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Highlights 

 Individual diffusion and perfusion imaging radiomics can provide limited information 
to distinguish between tumour types.  

 Combining functional imaging with machine learning, it is possible to distinguish 
between the three main tumour types with high accuracy. 

 Whole brain features further contribute to classifier accuracy.  

 Target feature selection outperforms non-biased methods. 
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Abstract 

The imaging and subsequent accurate diagnosis of paediatric brain tumours presents a 

radiological challenge, with magnetic resonance imaging playing a key role in providing 

tumour specific imaging information. Diffusion weighted and perfusion imaging are 

commonly used to aid the non-invasive diagnosis of children’s brain tumours, but are 

usually evaluated by expert qualitative review. Quantitative studies are mainly single centre 

and single modality.  

The aim of this work was to combine multi-centre diffusion and perfusion imaging, with 

machine learning, to develop machine learning based classifiers to discriminate between 

three common paediatric tumour types.  

The results show that diffusion and perfusion weighted imaging of both the tumour and 

whole brain provide significant features which differ between tumour types, and that 

combining these features gives the optimal machine learning classifier with >80% predictive 

precision. This work represents a step forward to aid in the non-invasive diagnosis of 

paediatric brain tumours, using advanced clinical imaging. 

 

 

Keywords: Perfusion, diffusion, machine learning.  

  

                  



 

Introduction 

 

Brain tumours are the most common solid tumours in children, accounting for 

approximately 25% of all childhood cancers. Magnetic resonance imaging (MRI) is 

commonly performed for children suspected of having a brain tumour at presentation. 

Challenges are faced by paediatric radiologists to diagnose paediatric brain tumour type 

using MRI, especially in tumours which do not enhance with gadolinium contrast agent (a 

significant fraction in paediatric radiology)(Koob and Girard, 2014). Therefore, if a 

combination of imaging methods can be used to quantify tumour cellular microstructure 

and perfusion, it may be possible to discriminate between low and high grade, as well as key 

tumour subtypes such as Pilocytic Astrocytoma, Ependymoma, and Medulloblastoma. 

Magnetic resonance spectroscopic methods have been shown to be highly predictive in 

discriminating between tumour types, however this technique is challenging to acquire in 

regions of the brain with poor magnetic field homogeneity and small lesions(Faghihi et al., 

2017; Lin and Chung, 2014). Therefore, other more commonly used imaging-based 

methods, such as diffusion and perfusion imaging, may be favourable to discriminate 

between tumour types in the paediatric brain.  

 

Diffusion weighted imaging (DWI) and dynamic susceptibility contrast imaging (DSC) are two 

advanced magnetic resonance imaging (MRI) techniques available to understand tissue 

microstructure and perfusion on a cellular and tissue level(Goo and Ra, 2017; Shah et al., 

2016; Zhou et al., 2011). These techniques have been used extensively to understand the 

role of cellularity and microvascular perfusion, in both paediatric and adult brain 

tumours(Hales et al., 2019; Poussaint et al., 2016), with strong correlations with histology 

for the aforementioned. DWI utilises diffusion sensitising preparation gradients to remove 

signal from static water compartments in the brain, producing images weighted by the 

speed of water motion in a given voxel. With the assumption of Brownian motion, diffusion 

weighted images can be used to calculate an ‘apparent diffusion coefficient (ADC) map’, 

with each voxel value corresponding to the ADC in the voxel (mm2s-1)(Le Bihan, 2003).  

 

                  



DSC is used to spatially image the dynamics of a gadolinium containing contrast agent, using 

fast imaging techniques such as echo-planar imaging (EPI) and (PRESTO). Data are processed 

using non-linear fitting techniques to extract uncorrected cerebral blood volume (UCBV), 

leakage coefficient (K2) and corrected cerebral blood volume (CCBV) maps. CBV maps can 

then be analysed to quantify the perfusion in a given region of the brain(Shiroishi et al., 

2015). DSC has shown to be useful in quantifying perfusion differences between low- and 

high-grade tumours, as well as in stroke(Boada et al., 2005; Saenger and Christenson, 2010; 

Sanak et al., 2009).  

