the colour rendering ability of the

test source, 6 more test samples can be used to supplement the initial assessment.

The reflectivity of these samples are associated with particularly strong colours.

These are known as special colour rendering indices and represented as R9 to R14.
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2.4.3 Spectral properties of LED

The spectrum of LEDs, unlike lasers is not monochromatic and is also not broadband.

A typical LED spectrum is in the range of 20-50 nm. To identify the emission

wavelength of LEDs with single number four different descriptions are in common

use. The most common is Peak Wavelength. It is the wavelength with maximum

spectral power in the spectrum denoted as λP . Another description is known as

Centre Wavelength (λ1/2). It is described as the wavelength in the middle of the

two connecting points at the spectral power = (1/2)λP . Next, Centroid wavelength

(λc) which is the mean of all the wavelengths present in the spectrum provides a

better description of single colour LEDs.

2.5 Efficiency Droop in III-Nitride LEDs

One of the key features of the LEDs is the promise of high energy efficiency leading

to reduced energy consumption and hence contributing towards climate change. In

this respect, when compared to existing light sources, LEDs have better energy

efficiency. More radiant flux from the same LED can be obtained by operating them

at higher driving currents. However, under such operating conditions the efficiency

of these devices decreases exponentially. This variable dependence of efficiency on

current is one of the crucial challenges to be addressed for LEDs to achieve their

full potential and is well known as the phenomenon of “Efficiency Droop” [44]. It is

the observed decrease in external quantum efficiency with increasing current density

after attaining a peak value, as shown in figure 2.9. The peculiar shape of the EQE

vs current dependence (see Fig. 2.9) is modelled using the ABC recombination model

(see section 2.6), R = An + Bn2 + Cn3, where n represents the carrier concentration.

The effect of coefficient A (representing SRH recombination) manifests as linear

dependence at low current values before the radiative recombination term with

coefficient B dominates at high currents. At very high currents the decrease in

efficiency is attributed to the coefficient C of the cubic term. This gradual decrease

in efficiency, after certain current density, is a serious issue with both InGaN and
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AlGaInP LEDs; though most of the recent effort has been invested on GaN LEDs.

It can be calculated using the expression :

EQEDroop = EQEP eak − EQEI

EQEP eak

(2.22)

 Efficiency Droop
 Expected no-droop behaviour
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Fig. 2.9 Illustration of Efficiency droop in III-nitrides (not to scale).

Furthermore, the term efficiency droop is mostly used in reference to the GaN

based LEDs. For AlGaInP the phenomenon is rather stated as decrease of efficiency

and may or may not be referred as droop. In this text the term droop will be used

to refer to efficiency decrease in GaN LEDs and will not be used in the context of

AlGaInP LEDs.

The Efficiency Droop phenomenon in III-nitride LEDs has been observed under

both photoluminescence and electroluminescence and is under intense investigation

and debate in the research community. Several different physical processes has been

proposed over last decade as the probable cause while a consensus on one or group

of these processes has still not been achieved. A brief introduction about some of

the proposed mechanisms is presented below.
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2.5 Efficiency Droop in III-Nitride LEDs

2.5.1 Auger recombination

A three particle process, Auger recombination is the most debated mechanism

concerning droop phenomenon for GaN LEDs. Direct Auger recombination is a

non-radiative process in which when an electron and hole combines the energy is not

released as a photon and is instead transferred to the third carrier, an electron or a

hole, exciting it to another energy level i.e. higher in conduction band for electron

and deeper or lower in the valence band for holes. It has a cubic dependence on

carrier concentration and hence should contribute more towards the droop with

increasing current. It is accounted by the coefficient C in the ABC-model (discussed

in next section). The debate on the contribution of Auger recombination to efficiency

droop is effectively centred around different experimental values reported for Auger

coefficient (C). Shen et al. [45] reported values of the order of 10−30 cm6 s−1 by

performing resonant optical excitation on double heterostructure (DH) InGaN layer

whereas values in the range of 10−27 cm6 s−1 - 10−24 cm6 s−1 reported by Ryu et al

[46]. A number of experimental studies to extract the value of C using ABC model,

neglecting carrier escape or leakage, has been performed on single and multiple QW

and are reviewed by Piprek [44]. On the other hand much lower theoretical values

for Auger coefficient of the order of 10−34 cm6 s−1 [47] has been calculated. The

low theoretical values (based on ABC model) are in contrast to the experimental

values and are less likely to provide a good fit to the experimental data. Towards

this, to account for the difference between the theoretical and experimental values

additional Auger recombination mechanisms has been proposed. Phonon assisted

indirect Auger recombination requiring a phonon for a third carrier to make a

transition has been accounted along with direct Auger recombination by Kioupakis

et al. [48] yielding Auger coefficient values in the range of 0.5×10−31 cm6 s−1 -

2×10−31 cm6 s−1. However, this range is only enough to account for the lowest

experimentally reported values of 1.8×10−31 cm6 s−1 [49] and is not enough to

account for most experimentally observed values in the range of ∼ 1.4×10−30 cm6

s−1 to 1×10−24 cm6 s−1 [45, 46, 50–52]. On the other hand Delaney et al. calculated,

from first principles using density functional and many-body-perturbation theory,

values of Auger coefficient in the range of 1×10−34 cm6 s−1 to 5×10−28 cm6 s−1.
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They attributed this agreement of the values to the interband Auger recombination

by accounting for another band above the conduction band for the wide band

gap semiconductors thus estimating a coefficient of 2×10−30 cm6 s−1 in complete

agreement with Shen et al [45].

2.5.2 Carrier delocalisation

Most GaN devices are grown on sapphire substrate with a large lattice constant

mismatch leading to a large number of defects, mainly point defects and threading

dislocations, with a density of ∼ 109 cm−2. Despite that III-Nitride devices exhibit

high IQE [53–57]. This has been explained by localisation of carrier in an in-plane

local potential minimum before the carriers can reach and recombine at dislocations.

Several mechanisms have been proposed for such localisation to be plausible and

they are (a) fluctuations in width of QW [58–61], (b) In clustering [62, 63], (c)

random alloy fluctuations [64, 65] and (d) hexagonal V-shaped pits or funnels

caused by threading dislocations [66]. The first three mechanisms individually

or collectively are responsible for localised potential minima whereas the V-pits

around the threading dislocations is anti-localisation. It has been suggested that

the very narrow QWs at the sides of the hexagonal pits create a high potential

barrier around dislocation sites thus keeping them physically distant from these

threading dislocations.

Thus it is reasonable to assume that local fluctuations in potential keeps the

carriers and non-radiative recombination centres physically separated. Therefore

when the active region is injected with low current densities these potential minimum

are able to confine the carriers locally. However, at higher current densities these

local minima gets overfilled with carriers and they start to escape i.e. gets de-

localised only to be captured by dislocations and getting lost to non-radiative

recombinations and thus lowering the efficiency [53–55, 67, 68]. These carrier can

further lead to increased junction temperature due to heating caused by parasitic

tunnelling current facilitated by threading dislocations [69]. This would only increase

with increased carrier injection promoting acoustic phonon assisted tunnelling [69].
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Haider at al. has in their studies proposed density activated defect recom-

bination (DADR) as the possible mechanism for efficiency droop. They argued

that the potential minima caused either by In composition fluctuations or QW

width fluctuations shields the carriers from defects at low carrier density however

at higher densities the carriers escape to rest of the QW thus recombining easily at

defect recombination centres. They modelled the non-radiative loss due to carrier

delocalisation and demonstrated a good fit with the experimental data for LEDs

emitting at 410 nm and 530 nm.

More evidence towards delocalisation was presented by Wang et al. [55]. They

studied the efficiency droop behaviour of two LEDs grown with different under

layers (GaN and InGaN). Based on the PL studies they argued that the LED with

InGaN underlayer had higher degree of localisation. For analysis the EQE(I) is

analysed in three parts. They attributed higher peak IQE at lower current densities

i.e.part (1) of EQE(I) and rapid drop at increased current densities i.e. part(2) of

EQE(I), to carrier delocalisation. They further suggested that for current densities

> 24 A cm−2 i.e. part (3) of EQE(I) efficiency droop is more likely to be caused by

carrier leakage. Similar observation regarding carrier delocalisation has been made

by Hammersley et al. [70] in their temperature dependent PL studies on InGaN

QW LEDs.

On the other hand, contrary to all these observations Shubert et al. [71] based on

recombination rate equation analysis of two InGaN LEDs with different dislocation

densities, 5.3 × 108 and 5.7 × 109 cm−2 suggests carrier leakage at high current

densities to be the dominant mechanism for efficiency droop. The experimental

results presented in their paper clearly demonstrate higher peak efficiency and larger

droop from low dislocation density LED.

Moreover, indium rich islands or In clustering due to segregation of InGaN is

brought into doubt by Smeeton et al. [72]. They described that observation of such

structures in TEM measurements [62] is due to the damage done by the electron

beam rather than the compositional fluctuations. Galtery et al [73] later confirmed

these observations with 3D atom probe measurements and describing observed

indium distribution as random alloy distribution.
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2.5.3 Electron Leakage

Electron leakage is the term used to account for all the injected electrons that

escape the QWs in the active region and thus are not contributing towards photon

emission irrespective of the physical mechanism responsible for loss of electrons

to non-radiative recombination. These electrons then recombine in the p-GaN or

p-type electrode. To restrict the leakage of carriers to p-side of the device AlGaN

electron blocking layer (EBL) are implemented adjacent to p-GaN in the device

structure. The idea is to create a high enough potential barrier for electrons to be

reflected back towards the QWs. However, an emission beyond EBL in the p-doped

region of the device has been observed [74, 75]. While this observation on one hand

affirms the ineffectiveness of EBL on the other hand it also relates electron leakage

directly to efficiency droop. The key observations made by the author relating droop

and leakage are (i) spontaneous emission increases with current, (ii) lower peak

EQE, (iii) onset of droop shifting to higher currents. The ineffectiveness of EBL

has been mainly attributed to polarisation fields [76] for polar GaN LEDs grown

on c-plane sapphire substrate. The positive sheet charge accumulated at the GaN

barrier and AlGaN EBL interface, due to difference in the degree of spontaneous

and piezoelectric polarisation between the two, attracts electrons. This skews the

energy band diagram of EBL rather negatively thus reducing its effective height in

terms of energy. One way to increase EBL barrier height would be to increase Al

content of the AlGaN EBL layer, however, the achieved increase in barrier height

would be ineffective due to a larger increment in the conduction band offset between

GaN spacer and AlGaN EBL [77].

2.5.4 Other mechanisms

Among other mechanisms poor hole injection [78, 79] and asymmetric carrier

concentration and mobility are considered as the cause of electron leakage [80].

Both these mechanisms have common root in not being able to achieve high hole

concentration due to self-compensation of Mg dopant limiting the p-type doping of

GaN. This results in lesser number of holes as compared to electrons obtained at
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n-GaN with Si doping due to low ionization energy of ∼ 17 meV [81] compared to

170 meV ionization energy needed for Mg acceptors in GaN [82]. Along with this,

EBL which is implemented to restrict electron escape poses a hindrance to hole

movement due to valence band offset at the AlGaN and GaN spacer, thus leading

to poor hole injection into the active region. This has been demonstrated to be a

factor contributing to droop by implementation of a three terminal diode, where

two anodes were used to improve hole injection [83]. On the other hand, the carrier

concentration asymmetry due to difference in electron and hole concentrations,

for the above mentioned reasons, along with lower hole mobility due to its higher

effective mass have been together identified as mechanisms contributing to electron

leakage and hence to droop [84].

2.6 ABC Model for efficiency analysis

One of the challenges in LED analysis is to determine IQE and LEE of the device

which cannot be measured experientially. Therefore, these parameters need to be

extracted from experimentally measurable quantities using theoretical models. In

case of LEDs the most commonly and simple model to be used is recombination rate

model or more famously known as ABC model. The simplicity of the model comes

from the following underlying assumptions. First, the concentration of electrons

and holes is equal. Second, all carriers undergo some sort of recombination within

the active region and does not escape the AR. Finally, the recombination constants

for SRH, radiative, and non-radiative i.e. A, B and C respectively are assumed to

have negligible dependence on carrier concentration. Under steady state conditions

the rate equation based on carrier concentration (n) is given as

R = An + Bn2 + Cn3 (2.23)

R = I ηinj

(q VAR) (2.24)
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where, R is total recombination rate, I is injection current, q is elementary charge,

VAR is active region volume with high carrier concentration, B is radiative re-

combination constant, and ηinj is injection efficiency which is assumed to be 1.

Subsequently IQE along with the output power (Pout), operation current (I ), and

EQE can be expressed in terms of n and the recombination constants and are give

below along with ηint and ηex.

ηint = Bn2

R
= Bn

A + Bn + Cn2 (2.25)

ηex = ηint ηext = q Pout

~ν I
(2.26)

I = q VAR (An + Bn2 + Cn3) (2.27)

Pout = ~ν ηext VAR Bn2 (2.28)

The popularity of the ABC model is driven by the understanding that a good

fit with the experimental EQE variation with current or optical power and hence

with IQE will provide more information and evidence of physical processes that

can account for the non-thermal droop i.e. the phenomenon of efficiency droop.

