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2 Abstract. Mean field theory has been suceessfully used to analyze deep neural
22 networks (DNN) in the infinite size limit. Given the finite size of realistic DNN, we
23 utilize the large deviation theory and path.integral analysis to study the deviation of
24 functions represented by DNN from their typical mean field solutions. The parameter
25 perturbations investigated include weight Sparsification (dilution) and binarization,
26 which are commonly used in médel simplification, for both ReLLU and sign activation
27 functions. We find that random networks with ReLLU activation are more robust to
28 parameter perturbations with respect to their counterparts with sign activation, which
29 arguably is reflected in the simplicity of the functions they generate.
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38 1. Introduction
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2(1) Learning machines realized by deep neural networks (DNN) have achieved impressive
42 success in performing various'machine learning tasks, such as speech recognition, image
43 classification and natural language processing [1]. While DNN typically have numerous
2: parameters andatheir, training comes at a high computational cost, their applications
46 have been eéxtendedgalso, to include devices with limited memory or computational
47 resources, suchfas mobile devices, thanks to compressed networks and reduced parameter
23 precision [2]. Mest supervised learning scenarios are of DNN functions representing some
50 input-output mapping, on the basis of input-output example patterns. DNN parameter
51 estimation (fraining) aims at obtaining a network that approximates well the underlying
g ; mapping. Despite their profound engineering success, a comprehensive understanding
54 of the'imtrinsic working mechanism [3, 4] and the generalization ability [5, 6, 7, 8] of
55 DNN are still lacking. The difficulty in analyzing DNN is due to the recursive nonlinear
g ? mapping between layers they implement and the coupling to data and learning dynamics.
58 A recent line of research utilizes the mean field theory in statistical physics to
59 investigate various DNN characteristics, such as expressive power [9], Gaussian process-
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like behaviors of wide DNN [10, 11, 12], dynamical stability in layer propagation and
its impact on weight initialization [13, 14, 15] and function similarity and emtropy in
the function space [16]. By assuming large layer-width and random weights; such
techniques harness the specific type of nonlinearity used and many degrees,of freedom to
provide valuable analytical insights. The Gaussian process perspectives©f infinitelyrwide
DNN also facilitates the analysis of training dynamics and generalization byremploying
established kernel methods [17, 18].

To study the entropy of functions realized by DNN [16);"wenadopted similar
assumptions but employed the generating functional analysis [194 20]\7 which is more
general and can be applied to sparse and weight-correlatedfnetworks.£ The analysis of
function error incurred by weight perturbations exhibits an exponential growth in error
for DNN with sign activation functions, while networks with, ReLLU activation function
are more robust to perturbations. We have also found that RelLU activation induces
correlations among variables in random convolutiofy networks’[16]. The robustness of
random networks with ReLLU activation is related to the simplicity of the functions
they compute [21, 22], which may converge to a cénstant function in the large depth
and width limit [15], although, in pringiple, they admit high capacity with arbitrary
weights. However, DNN used in practice are of finite size and finite depth, therefore it
is essential to analyze the deviation of finite-Size systems with respect to the typical mean
field behavior, and characterize itsTate 6figonvergence with increasing size. An example
of a recent study along these lines [23] investigates the deviation in performance of finite
size neural networks with a single hidden layer from the Gaussian process behavior.

In this work, we adopt the largeideviation approach and the path integral formalism
of [16] to derive the deviation of fumetion sensitivity of finite systems from their
infinite system counterpartsiiwdiich is applicable to a range of DNN structures. We
analyze the effect of sparsifying¢(diluting) and binarizing DNN weights, commonly
used for model simplification [245 25, 26, 27]. Although the dependence on data and
training are not considered, the analysis of random DNN provides valuable insights
and baseline comparisons. ‘We will also investigate the sensitivity of functions to input
perturbation [9,413], which is related to function complexity and generalization [28, 29,
21, 22]. The paper isyorganized as follows. In Sec. 2 and 3, we introduce the random
DNN model and(review the basic results of generating functional analysis,respectively.
In Sec. 4 and "5, we derive the large deviation of function sensitivity to weight and input
perturbations, respectively, based on the path integral formalism. Finally, in Sec. 6, we
discuss_the results and their implications.

2. The model

Follewing [16], we consider two coupled fully-connected DNN. One of them serves as
the reference function under consideration, and the other as its perturbed counterpart,
either in the weights or input variables. As shown in Fig. 1, each network consists
of L + 1 layer; layer [ has N' neurons, which can be layer dependent. The reference
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Figure 1. The reference and perturbed fully-connected DNN, parameterized by {ﬁ;l}
(black edges) and {w'} (blue edges), respectively“Bach layer ['has N! = o! N nodes.

network is parameterized by the weight variablesi {ﬁ)l}le, while the perturbed network
is parameterized with {w'}% . Similarly, variablés with ajcircumflex are associated with
: I s -1 o :

the reference network. In the following, w’ represents the N' x N~ weight matrix at
layer [, and w! represents the N'~! dimefisional weight vector of the ith perceptron at
layer . Denoting the input dimension as No="IN", we assume the sizes of all layers scale
linearly with N as N! = o!N.

A deterministic feed-forward networkuis, defined by the recursive mapping V 1 <
<L

1 lel
l i =1
hi = NI Z Wi 5550 (1)
j=1
s; = ¢'(hi), SN (2)

where {wﬁj} are the weights{'h! and s! are pre- and post-activation field and variable,
respectively, and ¢'(3)(is the aetivation/transfer function at layer I. The scaling factor
of 1/vN'=1 in Eq. (d).1s‘introduced for normalization. We primarily focus on networks
with either sign [0(x) =sgn(x)] or ReLU [¢,(z) = max(z,0)] activation functions in
the hidden layers,nand consider binary input and output variables s?, s € {1,—1}
by applying#he sign activation function at the output layer s¥ = sgn(hl) for a fair
comparison aergss architeetures. The resulting feed-forward DNN implements a Boolean
mapping®f : {hp=1}"" — {1,—-1}¥", where each output node s’(s°) computes a
Boolean function. In the following, we call the two architectures sign-DNN and relu-
DNNrespeetively, keeping in mind that sign activation function is always applied in the
output layer.