 

Supervised machine learning utilises data features (for example mean ADC or mean CBV) 

and classes (for example ‘high and low grade’ or tumour types) and to train mathematical 

algorithms (commonly based on linear algebra) to automatically assign data sets to classes. 

The ability of a learning algorithm to discriminate between classes can be quantitatively 

determined using methods such as ‘cross-validation’(Erickson et al., 2017). Previous results 

have shown the ability of supervised methods to separate between tumour subtypes and 

high/low grade tumours using magnetic resonance spectroscopy, with 1.5T and 3T results 

showing 79% and 86% balanced accuracy rate (BAR), respectively  (Vicente et al., 2013; 

Zarinabad et al., 2018). 

 

Applications of supervised learning to oncological medical imaging have commonly utilised 

single measures of the tumour microenvironment (such as image texture, ADC, perfusion, or 

spectroscopy) to discriminate between tumour types(Fetit et al., 2018; Gill et al., 2014; 

Orphanidou-Vlachou et al., 2014, 2013; Zarinabad et al., 2017). However, in this study, we 

hypothesise that combining ADC and perfusion data from tumour Region of Interest (ROI) 

and the whole brain, provides an increased accuracy for discriminating between low- and 

high-grade tumours, as well as between tumour sub-types, in comparison to ROI or whole 

brain measures alone.  

  

                  



Methods 

 

Patient recruitment 

49 participants with suspected brain tumours (medulloblastoma (N = 17), pilocytic 

astrocytoma (N = 22),  ependymoma (N = 10)) were recruited from 4 clinical sites in the 

United Kingdom (Ethics reference: 04/MRE0/41, Birmingham Children’s Hospital (BCH), 

Newcastle Royal Victoria Infirmary (NRVI), Queen’s Medical Centre (QMC), Liverpool Alder 

Hey (LAH)). Participants underwent MRI, discussed below, before invasive biopsy to confirm 

diagnosis. 

All Ependymoma and Medulloblastoma cases were considered high grade, and Pilocytic 

Astrocytoma as low grade.  

 

Magnetic resonance imaging  

The imaging protocol for all participants was performed either at 3 or 1.5T and included 

standard anatomical imaging (T1-weighted, T2-weighted, T2-FLAIR, T1-post contrast), as well 

as diffusion weighted and dynamic susceptibility contrast, covering the tumour volume 

(cohort and imaging sequence details are found in supplementary Table 1A and B, 

respectively). 

 

Image post-processing and analysis  

Apparent diffusion coefficient maps were calculated from diffusion weighted imaging, using 

a linear fit between the two b-value images. DSC time-course data were processed using a 

gamma-variate fit to form UCBV maps. A leakage correction was undertaken to produce 

CCBV and K2 maps(Shiroishi et al., 2015). The root mean squared error of the gamma 

variate fit was used to mask noise and masking any absolute CBV value greater than 3.0 mL 

100g-1 min-1. Brain masking, including removal of background and the skull, was performed 

during the fitting process. CBV maps were normalised to normal appearing white matter.  

T2- weighted, ADC, and T1-post contrast images were registered to the first DSC volume with 

SPM12 (UCL), and tumour regions of interest drawn on T2 weighted imaging.  

 

Image analysis, performed in Matlab (2018b, The Mathworks, MA), consisted of calculating 

the image mean, standard deviation, skewness, and kurtosis on a volume by volume basis 

                  



for diffusion and perfusion imaging maps for regions of interest and the whole brain. 

Tumour volume (cm3) was calculated from the T2 ROI masks.  

 

Statistical analysis  

Imaging features were tested for normality using a Shapiro-Wilk test in R (3.6.1) with 

subsequent ANOVA/Kruskal-Wallace and Tukey post-hoc tests performed to assess for 

differences in imaging features between low- and high-grade groups, and between tumour 

types. Receiver Operator Curves (ROC) were defined from significant imaging components 

for comparison of low versus high-grade tumours, and the area under the curve (AUC) 

calculated. Statistical significance was determined at p < 0.05, with Bonferroni correction for 

multiple comparisons performed with all imaging features. 

