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Fig. 2. Tyre radial coverage per camera and sample images.

an extension and thorough testing of our earlier work [12].
As an extension, we introduce a fully CNN based proposal
generator using low level features (HOG-CNN) and compare
it with HOG-MLP from our previous work as well as a well
known off-the-shelf proposal generator, the Edge Box [13].
Apart from discussing the classification architectures in detail
and explaining the rationale behind their design, we also do
extensive testing of the repeatability of character recogni-
tion and also compare them with a standard, off-the-shelf,
Optical Character Recognition engine (OCR), the Google
Tesseract [14].

The structure of this article is as follows. Sections II and
III describe the image acquisition setup, tyre detection and
unwarping, respectively. A novel proposal generator combin-
ing hand-crafted features within a CNN architecture for code
localization is described in Section IV. Code text detection
and reading are described in Section V. Results are discussed
in Section VI. Section VII concludes the paper.

II. IMAGE ACQUISITION

The proposed setup is intended to be replicated to client
sites. Imaging hardware including cameras and light sources
will be installed at every site, one each for the left and the
right hand side of the vehicle. With several potential sites in
view, image acquisition is the most expensive bit of the entire
system. Therefore, for such an industrial system, hardware cost
becomes a major concern.

Keeping both the cost as well as the complexity of the task
in mind, the tyre imaging was split up across a dual-camera
arrangement (Figure 13). Each camera focuses on the upper
half of the tyre. Combined, they ensure full radial coverage as
shown in Figure 2. As the vehicle approaches the camera/light
assembly, the first camera captures the first radial half of the
tyre, while the second camera, the other half. This arrangement
reserves the field of view for the upper half of a tyre which
is in translation and rotation. It has two distinct advantages:
1) Focusing on the upper half only eases the design and
installation of the light source. 2) As the target object size is
reduced, cameras of half the required resolution can be used.
This option is several times more economical than using one
full (high) resolution camera.

Fig. 3. Tyre sidewall with code printed. Same tyre and position with only
changing illumination source position. Light angles (a) orthogonal or frontal
(b) oblique w.r.t the plane of the sidewall. The breakdown of the code is: DOT
(Department of Transport USA approved), A5 (manufacturing plant), EY (tyre
size, manufacturer specific), 018R (manufacturer-specific batch number) and
4808 (date of manufacture in WWYY format) [16]–[18].

Figure 3 shows that strong directional lighting at an acute
angle enhances the contrast and the legibility of the text. In this
regard, a specially designed light-reflector assembly was devel-
oped, targeting the upper half of the tyre of a moving vehicle.
The cameras are triggered when a vehicle approaches the
driveway. Images are acquired at 25 FPS (frames per second),
using industrial grade GigE cameras. Depending on the speed
of the vehicle, generally 5 to 10 images/axle are acquired at
this frame rate which ensures full radial imaging of the tyre
sidewall. In order to avoid motion blur, we used global shutter
cameras.

III. TYRE DETECTION AND UNWARPING

Acquired images have partial to semi sector of the tyre
in the field of view as shown in Figure 2. In order to read
the text, the tyres sectors must first be transformed into
straight rectangular patches. For this purpose, tyre circularity
is detected using Circular Hough Transform (CHT) [15] after
illumination normalization. CHT is used to detect the circular
junction of the hub cap and tyre (see Figure 4). But sometimes
the wrong circle is detected due to some other circularity (such
as a wheel arch or inner disc brake) being more dominant
(greater contrast in the image due to strong strobe lights).
In order to avoid this situation, all the images of each axle are
processed for n radii ranges in parallel threads. The number
of detected circles are collectively voted in a radius range
histogram. The dominant radius i.e. the one corresponding
to the bin with maximum votes is then selected as the tyre
radius. Once the junction of the hub cap and tyre are detected,
a second circle corresponding to the outer radius of the tyre
(Figure 4(b)) is chosen at a fixed offset from the first radius.
This is sufficient since the tyre code generally falls near the
inner radius.