To facilitate a path integral calculation, we consider stochastic dynamics between
!

successive layers. For the layer with sign activation function, the activation s; is
i The usual bias variables are omitted for simplicity, but it can be easily accommodated within the

current framework.
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Figure 2. A geometric representation of perturbations on the parameter vector ﬁ)ﬁ

defined in Eq. 6, resulting in a rotated vector ! at an angle ' = sin~! oyt

L 4
disturbed by thermal noise according to the following probability

- exp (Fghilw’, s™))

while for relu activation function, stis distumbed by additive Gaussian noise

P(si|hj(w!, s g @ exPf — 2[st — o, 5] ) (4)

In the limit f — oo, we recover therdeterministic model. The evolution of the two
systems follows the joint distril{ltion

(3)

L N!
P({s,s:}) 2. P(3° &) [T [T PR (', 87) P(si|hi(w!, s1)). (5)
=1 i=1
To probe the difference between the functions implemented by the two networks,
we feed in thel same Jsingle input s° = 3° to the two systems such that
0
P(8° 8% = P(s" szil 040,50, and study the resulting output difference due to parameter
perturbationt Kor eomtinuous weight variables, one useful choice for the weight
perturbation is

! T (20l I 1
Wy = 1- (nl)zwzj +n 5wz’j> (6)
whighwensuwes ghat w!; has the same variance of w}; as long as dw,; follows the same

distribution, of !, and effectively rotates the high dimensional vector ﬁyﬁ by an angle

ij)
0" =sin ' ! as defmonstrated schematically in Fig. 2.

In probing the sensitivity of a function due to input perturbations, the weights of
two networks are kept the same w = w and a fixed fraction of input variables are flipped
randomly. The resulting output difference of the two systems reflects the sensitivity and

complexity of the underlying DNN.
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3. Generating functional analysis for typical behavior

Viewing the weights {0 5]} as quenched random variables, a generating functional

17
analysis has been proposed [16] to derive the typical behavior of DNN. Tt'gtarts with

computing the disorder-averaged generating functional

T (b, %) = EapuBaexp (— 1D (613! + i) ), (7)

Li
where the average [E; , is taken with respect to the joint probability Eq.(8)¢ Assume the
layer widths are the same N' = N for all [. Upon averaging over. thie disorder i, w, the
generating functional can be expressed through a set of macroscoplc order parameters
such as the overlaps ¢/ = 1/N'Y" (slsl) and magnetizations m" =, 1/N' > (s), m! =

1/N'3 2 (si) as |
= /{dqu...} exp [NV¥(q, Q, ...)]. (8)

where @ is the conjugate variable of the order parameterg.4In the large system size limit
N — o0, the generating functional I' is dominated'by the saddle point of the potential
function ¥(q, Q, ...). It gives rise to typical overlapsthat dominate in probability, which
facilitates analytical studies of random DNN.

Assume the weight perturbation. follows) the form of Eq. (6), and both weight
and perturbation are independent ofseach other and follow a Gaussian distribution
ww, 5w ~ N(0,02). Tt is found that for the layer with sign activation function in the
limit S —> 00, the overlap evolveshas [16]

——sm <\/7ql 1), 1<I<L. 9)

Similarly, for ReLU activation functlon in the deterministic limit, if the weight standard
deviation is chosen as o, = \/5, the magnitude of the activations remains stable and
the overlap evolves as

=1{¢1—u—0ﬁﬂw*v
B ()24 1[ +sin” (vl—(nl)qu‘lﬂ}, (10)

while the output layer L follows Eq. (9) due to the use of the sign activation function.

The resteietion 8%== s° leads to ¢° = 1 in both cases.

4. Iarge deviations in parameter sensitivity of functions

The generating functional analysis above gives typical behaviors of random DNN in
the limit N — oo. However, practical DNN always have finite sizes. Therefore, it is
worthwhile to understand the deviation to the most probable behaviors under finite
N. In the following, we adopt the large deviation analysis to tackle this problem. An
introduction of large deviation theory and its application to statistical mechanics can
be found in [30]. In essence, a continuous observable O in a system of size N (assumed
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to be large) is said to satisfy the large deviation principle if the probability of'finding
O follows

Proby(O € [z, z + da]) ~ e N @dg, (11)

where I(x) is the rate function of the observable. It implies that the probability density
of O scales as Py(O = z) ~ ¢ M@ which is concentrated at the mimimum of the
rate function z* = argmin,/(z) in large systems and the profile of 7(x) quantifies the
fluctuation of the observable.

In this work the overlap of the output layer ¢* := 1/N% 3", §F sF it the focus of our
study. The path integral techniques adopted in the generating fumétional framework [16]
can be adapted to tackle the large deviation analysis. We start with computing the
probability density §

P(g) <<NLZALL )>
:Eﬁ,,wTrg,sP(éo)H(s HP ', 81 P(4wi s'Y) (NLZ ) (12)

where the operation Tr s is understood asjan integration or summation depending
on the nature of variables. The input distribution follows P(3°) = [[. P(s}) =
Hi(%(Sg?J + %5@_1). To deal with“the,non-linearity of the pre-activation fields in
the conditional probability, we introduee auxiliary fields {#!, 2!} through the integral
representation of delta-function

00 15114 R 0 Ly, s 1 =1
[T A [ )y
oo 2T —o AT

which allows us to express'the eienched random variables w!; and w!; linearly in the
exponents, leading to

1 dhlda? dhlda?
Ly __ L | | | |
P(q ) = E@7wTr§7s5 (ﬁsz Sin— (g ) (5 0 0/ o

L N
X exp ZZ <log P(8 Yy +log P(st|nl) + idlhl 4 1xﬁhi)
i=1

a1
- ) N N1
Al oalal—1 111
X exp —E \/?E g (wwxlsj +ww:1725j ) . (14)
=1 i=1 j=1

Asguming self-averaging [31] we exchange the order of summation and integration, and
firsthcarry Jout the average over the disorder variables. Specifically, we consider the
weights of the reference network to be independent and follow a Gaussian distribution

zi)éj sV (0,02) as before, and three types of perturbations
& Here we assume ¢~ = 1/N* Zj\il 3LsL to be a continuous variable by considering large NL. Instead,
one can view ¢~ as a discrete variable by definition (since the inputs are binary variables), where §(-)
should be understood as the Kronecker delta function.

Page 6 of 25
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(i) rotation of the weight vector ! following Eq. (6);

7

(i) sparsification of the weight matrix w' by randomly dropping connections witly
probability p! and rescaling the remaining weights by 1/4/1 — p' te, ensuréntiic

same weight strength

where 0, is introduced for keeping the variance of w!; thelsame@s ;.