 

Machine learning  

 

The discriminant ability of classifiers, described below, was assessed using the F-statistic (a 

measure of sensitivity and specificity of the learner) and the between group average 

precision (the average precision of the learner to correctly classify tumour types), after 

stratified 3-fold cross validation. Individual tumour group accuracy and F-statistics were also 

calculated. A flowchart demonstrating the processing pipeline is found in Figure 1.  

 

Tumour volume, ADC and DSC region of interest and whole brain features were processed 

using principal component analysis to reduce dimensionality, aiming for 95% data variance 

or N-1 components where not possible (where N is the size of the smallest group). 

Supervised machine learning was performed using the Orange toolbox (Orange) in Python 

(3.6), using a single layer Neural Network, AdaBoost (an ensemble of stumps), random 

forest, a support vector machine, and k nearest-neighbours (k = square root of the number 

of data points in the training set). Iterative hyperparameter optimisation was performed to 

optimise for overall classifier AUC on each training set. To assess the contribution of each 

individual imaging feature to classifier precision was performed by iteratively combining 

single features with ADC mean. This process was undertaken for both ROI and whole brain 

features and termed ‘perturbation analysis’. 

 

                  



Learning algorithms were initialised to first discriminate between low- and high-grade 

groups, and then between tumour sub-types. The Balanced Accuracy Rate (BAR), F-statistic, 

and individual group accuracies were calculated for each learner after stratified cross-

validation. 

A further approach to dimensionality reduction was undertaken by independently 

performing univariate statistical analysis (described above in ‘statistical analysis’ section) 

between each fold in the aforementioned 3-fold cross validation. The imaging features that 

provided the highest AUC for each training set were used in testing, on a fold-by-fold basis.  

This combination of features is termed here as the ‘univariate’ classifier. 

 

Data oversampling  

Two oversampling methods: data replication and SMOTE (Chawla et al., 2002; Zarinabad et 

al., 2018), were used to increase the ependymoma group size of training sets by 100%. The 

oversampled data was processed, with supervised learning, as above and results compared 

with no oversampling.   

                  



Results 

 

Example DSC and DWI imaging is shown in Figure 2: T2-weighted (A), ADC(B), Uncorrected 

CBV (C), K2 (D), and Corrected CBV (E). 

 

Tumour Region of interest and whole brain analysis reveals features which differ between 

low- and high-grade tumours and some tumour types 

 

Region of interest and whole brain features analysis revealed a number of imaging features 

that were significantly different between low- and high-grade tumours. With ADC mean 

having the highest AUC of 0.8, with a range of 0.37 to 0.78 AUC for other features.  

 

Further to distinguishing between low- and high-grade tumours, significant differences in 

ADC features were observed between Pilocytic Astrocytomas and Medulloblastomas: ADC 

ROI mean (1.5  0.3 vs 0.9  0.2 mm2 s-1, p < 0.001, ACU = 0.75), ADC ROI skewness (0.9  

1.0 vs 1.9  0.9, p = 0.006),  and ADC ROI kurtosis (5  3 vs 9  5, p = 0.045, ACU = 0.65). A 

significant difference in tumour volume between Pilocytic Astrocytomas and Ependymomas 

was observed (2.3  3.1 vs 9.0  11.2 cm3, respectively, p = 0.02, AUC = 0.67).  

 

Whole brain analysis revealed a significant difference between high and low grade tumours; 

ADC mean (0.68  0.24 vs 0.9  0.2 mm2 s-1, p = 0.001, AUC = 0.77), and uncorrected CBV 

whole brain mean (0.11  0.03 vs 0.13  0.02 mL 100g-1 min-1, p = 0.002, AUC = 0.62). 