After tyre detection, the radial image patch between the
inner and the outer radii is unwarped to a rectangular lattice
using a Polar-to-Cartesian mapping as shown in the scheme
in Figure 4(a). This not only unwarps the circularity, but also
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Fig. 4. Unwarping scheme with tyre’s inner and outer radii. Unwarping is
done using Polar-to-Cartesian mapping.

crops out only the necessary part of the image, which reduces
the computational burden on the subsequent stages.

The first three steps of the pipeline, namely, image acquisi-
tion, tyre detection and unwarping were implemented in C#.
Tyre detection and unwarping take about 500 ms/image on a
3.6 GHz Core i7 CPU.

IV. CODE DETECTION

In this section, a machine-learning based approach for
code detection and localization on the unwarped images
is discussed. The character sequence DOT (Department Of
Transport, USA) is used as an anchor. It means that the word
DOT must first be detected to narrow down the search space
as in most cases, it precedes the code. This stage has two
modules in cascade i.e. proposal (region of interest) generation
(Figure 6 (b)) followed by verification or code localization.

Hand-crafted features such as Histogram of Oriented Gra-
dients (HOG) have been successfully used for text detection
[19]–[21]. HOG combined with a Support Vector Machine
(SVM) classifier in a sliding window manner produced rea-
sonable results for DOT detection as well but given the size
of the image (500 × 2000 to 4000 pixels), it takes a few
minutes to scan the image. This time-scale is too long and
is unacceptable for industrial applications. Ideally, we would
like to have end-to-end results in less than a minute for CPU-
based processing. Deep learning based object detection with
fully connected layers as convolutional layers such as [22] or
ROI pooling before the fully connected layers such as Faster-
RCNN [23] and Mask-RCNN [24] after flexibility to process
variable size input images. But our images are much bigger in
size and using deep networks for proposal generation would
be too costly on a CPU. It would require a large-memory GPU
(12 GB or more), which increases the total system cost.

Therefore, in this paper, we propose a solution by combin-
ing hand-crafted features within a CNN-based classifier for
efficiently generating proposals. We use HOG features and
therefore call it HOG-CNN. Before we delve into the details,
it should be mentioned here that all the CNN training runs
discussed in this paper used Stochastic Gradient Descent with
back propagation in Matlab using MatConvNet library [25].
The text training data was synthetically generated whereas the
background class was extracted from real tyre images as shown

Fig. 5. (a) Synthetically generated data (b) real tyre patches (used for
background classes).

in Figure 5. Every network used one or more 50% dropout [26]
layers during the training to prevent over-fitting. Difference-
of-Gaussian (DoG) filtering was applied to the input data for
illumination normalization and edge enhancement.

A. Synthetic Data Generation

As the task involves reading text embossed on many dif-
ferent tyres in varying conditions of light, weather and wear,
we required a substantial amount of training data to achieve
good generalization. Gathering a large and annotated dataset
is a very costly and a time-consuming process. Therefore,
training data was synthetically generated using several dif-
ferent fonts and a text rendering engine. Initially, a black and
white text mask was created using various fonts in random
sizes. The mask was then incrementally smeared (adding
multiple copies or shifting the rendering position in a small
neighbourhood. This took place in varying directions (to
represent the revolving shadows) and lengths (to represent
different shadow lengths). The image mask was then merged
with tyre backgrounds to produce realistic embossed/engraved
text images as they should appear on the tyre sidewall. Figure 5
shows a sample set.

B. Proposal Generation for Code

For proposal generation, we used HOG features as input to
a CNN based classifier in two different ways. We both used
a unified architecture and extracted HOG features within a
CNN network (HOG-CNN) as well as extracted the features
externally and interfaced them to a CNN based Multi-Layered
Perceptron (MLP) appropriate for a multi-class task [27] (we
call it HOG-MLP). We also compared our proposal generators
with an off-the-shelf proposal generator, the Edge Box.