4.1. Macroscopic order parameters

For perturbation of type (i), the disorder average ofythe thirdline of Eq. (14) yields

1 X Z'(él'_1>2 1 Z'(Sl'_1)2 X Z §l-_18l-_1
HeXp {—Ui {§($2)2%+§($2)2&++ = ml)%ﬁ.xﬁ%} , (17)

li

l 0, with probability p',
Wi = \/%u?ﬁj, with probability 1 — p! (15)
-p
(iii) binarization of weight element uﬁﬁj
~
wﬁj = sgn(zbfj)aw, (16)

To decouple Eqs. (14) and (17) over sites we,introduee three sets of order parameters

by inserting the identity

Ol 3l ) 1.,
s ™

/dQ de' Mgl 5, 99 vy 18)

27 /N r¢
and by expressing the output constraintyas

<NL Z &4 ) _/zigNL N Q" 5 Xy ], (19)

Upon mtroducmg these“macroscopic order parameters, Eq. (17) becomes

[1,; exp{—1/2[2}, gimd, “fa@!] " } with the covariance matrix %

o L= )2611‘1}

2
El'_gw{ 1_( )qll -l

(20)

The probability density ifwEq. (14) involves N' identical integration and summation at

each layersly which ¢an be performed individually [16], yielding
P / AQF = Avidet dvide! dQldg!
Y2 20/ N P 27 /Nt 27 /Nt 27t /N

L—1 Al L . . L0 .
eZZ:O N (1Vlvl+1Vlvl+1qul)+NL1QLqLe—N0(1V0+1V0+1Q0)

L—1 (Hl) E 1Hl
X H H'E
- [ \/ 27T |El|

Nl
Tl'gl’slp(é’lﬁll)P(Sl|hl)e—iVl(§l)2—iVl(vl)2—in§lsl]
[ _l(HL)TzleL

Le 2 L

Vv (2m)2 [

NL
Trg,L,SLP(S’L|lA1L)P(8L|hL)€_iQL§LSL] : (21)
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where we have integrated out the auxiliary fields {2%, 2!} and introduced the fielddoublet
H':= [h', h1]T. We further write P(q%) as

P(g) — / dQ dVido! dvide! dQ'dg! .
2 /N i 2 /Nt 27 /Nt 27t /N

L L—1

xp[-N®(Q,q,V, 9, V,v|g" )], (22)

where —N®(Q, q, V,0,V, v|q*) is equal to the logarithm of the inteégFandin Eq. (21).
Similar to the analysis in [16], the probability density P(q”) is dominated By the saddle
point (Q*, g*,...) of the potential function ®(...) in the large Vi limit\(Nl = o!N with

al as a constant)

P(q") = exp[-N®(Q",q", ...|¢")], (23)
where I(qL) = ®(Q*, q*, ...|q") is the desired rate function:
While this set-up is based on computing the deyiation in‘function similarity with
a single input ¢ = 1/N* 3", 555k one may argue that it requires testing on more than
one input for obtaining a robust estimation, e.g.;
~L 1 < A AT '
q = NLM Z Z 81 sl (24)
p=1 i=1
where M is the number of independent patternsased. Assuming that representation of
different patterns are uncorrelated§ weishow in, Appendix C that for small M, the rate
function 7(¢") is approximately related'te the single input case through a simple scaling

1(G") = M2(QV g, .--|q")- (25)

This assumption is valid for/sign-DNN but not for relu-DNN. We also confirm this
scaling relation by numerical e@eriments (see below and in Appendix C).

4.2. Unifying three types of aveight perturbations

The other two types ef perturbations can be treated similarly.  For network
sparsification (15); the'disorder average of Eq. (14) has the following form in the large
N' limit (see Appendix A for details)

1 : Z'(gl‘_l)2 1 Z-(Sl»_l)z X Z-§l»_1sl»_1
HeXp {_0121) [E(xbz% + 5@5)2% +v1- plfb’éxﬁ%] , (26)
li

which has the s@ime form of Eq. (17) when p' is replaced by (n')%. Introducing the same

ordexgparameters, we obtain the covariance of the fields A and A! in the form of
~l—1 7 -1
v 1 —p'q
S .= g2 i 27
1 w { 1= plgt Vi1 (27)

Hence, diluting connections with probability p' at layer [ in a random DNN corresponds
10 rotating each of the weight vector ﬁ)ﬁ by an angle ' = sin™* \/]? .

Page 8 of 25
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Similarly, for network binarization in Eq. (16), the disorder average of Eq. (14)
yields (see Appendix B for details)
a1 -1

1,287 1 >oi(s5h)? 9 > gttt
HeXp {—UZ [5(1’5’)2% + 5@5’)2% + ;xﬁxﬁ%] : (28)
l,i

which corresponds to the covariance matrix of the fields h! and h! te™Bé in the form

) ) -1 \/ng—l
Zl = Uw .
21— _
;ql A

o (29)
Comparing to type (i) perturbation, one finds that binarizing weight elements in a

random DNN corresponds to rotating each of the weight vectors ﬁ)i by a fixed angle

! \/g ~ 37°. This phenomenon has been observed, in[32] and is linked to

0" = cos™
the practical success of binary DNN. It is argued [32] that37° 1s a very small angle in
high dimensional spaces where two randomly sampledyvectors are typically orthogonal
to each other; therefore weight binarization approximately preserves the directions of
the high dimensional weight vectors, which contributes to the success of binary DNN.
Therefore, we establish that the three types of petturbations on random DNN can

be unified in the same framework developed, in‘Sec. 4.1.

4.8. Saddle point equations

For networks with a generic ag¢tivation funetion, the large deviation potential function
®(...) can be express as

L—1
© = —a[iVO(0° — 1) + V2% h) £4Q°(¢° — 1)] = > o' (iV'' + 1V +1Q'q)

=1

L
—iQ%¢* — Zal log/dizldthrgz,Sz/\/ll(él,Sl,ﬁl,hl), (30)
=1
Lial 30 7l . A7l Ll —iVi(E)2=iVi(W!)2—iQ! 5l s!
M(S, s b R e= D P(8'|h")P(s'|h')e , 1 <1< L,(31)
!
e—%(HL)szlHL 66§LBL eBSLhL

ME(EE stk i) TN, (32)

(27)2[S,| 2 cosh(BhL)2cosh(BhL)
where & = 1 sifice N° = N.
Setting the derivatives with respect to the conjugate order parameters 0®/0iV!,
09/0iV!, 3P /0iQ' to zero yields the saddle point equations
" =a%=d, " =1, (33)
dilldth A al ZMI al ol }All Bl
Rl AN Tra (S MU L) gyt = (), 1< 1< L (34)
[ AR Rt Tra o M8 st b RY)
[ dRARI T o (81 MY(E, s RE B
[ dhtdhiTry g M(8!, st L, hl)

= (&', 1<1<L, (35)

q
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in which M(&', s', hl, hl) bears the meaning of an effective measure [33]. Noticefthatig”
is an input parameter imposing a nonlinear end point constraint on iQ*, which differs
from the generating functional analysis calculation of typical behaviors [L6], where.q”
is a dynamical variable and iQ* = 0 at the saddle point.

Setting 0®/dq' to zero yields the saddle point equations for thedeonjugate order
parameters Q'

ol [ dhtdn Trg o 50 M8 ', B, b < I (36)

01 —
Q al-1 f dhldthl“ggsl./\/ll(a%l» 5l7 hl’ hl) ~

Similar relations holds for iV! and iV'. While the comjugate otder parameters
{Vl, VE Q') are defined on the real axis, they can be extendedte the complex plane
and evaluated on the imaginary axis in the saddle point approximation, in which case
{iVl, iV!,iQ'} are real variables. Other observables cait beleomputed by resorting to the
effective measure M'! once the saddle point is obtained, e.g., the mean activations are

given by [33]
L

b= (8 v, mb = (s") 0. (37)
Since the covariance matrix ¥;(¢' =1, Jidependson the order parameters of layer
[ — 1, the effective measure M' at layer | dependsyon the order parameters {¢'~*, ...} of
the previous layer, while it depend§femsthe conjugate order parameters {iQ', ...} of the
current layer. We then observe that he order parameters {¢',...} propagate forward
in layers, while {iQ',...} encoding the randomness leading to the desired deviation
propagate backward, which resembles the structure in optimal control problem [34].
Therefore, we solve the saddlé point equations in a forward-backward iteration manner
until convergence. Another featare tomotice in Eq. (36) is the dependence of the saddle
point solution on the layér-shape_ parameters {a'}, which does not play a role in the
mean field solutions wherenall the conjugate order parameters {iQ', ...} vanish [16].