Towards this ABC model has been used to fit the experimental data with a good

agreement. Using the model Shen et al [45] reported that Auger recombination

is the likely reason behind for the high current efficiency droop. They performed

PL studies on quasi-bulk InGaN layers with varying In content (9-15%), threading

dislocation density and layer thickness. The ABC model is also in good agreement

with the observations of Laubsch et al. [85] who reported phonon- or defect-assisted

Auger recombination as the cause of droop citing previously reported [47] low values

of Auger coefficient (C). In the ABC model, Auger recombination is the only reason

included for the droop as the model accounts only for the recombinations occurring

within the active region of the LED.
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On the other hand, deviation of the model from experiment at high current

densities after peak EQE is well known and hence the over-simplicity of the model

has been criticised [52]. Towards this, to account for carrier leakage induced

non-radiative recombination outside the active region that is separate from Auger

recombination, a carrier leakage term has been proposed. Inclusion of such a term

have shown improved agreement with experimental data at high current densities

[44, 80, 86]. Though expansion of ABC model give a better fit in some cases the

largely open question about the order of Auger coefficient and non-measurable

carrier concentration under non-equilibrium conditions may not allow the model to

clearly identify the basic physical mechanism responsible for droop.

2.7 White Light generation: monolithic and pc-

LEDs

Human eyes have three types of cones that are most sensitive to specific wavelength

range. Three primary wavelength or colour ranges are 420nm – 440nm, 530 – 540nm,

and 600 – 630nm. Each of these ranges translates into blue, green and red colour

regions, respectively. When mixed in an appropriate spectral ratio, other colours

including white can be generated from these primary wavelengths.

The chromaticity coordinates for white light are located in the centre at the

equal intensity point of the chromaticity diagram. Thus a number of optical spectra

combinations can provide the needed white light emission. Towards this, LED

based dichromatic, trichromatic and tetra-chromatic approaches with two, three

and four emission peaks respectively can be exploited to generate white light. These

approaches can be realised in more than one configuration. The most common and

commercially available configuration is phosphor covered (pc-) LED. Most of these

sources uses InGaN/GaN based blue LEDs to pump broadband yellow phosphor

(YAG:Ce3+) and produce white light. These light sources have shown good values

of CRI around 70-80, CCT in the range of 4000-8000 K [87] and luminous efficacy

of 160 lm/W [88]. The lack of red component has been the primary reason for

low CRI for this configuration. Thus a multi-phosphor approach is adopted where
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pumping LED can be UV or blue but the photon recycling coating of phosphor

is a mixture of two or three phosphors based on YAG (540-560 nm), Lutetium

Aluminium Garnet (520-540 nm), Oxynitrides (500-650) and nitrides(615-660 nm)

and LED with CRI ∼ 95 are made commercially available [89, 90]. Though high

CRI sources can be realised using many phosphors it has some inherent issues.

First, the well known Stoke’s losses increase with addition of another phosphor

thus affecting the overall efficiency of the source. Second, the angular uniformity of

emission is dependent upon the scattering of light due to particle size and efficiency

of phosphor is also a function of particle size. Thus use of multi-phosphor poses

optimisation issue in achieving reasonable efficiency and uniformity of emission.

Despite this, the advantages of broad emission spectrum and absorption strength,

stable emission spectrum and efficiency at broad range of temperatures, along with

saturation tolerance at stronger flux levels are driving the development and use of

pc-LED.

The phosphor free approaches to white light generation are multichip and

monolithic LEDs. A multichip source is a combination of three or more LEDs (thus

tri- or tetra-chromatic) emitting at different wavelengths in the red, green and blue

region of the spectrum. Although addition of more LEDs will improve the CRI the

luminous efficacy of these sources is limited primarily due to “green gap”problem

i.e. low EQE in the wavelength region of eye sensitivity curve. Furthermore,

since the two different material system (as discussed before) are responsible for

emission in high and low energy part of the spectrum they exhibit different optimal

operating parameters leading to a requirement of complex circuitry for operation.

Strong temperature dependence of AlGaInP LEDs also affects their operation at

elevated temperature leading to non-optimal efficiency performance along with

colour variation [91].

Since InGaN/GaN, in principle, can emit across the visible spectrum by varying

the In composition, it has inspired researchers to develop single LED emitting at

multiple wavelengths. This monolithic approach is also under development and

investigation. In 2001, Damilano et al. proposed InGaN/GaN MQW monolithic

white LEDs [92]. Since, then these LEDs are under development for improvement of
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efficiency and colour parameters. Under this approach, following the basic principle

of mixing different wavelengths (colours) in appropriate proportion (intensity),

multiple InGaN quantum wells (QW) emitting at different wavelengths are used to

achieve white light. MQWs are sandwiched between p and n type GaN layers and are

intrinsic (or undoped) themselves. To achieve emission at short and long wavelengths

indium (In) incorporation in the stacked QWs is varied and is predefined during

the growth process. As no phosphor is used in this approach, the efficiency losses

associated with phosphor are non-existent along with reduction of one process step

(of phosphor deposition) in the LED fabrication. Though this approach follows the

same principle as multichip approach of colour mixing the fundamental difference

is that a single chip emits different wavelength against the assembly of several

monochromatic chips using separate driver circuits and a feedback mechanism to

maintain appropriate colour mixing. Also, as this approach uses a single material

system the different ageing times in the multichip approach is addressed. Hence,

monolithic LEDs show promising improvements and can be the way forward for SSL

in the near future. Apart from QWs, nanopyramid GaN [93] and ZnO nanowires

on GaN heterostructure’s [94] are also under investigation . Other approaches like

QW light converters [95] and distributed Bragg reflector (DBR) resonant- cavity

have also been investigated [96].
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In this chapter, di-chromatic white LEDs with blue-green QW under CW and

pulsed pumping are presented. CCT and spectral behaviour under different pumping

conditions is discussed. Highest CRI of 67 from these devices with no optical pumping

and without explicit red spectral band is demonstrated. Furthermore, singulation

of LED from the wafer after fabrication is also demonstrated with fs pulses due to

multi-photon absorption.
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3.1 Preface

3.1 Preface

In this chapter the di-chromatic monolithic LEDs grown on c-plane sapphire sub-

strate for white light emission are discussed. It is divided into two parts. In the first

part (section 3.2 onwards) the CRI, CCT and spectral behaviour of these devices

are presented. The second part (section 3.6 onwards) details the stealth dicing

technique where femtosecond laser pulses are used to dice sapphire substrate for

faster and efficient singulation of LEDs from the wafer. Each part is complete on

its own with an introduction, experiment, results and conclusion sections.

3.2 Phosphor free monolithic white LEDs

White LED’s based on InGaN are used in many applications from backlighting to

mobile displays and general illumination [1–3]. The requirements on characteristic

and quality of white light emission differ with application. While phosphor covered

blue LEDs with improved colour rendering index (CRI) and luminous efficacy are

replacing traditional light sources[3] at offices, museum and similar application

areas, high CRI is irrelevant for indicator and signage. For outdoor street lighting,

industrial use and parking spaces sources with CRI ≥ 60 and CT ≤ 8000 K are

considered adequate[3–5]. Hence white light source with tunable CRI and CCT are

desirable. Towards this, a multichip approach with vertical or lateral combination

of blue, green and red LEDs can be used for white light generation. However,

this approach requires complex fabrication procedures, driving circuits, and device

design; thereby affecting reliability and increasing production cost [2]. White light

emission has also been achieved with CdSe/ZnS nanocrystals and by doping of

InGaN quantum wells (QWs) with Si and Zn [6, 7]. These approaches along with

the shortcomings of the multichip approach have an additional disadvantage of

non-tunability. Meanwhile, the theoretical possibility of emission from ∼ 0.7 eV to

∼ 3.5 eV by indium (In) variation in InGaN QWs, is also being explored [8–11]. This

all semiconductor monolithic approach holds potential of efficient colour tunable

sources with high CRI.
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Monolithic approaches involving nanostructure engineering have been explored

previously for white light emission. A dual wavelength, 5000 K to 20000K colour

tunable, multifacet QW LED was demonstrated by Funato et al. in 2008 [12].

Nguyen et al. have reported colour tunability and CRI values more than 90 for “dot

in a wire” core shell LEDs on silicon [13]. Nevertheless, this approach requires a

complex growth and fabrication process with precise control over wire diameter and

dot size, which is not ideal for mass production. Also, luminous efficacy of these

devices is still far from phosphor covered LEDs [13]. Li et al. demonstrated dual

wavelength MQW LED with 46% indium (In) content for red emission peak at 2.12

eV thus achieving emission colour from red to yellow to white with CRI of 85.6 [14].

However, large lattice mismatch between higher In incorporated InGaN red QW on

GaN substrate results in issues related to charge separation and increased defect

density [15]. A simpler fabrication approach of vertically stacked QWs emitting

at two distinct wavelengths has been reported. Active regions of such devices can

consist of either (i) longer wavelength emitting passive QWs pumped by active blue

QW [16] or (ii) all electrically pumped active QWs [8, 11, 17]. The first approach is

similar to phosphor covered LEDs and the total emission spectrum is dependent on

passive QWs in active region. Also, since the passive QWs are designed to operate

on the green gap spectral range they being less efficient than phosphor for that

range and their sensitivity to active QW emission wavelength is a disadvantage[18].

The best CRI for such devices reported is 41[16]. White light emission from all

electrically pumped QWs with CCT ∼ 6000K has been reported previously[19].

In this chapter all electrically pumped phosphor free, colour tuneable monolithic

white LED is presented. The device is designed for dichromatic emission at 450

nm and 550 nm. The emission wavelengths are chosen so that the line joining the

corresponding x-y coordinates on CIE 1931 chromaticity diagram passes through

the white region. The x-y tristimulus coordinates of standard D65 illuminant are

demonstrated with these devices at current densities of 6.21 A/cm2. It is also shown

that CRI of over 60 can be demonstrated with these devices and CCT of emission

in such LEDs can be easily tuned by modulation of pumping current.
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3.2.1 Device structure and Experiment

The di-chromatic monolithic blue-green LED (Z091228b) studied in this work was

fabricated by Ioffe institute (St. Petersburg, Russia) to achieve white light emission

by exploiting complimentary wavelengths/colours. The layer specifications for the

structures is given in Table 3.1. Figure 3.1 depicts the schematic of the device

studied in this work. The QW LEDs were grown on c-plane sapphire substrate by

metal organic chemical vapour deposition (MOCVD). Next a n-type GaN layer with

5e18 cm3 Si doping concentration is deposited on sapphire after an i-GaN buffer

layer. To improve carrier injection into the multiple quantum wells a graded short

period superlattice (SPSL) of 24 nm thickness with 1nm alternate repetitions of

InGaN and GaN is grown on top of n-GaN. The indium concentration is increased

with each repetition. The SPSL is grown using the conversion method and is

detailed in [20].

Table 3.1 Specification of di-chromatic monolithic White LED (Z091228b) with
blue-green active regions.

No Layer Z091228b
1 p-GaN 180 nm
2 p-Al0.15Ga0.85N 18 nm
3 i-GaN 8nm
4 InGaN 3 nm active QW -2 (green)
5 i-GaN 8 nm
6 InGaN 3 nm active QW -1 (blue)
7 i-GaN 8 nm
8 InGaN 3 nm active QW -1 (blue)
9 i-GaN 12 nm
10 InGaN/GaN SL 24 nm (1+1) × 12 periods
11 n-GaN/Al2O3 n ∼ 5e18

This is followed by an i-GaN spacer of 12 nm before the blue and green QW’s

were grown. Afterwards two blue QW’s and one green QW is grown in that order

with an i-GaN barrier of 8 nm between each QW. A 18 nm p-Al0.15Ga0.85N electron

blocking layer (EBL) was then grown on top of green QW after the 8 nm i-GaN

barrier. Finally a top p-GaN layer is grown on which the Ni/Ti/Au top p-contact

is deposited during fabrication.

63



3.2 Phosphor free monolithic white LEDs

Fig. 3.1 Schematic of the layer structure and conduction band diagram for monolithic
di-chromatic white LED

The structures were then fabricated and processed in 1310 × 1310 µm2 (MK-24)

packages [21]. This was done by Scientific-Technological Centre of Microelectronics

and Submicrometer Heterostructures, Russian Academy of Science.

The optical characteristics of the monolithic di-chromatic LED are studied under

both continuous wave (CW) and pulsed regime (PR). ‘Keithley 2400’ is used as

a CW source for currents up to 1A while pulses of width from 100 ns to 100µs

with a duty cycle of 1%-95% were generated using ‘Agilent 8114A’ pulse generator.

To accurately estimate the efficiency, radiant flux and colour characteristics all

measurements at room temperature (RT) are done in an integrating sphere. A

fraction of scattered light from the sphere was coupled, using a calibrated fibre, to

‘CDS-700’ spectrometer from Labsphere. ‘LightMtrx’ software was used to derive all

electrical and optical parameters from the spectrometer. The flexibility of adjusting

the exposure time of the spectrometer, between 1 ms to 5000 ms, allowed to measure

wide range of radiant flux from 1 nW to 100 mW.To obtain green/blue integrated

intensity ratio, we measured blue and green part of the emission spectra separately

by adjusting the digital apertures.
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3.2 Phosphor free monolithic white LEDs

3.2.2 Results

In this section electrical and optical characteristics of the investigated di-chromatic

monolithic white LEDs are presented.

3.2.2.1 Current-Voltage characteristics

First the current-voltage (I-V) characteristics, as shown in fig. 3.2, of the diode are

investigated to establish the electrical quality of the LED. The experimental (I-V)

data is fitted with Shockley’s diode equation accounting for parasitic resistance by

including a shunt and series resistance. From the fitting procedure a high shunt

resistance of 170 MOhms is obtained indicating low leakage current at low pumping

levels. A 25 Ohms of series resistance indicates usual concentration of free carriers

in the cladding layers (both p and n type). The ideality factor obtained from the

fitting is, η = 4.3, quite high, and is attributed to i-GaN barrier layers between the

QW [22, 23].
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Fig. 3.2 Current-voltage characteristics of the monolithic blue-green LED under
forward biased condition. The experimental data is fitted with Shockley’s equation
modified to account for parasitic resistance.
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3.2.2.2 CRI and Spectral analysis

The electroluminescence (EL) behaviour of monolithic white LEDs is studied at

room temperature in continuous wave (CW) regime. Figure 3.3 shows EL spectra

for these devices with increasing currents up to 500 mA. Two distinct peaks in fig.

