
Starlink: runtime interoperability between
heterogeneous middleware protocols

Yérom-David Bromberg
LaBRI,

University of Bordeaux, France
Email: david.bromberg@labri.fr

Paul Grace
School of Computing and Communications

Lancaster University, UK
Email: p.grace@lancaster.ac.uk

Laurent Réveillère
LaBRI,

University of Bordeaux, France
Email: Laurent.Reveillere@labri.fr

Abstract—Interoperability remains a challenging and growing
problem within distributed systems. A range of heterogeneous
network and middleware protocols which cannot interact with
one another are now widely used; for example, the set of remote
method invocation protocols, and the set of service discovery pro-
tocols. In environments where systems and services are composed
dynamically, e.g. pervasive computing and systems-of-systems,
the protocols used by two systems wishing to interact is unknown
until runtime and hence interoperability cannot be guaranteed.
In such situations, dynamic solutions are required to identify
the differences between heterogeneous protocols and generate
middleware connectors (or bridges) that will allow the systems to
interoperate. In this paper, we present the Starlink middleware, a
general framework into which runtime generated interoperability
logic (in the form of higher level models) can be deployed to
‘connect’ two heterogeneous protocols. For this, it provides: i) an
abstract representation of network messages with a corresponding
generic parser and composer, ii) an engine to execute coloured
automata that represent the required interoperability behaviour
between protocols, and iii) translation logic to describe the
exchange of message content from one protocol to another. We
show through case-study based evaluation that Starlink can
bridge heterogeneous protocol types. Starlink is also compared
against base-line protocol benchmarks to show that acceptable
performance can still be achieved in spite of the high-level nature
of the solution.

I. INTRODUCTION

A key requirement of distributed systems is that systems
developed independently from one another must be able to
interoperate with one another. Middleware and network pro-
tocols provide common interoperability standards to address
this particular concern. However, with an ever growing set of
heterogeneous protocols it remains a significant challenge to
ensure that systems can interoperate when developed using
different protocols e.g. different remote method invocation
protocols, different messaging protocols, or different discovery
protocols. Where systems are relatively static, they can connect
via interoperability solutions such as software bridges [1]
and Enterprise Service Buses (ESB) [17]. However even in
this case, developing such interoperability solutions remains
laborious and challenging; requiring not only knowledge of
the protocols and low-level network programming involved,
but also an understanding of the mapping of protocols onto
one another or a common intermediary. In more dynamic en-
vironments where runtime composition of systems is a central
property, e.g. pervasive computing or systems-of-systems, it is

not possible to know in advance which protocols are required
to interoperate; hence prior coded ‘bridges’ or ‘buses’ may not
have been developed for a particular protocol pair. Consider
the case where two mobile devices wish to spontaneously
interact but are implemented upon heterogeneous protocols.
In this paper we argue that to address these challenges it
should be possible to reason about protocols at runtime, and
then dynamically generate the interoperability bridge for that
particular case.

The primary contribution of this paper is the Starlink
framework, which utilizes high-level models of each individual
protocol to generate interoperability bridges at runtime. These
model: i) message format and content, ii) the behaviour of
the protocol in terms of its message sequences, and iii)
its use of underlying network transport protocols. Starlink
provides a set of domain specific languages (DSL) to specify
these models, whose content forms the overall interoperability
logic. The Starlink framework, when deployed in the network,
then executes this logic transparently from the protocols and
ensures that two legacy systems can interoperate dynamically.
To achieve this behaviour, we present three contributions:

• Abstract message representations. A domain specific lan-
guage, Message Description Language (MDL), is used to
describe protocol messages in terms of field content. This
is used to dynamically generate message parsers and com-
posers which correctly read and write messages to/from
an abstract representation that is machine processable.

• Coloured automata. Each protocol is described as an
automaton that represents the sequence of received or
sent abstract messages. The correct concrete sending and
receiving of messages requires knowledge of lower level
network semantics (e.g. address, port, multicast?), these
are added as annotations to the transitions that ‘colour’
the automata; hence, an automata for the execution of
multiple protocols will have more than one colour.

• Translation logic. Starlink provides a translation language
to model the translation from one protocol to another;
this is described in two parts: i) a merged automata that
represents the interoperability between two protocols in
terms of the required exchange of messages, and ii) the
translation logic for mapping the message content from
messages in one protocol to the messages of the other.