1) Low-Level Edge Based Proposal Generator: One of the
most popular low-level proposal generators is edge boxes [13].
It uses edge maps across the three channels of a color image.
Since we have grayscale images, we therefore composed a
three channel image by stacking the original, a histogram
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Fig. 6. (a) Tyre detected with centre outside the image boundaries. (a) Corresponding unwarped image with proposals for the code localization generated by
HOG-CNN at 3 scales i.e. original (W), 1.25% (Y) and 0.75% (b). The green bounding boxes in green are detected by the code localizer network. (c) Code
proposal scoremap generated at original scale. (d) Corresponding HOG feature visualization of the code anchor DOT. (e) Character detection and classification.

Fig. 7. Block diagram of network architectures (a) complete HOG-CNN
(b) externally computed VLFEAT HOG features with a multi-class MLP
(HOG-MLP). Dropout layers are omitted in the diagram. Both (a,b) employ
UoCTTI method. O is the number of orientations (9 (a) and 16 (b)), C is the
cell size (8 × 8 used in general), nC is the total number of classes. Parameter
memory for these networks is 1 to 3 MB.

equalized and a Difference of Gaussian image. We empirically
found out that such a combination works better than plain
greyscale image. Results are shown in Figure 8(a).

2) HOG-CNN: HOG-CNN was primarily inspired by the
work of [28] in which they used CNN layers to produce
HOG-like features, just to invert and recreate the original
images later. Instead, we plugged-in a fully convolutional
network at the end of HOG layers, which makes a complete
CNN architecture terminating at a cross-entropy loss layer as
shown in Figure 7 (a). Such a network is shallow with fewer
convolutional layers and channels than deep networks.

HOG has two widely used implementations, i.e. the original
one by [29] and UoCTTI by [30]. CNN-based HOG extraction
layers of [28] were numerically equivalent to [31] UoCTTI,
so we used the latter. As explained by [28] for extracting HOG
features using a stack of convolutional filters, a directional
filter was applied in K = 2× number of orientations (O). The
kth directional filter is given by:

Gk = Gx u1k + Gy u2k where uk =
⎛
⎜⎝cos

2πk

K
sin

2πk

K

⎞
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The directional filter casts the projection of the input along
direction vector uk as g �uk . After directional filtering, HOG
binning was performed by the following activation function:

hk = ||g||
�

1 i f g �uk > ||g|| cos
π

K
0 otherwi se


. (3)

In HOG feature extraction, the binned gradients are pooled
into cells which are then combined in 2 × 2 blocks. This
was done through a stack of linear filters. After normalization
(l2 norm), the blocks were decomposed back to the cell
structure and the values were clamped at 0.2 (i.e. max{x, 0.2}).
In UoCTTI HOG, directed gradients were voted for twice the
number of orientations (hdo) within the range [0, 2π) along
with one set of undirected gradients (huo). So a total of 3×O
channels were used in HOG-CNN.1

Hence, for an input image of 60(H ) × 130(W ), the CNN-
based HOG produced a feature map of 7 × 16 × 27 for 8 × 8
cell size and 9 orientations. As in OverFeat [32], we added
randomly initialized fully connected (FC) convolutional layers
with a mask size of 7×16×27× . . . (equal to the output size
of the previous layer) in order to create a fully convolutional

1http://www.vlfeat.org/api/hog.html
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network. This was followed by a 50% dropout and another
FC layer as shown in Figure 7 (a). Dropout is a regularization
technique which prevents overfitting through simply skipping
some neurons [26].

Training such a network can be tricky as few layers were
predefined while the final classifier was randomly initialized.
In our case, it was trained on the dataset (more than 500K
images in total with DOT class synthetically generated). Train-
ing set contained a DOT and a background class containing a
mixture of non DOT text, edges and plain backgrounds. A total
of 80-90 training epochs were deemed sufficient. Since the
network is shallow with sparse filters, it could be efficiently
trained even on a CPU.

3) HOG-MLP: For HOG-MLP, HOG features were
extracted using VLFEAT library [31] and were fed into a
CNN-based multi-class MLP (HOG-MLP) (Figure 7 (b)).