3.3 indicate that both shallow and deep In concentration QWs are operating in

their respective blue and green spectral regions. From figure 3.3a it is seen that at

lower currents less than 80 mA the green peak dominates the emission spectrum

with blue emission getting stronger with increasing carrier concentration. This is

attributed to non-uniform distribution of injected holes, primarily due to their lower

mobility and higher effective mass holes will radiatively recombine in the QW closer

to the p-side. However with further increase in current, more holes travel through

the barrier layer and are available for recombination in blue QW’s.
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Fig. 3.3 Electroluminescence (EL) spectra of monolithic white LED pumped under
CW current of (a) 50-250 mA, (b) 300-500 mA.
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Fig. 3.4 Green/Blue (G/B) ratio and corresponding CCT tuning with variation of
CW current.

On further increasing the current up to 100 mA the emission from the green

QW is clamped and the radiative recombination in the blue QW is enhanced. For

very high CW current injection i.e. > 300 mA, increased radiative recombination

in green QW and saturated blue emission peak is observed (see fig 3.3b). This is

understood to be caused by the carrier redistribution due to band-filling of blue

QW leading to electron overflow thus making more carriers, i.e. electrons, available

for recombination in the green QW.

The tuning of CCT and G/B ratio with varying current is shown in figure

3.4. The dashed red line associates the highest CCT obtained from this device

to the minima of green/blue (G/B) integrated intensity ratio. This indicates the

dominance of blue peak in this region of operation. For injection current between

100 mA and 350 mA, G/B ratio is < 1 and blue peak dominates resulting in cool

white emission. For other regions, increase in green intensity results in tuning of

emission towards warmer colour temperature.

Commission International de I’Elairage (CIE 1931) chromaticity coordinates

with associated CCT at different currents are shown in figure 3.5. The coordinates

(0.4172, 0.4375) at 40 mA moves to (0.2686, 0.2716) at 240 mA and CCT increase

from 3600K to 13240K (fig. 3.5(a)). With further increase in current a movement
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Fig. 3.5 CIE Chromaticity coordinates and corresponding CCT at various injection
currents (a) I from 40 mA to 240 mA, and (b) I from 260 mA to 500 mA.

towards warmer CCT values can be seen with 4775 K at (0.3607, 0.4278) for 500

mA (fig. 3.5(b)). This distinctly depicts an excellent warm to cool white CCT

tunable simple monolithic LED. The CRI for device under test is under 40 for less

than 70 mA however, with increasing carrier density the spectral broadening of the

green peak is asymmetric and spectral emission contribution at longer wavelengths

(fig. 3.3b) > 600 nm improves the visible spectral region coverage thus improving

the CRI values to > 60 with a maximum of 67.3 at 335mA ever reported for such

devices (fig. 3.6a).

Though further increase in current broadens the green peak, a blue shift of 4

nm in peak wavelength is observed for the current is increased to 500 mA from 400

mA. Also this broadening is asymmetric with increased spectral emission at shorter

wavelengths. This shift can be attributed to band-filling and screening of quantum

cascade stark effect at higher currents. A red shift of 7nm in peak wavelength for

blue emission is also observed for current > 300 mA up to 500 mA which otherwise

remains constant at 469 nm which is generally indicative of increase in junction

temperature. The decrease in CRI for current > 350 mA (fig. 3.6a) can be explained

by the change in the green/blue (G/B) spectral power density ratio and shift in
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Fig. 3.6 (a) Evolution of CRI with increasing current, and (b) EL Spectrum at
current values with CRI 67 with a maximum of 67.3 at 335 mA.

the peak emission wavelength for both blue and green QW’s. This indicates that

apart from broadened spectra, CRI in such devices is sensitive to G/B ratio, since

maximum CRI is obtained for G/B ratio between 0.84 and 1 (six closely spaced

green stars in figure 3.4). Spectrum of this region is shown in figure 3.6b.

3.2.2.3 CCT tuneability

From the point of view of practical applications, the current dependence of the

LED colour characteristics is an undesirable factor, as additional current control
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Fig. 3.7 CCT vs. Duty Cycle of the white LED measured in the integration sphere
at 100 ns and 100 µs pulse durations.

is required for their stabilization. On the other hand, this effect opens additional

opportunity for controlling the colour parameters of monolithic LEDs by the current

variation. To achieve such control, pulsed pumping with different amplitude and

durations is suitable.

In this section, with another LED chip taken from the same wafer, dependence

of CCT on pulse width and duty cycle is presented. For this the device is pumped

with pulses of width 100 ns to 100 µs with duty cycle in the range of 1% to 95% for

currents up to 2 A with a maximum luminous flux of 2.26 lm. All measurements

were taken at room temperature with an integration sphere.

Overheated regime

Under pulse regime of operation for duty cycle > 1% device self heating is not

completely avoided and is referred to as overheated mode of operation here. Figure

3.7 shows the dependence of CCT on duty cycle and pulse width. It can be clearly

seen that negligible correlation exists between pulse width and CCT. On the other

hand CCT is strongly affected by the change in duty cycle and decreases from

22000 K to ∼5500 K with change in duty cycle from 10% to 95%. The evolution of
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emission spectra with changing duty cycle at 2 A is shown in figure 3.8 (b). It is

also found that luminous flux of these devices shows negligible dependence on pulse

duration in the range of 0.1 µs to 10 µs for various duty cycle (see fig. 3.8 (a))

Non-overheated regime

To mitigate the effects of self-heating on the optical properties of LED at high

currents pulses up to 2 A with duty cycle of 1% and pulse width in the range
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Fig. 3.8 (a) Emission spectrum under 100 ns pulses of 2 A amplitude for 15%, 10%
and 1% duty cycle. (b) Almost constant luminous flux at various pulse width for
constant duty cycle is demonstrated for 1%, 10%, 13% and 15% duty cycles for I =
2A.
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Fig. 3.9 Green/Blue bands ratio vs. pulse width measured at different currents
and 1% Duty cycle. The figure demonstrates colour mixing tuneability for non-
overheated mode.

Fig. 3.10 Dependence of intensities of the green blue emission on current at pulsed
excitation while keeping a constant luminous flux 0.14 Lm.

of 100 ns to 100 µs are applied. Since CCT tuneability is dependent on colour

mixing of the emission bands and hence the spectral content and their strength
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green-blue (G/B) integrated intensity ratio is studied over range of above mentioned

pulsed durations and duty cycle. As shown in figure 3.9, it is found that the G/B

ratio can be kept almost constant at a given current over a wide range of pulse

widths allowing us to maintain the CCT while dimming the LED. On the other

hand it can also be inferred (see fig. 3.9) that G/B ratio (and hence the CCT)

can also be tuned in the range of 0.8 to 0.2 by modulating the input current and

pulse width. Thus it is possible to keep the input electrical power constant and

by simultaneously increasing the current from 100 mA to 2 A and decreasing the

pulse width while tuning the G/B ratio (and hence CCT). Furthermore, it is also

demonstrated, as shown in figure 3.10, that a constant luminous flux output of 0.17

lm is maintained by modulating current and duty cycle at a constant 100 µs period

of separation between the pulse. This effect leads to change of colour coordinates

of the emission in wide enough range. Different spectral behaviour from the first

chip can be explained by its high sensitivity to the GaN barrier thickness [18].

3.2.3 Discussion and Summary

In this chapter, a di-chromatic monolithic white LED based on InGaN/GaN MQW

is demonstrated. The MQW active region consists of vertically stacked two blue

QW’s emitting at ∼ 450 nm and one green QW emitting ∼ 550 nm. A CRI of 67

is achieved, which is the highest value demonstrated till date to the best of the

knowledge of the author for such devices i.e. phosphor free, monolithic di-chromatic

MQW LED emitting in blue and green spectral region.

It is shown that these phosphor-free devices can be tuned, by CW current

modulation, to emit from cool white (∼ 13000 K) to warm white (∼ 2700 K) light.

Considering the sensitivity of emission spectrum on current and hence the CCT

which is likely to give non-consistent colour temperatures due to thermal effects

pulse current regime is investigated on another LED from the same wafer. Using

pulse current CCT is found to be tuneable about 3 times from ∼ 6000 K to ∼

20000 K by modulating duty cycle only at a constant current of 300 mA and almost

independent of pulse duration.
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Furthermore, it is demonstrated that almost constant luminous flux can be

maintained at a constant current and duty cycle even with pulses differing in

duration by three orders of magnitude form 0.1 µs to 100 µs. It is also shown that

G/B emission ratio (hence CCT), at duty cycles of 1% to avoid device self-heating,

can be tuned about three times by varying current and pulse width. This degree of

control over CCT tuneability by modulating current and pulse parameters allowed to

obtain a constant luminous flux and varying G/B ratio (hence CCT) by modulating

pulse current amplitude and duty cycle (or PW) with constant period of 100 µs

between simultaneous pulses.

Finally, to improve the CRI even further and to restrict the CCT in the warmer

region of white light emission a red phosphor with absorption spectrum in the blue

region can be implemented or augmenting them with AlGaInP red LEDs will also

allow to achieve much warmer emission without compromising too much on CCT

tuneability. Also, further improvements in output lumen’s and efficiency are needed

to fully realise the potential of these devices. While much of such improvement is

expected come from improved growth process with increasing In composition in the

QW. It has also been suggested that along with advancement in QW growth and

fabrication careful modulation of electrical behaviour of the QW confinement layers

can improve the emission spectrum [18].
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3.3 Stealth dicing of sapphire substrate

Sapphire is the substrate material used for industrial production of InGaN/GaN

LEDs including white LEDs for illumination. These LEDs are in high demand due

to their superior efficiency and long lifetime and hence methods to improve yield and

production time at any stage of production process will be very cost effective. One

such area is device singulation for packaging after fabrication. However, sapphire is

one of the hardest material and thus difficult to break. Towards this laser based

technologies has been exploited to improve yield, and throughput. The currently

employed laser dicing is a thermal process and is better known as laser ablation.

Laser ablation has mostly been achieved using UV lasers. UV lasers with nano-

second or pico-second pulses have been used primarily due to absorption of around

25% at 300 nm and increasing with decreasing wavelength to about 60% at 200 nm.

In this wavelength range 2- or 3- photon absorption process helps in achieving the

thermal threshold for material phase transformation.

Another technique called “Stealth dicing”(SD) has been used to singulate LEDs.

Unlike scribing by laser ablation, SD is done with lasers for which the test material

has high transmission. A tightly focused laser beam with the help of a high numerical

aperture (NA) lens is focused in the interior of the material to induce damage and

generate cracks. Several such sequences of damage along different depths will make

it easy to separate the devices. Since most of the SD on sapphire has been done

using ns pulses the process becomes thermal in nature [24]. However, the same

technique can also make use of femtosecond pulses probably reducing the thermal

component. When these pulse are focused inside the material they exert an electric

field with peak values more than the atomic bonding energy (109V/m) [24] and since

the short pulse duration is tightly focused all energy is delivered to a designated

area thus opening up the possibility of multi-photon absorption. Also, pulse width

being shorter that electron-photon coupling relaxation time restricts heat spreading.

Sapphire is nearly transparent in near infra-red (IR) region of the EM spectrum.

Femtosecond pulses with nJ of energy have been shown to cause phase modification

on sapphire due to plasma formation at the focal spot of the focused pulse creating
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pressures of ∼ 10 TPa [25, 26]. However, using fs pulses of energy in the range of

∼ 10-30 µJ optical damage inside the material due to coulomb explosion induced

by multi-photon absorption, i.e. by rupturing the atomic bonding of the crystal

can be induced. Here, 800nm, 140 fs pulses are used to induce damage in 350 µm

polished sapphire wafer.

Fig. 3.11 Experimental setup

3.3.1 Experimental Setup

In this study a 350 µm sapphire wafer was used for all our investigations. The

Ti:Sapphire (Spectra Physics/ Tsunami) laser system used here produces 140 fs

pulses with 1kHz repetition frequency at a wavelength of 800nm. A ×100 microscope

objective with NA of 0.55 for 800nm is used to achieve tightly focused beam with

focal spot = 0.74 µm respectively of otherwise 3 mm collimated beam. To scan

the sample across in three spatial directions (x,y,z) (fig. 3.11) according to our

requirements, a high precision stage, Aerotech (with tilt and rotation along with

x,y,z control) is used. The movement of the stage is controlled by the custom build

76



3.3 Stealth dicing of sapphire substrate

computer program in Visual Basic/C♯. After dicing, the samples were imaged with

optical microscope and TEM without any thinning or lapping.

To monitor the power/energy of the beam the laser beam steered by mirror M1

and M2, controlling the spatial position of the beam, is passed through the beam

splitter (fig. 3.11). One output of the beam splitter is focused by the objective via

mirror M3 and the second output which is about 1/10th portion of the original

laser beam is fed to the detector/ power meter (fig. 3.11).

3.3.2 Results and Discussion

3.3.2.1 Pulse energy vs Depth of focus

As the aim of this study is to investigate stealth dicing with NIR fs pulse emission,

for which sapphire has > 80% transmission, first a pulse energy mapping scheme

augmented with systematic variation of depth of focus is developed. As depicted

in figure 3.12, pulses with energies in the range of 1µJ to 30µJ are used to inflict

damage with a horizontal separation of 10 µm between two spots along with the

change of depth by 10 µm at with each spot from left to right. From the map,

based on the damage inflicted at a certain energy along the depth of the sample

Fig. 3.12 Optical microscope image of the damage induced by fs pulses with
different energy (increasing along the vertical axis) when focused at different depths
(increasing along the horizontal axis) on and inside sapphire wafer. Each focal spot
is exposed for 100 ms (limited by the shutter speed).
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three regions are identified. These regions are (fig. 3.12(a)), region 1 with energy

1-2 µJ, region 2 with energy 6-25 µJ and region 3 with energy 30 µJ.