We evaluate Starlink using a case study based approach
and demonstrate that it achieves the main contribution of
runtime interoperability between heterogeneous protocols. In
the domain of discovery protocols we show that for three
protocols (SLP [14], UPnP [10] and Bonjour1) Starlink is
able to generate and execute the interoperability logic for each
particular protocol pair. Further, we measure the performance
of Starlink against benchmark measures of the individual
protocols. The results show that while an obvious performance
overhead is introduced it is not significant to the overall
operation of the protocols.

The paper is structured as follows. In section II, we examine
the state of the art in interoperability solutions and demonstrate
that none is able to achieve runtime interoperability. In sec-
tions III and IV we describe the key features of the Starlink
framework. We evaluate the framework in sections V and VI.
Finally, we draw conclusions in Section VII.

II. RELATED WORK

Prior efforts to achieving interoperability have largely con-
centrated on solutions where conformance to one or other stan-
dard is required, e.g., as illustrated by the significant standards
work produced by the OMG for CORBA based middleware
[12], and by the W3C for Web Services based middleware [2]
[6]. Where systems are designed and developed to interoperate
based upon standards, these approaches have been very suc-
cessful. However, when systems communicate spontaneously
and without prior knowledge of one another they may not
share this common agreement; it is likely they will utilise
heterogeneous middleware. In such cases, such standards-
based approaches will fail. Here we discuss three important
interoperability patterns that seek to resolve the problems of
heterogeneous middleware.

A. Interoperability Platforms

An interoperability platform is a client-side solution; it
presents a common programming model to develop applica-
tions upon and then provides a dynamic substitution mech-
anism to insert the required protocol that the server-side
employs. When the client encounters a service, it maps its
application calls onto the newly substituted middleware. ReM-
MoC [11], Universal Interoperable Core [20] and WSIF [8] are
examples of this pattern. For the particular use case, where you
want a client application to interoperate with everyone else,
interoperability platforms offer a powerful approach. However,
these solutions rely upon a design time choice (by the client
developer) to implement upon the interoperability platform.
Therefore, they cannot generally allow applications developed
upon two or more different legacy middleware to interoperate
spontaneously at runtime.

B. Bridging

Software bridges enable communication between legacy
applications deployed upon different middleware. Clients from

1http://developer.apple.com/networking/bonjour/specs.html

one middleware domain can interoperate with servers in an-
other middleware domain where the bridge acts as a one-to-one
mapping between the two domains; it takes messages from
a client in one format and then marshal this to the format
of the other middleware; the response is then mapped to the
original message format. An example is the SOAP to CORBA
bridge [1]. Software bridges are not a long term solution to
interoperability because they are time-consuming to develop
by hand, and a large number would be required given the
number of protocols in use. A subsequent advancement of
this approach are Enterprise Service Buses (ESB), which offer
richer and more flexible patterns to broker the communication
between multiple middleware domains; they specify a service-
oriented middleware with a message-oriented abstraction layer
atop different messaging protocols (e.g., SOAP, JMS, SMTP).
Rather than providing a direct one-to-one mapping between
two messaging protocols, a service bus offers an intermediary
message bus. Each service (e.g. a legacy database, JMS queue,
Web Service etc.) maps its own message onto the bus using
a piece of code, to connect and map, deployed on the peer
device. The bus then transmits the intermediary messages to
the corresponding endpoints that reverse the translation from
the intermediary to the local message type. Hence traditional
bridges offer a 1-1 mapping; ESBs offer an N-1-M mapping.
Example ESBs are Artix [17] and the IBM Websphere Mes-
sage Broker [16]. ESBs offer a well-established solution to
the problem of middleware heterogeneity; however, a strong
assumption utlised is that all messaging services can be
mapped to the intermediary abstraction (which is a general
subset of messaging protocols).