4.4. Explicit solutionsyfor-sugn’ and ReL U activation functions

For networks with,sign agctivation function the order parameters satisfy o' = v! = 1,
such that thefonly meéaningful order parameters are {¢', Q'}. The potential function ®
can be computed analytically, taking the form

®(Q.qlg") = 4@"Q°(¢" - 1) - Zal@”

— Zoz log |:COSh(1Q ) — sinh(iQ") sm (/1 H2g—1) ], (38)

while the saddle point equations become
¢’ =1, (39)
J=" sinh(iQ") 4 cosh(iQ")2 sin™" (/1 N2g—1) Vi<i<L, (40)
cosh(iQ!) — sinh(iQ")2 sin~ \/7 g1

Page 10 of 25
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2 sinh(in)
cosh (i) — i) in (/L= ()

U
x L VI<I<L 1
N T TP "N

Note that ¢& in Eq. (40) is an input parameter.

in—l

For networks with ReLU activation function the potential funetion ®.alse admits
an explicit expression

D(Q.q. V.9, V,v|¢") = = [iVO(1° — 1) +iV0(° — 1) +1Q°((° —a)"
L—-1

o Z al(if/lﬁl + iVlUl + lqul) o iQLqL

=1
—Za og{ L (z—tan_1< Allz >>+ L <E+tan_1<
= ZaVAIR RVARY VA VB 2
1 (= . It 1 <7r e
+ — —tan~! ’ + —+’can1< 12
VB VIES) Ay VIO viet

—al log [cosh(iQL) - sinh(iQL)%tan_1 ( 218 )} , (42)

A
where A!, B!, C" are 2 x 2 matrices defined as
21V Q! 0, 0 2L 0
Al =%t Bh=%,"! o=yt (43
l*{in zivl}’ c o 2t T R R
The saddle point equations also admit a, close-form expression accordingly.

N
5. Large deviations in' inpuit sensitivity of functions

In probing the sensitivity of afunction to the flipping of input variables, the weights of
two networks considered ‘are faking the same values w = w, which is done by setting
n' = 0 in Eq. (6). We constrain the input s° of the perturbed system to have a pre-
defined overlap.¢® (or Hamming distance N°(1—¢°)/2) with the input 8° of the reference
system. Th¢ sensitivitynof the output overlaps to input perturbations is investigated
through the'conditional probability

ooy Pld"d°) <6<ﬁ Sisi 4 >6<L iégsg—q0>>
BPlg"lq") = P . (44)
1 <5<% 28?8?—q)>
Without loss of generality, we choose a decoupled input distribution P(§0, s%) =
[T, P(SHP(s?) = Hi(%5§?71+%5§97_1)(%589,1+%5s?7_1) while the delta function involving ¢°
i Equ(44) constrains the systems to have the desired input correlation. The probability

of input overlap P(qo) can be computed as

d@ 000(g0_ 1 5040
)P (s?) N0 22i8;8
P(q") = Try 80 | | P(s /271'/]\70 (q NO )




oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-112782.R1

Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks 12

/ de° exp [No(lQoqo + log COSh(lQO))}

27 /NO
A exp [NO(iQO*qO + log cosh(iQO*))]
— oxp[ - N@p(Q™ )], (45)
@p(1Q"]¢") := —a’(1Q"¢" + log cosh(iQ")), (46)
Q" := —tanh'(¢"), (47)

where we have made use of the saddle point approximation of P(q%)aimsthe large N°
limit, with the corresponding potential function defined in Eq. (46)‘and the saddle point
solution Q" given in Eq. (47).

The computation of the joint probability P(¢%, ¢°) issanalogousto that of P(q¢r) in
earlier sections,

P(q",4") = EquTrs s P(8°) [ [ 005 HP @', 8 YR (s w5
" >
y / dQY dQY ivogo(e0— ity w, M AINEQP (gt 1y 5, st
27 /NO 27 /N
= /{deq---}exp[—Nbe(Q,q, g™, (48)
Dy = —a’[iVO(0° — 1) + iV (0° — 1) (1@%%Flog cosh (iQ°))] — iQT¢*
L1 L

= (V' + iV +1Qlg) — ) allog / dhldh! Trg g MY, s BLBD. (49)
= =1

The saddle point of iQ° satisfies iQ** =r— tanh™'(¢°), which coincides with the one of
P(q°) in Eq. (47). So the gonditional/distribution satisfies

P(q"lq°) = exp[— N®(QH, g%, .-|g". ¢")] = exp [ — N (@] — Dp)]
(I)(Q, q, ...\qL,qo) _ _aO[iVO(@O ’ 1) + iVO(UO _ 1>] _ iQLqL

L-1

L
= (V' + iVl F1Q'¢) — ) a'log / dh'dR' Trg o M'(8, s' 1L RY,  (50)
= =1

where the saddle poinf solution {Q*, q*, ...} have the same form as those in Sec. 4.3,
except that g2 =1 in/Eq. (33) is replaced by the pre-defined value ¢° under investigation.

6. Results

6.1. Weight sparsification

We firstgéonsider the effect of weight perturbation by sparsifying connections as in
Eq..(15). For a concrete example, we consider DNN with L = 4, uniform layer width
@' = 1 and disconnection probability p' = 1/2, for which we compute the large deviation
rate function I(¢%) = ®(Q*, q*, ...|¢%) by solving the saddle point equation in Sec. 4.3
and compare it to numerical experiments. For relu-DNN, we always set o,, = v/2. The
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results are shown in Fig. 3(a)(b), which exhibit a perfect match between the theory and
simulation. The most probable g%, located at the minimum of ® correspouds to the
mean field solution, where g%, ~ 0.047 for sign-DNN and ¢%; ~ 0.266 for the relu-DNN-
However, in finite systems they have a non-zero probability of admittingsa higher value
of g% due to fluctuations. We can compute the probability from the #ate function by
P(q") = exp(=N®*(¢%))/Z|| and estimate the tail probability of outpiit mismatch. As
an example we consider N = 64 and find that P(¢* > 1/2) ~ 0/055% féh sign-DNN
and P(¢t > 1/2) ~ 3.8% for relu-DNN, which is non-negligiblé“especially for ReLU
activation.q =