Fig. 3.13 SEM images of damage induced by the fs pulses with (a) energy = 2 µj
and focal distance = 0 µm; (b) energy = 6 µj and focal distance = 25 µm; (c)
energy = 25 µj and focal distance = 200 µm; Inset: shows the cracks produced by
25 µj pulses.

In region 1, the energy of the pulse was able to inflict superficial damage and

as the depth is increased the damage seems to be reducing before disappearing

completely. Figure 3.13(a) from the paper depicts the SEM image of a 2 µm deep

crater with oval shape created by the damage done with a 2 µJ pulse on surface

of the sample. The damage is similar to chipping of surface most likely due to a

process similar to explosion. Moreover, oval shape indicates that the energy used is

in close proximity of the threshold energy needed to make damage.

In region 2, with pulses of 6 µJ the damage induced has minimal chipping (see

fig 3.13(b)) and a circular geometry on the surface of ∼ 2 µm in diameter along
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with a depth of ∼ 5 µm. Since the damage geometry is neat and has not propagated

in arbitrary directions, as seen from the surface, it may be concluded that this

energy is enough to evaporate the material from the epicentre. Next, at higher

energy of 25 µJ in the same region a deeper and wider, ∼ 15 µm and ∼ 25 µm

respectively, damage is inflicted. The shape of the crater made is closer to an

equilateral triangular geometry. The induced damage is consistent with dielectric

Fig. 3.14 (a) Cleaved surface of the wafer after stealth dicing with 25 µj pulses with
varying focal depth; (b) Cleaved surface of the wafer after stealth dicing with 8 µj
pulses at 170 µm of depth. In the case of 8 µj pulses cleaving is possible only after
scanning the wafer for about 500 times.
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breakdown or coulombic explosion due to multi-photon absorption. Also, from the

pulse energy vs focal depth map from figure 3.12 it can be seen that at this energy

damage or photo-modification can be done at all depths up to 300 µm. The kind

and size of damage inflicted at higher energies in this region is appropriated for SD.

In region 3, the pulse energy is too high as it damages the sample excessively.

Fig. 3.15 Stealth dicing with 25 µj pulses (a)SEM image of the shots separated by
50µm in diastance (b) AFM images of the surface of the cleaved wafer after dicing.

3.3.2.2 Stealth Dicing

After identifying region 2 (in fig 3.12) as the most appropriate, stealth dicing using

25 µJ and 8 µJ pulse energy is performed. Optical microscopic images for both

the energies is shown in figure 3.14 a and b respectively. Using a ×100 objective

25 µJ pulses were focused at the depth of 270 - 330 µm. The sample is exposed at
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each location for 100 ms (limited by the mechanical shutter speed) with a distance

of 50 µm. The bottom side, i.e. side opposite to the beam entry, of the sample

gets damaged for depths > 270 µm. However for depth of ∼ 270 µm the remaining

80 µm below the damage appears clean. Atomic force microscopy is then used to

inspect the quality of the surface as shown in figure 3.15. The cleaved area below

the focal point of the damage has a roughness of about 20-50 nm (fig 3.15 b, c

and d). Towards the top of the sample (i.e. above the focal point of damaged

area towards the beam entry side) ripples in ∼ 30 µm height and 10-30µm width

are observed which might be advantageous in improving the LEE of LEDs due to

roughening of the side walls thus reducing total-internal reflection.

For 8 µJ pulses the laser is focused at a depth of 170 µm, although damage is

induced due to dielectric breakdown the damaged area is relatively small to break

the sample with 50 µm separation between two focusing locations. To break the

sample, as shown in fig 8b, using 8 µJ pulses the sample is scanned 500 times while

decreasing depth by 1 µm with every scan. Furthermore, the sample is to be broken

mechanically with a cleaver and the surface on the both sides (top and bottom) of

the focal point are not clean.

3.3.3 Summary

In this chapter dicing of sapphire using an 800 nm fs pulses by Stealth dicing is

demonstrated. Using 140 fs pulses of 25 µJ of energy 350 µm thick sample is

cleaved by generating a single row of defects. The cleaved surfaces above (beam

entering side) and below (opposite to beam entrance) the focal point of the laser

exhibit different features. The bottom surface has a maximum roughness of 50 nm

without damage, acceptable for blue and violet laser diode facets. On the other

hand, ripples of 30 µm width on the top side are expected to improve LEE of LEDs

by reducing the high total internal reflection at the air-sapphire interface. Moreover,

this technology also has a potential to substantially reduce the dicing time with

high repetition rate lasers and appropriate beam steering systems.
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Chapter 4

Phosphor-covered Di-chromatic

White LED

I.E Titkov, A. Yadav, S. Yu. Karpov, A. V. Sakharov, A. F. Tsatsulnikov, T. Slight,

A. Gorodetsky and E. U. Rafailov, “Superior colour rendering with a phosphor-

converted blue-cyan monolithic light-emitting diode,” Lasers & Photonics Review,

vol. 10, no. 6, pp. 1031-1038, 2016.

In this chapter, a novel hybrid approach, comprising of dual wavelength LED

and two phosphors, to generate warm white light is presented. Using this approach a

warm white light at CCT of 3400K with an utmost colour rendering with Ra of 98.6

is demonstrated. Moreover, the colour characteristics can be tuned with operating

current by adjusting the amplitude of blue and cyan bands of emission from the

epi-structure.
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4.1 Introduction

One of the key challenges for LED based lighting solutions to replace the existing

indoor lighting sources is to offer a white light source with utmost colour rendition

i.e. CRI ∼ 100. To achieve this different approaches can been used. A CRI of

67 has been demonstrated in chapter 3 using di-chromatic monolithic approach.

Although such CRI values might be acceptable for certain applications like street

lighting, better CRI values are needed for critical applications like galleries, museums,

hospitals, and exhibitions [1, 2]. Figure 4.1 depicts an example of colour perception

using Munsell colour pallets under light sources with different CRI’s. Source with

CRI of 99 better differentiate the colours thus an emphasis on a LED source with

ultimate colour rendition along with maximum efficacy. Towards achieving high

CRI a novel hybrid approach involving two phosphors is investigated.

The most common and popular approach for white light generation is of yellow

phosphor (YAG:Ce3+) coated blue LED. These devices have achieved LER of >

250 lm/W [3], however in general their CRI < 75 [4–6]. The low CRI is attribute

to missing red component in their emission spectrum which also keeps CCT ≥

6000K [4–6]. A theoretical study suggest CRI can be improved up to ∼96-98 by

optimising the emission spectra with use of multiple, broad band phosphors while

maintaining luminous efficacy of radiation between 234-285 lm/W [7]. Based on the

discussed approach Fukui et al. [8] demonstrated a white light source with a CRI

of 99.1 and luminous efficacy of 59 lm/W with a near UV (405 nm) source. They

used a multi-layered approach by stacking layer of red, green and blue phosphors

to suppress cascade excitation, i.e. the overlapping of excitation spectra of one

phosphor with the photoluminescence spectra of the other one.

Nevertheless, use of UV LEDs as a pump source requires three phosphors to

obtain a quasi-uniform spectral emission and it is important that the number of

phosphors used are kept at a minimum. Firstly because of increase in losses due

to Stoke’s shift with each added phosphor. Second, to suppress cascade excitation.

Furthermore, the difference in degradation time of each type of phosphor and

temperature dependence of quantum efficiencies of phosphors suggests minimizing

86



4.1 Introduction

Fig. 4.1 Munsell colour samples perceived when illuminated by a source with CRI
= 57 (a regular office lamp), and CRI = 99 (halogen lamp).

the number of phosphors used. Moreover, using blue LED as a pump source would

improve the luminous efficacy since unlike UV the emission spectra of the LED

is within the photopic eye sensitivity spectrum along with the benefit of higher

quantum efficiency. Thus, more research is needed to produce an excellent colour

rendering source by minimising the use of phosphors and improved efficacy [1].

Towards this, a recent theoretical study suggests an intermediate approach of a

phosphor (YAG:Ce3+) covered di-chromatic LED to further improve CRI from 78

with blue (λ = 475 nm) LED to 91 with dual wavelength (λ1 = 475 nm, λ2 = 490

nm) LED [9]. This approach has been tested experimentally by Stauss et al. [10]

with an improvement in CRI to 76 from 67 while not sacrificing on efficiency. In

this chapter the approach is further exploited with use of only two phosphors (red

and green) and dichromatic blue-cyan LED for better light quality parameters.
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4.2 Device structure and Experiment

The monolithic di-chromatic epi-structures (Fig.4.2.(a)) studied in this work were

grown, in AIX2000HT MOCVD reactor, and fabricated at Ioffe institute (St.

Petersburg, Russia). C-pane sapphire with micro-cones is used as the growth

substrate. The micro-cones were introduced to improve light extraction efficiency

(LEE) [11]. To improve carrier injection into the multiple quantum wells a graded

short period superlattice (SPSL) [12] of 24 nm thickness with alternate repetitions of

InGaN and GaN, each 1 nm thick, is grown on top of n-GaN. The structural quality

of the QWs grown on top of the graded SPSL has also been shown to improve this

improving the efficiency of MQW LEDs with higher In content [13]. There after 2

QWs, separated by a 8nm GaN layer, were grown on top of SPSL. First a 3 nm

blue QW emitting in the spectral range of 430-435 nm followed by a 3 nm cyan

QW in the range of 460-475 nm were deposited. Further a semi-transparent gold

ohmic contacts in a grid format were deposited on the top of the mesa. (Fig.4.2(b)).

The wafers were then processed as epi-up structures with mesa size of 240 × 320

µm2 by CSTG, Glasgow. The as grown and processed LEDs were mounted on star

shaped aluminium plates to improve heat transfer from the device.

The monolithic devices are then used to pump a mixture of phosphors emitting in

red and green spectral range. The 1 mm thick phosphor sheets (PS) are commercially

available from Phosphortech Corporation. PS, RF3000K-96, used in this experiment

was designed to provide a warm white emission when pumped with 450 nm with

a CCT of 3000K and a maximum CRI of 96. These sheets contained a patented

composition of Nitride and YAG phosphors [14].

For this experiment the PS are cut into a cylindrical shape to act as remote

phosphor cover (Fig.4.2(c)). The choice of shape is determined considering the

wide angular emission from the surface emitting LEDs and symmetry along with

feasibility and simplicity. Dimensions (Height×Diameter) of the cylinder used in

the experiment is 20 × 10 mm. The LED is placed at the bottom centre of the

cylinder such that it is almost equidistant from the walls of the cylinder and thus
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Fig. 4.2 (a) Schematic for the layer structure of the monolithic blue-cyan LED, (b)
monolithic blue-cyan LED under CW operation, a grid of gold ohmic contact is
clearly visible, and (c) cylindrical shape remote phosphor covering the blue-cyan
LED under CW operation.

allowing uniform pumping along an imaginary circular surface placed horizontally

at any given height.

The optical characteristics of both the monolithic blue-cyan device and the

phosphor covered device were measured under CW regime. An integration sphere

(Diameter = 10 inches) from Labsphere Co, Ltd and a CDS-600 spectrometer was

used to record the values for radiant flux, peak emission wavelength, full bandwidth

width at half maximum (FWHM) and the spectrum. Further the recorded data

was processed using LightMtrx software The LED was driven in CW regime with a

programmable current source Keithley-2400.
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4.3 Results

In this section, the efficiency and optical characteristics of the monolithic blue-cyan

(MBC) LED (Fig.4.2b) and phosphor-converted MBC (pc-MBC) (Fig.4.2c) are

presented. First, efficiency and spectral behaviour of MBC LED is determined as a

natural progression and to reflect on the characteristics of pc-MBC.

4.3.1 Monolithic Blue-Cyan LED

4.3.1.1 Efficiency of MBC LED

At first the external quantum efficiency (EQE) of the MBC LEDs under CW regime

is determined from the experimental data with EQEmax = 9.3% and is presented

in Fig.4.3a. To determine the maximum IQE and LEE for the di-chromatic LED

the procedure based on ABC model as described in section 5.3 is used. The ratio

EQEmax/EQE, as described in step 5 of section 5.3, is plotted as a function of

p1/2 +p−1/2 to determine the quality factor Q. The experimental points when

approximated by straight line, see fig.4.3b, Q = 3.4 is determined. Next, using the

relations 4.1 and 4.2 IQEmax = 63% and LEE = 14.8% is evaluated.

IQEmax = Q

Q + 2 (4.1)

LEE = EQEmax

IQEmax

(4.2)

As shown in figure 4.3a, the experimental EQE data as a function of normalised

optical power (p) can be fitted reasonably well with the theoretical EQE curve

EQE = LEE × Q

(Q + p1/2 + p−1/2) (4.3)

for p values less than ∼ 10 i.e. for currents less than ∼ 30 mA. For currents more
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than ∼ 30 mA the deviation of theoretical curve is attributed to the growing cyan

emission and is discussed in next section.