In VLFEAT HOG, gradients are binned for 3 × O + 4
texture components [33]. Therefore, for an input image size of
60(H ) × 130(W ), an 8 × 8 HOG cell size and 12 orientations
(40 components), the first layer in the network was 8×16 ×
40×. . .. The cell size and the number of orientations were cho-
sen to achieve best possible detection accuracy. It was trained
on a 11 class (nC = 11) dataset of more than a million images
containing 7 synthesized DOT classes for round/square/thin
and broad fonts, clear and diffused appearance, long and short
shadows, single and double spacing between the characters
etc along with 4 background classes divided among plain
backgrounds and textures.

A second HOG-MLP proposal generator was constructed
with cell size = 8× 8, O = 16 (making up a total of 52 com-
ponents), nC = 4 (i.e. DOT, plain background, edge/texture,
non-DOT text) shown in Figure 7 (c). The outputs of both the
HOG-MLPs were mapped to a binary classification (DOT/non-
DOT). For both of these networks, satisfactory results were
obtained after training for 30-50 epochs. Just like HOG-
CNN, these sparse networks could also be efficiently trained
efficiently on a CPU.

Comparison: In order to detect variations in the perceived
font sizes either due to change in the engraved font size
or distance between the car and the camera, images were
scanned at three scales (1.25, the original size and 0.75) for
proposal generation. The non-maximum overlapping bounding
boxes of the proposals were suppressed (NMS) using box area
intersection-to-union ratio compared to a fixed threshold.2 The
filtered proposals were then passed onto the next stage of
the cascade to finally localize the code and reject the false
positives.

As the text was of very low contrast, for proposal gen-
eration, low-level feature-based approaches such as Edge
Boxes were found to be unsuitable. The reason was that the
strong edges from other segments of the tyre with or without
text, as shown in Figure 8 (a), usually dominate.

It was observed that the machine learning based proposal
generators were comparable though HOG-CNN was slightly
better generating fewer proposals and hence generalized the

2Tomasz Malisiewicz https://github.com/quantombone/exemplarsvm/tree/
master/internal

Fig. 8. Comparison of code proposal generation. (a) Edge Boxes [13].
(b) HOG-CNN binary classifier. (c) HOG-MLP 10-way classifier mapped to
a binary output (O = 12). (d) HOG-MLP 4 way classifier mapped to a binary
output (O = 16). For color code of the boxes, refer to Figure, 6.

Fig. 9. Code localization network architecture. Every convolution layer was
followed by a rectified liner unit (ReLU) layer as well as a 50% dropout layer
from the 4th convolution layer onwards. Parameter memory 496 MB.

data more than HOG-MLP 10-way classifier (Figure 8 (b,c)).
Both HOG-CNN and HOG-MLP have a very high recall rate
(100% in Figure 17). Figure 8 (d) presents the best proposal
generator with HOG-MLP (O = 16, nC = 4) and a 4 way
classification with the least false positives. Though with many
closely matching classes, HOG-MLP was simpler to train.
A sample of training classes is shown in Figure 10.

On comparison between the three proposal generation
approaches, the scan times by the HOG-CNN and HOG-MLP
for an image of 500 × 3000 pixels) were around 550 and
250 ms respectively on an Intel Core i7 3.6 GHz CPU (see
Figure 14), whereas by using for the edge box approach,
the code shared by the authors 3 took just under 7 secs to
generate proposals over three scales (Figure 8(a)).

C. Code Localization

To finally localize the code from the filtered code propos-
als, a deep network similar to [7]’s 90K dictionary network

3https://github.com/pdollar/edges
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Fig. 10. Sample classes used in the code proposal generator. DoG Images
(a) DOT classes based on font and sizes (b) background classes (c) random
noise, blurring and affine deformations injected during training.

Fig. 11. Architecture of text detector network. Every MaxOut layer was
followed by a 50% dropout layer.