C. Transparent Interoperability

INDISS [3], uMiddle [19], OSDA [18], and SeDiM [9]
are examples of transparent interoperability solutions which
attempt to go one step further than ESBs and ensure that legacy
solutions can be transparently connected. Here, protocol spe-
cific messages, behaviour and data are captured (transparently)
by an interoperability framework and are then translated to an
intermediary representation; a subsequent mapper then trans-
lates from the intermediary to the specific legacy middleware
to interoperate with. The use of an intermediary means that
one middleware can be mapped to any other by developing
these two elements only (i.e. a direct mapping to every other
protocol is not required). The weakness of these platforms is
in the use of the transparent intermediary: i) mappers to and
from this intermediary must be developed by hand for every
protocol, and ii) the intermediary is a ‘subset of all protocols’
and as such this subset may become too small to underpin
interoperability in a general fashion.

D. Modelling

An alternative approach is to model heterogeneous systems
and then use these higher-level specifications to generate
bridges that allow them to interoperate. The first advocate
of this philosophy being MDA (Model Driven Architecture)
from the OMG [13]. This separates an application’s platform

independent model (PIM) from its platform specific model
(PSM) that describes its deployment. However, MDA only
re-uses existing bridges between PSMs and cannot generate
new ones from the models. Contrary to this, in our previous
work, we have developed the z2z language for constructing
network protocol gateways [4]. Z2z is mainly composed of a
compiler and an optimized run-time system. At compile time,
the developer feeds the z2z compiler with a z2z specification
to generate a gateway between two heterogeneous protocols.
A z2z specification is a C-like language consisting of: (i) a
protocol specification, describing how the protocols interact
with the network, (ii) a message specification, describing
the structure of message requests and responses, and (iii)
a translation specification, describing how to translate mes-
sages among protocols. Although z2z is an additional step
towards interoperability, it has a main constraint: z2z generated
gateways are statically built, and thus are not adequate for
environments where interaction protocols remain unknown
until runtime. Recently, [21] proposed a runtime solution for
merging application level protocol behaviour that synthesizes
code from merged automata. However, this approach does not
offer a solution to capturing and translating message content
and behaviour common in middleware protocols.

E. Analysis

We can take away from the state of the art that there
are four important requirements in order to achieve universal
interoperability between any pair of heterogeneous middleware
protocols (that have the potential to interoperate).

1) Offer a runtime solution. Ensure that interoperability can
be achieved at runtime without prior implementation of
protocol specific interoperability code i.e. the solution is
fully generateable at runtime.

2) Be Transparent. The interoperability solution must be
transparent to all peers, to allow legacy platforms and
future developed platforms to seamlessly interoperate.

3) Offer rich translations. The interoperation must allow
the maximum behaviour to be transfered between two
protocols, and not be restricted by a global subset.

4) Minimize development effort. The implementation re-
quired to translate must be minimized and the approach
must be easily extensible to include future protocols

III. STARLINK MODELS

The key philosophy behind the Starlink framework is to
provide dynamic protocol interoperability by raising the level
of abstraction of previous contributions [4], [21]. To this
end, Starlink introduces high-level models to describe protocol
messages, protocol behaviour, and protocol interoperability:
• Abstract Messages. Messages that flow within the net-

work are modeled as abstract messages in a protocol
independent manner.

• k-Colored Automata. The behavior of a protocol is tra-
ditionally described by an automata where transitions
represent message exchanges. However, protocols vary
in their interaction with the network, in terms of the

transport protocol used, whether requests are sent by uni-
cast or by multicast, and whether responses are received
synchronously or asynchronously. Starlink introduces the
notion of k-colored automata to capture the properties of
a protocol by a color k.

• Merged Automata. When several protocols need to in-
teroperate, it is necessary to express the relation among
them and to describe the message translation logic, which
define how to translate messages from one protocol to
another. Protocol interoperability is defined in Starlink
by a merged automata that describe how to combine the
k-colored automata of the protocols involved.

In the rest of this section, we formally define these models
and show how to use them for describing existing protocols.

A. Abstract Messages

A network message is organized as a sequence of text
lines, or of bits, for a binary protocol, containing both fixed
elements and elements specific to a given message. The
Starlink framework must extract relevant elements from the
received request and use them to create one or more requests
according to the target protocols. Similarly, it must extract
relevant elements from the received responses and ultimately
create a response according to the source protocol. Extracting
values from a message represented as a sequence of text
or binary characters is unwieldy, and creating messages is
even more complex, because the element values may become
available at different times, making it difficult to predict the
message size and layout.