In Fig. 3(c), we also demonstrate that the approximatiéi,of rate function I(¢%) of
output overlap ¢*, estimated for M patterns by employing Eq. (25)s.is accurate for DNN
with sign activation, while the approximation does not held for deep ReLU networks
(see Appendix C). Therefore in sign-DNN, the probability, of finding perturbed DNN
agreeing on all M patterns with the reference DNIN decays exponentially with M (at
least for small M values). This may not be the case’in relu-DNN which requires further
exploration in a future study. y

In Fig. 3(d), we compare the meandfield output everlaps g% between DNN with
sign and ReLU activations for different systéem depths and disconnection probability
p'. It is shown that relu-DNN are more robust toeight sparsification perturbation, as
expected; the perturbed relu-DNN haveFesidual correlations with the reference networks
even after removing 90% of the weights.iThe robustness of relu-DNN to weight dilution
was also observed and theoretically analysed'in [35]. Finally, we remark that our scenario
is different from the practical methods used to prune networks trained on specific data;
in this case particular heuristie rules have been developed to disconnect weights instead
of the random removal used*heren Thé success of weight pruning in practice hightlights
the weight-redundancy in real trained networks [24, 35] but may also be influenced by
properties of the dagamsed and training methods. This behaviour is absent in random
networks with random data, as indicated in the inset of Fig. 3(d), where even a small
dilution probability can, detériorate the overlap. Additional modelling considerations
are needed to address practical scenarios.

6.2. Weight binarization

We theu considerithe effect of perturbation by binarization of weight variables as in

Eq. (16). Also here we consider uniform layer width o/ = 1. The results shown in
| Bor finite NE the output overlap is a discrete variable ¢% € {1,1 — %, 1- %, e, —1}, so it

is convenient to consider the discretized probability distribution of ¢¥ as Prob(¢l) = P(q*)Aql =
exp(=N®*(@"))/Z; the normalization constant is computed as Z = >, exp(—N®*(¢gF))Aq", where
the summation runs over all possible values of ¢ and Aq¢” = % Although we could not find the saddle
point'§olution of ®(...|¢") in the vicinity of ¢© = —1 for relu-DNN (see Fig. 3(b)), the contribution
from that region to the cumulative probability of the overlap is negligible .

9 Notice that such estimation is obtained by saddle point approximation in Eq. (22) and by keeping
the leading order contribution, which may be slightly biased for small N.
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weight sparsification, s’ = §° weight sparsification, s’ = §°
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N
Figure 3. Weight sparsification of random DNN. In (a)(b)(c), we set L = 4 and
pl = 1/2; soliddlines gorrespond to theory while dashed lines with circle markers

correspond to estimation from simulation. The estimation of the rate function from
simulations are obtained by 100,000 samples and the corresponding curve has been
shiftéd suehythat the minimum is at zero. (a) The rate function ® vs ¢% for sign
activation funetion. (b) The rate function ® vs ¢~ for ReLU activation function. (c)
The rate function 1(G~) of output overlap ¢~ defined by M patterns; the theoretical
results are given by Eq. (25), while the simulation results are obtained on systems with
Ni= 64, (d) Mean field solutions of output overlap ¢L; as a function of system depth
L. Inset: qﬁlf vs p! for different depths.

Figgd “are wery similar to the effect of weight sparsification. As pointed out in Sec. 4.2,

binarizing ‘weights of random DNN corresponds to rotating the weight vector ﬁ)ﬁ by

1

an anglegd’ = cos™ \/g [32], or equivalently, disconnecting weights with a particular

probability p' = 1 — 2. The matches between theory and simulation in Fig. 4(a)(b)(c)

validates the large deviation-based analysis in both sign and relu-DNN and the scaling
relation of Eq. (25) in sign-DNN. The relu-DNN are more biased to the regime of positive

correlation and more robust to binarizing perturbation as seen in Fig. 4(d).
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Figure 4. Weight bimarization of random DNN. (a) ® vs ¢~ for sign activation
function. ,(b) @{vs ¢Z/for ReLU activation. (c) The rate function I(G%) of output
overlap % defined'by M patterns; solid lines are theoretical results while dashed lines
with circle markers are estimated by simulation. (d) Mean field solutions of output
overlap ql’}lf as a function of system depth L.

6.3. Sensitivity to input,perturbation

We havesshown that relu-DNN with random weights are robust to parameter
perturbations such as weight sparsification and weight binarization, which is a desired
property ofor better generalization. On the other hand, such network ensembles
typically represent simple functions as studied in [21, 22]. The simplicity of the
funetions generated is one reason accounting for the observed robustness to parameter

perturbation.

To, probe the function complexity, we study the function sensitivity under input
perturbation while keeping w = w [28]. Flipping n input variables corresponds
to the input overlap ¢ = 1 — % In Fig. 5(a) and (b) we depict the overlap

g-, of the final output as a function of input overlap ¢ (keeping in mind that we
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always apply the sign activation in the output layer). While the outputs /become
more de-correlated in deeper layers of sign-DNN, the relu-DNN induce dorrelation
at deeper layers. Therefore, random relu-DNN tend to forget the input structure.at
deeper layers, generating increasingly simpler functions that are robust,to parameter
perturbation. This phenomenon has been noticed in the Gaussian process-like analysis
of DNN [10, 11, 12].

In [16], we investigated the effect of weight correlation in the form @f P(w!) =
exp(—%(ﬁ)ﬁ)TA_lﬁ)ﬁ)/ (2m)N'H Al with A = 02 (I —cJ) whered"is tlﬁidentity matrix
and J the all-one matrix. We found that DNN with ReLU activation functions and
negative weight correlation ¢ < 0 are more sensitive to parameter perturbation. Here
we examine the sensitivity of relu-DNN to input perturbation bywemploying the same
results developed in [16]. In Fig. 5 (c¢) and (d), we depict the mean field output overlap
gk, as a function of input overlap ¢°. It is observed thatynegative weight correlation
corresponds to a higher sensitivity to input perturbation, indicating that the relu-DNN
with negatively correlated weights generate more complex functions than those with
random or positively correlated weights. We conjecture that negative weight correlation
develops in very deep RelLU networks whén they are trained to performed complex task
where a high expressive power is needed, aphenomenon that has been observed in [36].

In Fig. 6, we further investigate deviations frompthe typical behaviors in the presence
of input perturbations for the speéific éxample\with L = 4, o' = 1. The rate functions
®(q") depicted in Fig. 6(a)(b) dictate the rate of convergence to the typical behaviors
with increasing N by the largeideviation principle, for both sign and ReLLU activations,
respectively. In Fig. 6(c), we obsérve that the rate functions have similar trends in
the vicinity of the mean field solutionyq’, for different levels of input perturbation
(corresponding to differentg®)imsign-DNN, while they are more distinctive in relu-DNN
as seen in Fig. 6(d). In relu-DNN, gmaller input perturbation (larger ¢°) leads to smaller
variance of ¢ aroundpglyf Thefrate function of relu-DNN is also more asymmetric
around ¢%;, suggesting that large deviations will be more often observed below ¢~ than
above it. This indicatesithatitandom relu-DNN of finite size may produce functions that
are slightly more complex than what would be expected by the mean field solutions,
which remaing'érbe wvezified.