(Figure 9) was used. Training set for this network con-
tained multiple DOT and background classes (800K images
in 10 classes: 7 DOT classes from Section IV-B.3 and 3 back-
ground classes for plain background, edges/texture and non-
DOT text). The classification results were then mapped to a
binary output. As a result, a lot of false positives among the
proposals were being rejected and only a few strong candidates
were retained (the green boxes in Figures 6(b) and 8). False
positives seeping through at this stage (non-DOT green boxes)
were addressed through text recognition, the subsequent stages
of the cascade.

V. CODE READING

Code reading consists of two stages, text detection and
recognition. The code patch of the image is first pre-processed
to crop it down to the text height using low-level filtering.
Bilateral filtering is done optionally in order to smooth out
any unwanted background texture. Then the patch height is
resized to 40-50 pixels in accordance with the text detection
network’s stride (number of pixels skipped between to con-
secutive detection windows on the input image).

A. Text Detection

The code characters are detected using the network shown
in Figure 11. Since the text has very low contrast with
respect to the background, a dense prediction mechanism is
required. In fully convolutional networks, max-pooling layers
downsample the image which increases the network stride.
Removing max pooling layers will allow dense (pixel by pixel)
predictions but will enormously increase the parameters space
which will have its toll both on the efficiency and accuracy.

Fig. 12. Architecture of Character recognition network. Every Convolution
layer was followed by a ReLU layer. From the 2nd Conv layer onwards,
a 50% dropout layer was added after every conv layer. P(w|x) represents the
probability of each class and @(bg) is a superset of all background classes.

Fig. 13. Sidewall text reader with dual camera/light housing towers in
operation (courtesy CNET.com)).

Regularization techniques such as DropOuts in combination
with MaxOut activations are helpful in improving the accuracy
[34], [35]. Therefore, as shown in Figure 11, Maxout layers
were used in this architecture. We observed that if a ReLU
precedes Maxout layers, the network converges quickly to a
minimum.

Training was done on a 700K image dataset with text class
synthetically generated (section IV-A). The background class
was extracted from actual tyre patches. It contained simple
edges, ridge patterns, cast or die shapes (sometimes used to
emboss text on tyres) and a plain background. The output
was mapped to a binary class probability i.e. Text/non-Text.
The text detector produced bounding boxes centered around
regions with the highest probabilities of text being present.
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Fig. 14. Timings comparison (CPU:Corei7 4790 3.6 GHz 16 GB RAM vs GPU:GTX-1080 8GB GPU RAM) for obtaining end-to-end results from unwarped
images. Shown are the average times of 50 images ranging in size from 500 × 1600 to 500 × 4500 (depending on the tyre size and position) with an average
size of 500 × 3000. NOTE: Image acquisition, tyre detection and unwarping time is not included (which is approx. 500 ms/image). Scanning a 500 × 3000
image with the deep code localizer network only (section IV-C) takes more than 20 ms on the CPU. (a) HOG-CNN end-to-end network trained with back
propagation (total time CPU: 3.8 secs/image, GPU: 1.0 secs/image) (b) HOG-MLP (O=12, nC=10) with externally extracted HOG features (total time CPU:
5.15 secs/image, GPU: 1.2 secs/image). In GPU mode, only the CNN networks are processed on the GPU.

Non-maxima suppression was applied (section IV-C) to the
detected boxes to filter down the proposals. We could have
used a character classifier for text detection as well. But, in our
experiments, we observed that a dedicated classifier for text
detection performed better.

B. Character Recognition

Detected text locations were used to crop characters which
were then fed into a character classifier network based on [7]’s
90K dictionary network as shown in Figure 12. This network
has classes for numerals 0-9, capital alphabets A-Z (excluding
I, Q, S and O which are not used in the tyre codes) and seven
background classes, making a 39-way classifier which was
mapped to 33 classes (32 character and 1 background class).
The model was trained on our synthetic character dataset of
around 700K images.

VI. RESULTS AND DISCUSSION

As this is an industrial system, both accuracy and efficiency
are important. We will discuss both in detail.