Fig. 4.3 (a) External quantum efficiency, centroid wavelength, and spectral FWHM
of monolithic blue-cyan LED as a function of normalized optical power (p) , and
current (mA); orange line is the ABC-model theoretical fit for EQE (b) Fitting
of data (orange squares) by the procedure based on ABC-model to calculate light
extraction efficiency and internal quantum efficiency.
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4.3.1.2 Spectral analysis

Th evolution of centroid wavelength (see section 2.4.3) and full width at half

maximum (FWHM) with current and normalised optical power for the MBC LED is

presented in fig. 4.3a. It can be seen from the figure that with increasing current the

centroid wavelength shift to the higher emission energy i.e. a blue shift is observed

with practically negligible change in the emission spectral width for currents less

than ∼ 30 mA. This observation is attributed to the polarisation induced electric

fields within the QW’s [17]. With further increase of current (see 4.3a) the centroid

emission wavelength starts to shift towards the lower energy side of the visible

spectrum, i.e the onset of red shift, which becomes strong for currents greater than

∼ 70 mA. A pronounced increase in spectral width must also be noticed under

these operating conditions.

Investigating the spectrum under these operating conditions, as seen in Fig.4.4a,

a few observations are made.

a) For I < 30 mA, the blue emission peak dominates with a blue shift of peak

wavelength for both blue and cyan emissions.

b) For 30 mA < I < 130 mA, blue emission peak gradually saturates whereas the

cyan emission is steadily increasing with negligible red shift of peak wavelength

compared to at I ∼ 30 mA .

c) For I > 130 mA, spectral power decrease in blue peak along with noticeable red

shift of peak wavelength. On the other hand though the peak emission wavelength

of cyan emission exhibits no red shift while the spectral power keeps increasing with

current.

So, the simultaneous increase of spectral width and red shift of centroid wave-

length are understood in terms on increased intensity of the cyan emission peak.

Moreover, since the peak emission wavelength for both emission peaks exhibits

negligible red shift, device self-heating can be neglected as the probable cause for

efficiency decrease in fig.4.3a. Thus it can be concluded that cyan QW, being in

the close proximity of the “green gap” region, has lower efficiency and thus in-

creased cyan intensity with current for I > 30 mA leads to the discrepancy between

experimental and predicted EQE.
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4.3.2 Characteristics of pc-LED

To achieve white light emission from the MBC LED it was covered with a phosphor

mixture as described in section 4.2. The spectral evolution of such a pc-LED as

a function of current is depicted in figure 4.4b. Figure 4.5 presents the spectra

of the RF3000K-96 phosphor mixture when pumped with 450 nm blue LED as

provided by the vendor. Comparing the emission spectrum of MBC LED (fig.4.4a),

Fig. 4.4 (a) Emission spectrum for monolithic blue-cyan LED; (b) emission spectrum
for pc-LED; black-body radiation spectrum at 3400K shown as the dashed line and
(c) chromaticity coordinates corresponding to the spectrum depicted in (a) and (b);
Top inset - coordinates for pc-LED; Bottom inset - coordinates for blue-cyan LED.
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Fig. 4.5 Emission spectrum of the RF 3000K 96 phosphor sheet when pumped with
450 nm [14].

pc-LED (fig.4.4b) and figure 4.5 it can be seen that the blue emission from the MBC

LED gets strongly absorbed by the phosphor mixture with increasing current even

though the blue emission is around ∼ 435 nm instead of 450 nm intended for the

phosphor used thus indicating that the pump wavelength used is in close proximity

of the peak of the excitation spectra of the phosphor mixtures. On the other hand

the cyan emission (see fig.4.4b) peak gets stronger with current thus not absorbed

as strongly as the blue emission. The observed selective absorption allows the total

emission from the pc-LED to cover almost whole of the visible emission spectrum

and is advantageous for achieving utmost colour rendition from such devices. Figure

4.4b also depicts a truncated black-body radiation spectrum at colour temperature

of 3400 K and the pc-LED emission spectra for similar CCT (for 70 mA < I < 190

mA). It is evident, and as observed, that the emission spectrum of pc-LED must

have a prominent cyan emission peak with spectral magnitude greater than the

blue peak to achieve such colour temperatures.

Next, the evolution of colour parameters, CCT, CRI and the chromaticity

coordinates of the pc-LED as a function of current are depicted in Fig. 4.6. A

variation oc CCT from ∼3500 K to ∼3300 K in the current range of 1 mA to 200

mA is quiet stable. Figure 4.6c depicts a reasonably stable evolution of chromaticity
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Fig. 4.6 (a) CRI and CCT determined for standard 8 Munsell samples [Ra(8)] and
14 (8 standard + 6 extended) Munsell samples [Ra(14)]; (b) Luminous Efficacy
(LE) and Luminous Efficacy of Radiation (LER) for the pc-LED; (c) x, y CIE 1931
chromaticity coordinates as evolving with injection current.

coordinates with increasing current in the range of 30-150 mA. Furthermore, the

luminous efficacy of radiation (LER) for the device varies in the range of 282-262

lm/W with a maximum value of 282 lm/W at 10 mA. The LER values are within

the expected range of truncated solar spectrum[16].

The colour rendering index is determined with the basic eight (Ra(8)), and

extended (Ra(14)) Munsell reference colour samples. Evolution of CRI, both Ra(8)

and Ra(14), with current is depicted in fig.4.6(a). Both Ra(8) and Ra(14) bear
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qualitative resemblance as a function of current. The general CRI Ra(8) is around

∼ 96 at low currents, which is as claimed by the vendor, due to predominantly blue

emission under these operating currents. From figure 4.6(a) it can be seen that both

Ra(8) and Ra(14) increases with current which corresponds well with the increasing

cyan emission. A maximum Ra(8) = 98.6 is achieved at 80 mA. Further increase

in current leads to steep decrease in Ra(8). Spectral broadening and red-shift in

the MBC spectrum are also observed for similar current values. This indicates that

colour rendition for such devices is tuneable with current. Next, the changes in

partial CRI’s are observed and compared for three regions of operating current as

shown in fig. 4.7.

Fig. 4.7 Partial CRI’s for the 14 Munsell colour samples at (a) optimal (80 mA),
(b) low (1 mA) and (c) high (150 mA) current for the pc-LED. The dark grey
background in each figure indicates the average CRI Ra(8).

At optimal current (Fig.4.7a), i.e. ∼ 80mA in this case, the all partial CRI’s have

improved to more than 94 in comparison to their values at low current (Fig.4.7b)

operation, i.e. less than ∼ 20-30 mA, except R9 which is < 88. R9 shows very little
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improvement compared to improvements shown by R3, R4, R11 and R12 under these

operating conditions. At high currents (Fig.4.7c), i.e. ≥ 150 mA, while the spectral

shift of the MBC LED and growing cyan emission leads to a drop in most partial

CRI’s, as compared to their values for optimal current, R8 shows little change and

R14 grows along with R9. However, the growing R9 and R14 are dominated with

dropping R1 and R5-R7 thus leading to a lower CRI of 97.

4.3.3 Discussion

A maximum CRI of 98.6 is obtained at 80 mA and the corresponding luminous

efficacy at this current is 4 lm/W. The maximum luminous efficacy achieved with

the epi-up structure is 11 lm/W at an operating current of 1-2 mA. These values are

quite low for practical applications and this is attributed primarily to low LEE of

14.8%. Since LEE is strongly affected by total internal reflection (TIR), free carrier

absorption, and reflection at the contact electrodes, optimal chip designs such as

nanocorrugated substrate to reduce TIR, carefully designed contact electrodes to

reduce absorption at contacts, use of silicone lens and others; which presumably

be enacted in commercial state-of-the-art high power LED designs from OSRAM,

can substantially improve the LEE. Along with improvements towards reducing

TIR and contact electrode absorption, the LEE of di-chromatic LED may also be

limited, to a certain extent, due to free carrier absorption in QW’s with higher In

composition due to In segregation effects and at the interface of different layers in

the AR. Though explicit studies to investigate LEE for the blue-cyan device has

not been carried out, it is understood that the above discussed factors contribute

towards low LEE for this device along with the losses due to phosphor. Better

chip designs along with silicone lens can possibly improve the efficacy to acceptable

values of ∼ 50 lm/W for such di-chromatic pc-LEDs. Also, any further improvement

in efficacy would depend on IQE improvement. Nevertheless, since the peak efficacy

(and maximum EQE) and efficacy related to highest CRI occur at different currents

improvement can be made by adjusting the electrical properties of spacer in between

the two (blue and cyan) QW’s[18] such that maximum CRI corresponds to maximum

efficacy(or EQE).
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On the other hand, from the colour characteristics of pc-LED it can be seen

that of all the partial CRI’s improvement in R9 is the way forward to achieve

ultimate colour rendering source. The lower R9 is because of lower than required

spectral content in the wavelength range of ∼ 650-700 nm. This can be improved

by (a) using a red phosphor with broader emission band or, (b) adding another, i.e

third phosphor with emission centred around 700 nm with a very narrow spectral

width. In both the cases, it is expected that the luminous efficacy will be affected

negatively because a part of the red phosphor spectrum beyond photopic eye

sensitivity spectrum will not be accounted for and is practically lost for efficacy

calculations. Hence it is important that emission spectrum width and the peak

wavelength of the red phosphor, to improve R9, is carefully chosen taking into

account its affects on efficacy.
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4.4 Conclusion

A hybrid approach to generate warm white, CCT ∼ 3400 K, light using a novel

hybrid approach with an outstanding CRI (Ra(8)) of 98.6 is demonstrated. To

achieve such high colour rendition a di-chromatic LED emitting in the blue and

cyan spectral range along with a green-red two phosphor mixture is used. The

assembled pc-LED has a peak luminous efficacy of 11 lm/W, whereas the LEE

and IQE for the monolithic blue-cyan device is 14.8% and 63% respectively. The

efficacy can be improved with better chip design and silicone lens by improving

LEE and IQE of MBC. For further improvements in CRI the partial CRI R9 needs

improvement, towards that two approaches involving careful optimisation of red

phosphor have been discussed in section 4.3.3.

The given approach has a distinct advantage of employing only two phosphors

with overlapping emission and excitation bands thus opening the possibility to

achieve high CRI. Another advantage stems from the dual wavelength excitation

LED with emission wavelengths which do not fall into the “green gap”region thus

allowing for far better IQE.
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Chapter 5

High brightness Blue LEDs:

Temperature dependant efficiency

and spectral behaviour

I. E. Titkov, S. Yu. Karpov, A. Yadav, V. L. Zerova, M. Zulonas, et. al,

“Temperature-Dependent Internal Quantum Efficiency of Blue High-Brightness
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I. E. Titkov, A. Yadav, V. L. Zerova, M. Zulonas, E. U. Rafailov, et. al, “Novel

evaluation procedure for internal and extraction efficiency of high-power blue LEDs,”

2014 International Conference Laser Optics, St. Petersburg, 2014, pp. 1-1.

In this chapter, the LEE and IQE of state-of-the-art commercial blue LEDs is

calculated from the experimentally determined EQE using a novel data processing

procedure based on the ABC-model. It is demonstrated that the ABC-model is

capable of fitting the EQE dependence on current in a very wide range and in the

whole temperature range between 13 K and 440 K. Using this procedure, for the first

time the temperature dependence of LEE in state-of-the-art commercial blue LEDs

is estimated and the mechanisms responsible for such a dependence are qualitatively

discussed. In turn, this enabled derivation of the temperature-dependent internal

quantum efficiency (IQE) both at its maximum and at a practical operation current.
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5.1 Introduction

InGaN-based blue LEDs are at the core of the present day phosphor covered white

LEDs. These device have seen significant improvements in their quantum efficiencies

over the years with improved chip designs, growth and fabrication technologies.

While the IQE for such devices has improved to more than 80% [1] they still suffer

from drop in efficiency with increased operating current i.e. the efficiency droop

phenomenon. This presents as a fundamental impediment for InGaN based high-

power devices designed to emit more optical power per unit area of the device since

they operate under current/current densities different from the peak efficiencies.

Efficiency droop in InGaN LEDs has been studied rigorously and various mech-

anism contributing to it has been reported. Among those processes Auger recombi-

nation [2–4] is considered to be the major contributor as has been demonstrated

experimentally [5–7]. On the other hand, carrier leakage outside the active region

due to asymmetric p-n junction [8, 9] and/or polarization effects [10, 11], saturated

radiative recombination [12], poor hole injection [13], and defect assisted tunnelling

are among the suggested theories for efficiency droop. Nevertheless, a general

consensus still evades the researchers. This however has not impeded the progress in

the addressing the issue. Among the LEDs grown on c-plane sapphire engineering of

QW and EBL has been done to reduce or overcome carrier leakage [14–19], polarisa-

tion effects [10, 20–22] and QW carrier density [23, 24]. Nevertheless, understanding

the processes involved in efficiency droop is critical for further improvements to

EQE of InGaN based EQE.

External quantum efficiency is inherently a product of internal quantum efficiency

(ηint) and light extraction efficiency (ηext) (assuming negligible carrier leakage) and

provides information on radiative and non-radiative recombination processes. Thus,

separate evaluation of IQE and LEE would be useful to determine a correlation

between device structure and recombination processes. IQE and LEE are most

commonly determined theoretically by FDTD modelling [25] in case of LEE and

temperature dependent variable excitation photoluminescence (PL) [26, 27] and

temperature dependent electroluminescence (TDEL) [28, 34] for IQE. While FDTD
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is resource hungry and time consuming, PL and TDEL are based on intuitive

assumptions that temperature has no affect in LEE and at cryogenic temperatures

non-radiative recombination can be ignored. In the latter case, this leads to nearly

100% IQE, which according to the data presented in [28, 34] indicating a peak value

of IQE under certain range of current, seems improbable even at low temperatures

and would require further experiments to confirm the assumption. The former

assumption of LEE not being affected by temperature would be rendered incorrect

taking into account that light absorption, whether within the die or in the contact

layers due to free carriers, affects LEE due to thermally activated donors and

acceptors.