In Starlink, the information derived from a network message
is described in a protocol independent manner by an abstract
message. Based on this description, the Starlink framework can
dynamically understand and manipulate message elements. An
abstract message consists of a set of fields, either primitive or
structured. A primitive field is composed of a label naming the
field, a type describing the type of the data content, a length
defining the length in bits of the field, and the value i.e. the
content of the field. A structured field is composed of multiple
primitive fields. For example, a URL field is composed of
four primitive fields: the protocol, the address, the port, and
the resource location. In the model provided by Starlink to
describe abstract messages, we note msg.field the operation
to select the field field from the structured message msg.

Abstract messages represent the interface between the Star-
link framework and the underlying network messages. In
order to achieve interoperability dynamically, network mes-
sage parsers must be created at runtime to construct abstract
messages from incoming messages. Similarly, network mes-
sages must be created from the data in abstract messages
and sent over the network to the interoperating parties. To
perform these tasks, Starlink relies on runtime generateable
message composers and parsers for each protocol. We describe
in Section IV-A how these software elements are generated
dynamically from specifications of message format.

Importantly, maintaining the content and structure of every
message enables improved reasoning and mapping between

protocols. As opposed to other approaches such as ESBs,
INDISS, OSDA and uMiddle that consider the mapping of
message content to a common intermediary message represen-
tation, we do not limit interoperability to the greatest subset of
behaviour for all protocols. In the case of discovery protocols
for example, the greatest common divisor may be service
type requests only. Therefore, interoperability between two
protocols such as SLP and LDAP that both support attribute-
based requests is restricted.

B. k−Colored Automata
We capture the behavior of protocols by a k−colored

automaton Ak = (Q,M, q0, F,Act,→,⇒), where Q is a
finite set of states, M are either incoming or outgoing abstract
messages, q0 ∈ Q is the starting state and F ⊂ Q is a
set of accepting states. Act is a set of actions such that
Act = {?, !} where ? is the receive action and ! is the send
action.→⊆ Q×Act×M×Q is the transition relation that can
be either a receive-transition or a send-transition. The former
has the following form s1

?m−−→ s2 for (s1, ?,m, s2) ∈→ and
changes the state of the automaton from s1 to s2 once the
message m is received. The latter is noted s1

!m−−→ s2 for
(s1, !,m, s2) ∈→ and indicates the next state to which the
automaton passes as soon as the message m is sent.

Moreover, each state maintains a queue to store both incom-
ing and outgoing message instances. A sequence of stored
messages is represented by a message vector noted −→m. By
either si.m or si.−→m, we denote a particular stored message
or a sequence of stored messages from a specific state si. To
further analyse at runtime the behavior of an automaton, we
define a history operator as follows ⇒⊆ Q × Act × −→m ×Q.
Thus, let {s1, s2} ∈ Q, s1

!−→m
=⇒ s2 (resp. s1

?−→m
==⇒ s2) gives

the sequence of the sent (resp. received) instances for each
abstract message from the state s1 to s2.

Protocols may not only differ in their behavior but also in
the the way they use the network, in terms of the transport
protocol used, whether requests are sent by unicast or by mul-
ticast, and whether responses are received synchronously or
asynchronously. For instance, as illustrated in Fig. 1 and Fig. 2,
although SLP and SSDP protocols are both asynchronous
and multicasted, they differ from their multicast address and
port number which are 239.255.255.253 : 427 for SLP and
239.255.255.250 : 1900 for SSDP. Note that, sent messages
are not necessary received asynchronously, it depends of the
underlaying network details. In order to capture these low level
network semantics, we use automaton coloring which consists
of assigning labels called colors to states of the automaton.
An automaton can pass successfully from one state to an-
other, following either a receive-transition or a send-transition,
without any network issues, only if the concerned states share
the same color. An automaton Ak is said to be k−colored if
all its states are k−colored, and if there exists a function f
such as f(〈(key1, val1), (key2, val2), ..., (keyn, valn)〉) = k.
Function f is a perfect hash function that maps a list of
tuples, where each tuple is a key-value pair describing low
level network details, to a unique hash value k (i.e. without

?SLP_SrvReq

!SLP_SrvReply

transport_protocol="udp"
port=427
mode="async"
multicast="yes"
group="239.255.255.253"

s1
0 s1

1

Fig. 1. SLP colored automaton

!SSDP_Search

?SSDP_Resp

transport_protocol="udp"
port=1900
mode="async"
multicast="yes"
group="239.255.255.250"

s2
0 s2

1

s2
2

Fig. 2. SSDP colored automaton

!HTTP_GET

?HTTP_OK

transport_protocol="tcp"
port=80
mode="sync"
multicast="no"

s3
1

s3
2

s3
0

Fig. 3. HTTP colored automaton

collisions). For instance, as described in Fig. {1, 2, 3},
according to their transport protocol, port, mode, multicast
and group attributes, a specific and different color has been
affected for the SLP, SSDP, and HTTP automata.