A. Experimental Setup

Data was collected from the complete system installed at
one of the sites as shown in Figure 13. The data collection was
not planned. Rather in the absence of a benchmark to compare
against, a subset of images representative of the weather
and the tyre conditions was shortlisted and processed for
assessment. As it can be observed in the figure, the installation
imposes certain restrictions on movement of the vehicles, such
as their speed and orientation w.r.t to the cameras. This not
just helps in improving the overall performance of system but
also reduces the cost of the cameras/light units by limiting
the speeds to under 10 mph. Higher vehicle speeds are not

an impediment for the algorithm but rather for the image
acquisition system and hence would raise the cost of the
camera units by an order of a magnitude. The algorithm is
designed to process still images without significant motion
blur. Once such images are acquired, the sidewall text reader
should be able to process the images as usual.

B. Accuracy

Accuracy is dependent on the data sample being analysed.
The training error of every classifier in the cascade was under
5%. But since the training data is in part synthetic, even
with regularization, models may still tend to overfit which in
turn compromises the performance on real images. To some
extent this tendency has been avoided by injecting random
noise and affine deformations during training as shown in
Figure 10 (c).

As argued before, in the absence of a benchmark for tyre
text recognition, it is difficult to quantify accuracy which
is subjected to light conditions, weather (dry/wet), object’s
(tyre’s) condition / material / age / wear & tear. We therefore
assessed the accuracy on nine representative images which
depict very well the possible situations. Figure 17 (a) show
increasing complexity of text legibility from images 1 to 6.
Images 7 to 9 are even difficult for human observers.
Figure 17 (b) shows the accuracy graph which is calculated
for every code image as:

Accuracy = {Total number of characters - Number of
misclassifications (including background detected as text)}/
Total number of characters. —– (eq. 1)

The code proposal generator is less likely to miss any
region containing characters DOT (100% recall), as it responds
strongly to a central O (Figure 6 (c)), especially with scanning
done at three scales. Therefore, DOT has been successfully
detected in all of the sample images in Figure 17 (100% recall)
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Fig. 15. Tyre detection results: Different vehicles with varying height and
tyre radius and centre both inside/outside the image frame.

Fig. 16. Tyre detection results: Same vehicle travelling across the field of
view with tyre centre outside the image frame (processing time 500 ms/image
on Corei7 3.6 GHz CPU).

and thus this makes the code detection, a fairly robust part of
the cascade. Text detection and recognition, on the other hand
may suffer because of the above mentioned conditions. From
1 to 5, the text recognition accuracy is 80% or above which
includes very tiny font (image 1), damp (image 3) and dark
(image 4). Image 5 is an extremely dark tyre with poor contrast
and texture. Therefore, number 0 and 8 were misclassified as D
and 3 along with J as I in 2JFR (still 80% accuracy). In image
6, the characters are generally diffused with the last half of
the code segment badly effaced or rubbed off. Even then, only
two date digits were misread (1613 as 121_) along with two
ghost detections (background as Y and die shape as C) and
an overall accuracy of 73% was achieved.

Figure 17 (a) images 7 to 9 show situations in which the text
legibility is reduced due to rain water (image 7 and 9) creating
undesired reflections and scintillation off the tyre surface or
muddy water splash (image 8) creating unwanted texture, both
of which change the appearance of the text. Deep networks
for the text recognition can be improved by including such a
data in the training but it may compromise the performance
on good text. Therefore, in these cases, we do not attribute
the error in text detection/misclassification to be a fault of
the text recognition system. The appearance can vary within
a large variance depending on the amount of water on the
tyre and the angle of the text w.r.t the light source. In these
examples, the accuracy varies from 73% down to 14% which
is quite understandable as, for example, code image 9 even
beats the human eye. Due to this increased unpredictability,
we mark such cases difficult.

As now we have an estimate of accuracy, lets assess the
repeatability of the system on legible (non-difficult) cases.