Recently, more practical approaches requiring minimum or no computation

based on ABC-model have been used to determine IQE [30–32]. In this chapter the

efficiency evolution over the broad range of temperatures 13-440K is studied. To do

so a step wise procedure [33] as described in section 5.3 based on ABC model is

used.
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5.2 Device structure and Experimental Setup

5.2.1 Samples

The III-nitride LEDs studied in this work were fabricated by Osram Opto Semicon-

ductors. The InGaN based devices were grown on c-plane sapphire by metal organic

chemical vapour deposition (MOCVD) method with peak emission wavelength of

λ = 450 nm. First an undoped GaN layer is deposited on the sapphire substrate,

which is then followed by n-type GaN. Silicon (Si) is used as the dopant material for

the n-type conductivity. Next the MQW active region (AR) made up of alternate

layers of undoped InGaN/GaN is grown on the n-GaN contact layer. This is followed

by a Mg doped p-type AlGaN electron blocking layer (EBL) and a top p-GaN layer.

Further, to reduce photon absorption, contact electrodes/pads with high reflec-

tivity were deposited/formed on the respective n- and p-GaN contact layers. The

structures were then packaged in the Osram’s proprietary Golden Dragon packages

after being processed as state-of-the-art UX:3 chips. However, the packaging for

these chips was adapted to not have any molding and a silicone lens. Though light

extraction efficiency (LEE) of these devices drops in the absence of the any molding

and lens, as compared to devices with silicone lens, absence of any media next to the

chip surface is crucial to correctly measure temperature- and intensity-dependent

electroluminescence (T-IDEL).

5.2.2 Experimental Setup

T-IDEL is used as the experimental technique for this study [34]. To determine the

only efficiency parameter that can be obtained experimentally, EQE, electrolumi-

nesence (EL) of the blue LED was measured using CDS 600 spectrometer. The

wide range of temperature variation ranging from 13 K to 440 K was achieved by,

Janis CCS-450, a helium (He) based closed cycle cryostat. For all temperatures

the LED was operated in the current range of 10-8A to 0.8 A. Self-heating, as has

been argued in the literature, along with other mechanism is detrimental for device

efficiency and contributes strongly with increasing operation current. Pulsed current
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Fig. 5.1 Schematic of the T-IDEL experimental setup

with a duty cycle of 1% was employed to avoid self-heating of device for values of

current ≥ 50 - 60 mA.

The radiant flux generated under the wide range of operation current was

recorded first by reducing the exposure/integration time for the spectrometer from

5 seconds to 1 ms. Thereafter neutral-density (ND) filters from 1 to 4 were used to

attenuate light intensity to record radiant flux with exposure time around 1-5 ms.

For the absolute values of EQE, first measurements were made in an integrating

sphere at room temperature (RT) and then in the cryostat. The normalisation

factor calculated from these measurements was used to determine absolute EQE

at temperatures other than RT. During the TDEL measurements to maintain a

consistent optical alignment, which is of critical importance, at all temperatures it

is initially established carefully at RT and is not changed thereafter. To account

for the temperature dependant shift of the sample holder the cryostat is tuned at

temperatures other than RT, thus maintaining a consistent optical alignment.

To establish the electrical quality of the chip, Keithly 4200, a semiconductor

characterisation system was used to measure current-voltage (I-V) characteristics

at all temperatures in the range of 13 K to 440 K.

106



5.3 IQE and LEE evaluation procedure based on the ABC model

5.3 IQE and LEE evaluation procedure based on

the ABC model

In this section, a novel data processing procedure, as has been first proposed in [33]

and developed by Dr. Sergey Karpov (STR Group, Russia), based on ABC model

is detailed. The procedure relies on the fact that emitted power is proportional to

BN2 term in the model. A step-wise data processing account is presented in the

section 5.3.1 below.

5.3.1 Step-wise process to evaluate IQE and LEE

The evaluate the values of IQE and LEE of a LED do the following -

Step 1) First determine the EQE (ηex) of the device from the experimentally

determined light-current characteristics. To do so the following relation is used

ηex = qPout

I~ω
(5.1)

where,Pout = emitted optical power,

q = charge of an electron,

~ω = average photon energy over the emission spectral width, and

I = current

Step 2) Plot EQE as a function of emission power Pout and determine power

Pmax corresponding to the peak/max value of EQE (ηmax
ex ).

Step 3) Calculate normalised optical power, p = Pout/Pmax and derive the EQE

dependence on p i.e. ηex(p).

Following the procedure until step 3 allows to compare measured data to following

analytical expressions -

p = Pout

Pmax

(5.2)
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Q = B

(AC)1/2 (5.3)

ηint = Q

Q + p1/2 + p−1/2 (5.4)

where, Q is the dimensionless independent parameter known as ‘quality factor’ after

[35] and peak IQE can be determined solely by it using the relation

ηmax
int = Q

Q + 2 (5.5)

where, A,B and C are Shockley-Read-Hall, Radiative and Auger recombination

constants respectively. Using equation 5.4 and 5.5 a ratio between ηmax
ex and ηex(p)

can be determined as

ηmax
ex

ηex(p) = ηmax
int + p1/2 + p−1/2

Q + 2 (5.6)

providing a linear relation between p1/2 + p−1/2 and ηmax
ex /ηex(p).

Step 4) Plot the ηmax
ex /ηex(p) ratio as a function of p1/2 + p−1/2.

In such a plot the processed experimental data can be well fitted by a straight

line if the ηex(p) dependence is symmetric. In the case of asymmetric dependence a

low and high current branch appears and most reliable branch be used.

Step 5) Fitting the plot generated in step 4 with a straight line allows to de-

termine Q factor as the slope of the line. Thereafter the peak IQE is determined

using the relation 5.5. LEE can then be calculated using the standard relation

ηext = ηmax
ex /ηmax

int .
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5.4 Results and Discussion

Experimentally obtained data pertaining to electrical and optical properties for the

blue LEDs described in section 5.2 are presented and discussed here. This section

also entails the results obtained after processing the current dependent EQE with

the new procedure based on ABC model described in section 5.3 above.

5.4.1 Current Voltage characteristics

Current-voltage characteristics of the blue LED are shown in figure 5.2. The I-V

characteristics of the LED at all temperatures is similar to a typical diode. Thus

indicating good electrical quality of the p-n junction and the other layers of the

chip.

Fig. 5.2 Current-Voltage characteristics at various temperatures for the blue LED

For all temperatures the measured I-V curve can be analysed for low and high

driving currents. Typically the section of the I-V plot with forward voltage less than

∼ 2.2 V is associated with low driving currents. While on the other hand for high

currents the typical forward voltage is more than ∼ 2.7 V. Different mechanism

109



5.4 Results and Discussion

or processes can be attributed to these voltage levels. At low current injection

the loss of carriers i.e. electrons and holes is predominant. The shallow and deep

level impurities in the device material would create electronic states within the

bandgap of the direct bandgap material. These sites could contribute to carriers

loss by assisting the tunnelling of carriers. On the other hand, extended defects like

V- defects, threading dislocations and micro-pipes introduced during the MOCVD

growth of the devices efficiently assist in leakage of carriers at low currents. In

any case these carriers do not recombine radiatively as can be confirmed from

figure 5.5 by the absence of any peak at longer wavelengths. Apparently, these

channels of carrier loss and are not considered by the ABC model. While, the

Shockley-Read-Hall (SRH) recombination constant (A) can be adjusted to consider

for trap-assisted tunnelling [36] it is not critical to implementing the procedure

described in 5.3.1.

Figure 5.3 depicts the experimentally measured EQE as a function of current

at various temperatures. It can be seen from figure 5.3 that for practically all

temperatures the minimum current at which EQE could be measured is well above

the low current (> 10−8A, for temperature 13 K and 50 K) region of the I-V curves

corresponding to tunnelling of carriers. For higher temperature the low and high

current sections of the I-V curves merges together for current values, less than or

equal to, the values of current for which EQE can be measured. This indicates that

low current carrier loss is not affecting the EQE measurements and thus allowing

us to process the EQE data with the above mentioned procedure.

On the other hand, carrier injection in the active region dominates at high

current section of the I-V curves irrespective of operating temperature. For this part

of the I-V curve the slope changes with temperature. This variation is accounted for

by the current dependent p-n junction resistance and a diode series resistance. The

LED series resistance is estimated across the complete temperature range from 13 K

to 440 K by accounting for the series resistance in the adapted Shockley’s diode

equation. Fitting the experimental curves with the adapted diode current equations

reveals a linearly decreasing series resistance from 7.1 Ω to 6.0 Ω with increasing

temperature from 13 K to 440 K respectively. Furthermore, a very little change in
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LED series resistance establishes the electrical stability of the ohmic contacts for

both the n-type and p-type contact pads. It also indicates that carrier freezing

affect is absent from the n- and p-type contact layers even at temperatures as low

as 13 K.

5.4.2 Temperature dependence of the EQE

External quantum efficiency measured as a function of current at temperatures

from 13 K to 440 K is shown in figure 5.3. EQE curves for all temperatures exhibit

the characteristic dome like shape as reported in the literature for InGaN/GaN

LEDs. For cryogenic temperatures from 13 K to 100 K, the top of the dome

is approximately flat over a wide current range however the width of the dome

decreases with increasing temperature. This contraction of width continues for all

temperatures along with the decrease of maximum value of EQE.

The well known efficiency droop can be observed at all temperatures. It is

crucial to note that even at high currents up to 800 mA, the temperature EQE

curves don’t intersect. This observation is quiet opposite to the previous results

reported on blue LEDs [37], where EQE curves at lower temperatures intersect with

Fig. 5.3 EQE as a function of current at various temperatures (13 K to 440 K).
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the high temperature curves. Unlike the results presented here in [37] the onset of

droop shifts to lower currents with decreasing temperature thus the intersection of

curves.

The maximum value of EQE along with the EQE value at the operating current

of 350 mA for each temperature is shown in figure 5.4. The maximum value of EQE

decreases with temperature from ∼74% at 13 K to ∼45% at 440 K. On the other

hand the operating current EQE shows a very weak dependence on temperature as

it is reduced only by ∼9% from 13 K to 440 K.

5.4.3 Spectral analysis

The EL spectra measured at 3 mA for the blue LED are presented in figure 5.5.

A sharp peak around ∼ 452 nm is observed at all temperatures from 13 K to 300

K. This peak corresponds to the band to band excitonic emission from the QW’s.

Also, the presence of two phonon replicas, denoted as 1LO and 2LO where LO

means longitudinal optical phonon, for temperatures ≤ 150 K is an indicator of

good quality active region on the device .

Fig. 5.4 EQEmax and EQE at 350 mA at various temperatures (13 K to 440 K).
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Fig. 5.5 (a)Emission spectrum at temperatures (13K to 300K) for blue LED and
distinctly visible LO phonon (1st and 2nd) at temperatures ≤ 150 K, (b) S-shaped
temperature dependence of dominant emission wavelength.

From figure 5.5 it is observed that at higher temperatures the EL spectra exhibit

wings on the both side of the main emission peak around ∼ 452 nm. The high

energy wings are attributed to carrier evolution in the energy bands of the active

region with increasing temperature, whereas the long wavelength wings are mere

merging of LO phonons replicas with the peak.

Under EL excitations with increasing temperature the dominant emission wave-

length undergoes a redshift followed by a blueshift and then again gets redshifted.

Thus exhibiting a S-shaped temperature dependence. Such a dependence can be

explained by changing carrier dynamics due to carrier localisation and inhomo-
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Fig. 5.6 Left column all (a)’s show EQEmax/EQE vs p1/2 + p−1/2; right column all
(b)’s show EQE vs normalised optical power (p) at three different temperatures.
The black line in both column’s represent the theoretical fitting with orange circles
depicting the experimental data. The theoretical lines are obtained using the
ABC-model described in section 5.3.1.
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geneities in the InGaN/GaN QW structures [38]. A rather small shift of ∼ 3 nm

over the temperature range of 13 K to 300 K is observed thus demonstrating a weak

temperature dependence and stable emission behaviour.

5.4.4 LEE and IQE Evaluation

In this section, based on the procedure described initially in [33] and section 5.3.1

above, the LEE and IQE for the SQW blue LED is determined from the measured

EL data. The experimental data at all temperatures is fitted in accordance with

the procedure and the results at 13 K, 300 K and 440 K are presented in figure

5.6. The experimentally obtained ratio ηmax
ex /ηex(p) is plotted as a function of

X = p1/2 + p−1/2 in figure 5.6(a)’s. A linear fit based on the ABC model best

describes the evolution of the ratio ηmax
ex /ηex(p) with X. It must be noted that the

smaller values of X (i.e. close to the origin of the graph in figure 5.6(a)’s corresponds

to the values close to maximum EQE for each temperature presented. On the other

hand, the ηmax
ex /ηex(p) ratio corresponding to the higher X values is associated with

low or high, current or normalised optical power. The experimental data points

are well accounted by the linear fit for the X values below 30 to 40. Thus it is

expected that ABC-model shall fit the absolute experimental EQE as function of

normalised optical power in whole range of interests. This is evident from figure

5.6(b)’s depicting the well fit experimental data by the theoretical curves, and

deviation of the ratio ηmax
ex /ηex(p) from theoretical linear fit (figure 5.6(a)’s) for

values of X more than 30-40, which also corresponds to low or high, current or

normalised optical power.

LEE obtained for all temperatures as calculated by the processing the experi-

mental data according to the procedure described in 5.3.1 is in the range of 69.3%,

for 13 K to 64.2%, for 440 K. This temperature dependence is shown in figure 5.7

along with the evolution of IQE with temperature. A maximum IQE of 96.6% at

13 K is calculated and is expectedly high, since thermal carrier loss is negligible

at such temperatures, which then drops by ∼ 45% with increasing temperature to

60.8% at 440 K.
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Fig. 5.7 Variation of maximum LEE (top), IQEmax and IQE at 350 mA (bottom).
Blue line represents a constant 65% IQE and blue circles are the experimental
points. Red line fitting the experimental IQEmax data points is approximated using
known Q factors in the relation ηmax

int Q/(Q + 2).