C. Merged Automaton

Our definition of protocol interoperability requires that
when one legacy system L1, relying on a protocol P1, sends
a sequence of messages −→m to a another legacy system L2

that relies on a different protocol P2, then L2 must be willing
to receive these messages after a set of transformations to
resolve mismatches issues at both the network layer and at
the message layer in terms of message format, content and
sequence. However, there is a prerequisite to successfully
apply these transformations: there is a need to reason about
the meaning of messages that are willing to be transformed.
For instance, it appears from Fig. 1, and Fig. 2 that a SSDP
service should be able to understand what kind of services are
requested by a SLP client if at least a SLP_SrvReq request
is semantically equivalent to a SSDP_Search request. Still,
a semantic equivalence is not always as simple as a one to one
mapping among two messages. In the most general use case,
there are several patterns of semantic mismatches hampering
interoperability. A protocol P1 may require a single message
to perform a particular task, while in another protocol P2,
a similar task is performed by receiving several messages.
Alternatively, another type of mismatch occurs if the protocol
P1 needs to receive several messages to perform a particular
task, while in the protocol P2 the same task is achieved
with only one message. To improve interoperability among
legacy systems, while ensuring simplicity in reasoning about
protocols, we introduce in our model a semantic equivalence
operator |= such that n |= −→m is true if and only if for

every mandatory field of n, noted Mfields(n), there exists a
semantically equivalent field in one message of the sequence−→m.

n |= −→m if and only if ∀n . field ∈Mfields(n), (1)
∃m ∈ −→m = 〈m1 . . .mn〉
n . field |= m . field

Intuitively, protocols are interoperable if there is a way to
merge their respective colored automaton. Two colored au-
tomata A1

k1 and A2
k2 are mergeable if the following conditions

are satisfied: (i) in A1
k1 there exists a state where the sequence

of received messages is semantically equivalent to the required
output message in the initial state of A2

k2, (ii) the sequence
of received messages obtained in the final state of A2

k2 is
semantically equivalent to the required output message of one
state of A1

k1.
We denote the states of a k−colored automaton by

States(A1
k) = {s10, ..., s1i , ..., s1n}, with s10 corresponding to

the initial state and s1n being one of the possible final states.
Further, a δ−transition refers to a transition from one state
to another between two automata that have different colors
without sending or receiving messages. In fact, δ−transitions
model actions/transformations that are required to perform at
the network layer to further exchange messages from one
protocol to another. Thus, formally, two automata A1

k1 and
A2
k2 are said to be mergeable and is noted A1

k1

⊗
A2
k2 if and

only if there exist δ−transitions between them. More precisely,
δ−transitions are possible between two different states iff one
of the following merge constraints is satisfied:
• {s1x, s1i } ∈ States(A1

k1) and {s20, s2y} ∈ States(A2
k2)

such as:

∃(τ1, τ2) ⊆ A1
k1 ×A2

k2 ∧ ∃i, x, y ∈ {1, n− 1}| (2)

{τ1 = (s1x,x 6=i
?m−−→ s1i) ∧ τ2 = (s20

!n−→ s2y)

∧ (n |= s10
?−→m
==⇒ s1i)}

• {s2x, s2n} ∈ States(A2
k2) and {s1y, s1j} ∈ States(A1

k1)
such as:

∃(τ3, τ4) ⊆ A2
k2 ×A1

k1 ∧ ∃j, x, y ∈ {1, n− 1}| (3)

{τ3 = (s2x,x 6=n
?n−→ s2n) ∧ τ4 = (s1y,y 6=j

!m−−→ s1j)