We also examine the dominant trajectories across layers leading to particular
deviationssby monitoring the correlations of activations between the two systems across
layers. [The relevant quantity is the correlation coefficient
) 3 ¢ — mim! | (51)

Vil = (ih)? /vl — (m')?

whete, the anean activations 7! and m! are computed by Eq. (37). We find that sign-

p

DNN satisfy m! = m! = 0,9' = o' = 1, such that p! = ¢’ in this case. The results are
showiivin Fig. 6(e) and (f), which suggest that the deviations of ¢* from the typical
value ¢~ are mainly contributed by the deviations at later layers.

Lastly, we investigate the effect of DNN architecture on the deviation. In particular,
we consider a single bottleneck layer at a particular hidden layer I’ (0 < I’ < L) with
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Figure 54 Mean field golutions gL vs ¢° in the scenario of input perturbation where
w = w,; In all architectures, sign activation function is applied at the output layer.
(a) DNNywith signy activation functions and uncorrelated random weights. (b) DNN
with ReL U activation at the hidden layers, with uncorrelated random weights, and
sign activation at the output layer. (c¢) Relu-DNN with positive weight correlation
¢ =2/(3N)«(d) Relu-DNN with negative weight correlation ¢ = —2/(3N).

o = é while alliethier layers satisfy o = 1,V # I'. Placing the bottleneck at later layer

introduges a higher variability of output overlap ¢* by observing smaller values of the
ratednction in Fig. 7; this effect is more prominent in sign-DNN, while it is much less
noticeabledn relu-DNN.

7. Discussion

By utilizing the large deviation theory coupled with the path integral analysis, we derive
the sensitivity of finite size random DNN under parameter and input perturbations.
Random DNN with sign or ReLU activation function are shown to satisfy the large
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Figure 6. Large deviation of output similarity ¢ under input perturbation where
w = w. Sub-figures (c) and (d) are the same as (a) and (b), except for the shifted
(a)(b) ® vs ¢~ for sign- and relu-DNN, respectively.
gt — gk, for sign- and relu-DNN, respectively. (e) The dominant trajectories of overlap
{¢'} leading to particular deviation in sign-DNN. (f) The dominant trajectories of
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Figure 7. Effect of a single bottleneck layer on the rate function in the scenario of
input perturbation. The bottleneck layer [“has width parameter ol = % while all
other layers have ol = 1. (a) sign-DNN /(b) relu—Dl\iN.

deviation principle, where the rate fumctions govern an exponential decay of the
deviation to the mean field behaviors as“the Size of the system increases. We also
investigate the effects of weight spawsificatiom, and binarization of random DNN, and
uncover their equivalence to rotation efiweight"wector in high dimension. Random DNN
with ReLLU activation function,are found t@wbe robust to these parameter perturbations,
which is caused by the low complexity of the corresponding function mappings. Random
initializing the weights of ReLlU DNN places a prior for simple functions, while they have
the capacity to compute more cemplex functions with specifically trained weights. The
next important question 48 how the networks adapt to perform complex tasks by the
training processes.
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Appendix A« Disorder average for weight sparsification

For‘metwork sparsification (15), the disorder average in Eq. (14) can be computed as

g I —i AT -1 !
Es Hexp (Wwijxisj ) [(1 —p')exp ( Wy 738 ) +p}
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{1’

el +o<ﬁ>}
< TT{1 - s[5 + g« Vi= et gy

_ 2
1yi,j
1 A E»(§l-_1)2 1 Z-(Sl»_l)z A Z-§l»_1sl»_1
~ Hexp {—ai [5@92% + 5(%)2% +/1— plxﬁxﬁ—ﬁ]]\;l_l / } (A1)
1

where we have made use of the large N! approximation.

Appendix B. Disorder average for weight binarization

For weight binarization in (16), the disorder averageim, Eq. (14) can be computed as

R —1 I Alal—1 | 4
EwHeXp [m@)w@s] + sgu () o als) )]

1.5 (87 S (shh)2 7 Y gl
~ Hexp {—Ufu [i(xﬁ)zﬁ + 5(:602]]\[% + ;xﬁxi%] . (B.1)

where the large N' approximation has been employed.
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Appendix C. Large deviation in the multiple-pattern scenario

Consider function similarity estimated for multiple patterns
1oL, 1 &

~L __ _ ALuu' L,,LL . s

e (e ) < 3 =
where ,§iL’“ (8°#) is the ith output of the reference network with'the pth input 8%
drawn independently and identically from the input distributio®P(s’). In the small
fluctuation regime, where each ¢“* is close to the mean field solfition qk,, we have
I(g"") ~ 1/21"(qge) (™" — qee)? (both I(gy) and I'(gyzy) vamish [30])de., P(q"") can
be approximated by a Gaussian density

N 174
P(g"") ~ exp ( -5 (ghe) (g™ — q]éf)z)v (C.2)

where the corresponding variance is 1/(N1"(g%;)). Since the M inputs are independent,
we also assume the outputs are also approximately independent (which holds in
sign-DNN but does not necessary for relu-DNN sifice RetU non-linearity can induce
correlations among variables), such that the,variance.of ¢~ is 1/(MNI"(g%;)). Therefore,
in the vicinity of ¢%; we have
- MN .

P(") ~ exp (- — 2Tl @h— ar0)?). (C.3)
implying that the corresponding rate fumetion differs from the one with single pattern
by a factor of M.

More formally, one can diréctlylecompute the probability density P(¢%) as

P = <6(M§VL S sipatin aL)>

M2

Z I dhp*dat* dhbHdal”
_ 7. oL L,H ~L 20,1 | | i i i i
= BawTras0 ( MNF ) o P(s; )53?’“3?’“/ 27 27

ol

X exp Z <log P (354 | B + log P(sh*|hb) + izbrhbe 4 1xﬁ“hﬁ“)]

-mlvi

Al Al,,u l 1, Ly =1,
X exp —Z\/TZ< i +wwxz S; )] (C4)

Since_theyweights {w};, w!;} are shared among the M patterns, average over these

i)
variables on the last line of Eq. (C.4) leads to coupling between patterns on the pre-

activation fields

Al,u IN% ~Al— l,uAl 1,v ,u 8% l l,ul 1,v
Hexp{—awi [ L 2N11§ S _'__z ZNll

J

~ v 1 Al— —1,v
+/1 = (nh)2abrah Nllz,sé- 1’”53 1}} (C.5)

J
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By introducing the following overlap matrices as macroscopic order parameters

1 Z Z
Luv __ INNTERNZ Al,;u/ _ Al,uAl v ,/u/ _ 7M Ly
TN - N! TN LL (C.5)

J

Eq. (C.4) can be factorized over sites as before. However, we have ©O(LM?2), order
parameters here, while there are only O(L) order parameters in the single pattern
case. To further simplify the calculation, we assume a symmetric stfucture of the cross-
pattern overlaps at the saddle point ¢"** = ql’”éw, + ¢+ (1 = 6,,), where "Il gt are the
diagonal and off-diagonal matrix elements respectively. Under this agsamption, one can
in principle evaluate the integral in C.4, but the resulting caleulation/becomes rather
involved.