Furthermore, it is observed that IQE is practically temperature independent at

350 mA, typical operating current for high brightness LEDs, (see fig 5.7) for all

temperatures below 420 K.

5.4.5 Mechanisms leading to temperature dependence of

LEE

Temperature dependence of LEE, although weak, as observed in section 5.4.4 is

addressed in this section. To account for such a temperature dependence, as shown

figure 5.7, optical losses within the device along with their temperature behaviour

has to be considered. The optical losses can be due to following three mechanisms:
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(a) free-carrier absorption outside the active region by the contact layers,

(b) band-to-band absorption in the active region of the device, and

(c) reflection losses at metal electrodes on contact layers.

Free-carrier absorption (FCA) in GaN, forming the contact layers for the In-

GaN/GaN blue, LED shows variation with changing temperature and is reduced at

lower temperatures. Considering higher donor concentration it can be assumed that

electron concentration in the n-type contact layer does not exhibit temperature

dependence of practical significance. On the contrary, in magnesium (Mg) doped

p-type contact layer hole concentration depends strongly on temperature due to

high activation energy of Mg. Furthermore, the mobilities of the carriers (holes and

electrons likewise) decreases dramatically with decreasing temperature, mostly due

reduced thermal activation energy. Taking into account that FCA cross-section has

an inverse proportionality with carrier mobility, it is expected that FCA will be

pronounced at higher temperatures as against the lower cryogenic temperatures,

thus contributing to the loss of photons in turn helping to in reducing the LEE at

higher temperatures.

Band-to-band absorption is the dominating processes of the absorption spectrum

for direct bandgap materials. The temperature dependence of the band-to-band

absorption process is characterised by the shrinking forbidden gap or the red shift of

the emission spectrum. Studies made on InGaN QWs in [39] reports a shift of peak

absorption band edge by ∼ 32 meV towards higher energy at operating temperatures

< 70 K, such a shift vanishes with increasing temperatures thus contributing the

optical losses and hence reduced LEE.

Reflection losses due to partial reflection of light at the metal electrodes originate

from the temperature dependence reflectance properties of the electrodes. A simple

method based on Drude model to estimates reflectivity at the silver(Ag)/GaN

interface predicts a decline in reflectivity by ∼ 5% points to ∼ 94% at 300 K from ∼

99% at 20 K. Thus indicating increased optical losses with increasing temperatures

that is in-line with the trend for the highly reflective metals with plasma frequency

(ωp) > frequency of light (ω).
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5.5 Conclusion

In this chapter commercial high-brightness blue LED was studied under wide range

of variable temperatures from 13 K to 440 K. The evolution of both electrical and

optical properties under these temperatures are presented. Next, an ABC-model

based stepwise procedure is used to estimate the IQE and LEE for a packaged

device from the experimentally determined EQE.

The procedure applied fits ABC model remarkably well to the experimental data

at all measured temperatures thus allowing to evaluate IQE and LEE in the whole

range. The quality factor, Q assumes a constant value over the range of 13-440K

indicating a rather weak temperature dependence of recombination constants on

carrier concentration. Maximum EQE as determined from the experimental data

decreases from ∼ 74% at 13 K to ∼ 45% at 440 K. However, for operating current

of 350 mA EQE exhibits a weak dependence on temperature with a drop of only

9% over the whole range of temperatures. On the other hand IQE (∼ 65%) at

all temperatures for the operating current of 350 mA showed no dependence on

temperature indicating a non-monotonic nature of Auger recombination constants

with temperature. Also, maximum IQE dropped by ∼ 32% from ∼ 97% at 13 K

to ∼ 65% at 440 K. Furthermore, LEE also decreases as expected with increasing

temperature from 76% at 13 K to 68% at 440 K.
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Chapter 6

High current pulsed pumping of

AlGaInP red LEDs: Efficiency

and Optical properties

A. Yadav, I. E. Titkov, G. S. Sokolovskii, S. Yu. Karpov, V. V. Dudelev, K. K.

Soboleva, M. Strassburg, I. Pietzonka, Hans-Juergen Lugauer, and E. U. Rafailov,

“AlGaInP red-emitting light emitting diode under extremely high pulsed pumping,”

Proc. SPIE 9768, Light-Emitting Diodes: Materials, Devices, and Applications for

Solid State Lighting XX, 97681K, March 8, 2016.

In this chapter behaviour of efficiency of high power 620 nm AlInGaP LEDs

when operated under high current density up to 4.5 kA/cm2 and varied pulse width

from microsecond down to sub-nanosecond is studied. No efficiency decrease and

negligible red shift of the emission wavelength is observed in the whole range of drive

currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the

pulse-duration dependence of the LED efficiency and emission spectrum suggests the

active region overheating to be the major mechanism of the LED efficiency reduction

at higher pumping, dominating over the electron overflow and Auger recombination.

Furthermore, a low LEE as calculated using AB-model suggest light extraction to

still be the bottleneck for lower overall efficiency.
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6.1 Introduction

AlGaInP based LEDs emits in the 560 - 650 nm wavelength range of the visible

spectrum where wavelengths are tuned by varying the Al content in the quaternary

alloy as discussed previously. Light emitting diodes based on AlGaInP material

system are used in many applications such as outdoor displays, traffic lights, keypads,

signage, automotive lighting, horticulture and SSL [1]. For SSL,a multichip approach

that combines AlGaInP based red LEDs and AlGaInN blue LEDs is a promising

way forward towards high CRI white light generation especially with significant

luminous efficacy improvements over the last decade for devices from either material

system [2].

To further improve the optical and efficiency parameters of AlGaInP LEDs, a

better understanding of processes leading to reduction in efficiency at high current

is crucial. It is argued that possibly the mechanism behind decrease of efficiency at

high currents is common to both AlGaInP and AlGaInN material systems due to the

similarities in the behaviour of external quantum efficiency (EQE) with increasing

current [3]. The decrease in external quantum efficiency at high currents for III-

nitrides has been attributed to prominent mechanisms such as: Auger recombination

[4, 5], carrier delocalisation [6], saturated radiative recombination [7], carrier leakage

[8, 9] and dislocation-induced non-radiative recombination [10]. However, AlGaInP

red LEDs are grown on lattice matched GaAs substrate thus dislocation assisted

non-radiative recombination is not likely to be the dominant mechanism towards

reduction in EQE at high current densities. Further, absence of strong piezoelectric

fields for this material system and reduced composition fluctuations indicates that

carrier leakage due to polarization and delocalization of carriers respectively, may

contribute to, but are not the dominant mechanism for EQE decrease in red LEDs

at high current densities. Whilst this line of thought depends heavily on studies

done on a material system which is different from AlGaInP in a number of ways,

more direct investigations on red LEDs in the literature offers a better insight on

the mechanism and methods regarding efficiency decrease in red LEDs.
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The escape of carriers to confining layers, that are grown from an indirect

bandgap material, from the active region has been suggested as the mechanisms

for efficiency decrease with increasing current and increased Al content to achieve

emission closer to green wavelength region [3, 11, 12]. The literature also offers

other possible explanations to efficiency decrease in red LEDs. While Shi et. al. [13]

suggest two mechanism, defect recombination and saturated radiative recombination,

dependent on driving current, for efficiency decrease it has also been strongly argued

that carrier leakage is the dominant mechanism. Authors in [14, 15] suggest that

asymmetricity of the p-n junction leads to electron (carrier) leakage for low operating

currents. On the other hand carrier leakage due to insufficient barrier heights of

the confinement layers between the QWs which is very similar to [3, 11, 12] has

been convincingly argued in [16, 17]. Following the presented line of argument a

similar effect of decrease in efficiency must be observed under increased density of

high energy electrons device due to self-heating or increased carrier concentration

in the active region QWs raising the quasi-fermi level. Furthermore, at higher

temperatures due to decrease in radiative constant and non-radiative carrier lifetime

efficiency of LED might decrease irrespective of carrier leakage. To identify and

better understand the contributions of low barrier electron leakage and elevated

active region temperature during operation in the case of red LEDs there is need

for further experiments.

In this chapter red LEDs studied under CW and pulse regimes for current as

high as up to 45 A are presented. To avoid the elevated operating temperatures

of the active region an aluminium heat sink and duty cycles of ≤ 1% were used.

The spectral and power characterisation data from CW, 100 µs, sub-microsecond

and sub-nanosecond pulse operation is used and presented to better understand the

nature of decrease in efficiency of red LEDs.
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6.2 Device structure and Experimental setup

6.2.1 Samples

In this experiment the investigated high power AlGaInP based red LEDs were grown,

using metal-organic vapour phase epitaxy (MOVPE), on GaAs substrate. The active

region of 1×1 mm2 devices was composed of vertically stacked (AlxGa(1−x))0.5In0.5P

multiple quantum wells (MQWs). These MQWs were enclosed by the confining

layers of AlxIn(1−x)P. Next an AlGaAs window layer is grown on top of p-confinement

layer followed by a p-type GaAs top contact layer. To achieve emission around

∼ 620 nm Al composition in the MQW’s is attuned to ∼ 12-16%. Thereafter the

singulated devices were processed with OSRAM Thin film process and packaged

with Golden Dragon casing.

Fig. 6.1 Schematic for the MQW red LED layers.

6.2.2 Experimental details

The AlGaInP LEDs were studied under both continuous wave (CW) and pulsed

regime. All room temperature measurement under both regimes were made using

an integration sphere and CDS-600 spectrometer. The collected data was processed

using LightMtrx software to obtain absolute values for radiant flux and thus EQE

along with other peak emission wavelength, full bandwidth at half maximum

(FWHM), centroid wavelength and spectral data. Keithly 2400 is used as the source

for CW operation with a maximum current of 1 A. To operate the LED under
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pulsed regime, 100 µs and sub-microsecond pulses, for current up to 2 A an Agilent

8114 A pulse generator was used and for currents 2 A - 23 A, IXYS Colorado

PCX-7420 pulse laser diode driver with external trigger was used. Furthermore,

to operate the LED under sub-microsecond regime (0.7ns) a custom built pulse

generator producing peak currents up to 45 A was used. Also, a non-contact current

probe, TCP0030 AC/D, was used to monitor and determine the actual current

flowing through the device thus accounting for the non-linear impedance behaviour

of the LED.

Fig. 6.2 Experimental Setup

The electroluminescence (EL) of the LED driven at high current under pulse

regime was also recorded. Oscilloscopes and photo-detectors with appropriate band-

width (BW) and rise time respectively, were used. For, 100 µs & sub-microsecond

regime the EL response was recorded using a 1 GHz oscilloscope and 30 GHz

photo-detector. On the other hand a 50 GHz oscilloscope with a 14ns rise time

photo-detector was used to record EL response of the device when operated under

sub-nanosecond regime. For all pulse regimes duty cycle of ≤ 1% is employed to

avoid inter pulse heating effect.

Lastly, to determine dependence of peak wavelength on temperature, under

various regimes of operation, temperature dependent electroluminescence (TDEL)

measurements were performed in CW regime. A closed cycle helium (He) based

cryostat, Janis CCS450, was employed to achieve temperatures in the range of 13 -

450 K.
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6.3 Results

The room temperature current-voltage (I-V) characteristics of the studied device is

shown in figure 6.3. Fitting the given I-V with Shockley’s diode equation yields an

ideality factor of 1.3 and resistance of 1.15 Ohms in series. An ideality factor of

less than 2 and a very low series resistance are indicative of better design of LED

structure electrically.
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Fig. 6.3 Current-voltage characteristics of AlGaInP LED at room temperature

6.3.1 Spectral analysis

Spectral evolution as a function of current under 100 µs pulse regime, duty cycle

= 1%, for currents range of 100 mA to 5 A is shown in Fig 6.4(a). A shift of

emission peak towards longer wavelengths with increasing current is clearly noted.

An increase of current from 100 mA to 5 A under these conditions leads to a red

shift [18] of ∼ 6 nm as shown in fig.6.4(b). Under CW operation in the current

range of 10 mA to 100 mA a similar red shift of ∼ 6-8 nm can be observed (see fig.

6.4(b)). This shift is indicative of elevated operating temperature of the device, i.e.

self-heating.
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Under 100 µs pulse operation, for currents up to 1 A, a very small red shift of

∼ 2 nm (fig. 6.4(b)) along with a spectral broadening of ∼ 2.5 nm (fig. 6.5(a))

was observed. Moreover, a red shift of about 6 nm along with ∼ 8.5 nm spectral

broadening is observed upon increasing the driving current to up to 5 A. This

dramatic increase in spectral width and red-shift is a strong indication of elevated

junction temperature of device. This observation is supported by the observed

increased slope of the short wavelength part of emission spectrum as discussed in

[15]. Furthermore, the photo-detector response of LED as shown in figure 6.5(b)

depicts the effect of increased operation current on the response of the LED emission

during the pulse. The sharp decrease of emission during the pulse for currents

≥ 2A is evident and further supplements the observation of increased junction

temperature with current.

The above observation warranted investigation under shorter pulses. The LED

was next driven with sub-microsecond (200 - 600 ns), and sub-nanosecond (0.7ns)

pulses in the high current range of up to 45 A. Fig 6.4(b) and 6.5(a) depicts the

red shift based on evolution of peak wavelength, and spectral broadening as full

width half maximum (FWHM) respectively for both regimes. A red shift of ∼ 4

nm and FWHM of ∼ 10 nm for sub-microsecond (200 - 600 ns) pulses is evident.