∧ (m |= s20
?−→n
==⇒ s2x)}

Thus, A1
k1

⊗
A2
k2 is a merged automaton iff there exists

two δ−transitions such as s1i
δ({λ})−−−−→ s20, s2n

δ({λ})−−−−→ s1j with
{s1i , s1j} ∈ States(Ak1), {s20, s2n} ∈ States(A2

k2) and {λ}
a sequence of successful transformations performed at the
network layer. Given

⊗
, it is straightforward to note that n

protocols P1 . . .Pn are interoperable if their corresponding
colored automata A1

k1, . . . , A
n
kn are mergeable and is noted

A1
k1

⊗ · · ·⊗Ankn. However, slight subtleties occur for merg-
ing n automata: they are either strongly or weakly merged.
In the former case, it means that A1

k1, . . . , A
n
kn are mergeable

?SLP_SrvReq
!SSDP_M-Search

?SSD
P_R

esp

!HTTP_GET:[URL,@IP,IP_Port]

set_host(

?HTTP_OK:[URL]!S
LP

_S
rv

R
ep

ly

URL .SLP_SrvReply

2 3

456

.SLP_SrvReq ServiceType .SSDP_M-Search ST

.HTTP_OK =

SSDP_M-Search SLP_SrvReq

HTTP_OK SLP_SrvReply
HTTP_GET SSDP_Resp

|=
�

|=

|=

s2
0 s2

1

s2
2s3

1
s3
2 s3

0

s1
0 s1

1

s1
1

� �s2
0 =s1

1

s1
1 s3

2

1

=� URL

=� IP

=�PORT

s2
2 �.SSDP_Resp URL

s2
2 �.SSDP_Resp IP

s2
2 �.SSDP_Resp PORT

.HTTP_GETs3
0

.HTTP_GETs3
0

.HTTP_GETs3
0

s2
2 �.SSDP_Resp IP,s2

2 �.SSDP_Resp PORT)

=.SLP_SrvReply�XID .SLP_SrvReq�XID s1
1 s1

1

Fig. 4. A merged automaton for SLP, SSDP and HTTP protocols

two by two. This merged constraint is too strong, and some
protocols can still interact following a certain sequence of
exchanged messages. So, in the latter case, automata are
weakly mergeable iff in their resulting merged automaton this
following constraint is satisfied:

∃s1i1 ∈ States(A1
k1) . . . s

n
in ∈ States(Ann)∧ (4)

∃s ∈ States(A1
k1) ∪ States(Ankn)|

{s1i1
δ−→ s20, s

2
i2

δ−→ s30, . . . , s
n−1
in−1

δ−→ sn0 , s
n
n

δ−→ s ⊆→}

Fig. 4 illustrates a weakly merged automaton for SLP,
SSDP and HTTP. States that are linked by a δ−transition are
represented by bicolored nodes such as nodes ·, ¹ and ».
The initial state of each automaton, which are expected to
be merged, are reached by a δ−transition. Hence, a SSDP
M_SEARCH is sent as soon as a SLP SrvReq sent by a client
is received. Then a HTTP GET request is sent at the reception
of a SSDP Resp message to finally send back to the SLP
client a SLP SrvReply after having received a HTTP OK
response. In others terms, δ−transitions enable to chain SLP,
SSDP and HTTP automata through a directed path that both
starts and ends in the same automaton.

An either strong or weakly merged automaton is a
{k1 . . . kn}−colored automaton, which is an extended form of
the previously introduced colored automaton (Section III-B).
We note M i the set of input or output messages, F i the
set of accepting states, and →i the transition relation of the
automaton Aiki. Hence, a merged automaton is defined as
follow:

A{k1...kn} = (Q,M, q0, F,Act,→,⇒, δ−→, |=, P),

where Q =
⋃
i=1...n States(A

i
ki), M =

⋃
i=1...nM

i, q0 is
a starting state from one of the merged automaton, F ⊆
Q =

⋃
i=1...n F

i, and →=
⋃
i=1...n →i. Further, P = {λ}

is a set of actions/transformations to potentially apply at the
network layer. δ−→⊆ Qi × P × Qj , with i 6= j ∈ {1, . . . , n},
is the δ−transition relation that verify either the merged

constraints (2) and (3) between two automata Aiki and Ajkj . A

δ−transition may take one of the following forms: siix
δ{λ}−−−→

sjj0 or sjn
δ{λ}−−−→ siiy for {(siix , {λ}, sjj0), (sjn, {λ}, siiy)} ∈

δ−→
that passes either: (i) from a state siix of Aiki to the initial state
sjj0 of Ajkj , or, (ii) from a final state sjn of Ajkj to a state siiy
of Aiki. Transitions are taken after having applied a sequence
{λ} of actions at the network layer. An action λi ∈ {λ} is
the network function λi : M × · · · × M that may required
as arguments some fields extracted from previously received
messages stored in one state of an automaton. The operators
⇒ and |= are defined as previously.