C. Repeatability

Another reliable measure of performance in such cases is
repeatability. This means, how consistent are the results if
the same tyre passes in front of the system multiple times.
Figure 18 shows such a code reading repeatability test.
Please note that based on the availability of drivers/vehicles,
the number of drive-overs (driving past the imaging system)
is not consistent. The drive-overs took place in uncontrolled
manner on different dates with varying light/weather
conditions and driving patterns. Each drive-over contributes
one code patch displayed in the figure. Sub-figures (a, b,
c, d) show fairly consistent and accurate detections across
the drive-overs and only when the tyre moves away from the
light source (b: last three detections) the text diffuses into the
background, producing text detection and classification errors.
(d) is a case with tiny font as in Figure 17 (b). However,
(e) and then particularly (f) are tyre examples with strong
background textures producing ghost detections (detecting
characters that are not actually there) as well as missing or
misclassifying the detected ones. Mean accuracies per drive-
over are displayed in (g). These tests show an average accuracy
of 86%. Drive-over accuracy is calculated as per eq. (1) in
Section VI-B.

Looking at these figures, we can infer that owing to the
contrast reduction and/or increase in the background texture,
the performance does suffer. But the performance still seems
quite robust and repeatable given such a challenging task.
Further tuning the same classifiers for addressing some of
the problems such as characters with little separation will
make it respond to unwanted shadows and shapes. However,
there is still room for improvement since a single wrong
reading of a character can mislead the brand, size or date
of manufacturing to a widely different one. One major source
of such an error is a fixed window size for text detection as
the unwanted background texture may prevent accurate text
height estimation. In order to address this problem, bounding
box regression techniques and end-to-end training of both text
detector and character recognizer will be required [8], [10].
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Fig. 17. (a) Nine different unwarped tyre images with varying degree of contrast and complexity. HOG-MLP proposals are represented in white, yellow
and blue boxes for three scales i.e. original size, 1.25% and 0.75%. Code boxes verified by deep network are in green. 1) Tiny font size but a clean tyre
[DOT 09 RP 56]. 2) Clean tyre with low background texture [DOT XA BK L757 0613]. 3) Damp but clean tyre with low background texture [DOT XJ
C3 R255 1515]. 4) Low background texture with clean but dark surface [DOT CP8P P3XO 0616]. 5) Very dark tyre rubber with noticeable background
texture [D D OT DMBL 2JFR 5013]. 6) Worn out tyre with effaced or rubbed off characters DOT JJ8K Y HMBL C 1613. 7&9) Soaked wet tyres DOT

A540 JCMR 1216 & DOT 7GJR R3V 0517. 8) With muddy water stains adding a strong texture [DOT 7GT5 H N9J 4 1414]. NOTE: Characters in
are background misclassified as text. Missed or misclassified characters appear in italics. (b) Corresponding character recognition accuracies. (c) Comparison
between CPU and GPU processing times (Core i7 3.6 GHz vs GTX-1080).

D. Tyre Manufacturer Information Retrieval
Tyre DOT codes are allotted by USA Department of Trans-

port (D.O.T) and it spans across the tyre manufacturers of the
entire globe. Only D.O.T has a complete database, which can
be checked for individual codes [37]. Some freelancers have

accumulated a DOT code database as well, which provides
a better overview. Following the breakdown of DOT code
as described in the caption of Figure 3 (b), only the first
two characters and then the date part is important and can
be tracked from a central database. Other characters are
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Fig. 18. Code reading repeatability assessment with six different tyres driving past the system multiple times (driveovers). (a) Clear text in each driveover
(mean accuracy 95%). (b) Strong shadows can also mislead character recognition and background texture can produce ghost detections (mean accuracy 90%).
(c) Vehicle gradually moving away from the light source diminishing the contrast which leads to missed characters (mean accuracy 85%). (d) Tiny font
size and narrow spacing produces challenge for text recognition networks (mean accuracy 86%). (e,f) Increasing background texture poses problem for text
recognition for such a low contrast text (mean accuracies 80% and 78%, respectively). Average accuracy of the 6 sets is 86%. NOTE: DoG images. Incorrect
detections/classifications are underlined in red whereas @ sign denotes background class.