Pilocytic Astrocytomas and Medulloblastomas also differed in the whole brain features such 

as corrected CBV mean (1.1  0.3 vs 1.2  0.2 mL 100g-1 min-1, respectively, p = 0.009, AUC = 

0.62 and  ADC mean (0.9  0.2 vs 0.7  0.3 mm2 s-1, respectively, p < 0.001, AUC = 0.78). Full 

tumour subtype results are shown in Table 1. 

  

Supervised learning can distinguish between low- and high-grade tumours and different 

tumour types with a combination of region of interest and whole brain features.  

 

                  



To discriminate between tumour types, the univariate classifier performed the best (using 

an AdaBoost learner (precision = 85%, F-statistic = 0.84). Excluding ADC whole brain kurtosis 

from the above classifier resulted in a reduction to 79% precision F-statistic = 0.75.  

Utilising PCA to reduce dimensionality did not perform as well as the univariate classifier, 

with BAR ranging from 66%-64% (all imaging features and all ROI features, respectively). All 

results including individual class precision are detailed in Tables 2A and B. 

 

A combination of all ROI features had the highest precision to discriminate between high- 

and low-grade tumours with a support vector machine (86% precision, 11 principal 

components). All other results for high-low grade classification are shown in supplementary 

table 3. Observation of misclassified cases showed that there was no obvious bias toward a 

single centre or field strength.  

Perturbation analysis showed a number of features that, when combined with ADC mean, 

had a large effect in elevating classifier precision. In particular, Tumour Volume (81%) and 

UCBV (81%) provided the highest classifier precision (total range = 67-81%, see 

supplementary tables 4A and B). 

 

Oversampling increases learner accuracy for some classifiers 

Oversampling increased classifier precision for PCA based classifiers, as demonstrated by 

large increase in BAR, results shown in Table 3A, however, it did not increase BAR for the 

univariate classifier (85% vs 85% vs 86%, no oversampling vs data replication vs SMOTE, 

respectively). Indeed, using oversampling methods with the univariate classifier showed an 

increase in the classification accuracy for Ependymomas, but little change for 

medulloblatomas and a decreased accuracy for pilocytic astrocytomas. All group precision 

and F-statistic results are presented in Table 3B. 

  

                  



Discussion 

 

This study has demonstrated that a combination of multiparametric MRI, univariate 

analysis, and machine learning techniques can be employed to distinguish between both 

high- and low-grade paediatric brain tumours, as well as enabling tumour type classification 

with high accuracy (achieving 85% BAR).   

Previous studies have commonly focused on the use of a single data type (for example ADC 

or DSC perfusion measures) to discriminate between high- and low-grade tumour types as 

well as common tumour histological diagnoses, with results in this study agreeing with 

previous findings(Bull et al., 2012).  

Studies of diagnostic classifiers for tumours based on imaging have concentrated on using 

data from regions of interest drawn around the tumour or regions of abnormality on the 

conventional MRI. Here we have also investigated imaging features selected from the whole 

brain and shown that these are significantly different between the tumours. In addition we 

found that these features can improve the accuracy of the diagnostic classifier when 

included in it.  

 

A particularly interesting result of this study showed that feature selection, informed by 

univariate statistics, provided a classifier that outperformed other methods. This 

emphasises the importance of optimising the way in which features are selected for input to 

the machine learning classifier. Large numbers of features cannot be used due to the risk of 

over-fitting and, consequently, obtaining over optimistic estimates of the accuracy of the 

classifier. However, methods, such as principal component analysis, which select features by 

how much variability exists in the data, may not select the most discriminatory features but 

those that vary most throughout the data set used in this study.  

 

Previous MR spectroscopic studies at 1.5 and 3T utilising supervised machine learning have 

achieved similar results as demonstrated here(Vicente et al., 2013; Zarinabad et al., 2017)  

and it would be interesting to determine the added value of combining these modalities.  

Challenges are faced in the acquisition of DSC data, particularly the injection of gadolinium 

in a highly regulated manner in children and the use of arterial spin labelling. These may 

                  



present an alternative option for utilising perfusion imaging in the future(Novak et al., 2019; 

Radbruch et al., 2015). 