Alternatively, since the M input patterns are indepéndent, we expect the diagonal
elements of the matrix ¢"* to be larger than the off-diagenal éleménts (sum of correlated
variables v.s. sum of random variables). In particular, forisign activation we expect
¢~ 01),¢" ~ O \/iv_l) since ¢t involves a_summation over weakly correlated
positive and negative numbers. We therefore approximate ghe summation ) [...] in the
exponential of Eq. (C.5) by >_ ,_ [...], which yields M N "un-coupled identical integrals

at each layer N'. It eventually leads to the rate fiumétion of multiple-pattern overlap
gt as I(gh) =~ M®(Q*, q*,...|¢"), where ®(Q%q*,...|¢") is the rate function of the
single-pattern overlap ¢*. While the.off-diagonal elements of ¢"** have smaller values,
there are more of these terms (M (M= 1) offsdiagonal terms compared to M diagonal
terms in the summation »_ ,l...] in the“éxponential of Eq. (C.5)), so we expect the

above approximation to hold onlyfor small M. The above argument may fail for ReLU

Al

I L.
activation, since 5", s;" are always positive, and therefore gt~ O(1).

In Fig. Cl, we compare the approximate theoretical results I(¢l) =~
M®(Q*, q*,...|¢") to el ations in the scenario of weight sparsification
with disconnection probabilify p'/= 1/2. We observe a good match between the two
approaches for sign-DNN. validating the de-correlation assumption of M patterns. For
relu-DNN, the theory, gives a, good prediction on shallow networks with L = 2 but
deteriorates for deeper metworks; it suggests the importance of cross-pattern order
parameters ¢"* i this case, whose detailed treatment is beyond the scope of this work.

References

[1] LeGun Y, Bengio Y and Hinton G 2015 Nature 521 436-444 ISSN 0028-0836 URL
http://dx.doi.org/10.1038/nature14539

[2]¢Cheng Y, Wang D, Zhou P and Zhang T 2018 IEEFE Signal Processing Magazine 35 126-136

[3] Zeiler M'D and Fergus R 2014 Visualizing and understanding convolutional networks Computer
Vision — ECCV 2014: 13th FEuropean Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part I ed Fleet D, Pajdla T, Schiele B and Tuytelaars T
(Cham: Springer International Publishing) pp 818-833 ISBN 978-3-319-10590-1 URL
https://doi.org/10.1007/978-3-319-10590-1_53

[4] Yosinski J, Clune J, Nguyen A, Fuchs T and Lipson H Understanding neural networks through
deep visualization Proceedings of the Deep Learning Workshop, International Conference on

Machine Learning, 2015 (arXiv:1506.06579)

Page 22 of 25



Page 23 of 25

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-112782.R1

Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks 23

% 0.10

0.20

1.0 0.00 -0.5 0.0 0.5

0.20 0.20

0.15 0.15

% 0.10

0.05 0.05

0.00 0.00

1.0

Figure C1. The rate function I(g") efsoutput overlap ¢ defined for M patterns
and DNN with differentgactivation functions and system depths, in the scenario of
weight sparsification with disconneéétion probability p! = 1/2. Solid lines correspond
to theoretical results and dashed lines with circle markers correspond to estimation
from simulation.

Zhang C, Bengio S, Hardt \M, Recht' B and Vinyals O Understanding deep learning
requires rethinking generalization Proceedings of the 5th International Conference on Learning
Representations, 2017/URLttps://openreview.net/forum?id=Sy8gdB9xx

Chaudhari P, Choromanska A,/ Soatto S, LeCun Y, Baldassi C, Borgs C, Chayes J,
Sagun L and “Zecchina' ReEntropy-sgd:
Proceedings of the “5th, International Conference on Learning Representations, 2017 URL
https://openreview.net/forum?id=B1YfAfcgl

Biasing gradient descent into wide valleys

Neyshabur B, Bhojanapalli S, McAllester D and Srebro N 2017 FExploring gen-
eralization.—in wdeep/ learning Advances in Neural Information Processing Systems
30 edf Guyon T, \Luxburg U V, Bengio S, Wallach H, Fergus R, Vishwanathan

S and | Garnett R" »(Curran Associates, Inc., New York) pp 5947-5956 URL
http://papersinips.cc/paper/7176-exploring-generalization-in-deep-learning.pdf

Bartlett P oL, Foster D J and Telgarsky M J 2017 Spectrally-normalized mar-
giny, bounds for mneural networks Advances in  Neural Information Processing Sys-
tems 807 ed Guyon I, Luxburg U V, Bengio S, Wallach H, Fergus R, Vish-
wanathan S and Garnett R (Cuwrran Associates, Inc.) pp 6240-6249 URL

http://papers.nips.cc/paper/7204-spectrally-normalized-margin-bounds-for-neural-networks.pdf

Poole B, Lahiri S, Raghu M, Sohl-Dickstein J and Ganguli S 2016 Exponential
in deep neural through transient Advances
ral Information Processing Systems 29 ed Lee D D, Sugiyama M, Luxburg U V,

Guyon I and Garnett R (Curran Associates, Inc., New York) pp 3360-3368 URL

expressivity networks chaos i Neu-

http://papers.nips.cc/paper/6322-exponential-expressivity-in-deep-neural-networks-through-transie:

Duvenaud D, Rippel O, Adams R and Ghahramani 7Z 2014 Avoiding pathologies



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-112782.R1

Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks 24

in very deep networks Proceedings of the Seventeenth International Conference on
Artificial  Intelligence and  Statistics — (Proceedings of Machine Learnings Research
vol 33) ed Kaski S and Corander J (Reykjavik, Iceland: PMLR) pp 202-210, URL
http://proceedings.mlr.press/v33/duvenaudi4.html

[11] Daniely A, Frostig R and Singer Y 2016 Toward deeper understanding hef neu-
ral networks:  The power of initialization and a dual view ond expressivity Ad-
vances in  Neural Information Processing Systems 29 ed Lee DD, “Sugiyama M,
Luxburg U V, Guyon I and Garnett R (Curran Associates, Incf) pp 22532261 URL

Page 24 of 25

http://papers.nips.cc/paper/6427-toward-deeper-understanding-of -neural-networks-the-power-of-init

[12] Lee J, Sohl-dickstein J, Pennington J, Novak R, Schoenholz S and Bahri'Y Deep.neural networks as
gaussian processes Proceedings of the 6th International Conferencelon Léarning Representations,
2018 URL https://openreview.net/forum?id=B1EA-M-0Z