manufacturer specific. The first two characters carry detailed
information about the manufacturing plant of the tyre. We used
the predictions in Figure 17 with Harringer DOT code database
[36] to assess the accuracy of the information on the tyre

level. The results are reported in Table I. From among the
9 tyres in Figure 17 (a), 7 manufacturers and their plants were
correctly identified. Only 2 among the three difficult cases
marked red in the figure could not be retrieved correctly.
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TABLE I

DOT CODE INFORMATION OF TYRES IN FIGURE 17 (A) AS RETRIEVED BY OUR SYSTEM FROM [36]. OUT OF 9, ONLY 2 TYRE MANUFACTURERS WERE
IDENTIFIED WRONG (TYRE NUMBER 7. AND 9. IN THE FIGURE) WHICH ARE ALREADY MARKED AS DIFFICULT CASES

E. Comparison With OCR

Optical Character Recognition (OCR) generally performs
well when there is a clear contrast against the background,
such as scanned images of documents, for example, black
over white text. In case of vehicle tyres, as argued earlier and
shown in Figure 3 (a) (b), light angles are important in order to
enhance the text against its similar background by projecting
shadows. Even after this, the background only diminishes
slightly (see Figures 3 (b)) which is not a sufficient contrast for
OCR. Our experiments with standard OCR, such as Google’s
Tesseract OCR engine, produced very discouraging results
as either a few incorrect characters or nothing at all was
detected. Pre-processing of images to completely remove the
background such as proposed by Panetta [6] is neither practical
(requires strobe to flash at 90o to the plane of the sidewall)
nor useful (results are not stable or repeatable).

F. Efficiency

For an industrial system, with an end user waiting for
results, efficiency is crucial. GPUs (Graphical Processing
Units) are extensively being used in deep learning-based
systems. But deploying GPUs means scaling up the total
system cost as well as its complexity as extra power may
be required while operation under hot weather may still be
another hurdle. With an increasing demand and every site
requiring two units (one each for the right and the left hand
side of the vehicle), keeping the overall cost low is a key
attribute. Thus a CPU based system is ideally sought. It can
be observed in Figure 6 that the interesting part of the tyre is
a relatively small segment of the image. Scanning the entire
unwarped image (average size 500 × 3000 pixels) with the
deep network of Figure 9 takes more than 20 secs on a Corei7
3.6 GhZ CPU (required parameter memory 496 MB), which is
sought by networks proposed by [8], [10], [38]. Our cascade of
HOG-CNN (required parameter memory 1 to 3 MB) followed
by a deep scan of proposals thus generated reduced this total
time to around 3 sec (see Figure 14). It is an improvement
by an order of magnitude in terms of efficiency (almost 95%
speedup), as well as a significant reduction in the total system
cost and complexity, without any apparent compromise on
the accuracy. With this, the end-to-end results for processing
an image for tyre detection and unwarping (C#), and then
scanning a resultant 500 × 3000 pixel unwarped image at
three different scales followed by detecting and reading the

code (MATLAB) takes on average 3 to 5 secs on the above
mentioned CPU. On a GTX-1080 GPU, this time is between
1 to 2 secs (see Figure 14).

VII. CONCLUSION

In this paper, we presented a complete pipeline for detecting
and reading tyre codes of a moving vehicle using roadside
cameras. The article also presented a novel technique for
efficient proposal generation by combining HOG with CNN
based classifier. Using state-of-the-art deep learning models
and fully convolutional networks, a robust and efficient archi-
tecture was presented. Although, in the given problem, there is
no benchmark to compare the performance against, the image
results show that it is quite effective and accurate. There
is still room for further improvement, especially in the text
detector. Making it robust to both weak characters as well as
for closely spaced fonts will improve the over all accuracy of
the system. Other aspects for further investigation are multi-
scale text detection tied to a bounding box regressor and a
separate date classifier within an end-to-end framework than
in a cascade.
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