 

Challenges are faced in paediatric oncological studies with low recruitment rates, due to the 

low disease incidence in the population. Therefore, multi-centre approaches present an 

opportunity to both collect the data sets required to undertake machine learning 

approaches, as well as increasing the statistical power of the study itself. Here we have also 

shown that multi-parametric data from multiple centres can be combined to form powerful 

classifiers in the study of paediatric brain tumours. Encouragingly, misclassified cases were 

not biased toward a single centre – which is in line with previously published results 

showing that both diffusion and perfusion imaging can be studied reliably on a multi-centre 

basis(Grech-Sollars et al., 2015; Withey et al., 2019). 

 

Work beyond this study could focus on the expansion to other less common brain tumour 

sub-types, such as such as genetic subtypes of Medulloblastomas, to extend the relevance 

and scope of this work. This, in turn, will aid in the radiological classification and diagnosis of 

many other tumour types beyond the main three represented in this study. Furthermore, 

the addition of other microstructure data, such as diffusion kurtosis and intra-voxel 

incoherent motion, may provide further information regarding the tumour 

microenvironment, and, therefore, further aid in the discrimination between tumour types. 

 

Limitations of this study include low participant numbers in the Ependymoma group, a 

common challenge in paediatric imaging studies. This was mitigated, to some extent, by the 

use of oversampling in the machine learning classifiers, although further numbers in this 

group should be obtained. Overall, classifier results have shown the power of machine 

learning to distinguish between tumour types.  

 

In conclusion, this study has demonstrated the power of combining advanced MRI methods 

with machine learning to provide a non-invasive diagnosis of paediatric tumour types.  

 

 

 

                  



 

Figure captions  

 

Figure 1 – Data processing pipeline used in this study.  

 

Figure 2 – Example anatomical, perfusion and diffusion maps of an Ependymoma.   

                  



A) T2-weighted imaging, B) Apparent Diffusion Coefficient map, C) Uncorrected Cerebral 

Blood Volume map, D) K2 map, E) Corrected Cerebral Blood Volume map. 

Figure-3 

 

Table 1 – Univariate tumor separation results.  

A number of imaging features were found to be significant (* = Pilocytic Astrocytoma vs 

Medulloblastoma at p < 0.05, ** = Pilocytic Astrocytoma vs Ependymoma at p < 0.05).  

 

Table 2 - Supervised learning results for tumor type discrimination.  

Results showed that a combination of significant univariate features combined with an 

AdaBoost learner was best to distinguish between tumour types (BAR = 86%, F-statistic = 

0.85). PCs = Number of Principal Components, kNN = k Nearest Neighbors. Results 

presented as Precision, F-statistic. A = BAR results, B = tumour sub-type precision and F-

statistic results. 

 

Table 3 – Results containing standard, random, and SMOTE oversampling of ependymoma 

features.  

                  



Balanced accuracy rate for all, ROI, whole brain, and optimized features shown in A, and 

group classification results from best performing classifier in B (precision (%), F-statistic).  

 

Supplementary table 1 – Cohort (A) and imaging parameters (B) used in this study. 

 

Supplementary Table 2 – Significant univariate results from high/low grade separation. 

Analysis showed a number of significant ADC and DSC imaging features between low and 

high grade groups. AUC = Area under the curve. 

 

Supplementary table 3 – Supervised learning results for low/high grade.  

Results showed that a PCA reduced combination of ROI features combined with a Support 

Vector Machine provided the best learner to discriminate between high and low grade 

tumors.  