Further suggesting increase in junction temperature.

However, a two slope character in red shift, slow change at low current and

rapid change at high currents, is observed. Under low current of 10-30 mA start of

red shift seems to practically have no correlation with applied pulse width except

0.7 ns pulses. The observed behaviour can be better explained by thermal shrinking

of bandgap and constant Fermi level because of device capacitance being recharged.

Contrary to these observations, see fig. 6.4(b), the current values for change in slope

of red shift from slow to rapid are different for different pulses. It starts from the

current values of ∼ 10 A for sub-microsecond pulses, much higher than ∼ 1 A for

100 µs pulses, suggesting current dependence of onset of red shift on pulse width.

Assuming ∼ 2nm (see Fig. 6.4(b)) of red shift to correspond to change in slope

of red shift, a pulse duration (τp) dependent critical current (Ic) for the slope change

can be plotted, as shown in fig 6.6. The experimental data is well fitted by τ−1/2
p
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thus suggesting device self heating leading to rapid red shift. As for the red shift at

low currents, it can be attributed to shrinking of bandgap due to non-equilibrium

injection of carriers in the active region [19].

A similar observation regarding the different mechanism at low and high currents

can be made from the evolution of spectral FWHM as a function of current. From

Fig. 6.5(a) it can seen that irrespective of the applied pulse width the spectral

width curves follow the same trajectory with the increase in carrier concentration
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Fig. 6.4 (a) Emission spectrum of red LED under 100 µs pulses for current up to
5 A. (b) Peak wavelength vs current for CW and various pulse width (100 µs to
sub-nanosecond (0.7ns)) along with corresponding change in junction temperature
with changing peak emission wavelength.
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regime (100 µs to sub-nanosecond (0.7 ns)). (b) Observed change in EL intensity of
the LED during 100 µs pulses for the peak current in the range of 1A - 5A.

with current until Ic is reached and enhanced broadening of spectrum is observed

due to device self-heating.

On the other hand, for sub-nanosecond pulses (∼ 0.7 ns) for currents up to 45 A

with 0.1% duty cycle, the observed red shift is merely ∼ 1nm (fig 6.4(b)) indicative

of negligible change in active region/junction temperature thus exceptionally low

overheating even under high current pumping.

Next, to estimate temperature of self-heated active region, dependence of peak

emission wavelength on temperature was studied under wide range of temperatures

from 13 K to 450 K under CW regime. A linear coefficient of 7.5 K/nm for

temperatures ≥ 150 K is found to best describe the dependence. This corresponds

to 30 K increase junction temperature for 4nm of red shift observed up to 23 A of

current under sub-microsecond regime, as shown in fig 6.4(b).

6.3.2 Efficiency under varying current and pulse width

EQE as a function of current under CW and sub-microsecond regime is shown

in Fig. 6.7(a). EQE(I) increases gradually at lower currents for both regimes.

Under CW regime of operation EQE reaches a maximum value ∼ 29% at ∼ 60

mA. Further increase in driving current is accompanied by decrease in EQE which
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Fig. 6.6 Critical current (Ic) as a function of pulse duration corresponding to the
change of slope in the red shift behaviour. Solid line is an approximation assuming
Ic ∝ pulse duration.

reduces to about 15% of its maximum value at 700 mA. The rapid drop in EQE

can be attributed to increased junction temperature at higher currents due to

self-heating. On the other hand for sub-microsecond regime peak or maximum EQE

is reached at ∼ 200-250 mA and a 15% of its maximum value is reached at ∼ 8-9

A. Thus a shift in onset of EQE decrease is observed under pulsed regime.

To estimate IQE and LEE, under CW regime, from measured EQE(I) reduced

ABC-model (refer to section 5.3 for details on ABC model) i.e.AB-model proposed

in [20] [21] was used. The EQE(I) as predicted by AB-model is presented as dashed

line in Fig. 6.7(a) and fits well at smaller current values under the assumption of

absence of electron leakage and isothermal condition of operation. Maximum IQE

value as obtained using the model was 90% at ∼ 10-30 mA of CW current. This

value correlates well with previous reports. On the other hand, a relatively low

value of maximum EQE of ∼ 29% was attributed to the absence of silicone lens

leading to a comparatively low LEE = 32.3% as would be expected.

Fig.6.7(b) illustrates optical power at 50% IQEmax (P0.5), as calculated using

the AB-model [20], as a function of current along with apparent LEE (which is

related to LEE).The deviation of both these quantities from the constant values
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solid red line represents the theoretical fit obtained with AB-model, (b) evolution
of apparent LEE and P0.5 with current where both parameters were extracted using
experimental EQE data; the solid black line in (b) represents a constant LEE of
32.3%

of 32.3% (LEE) and 0.45 mW (P0.5) with increasing currents signifies reduction in

IQE as a result of electron leakage or self-heating or both.

Next, a deviation of experimental EQE(I) with respect to theoretical curve as

predicted by AB-model can be seen from Fig.6.7(a). The observed deviation at

first leads to EQE saturation followed by a sharp decrease. Saturation of EQE(I)
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Fig. 6.8 Peak power of the LED under sub-nanosecond (0.7 ns) regime for peak
currents up to current 45 A. A good approximation of experimental data (circles)
with a linear fit (dashed black line) is obtained.

connotes a proportional relation between driving and leakage current. The onset

of sharp EQE(I) drop, under CW regime corresponds remarkably to the critical

current related to change of slope of peak wavelength red shift and roughly under

200-600ns pulse regime. This leads to the conclusion that carrier injection leads to

EQE saturation first and a sharp decrease in EQE(I) is due to self-heating.

To exclude self-heating effects, 0.7 ns pulses with a repetition rate of 10kHz were

applied to the LED for currents up to 45 A and its photoresponse was studied. The

evolution of experimental maximum of the photoresponse w.r.t to the peak valued

of the applied current, as shown in 6.8, is well fitted with a linear function (dashed

blue line). The observed linear relation suggests that under sub-nanosecond pulses

the EQE does not decrease with increasing current. However, this observation must

be treated carefully since the optical response time duration for LEDs, as suggested

by the authors in [21], is much longer than the applied 0.7 ns pulses. Under such

operating conditions usual method of EQE determination must be reconsidered

accounting for the longer duration of optical response w.r.t current pulse along

with development of suitable comparison method for efficiency comparison under

sub-nanosecond and CW regimes.
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6.4 Conclusion

6.4 Conclusion

In this chapter spectral and power characteristics of high power AlInGaP red

LEDs were studied under high current CW and pulsed regimes from 100 µs to

sub-nanoseconds pulses. The effectiveness of such characterisation to analyse

physical mechanisms contributing towards efficiency decrease in AlInGaP LEDs is

demonstrated. Critical current (Ic) corresponding to the change in slope in the dual

slope character of the red shift in peak emission wavelength with increasing current

is determined.

A correlation between Ic along with current corresponding to the start of red

shift,i.e. Io and saturation and/or decrease of EQE with current allows to distinguish

between various mechanisms involved during device operation. Depending on the

strength of applied current (I) w.r.t. Ic and/or Io three regions of operation have

been identified.

Region A) I < Ic : in this case experimentally determined EQE exactly follows

the theoretical efficiency values as predicted by the AB model, i.e. reduced ABC

model. Thus neither self-heating nor increased carrier concentration influence device

operation.

Region B) Io < I < Ic : in this case thermally induced bandgap shirking results

in a weak red shift of peak emission wavelength. On the other hand, increased

carrier concentration induces leakage on electrons in the p-side of LED leading to

saturation of EQE(I).

Region C) I > Ic : under such operating conditions a sharp decrease in EQE(I)

accompanied with enhanced spectral broadening and strong red shift (corresponding

to steeper slope in the dual slope character) was observed predominantly due to

self-heating of device.

It has also been observed that the onset of sharp EQE decrease due to device

self-heating can be shifted to higher currents without incurring noticeable losses

in emission efficiency by operating under pulsed regime, i.e Ic is shifted to higher

values. An increase of two orders of magnitude in Ic under sub-microsecond regime

when compared to CW regime was observed. Sub-nanosecond pulse may preclude
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device self-heating completely even at high currents up to 45 A. However, a better

approach accounting for different durations of optical response and current pulse

for sub-nanosecond pulses needs to be developed.

On the other hand, a LEE of 32.3% indicates that unlike III-nitride devices with

LEE ∼ 90% [22] light extraction remains as the most significant factor limiting the

overall emission efficiency. Nevertheless the need for improvement of LEE from ∼

32% to ∼ 90% is far greater than losses in IQE due to electron leakage.
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Chapter 7

Conclusion

In this thesis, white LEDs with improved colour rendering and correlated colour tem-

perature in two configurations a) monolithic and b) phosphor covered InGaN/GaN

based LED are presented. Evaluation of IQE and LEE along with their dependence

on temperature for ∼ 440 nm blue LED is discussed. AlGaInP red LED is studied

under pulsed current injection regime to understand the nature of decrease of

efficiency at high currents.

In chapter 3, InGaN/GaN MQW di-chromatic monolithic white LED with

vertically stacked two blue QW’s emitting at ∼ 450 nm and one green QW emitting

∼ 550 nm are demonstrated under CW and pulse regimes of operation. Under CW

regime a CRI of 67 is achieved, the highest value demonstrated till date to the

best of my knowledge for such devices i.e. phosphor free, monolithic di-chromatic

MQW LED emitting in blue and green spectral region. Tuning of CCT from cool

white (∼ 13000 K) to warm white (∼ 2700 K) light with current modulation is also

shown. With another LED from the same wafer it is also demonstrated that almost

constant luminous flux can be maintained at a constant current and duty cycle

while varying the pulse width by two orders of magnitude from 0.1 µs to 100 µs.

Next, in the same chapter singulation of LED with 800 nm fs laser by stealth

dicing is demonstrated. An energy vs depth map with pulse energies from 1 µJ to

30 µJ is prepared to find the most suitable energy range needed to inflict enough

damage for separation in a single sweep. With 25 µJ pulses of 140 fs width the 350

µm thick sample is cleaved by generating a single row of defects due to dielectric
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breakdown or coulomb explosion. From the focal point of the laser in side the

sapphire sample the cleaved surfaces towards the beam entering side and away

from beam entering side exhibit different features. Both sides are devoid of any

propagating cracks. The bottom surface has a maximum roughness of 50 nm,

tolerable for blue and violet laser diode facets. On the other hand towards the top

ripples of 30 µm in width with ∼ 15 µm height are observed. These features could

help improve LEE in the case of LEDs by compensating for total internal reflection

due to refractive index difference. Moreover, this technology also has a potential to

substantially reduce the dicing time with high repetition rate lasers and appropriate

beam steering systems.

In chapter 4, a warm white light source at a CCT of about 3400 K, and an

outstanding CRI (Ra(8)) of 98.6 is demonstrated. A novel hybrid approach based

on a blue-cyan emitting di-chromatic LED along with a green-red two-phosphor

mixture is used to achieve such high colour rendition. The peak luminous efficacy of

11 lm/W is exhibited by the pc-LED. The monolithic blue-cyan device demonstrated

LEE of 14.8% and IQE of 63%. The efficacy can be improved with better chip design

and silicone lens by improving LEE and IQE of MBC. For further improvements in

CRI the partial CRI R9 needs improvement, towards that two approaches involving

careful optimisation of red phosphor have been discussed in section 4.3.3. The given

approach has a two fold advantage a) use of only two phosphors to achieve high

CRI and, b) di-chromatic emission with cyan spectral supplementing the spectral

coverage needed for CRI improvements while not falling into the “green gap” region

thus allowing for far better IQE.

In this chapter 5, evolution of electrical and optical properties of commercial blue

LED in the temperature range of 13 K to 440 K is presented. The experimental data

shows a good agreement with the theoretical curves predicted by the ABC-model.

The IQE and LEE of the device is estimated using the procedure described in

section 5.3. Peak IQE varied from ∼ 97% at 13K to ∼ 65% at 440K. On the

other hand IQE (∼ 65%) at all temperatures for the operating current of 350

mA showed no dependence on temperature indicating a non-monotonic nature of

Auger recombination constants with temperature. This also suggests that carrier
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delocalisation can be the probable caused of efficiency droop at higher currents due

to increased junction temperature. Furthermore, LEE also decreases as expected

with increasing temperature from 76% at 13 K to 68% at 440 K due to optical losses

incurred by free carrier absorption, band-to-band absorption and reflection losses.

In chapter 6, high power AlInGaP red LEDs are studied under high current

CW and pulsed regimes from 100 µs to sub-nanoseconds pulses. Red shift of peak

emission wavelength as a function of current exhibited a dual slope character. A

critical current (Ic) corresponding to the change in slope in the dual slope character

of the red shift in peak emission wavelength with increasing current is determined.

A correlation between Ic along with current corresponding to the start of red shift,

i.e. I0 and saturation and/or decrease of EQE with current allows distinguishing

between various mechanisms during device operation. For applied current less than

I0 the experimental and theoretical (as predicted by the AB model, i.e. reduced ABC

model) EQE curves agree indicating self-heating and excess carrier concentration

not affecting device operation. For applied current values between I0 and Ic a weak

red shift in peak wavelength is observed attributed to thermally induced bandgap

shirking. Also, increased carrier concentration induces leakage on electrons in the

p-side of LED leading to saturation of EQE(I). Next, for applied current exceeding

critical current a strong red shift in peak wavelength i.e. steeper slope in the dual

slope character, increased spectral broadening along with stark efficiency decrease

is observed that is attributed mostly to self-heating of device. The onset of this

efficiency decrease can be shifted to higher current values by operating in pulse

regime. Sub-nanosecond pulse may preclude device self-heating completely even at

high currents up to 45 A.
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