[13] Schoenholz S S, Gilmer J, Ganguli S and Sohl-Dickstein J 22017 Deep information
propagation Proceedings of the 5th International Conference on Learning Representations URL
https://openreview.net/forum?id=H1W1UN9gg

[14] Yang G and Schoenholz S 2017 Mean field residual networks: ©n the edge of chaos Advances
in Neural Information Processing Systems 30 ed Gayon I, Luxburg U V, Bengio S, Wallach
H, Fergus R, Vishwanathan S and Garnett R (Curran Associates, Inc.) pp 7103-7114 URL

http://papers.nips.cc/paper/6879-mean-figld-residual-networks-on-the-edge-of-chaos.pdf

[15] Pretorius A, van Biljon E, Kroon S and Kamper H 2018 Critical initialisation for
deep signal propagation in noisy rectifier neural <metworks Advances in Neural In-
formation Processing Systems 31 ed "‘Bengie S, Wallach H, Larochelle H, Grauman
K, Cesa-Bianchi N and Garnett R (Curran »Associates, Inc.) pp 5717-5726 URL

http://papers.nips.cc/paper/¥8l4-critical-initialisation-for-deep-signal-propagation-in-noisy-rec

[16) Li i B and Saad D 2018 Phys." > Rev.  Lett. 120(24) 248301  URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.248301

[17] Jacot A, Gabriel F and  Hongler C 2018 Neural tangent kernel: Convergence
and generalization in neuraly, networks Advances in  Neural Information  Pro-
cessing Systems 31 ed Bengio . S, Wallach H, Larochelle H, Grauman K,
Cesa-Bianchi N and Garmett R (Curran Associates, Inc.) pp 8571-8580 URL

http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-n

[18] Arora S, Du S, Hu W, Li Z fand Wang R 2019 Fine-grained analysis of optimization
and generalization/for ‘overparameterized two-layer neural networks Proceedings of the 36th
International Comference on Machine Learning (Proceedings of Machine Learning Research
vol 97) ed Chaudhuri K and/Salakhutdinov R (Long Beach, California, USA: PMLR) pp 322-332
URL http://proceedings.mlr.press/v97/aroral9a.html

[19] Mozeika A, “Saad D Jand Raymond J 2009 Phys. Rev. Lett. 103(24) 248701 URL
https://1ink.apsworg/doi/10.1103/PhysRevLlett.103.248701

[20] Mozeika [ A, /Saad) D»n and Raymond J 2010 Phys. Rev. E 82(4) 041112 URL
https://¥ink.aps.org/doi/10.1103/PhysRevE.82.041112

[21] VallgzPerez G, Camargo C Q and Louis A A 2019 Deep learning generalizes because the parameter-
function map is biased towards simple functions Proceedings of the 7th International Conference
on Learning Representations URL https://openreview.net/forum?id=rye4g3AqFm

[22) De Palma G, Kiani B and Lloyd S 2019 Random deep neural networks
are |biased towards simple functions Advances in  Neural Information  Pro-
cessing Systems 32 ed Wallach H, Larochelle H, Beygelzimer A, d'Alché-
Buc F, Fox E and Garnett R (Curran Associates, Inc.) pp 1962-1974 URL

http://papers.nips.cc/paper/8471-random-deep-neural-networks-are-biased-towards-simple-functions.]

[23] Antognini J M Finite size corrections for neural network gaussian processes ICML 2019 Workshop
on Theoretical Physics for Deep Learning (arXiv:1908.10030)
[24] Le Cun Y, Denker J S and Solla S A 1990 Optimal brain damage Advances in Neural



Page 25 of 25

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JPhysA-112782.R1

Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks 25

[25]

[26]

[27]

28]

[29]

Information Processing Systems 2 ed Touretzky D S (Morgan-Kaufmann) pp 598605 URL
http://papers.nips.cc/paper/250-optimal-brain-damage . pdf

Courbariaux M, Hubara I, Soudry D, El-Yaniv R and Bengio Y 2016 Binarizedyneural networks:
Training deep neural networks with weights and activations constrained to +14t.-1 (Preprant
arXiv:1602.02830)

Rastegari M, Ordonez V, Redmon J and Farhadi A 2016 Xnor-net: Imagenet classification
using binary convolutional neural networks Computer Vision — ECCV £2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part TV ed Leibe
B, Matas J, Sebe N and Welling M (Cham: Springer International Publishing) pp 525-542 ISBN
978-3-319-46493-0 URL https://doi.org/10.1007/978-3-319-46493-0_32

Hou L, Yao @Q and Kwok J T 2017 Loss-aware binarization of deep networks
Proceedings of the 5th International Conference on Léarning Representations URL
https://openreview.net/forum?id=S10W1N911l

Franco L 2006 Neurocomputing 70 351 — 361 ISSN 40925-2312 neural Networks URL
http://www.sciencedirect.com/science/article/pii/S0925231206000361

Novak R, Bahri Y, Abolafia D A, Pennington J and/Sohl-Dickstein J 2018 Sensitivity and
generalization in neural networks: an empirical study Proceedings of the 6th International
Conference on Learning Representations URL httpsi//openreview.net/forum?id=HJC2SzZCW

Touchette H 2009  Physics  Reports 478 1~ = 469 ISSN 0370-1573 URL
http://wuw.sciencedirect.com/science/article/pii/S0370157309001410

De Dominicis C 1978 Phys. Rev. B 18(9) 4913-4919 URL
https://link.aps.org/doi/10.1103/PhysRevB.18.4913

Anderson A G and Berg C P 2018 The\ high-dimensional geometry of binary neural
networks Proceedings of the 6th dnternational \Conference on Learning Representations URL
https://openreview.net/forum?id=B1IDRdeCW

Coolen A 2001 Chapter 15 statistieal, mechanics of recurrent neural networks ii
— dynamics  Neuro-Informatics and “Neural Modelling (Handbook of Biological
Physics vol 4) ed MossoF and Gielen S (North-Holland) pp 619 — 684 URL
http://wuw.sciencedirect.com/science/article/pii/S138381210180018X

Gratke T and Vanden-Eijuden E 2019 Chaos: An Interdisciplinary Journal of Non-
linear ~ Science 29 £063118 (Preprint https://doi.org/10.1063/1.5084025) URL
https://doi.org/10.1063/1.5084025

Huang H  and, o Goudarzi £/ A 2018 Phys. Rev. E  98(4) 042311 URL
https://link.aps.org/doi/10.1103/PhysRevE.98.042311

Shang W, Sohn KjrAlmeida/D and Lee H 2016 Understanding and improving convolutional
neural networks via concatenated rectified linear units Proceedings of The 33rd International
Conference“on. Machine Learning, New York, 2016 (Proceedings of Machine Learning
Researchdvol 48)wed Balcan M F and Weinberger K Q (PMLR) pp 22172225 URL
http://proceedings.mlr.press/v48/shangl6.html