 

Supplementary table 4 - Perturbation testing of ROI (A) and whole brain (B) features in 

combination with ADC mean. 
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Feature Pilocytic Astrocytoma Ependymoma Medulloblastoma 

ADC ROI Mean 
(mm2s-1) 

1.5  0.4* 1.2  0.1 0.9  0.2 

ADC ROI Skewness 0.9  1.0* 2.0  1.0 1.9  0.9 

ADC ROI Kurtosis 5  3* 8  5 9  5 

ADC WB Mean 
(mm2s-1) 

0.9  0.2* 0.7  0.3 0.6  0.2 

ADC WB Skewness 1.2  0.3* 1.5  0.5 1.6  0.5 

ADC WB Kurtosis 5  1* 6  2 7  2 

CCBV WB Mean 
(mL 100g-1 min-1) 

1.1  0.3* 1.2  0.2 1.3  0.2 

Tumor volume (cm3) 2.3  3.1 ** 9.0  11.2 3.3  2.3 

Table 1 – Univariate tumor separation results. A number of imaging features were found to 
be significant (* = Pilocytic Astrocytoma vs Medulloblastoma at p < 0.05, ** = Pilocytic 

Astrocytoma vs Ependymoma at p < 0.05).  
 

  

                  



Average 
Learner 

All 
features  
(9 PCs) 

ROI 
features (9 

PCs) 

Whole brain 
features (9 PCs) 

Univariate 
ROI  

Univariate 
all features 

AdaBoost 62%, 0.61 70%, 0.67 66%, 0.62 76%, 0.76 85%, 0.84 

Random 
Forest 

64%, 0.64 71%, 0.72 54%, 0.55 75%, 0.72 75%, 0.73 

Support 
Vector 

Machine 
62%, 0.60 67%, 0.73 54%, 0.55 62%, 0.67 77%, 0.75 

K Nearest 
Neighbors 

66%, 0.58 55%, 0.55 50%, 0.46 79%, 0.75 82%, 0.72 

Neural 
Network 

56%, 0.55 68%, 0.66 50%, 0.49 60%, 0.64 75%, 0.74 

 

Class 
All features 

(kNN) 

ROI features 
(Random 
Forest) 

Whole Brain 
features 

(AdaBoost) 

Univariate 
(AdaBoost) 

Pilocytic 
Astrocytoma 

65%, 0.64 76%, 0.78 77%, 0.74 93%, 0.86 

Medulloblastoma 50%, 0.59 75%, 0.81 50%, 0.59 72%, 0.85 

Ependymoma 100%, 0.4 50%, 0.33 67%, 0.36 82%, 0.71 

 
Table 2 - Supervised learning results for tumor type discrimination. Results showed that a 
combination of significant univariate features combined with an AdaBoost learner was best 

to distinguish between tumour types (BAR = 85%, F-statistic = 0.84). PCs = Number of 
Principal Components, kNN = k Nearest Neighbors. Results presented as Precision, F-

statistic. A = BAR results, B = tumour sub-type precision and F-statistic results. 
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Sampling method 
All features 

(15 PCs) 
ROI features  

(11 PCs) 
Whole brain 

features (9 PCs) 
Univariate 

Normal 
66%, 0.58 

kNN 
71%, 0.72 

RF 
66%, 0.62 
AdaBoost 

84%, 0.84 
AdaBoost 

Data replication 
82%, 0.87 

RF 
78%, 0.78 
AdaBoost 

80%, 0.76 
AdaBoost 

84%, 0.85 
RF 

SMOTE 
85%, 0.84 
AdaBoost 

82%, 0.80 
AdaBoost 

78%, 0.78 
AdaBoost 

85%, 0.85 
AdaBoost 

 
 

Class 
Univariate with no 

oversampling 
Univariate with data 

replication 
Univariate with 

SMOTE oversampling 

Pilocytic Astrocytoma 95%, 0.86 91%, 0.91 85%, 0.82 

Medulloblastoma 74%, 0.85 75%, 0.75 86%, 0.84 

Ependymoma 83%, 0.71 85%, 0.85 83%, 0.88 

Table 3 – Results containing standard, random, and SMOTE oversampling of ependymoma 
features. Balanced accuracy rate for all, ROI, whole brain, and optimized features shown in 

A, and group classification results from best performing classifier in B (precision (%), F-
statistic).  
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