D. Translation Logic

The role of the translation logic is to describe the transla-
tion of data and behaviour where messages are semantically
equivalent. One key operator of the language is the assignment
operation. Assignment allows the content of one or more fields
of a particular message, to be translated to the fields of a
different message. The format of the assignment operation is
as follows:

s1i ∈States(A1
k1), s

2
j ∈ States(A2

k2),

s1i .m1 . fielda = s2j .m2 . fieldb (5)

s1i .m1 . fielda = T (s2j .m2 . fieldb) (6)

In (5) the message m2 is retrieved from the queue at state
s2j and the content of field fieldb is then assigned to the field
fielda of the message m1 at the state s1i , if fields are of the
same type. Otherwise, in situations where the content is not
directly equivalent e.g. the same type, (6) defines a translation
function T that takes the content fieldb and translates it,
the result being assigned to the fielda field. Fig. 4 shows
examples of how the translation logic is applied at the bridging
states between two protocols. At node · (the first bridge
between SLP and SSDP), as SrvReq |= M-Search, we
assign the ST field of the SSDP M_SEARCH message with
the ServiceType field from the received SLP SrvReq
message. Similarly, at node », we assign the resulting URL
from the received HTTP_OK message to the URL field of the
SLP SrvReply message to be sent. As illustrated in Fig. 5,
the overall translation logic to merged automata SLP, SSDP
and HTTP is divided intro three distinct parts. One part (lines
1-3) specifies messages that are semantically equivalent ac-
cording to (1). Another part (lines 4-9) gives the different fields
assignment to perform in different states. The last part (lines
10-12) defines the required δ−transitions to merge automata
according to merged constraints (2) and (3). δ−transitions
are also used to define additional behaviour required by the
automata that is guided by the content of messages. For
example, in order to connect to a HTTP server to perform a
GET message request in Fig. 4 we need to know the address
and port. However, this information is only obtained from
the content of the SSDP_Resp message. Thus, (line 11) the
δ−transitions uses as a λaction a keyword operator setHost
that takes the fields host and port from the message and sends

SSDP_M-Search|= SLP_SrvReq

HTTP_GET|= SSDP_Resp

SLP_SrvReply|= HTTP_OK

s20.SSDP_M-Search . ST = s11.SLP_SrvReq. ServiceType

s30.HTTP_GET . URL = s22.SSDP_Resp. URL

s30.HTTP_GET . IP = s22.SSDP_Resp. IP

s30.HTTP_GET . PORT = s22.SSDP_Resp. PORT

s11.SLP_SrvReply . URL = s32.HTTP_OK. URL_BASE

s11.SLP_SrvReply . XID = s11.SLP_SrvReq. XID

1

2

3

4

5

6

7

8

9

s11
δ−→ s20

s22
δ{set host(s22.HTTP_GET.IP,s

2
2.HTTP_GET.PORT)}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ s30

s32
δ−→ s11

10

11

12

Fig. 5. Specification to merge the SLP, SSDP and HTTP automata

them to the underlying network engine to point the next tcp
connection.

IV. THE STARLINK FRAMEWORK

In this section we describe how the Starlink software frame-
work2 concretely applies the models from Section III in order
to achieve runtime interoperability. A high level illustration of
the architecture is given in Fig. 6. The framework is composed
of general software elements that are specialised by models;
a process that can be executed dynamically. The key elements
of this architecture are:
• Message Composers and Parsers, which read and write

messages specific to a legacy protocol. A Message De-
scription Language (MDL) specification (as described in
Section IV-A) is loaded into composers and parsers to
specialise these components at runtime.

• The Automata Engine executes the behaviour of the
merged automata i.e. it controls the sequence of sending,
receiving and translation of messages.

• The Network Engine receives messages from the network
and sends messages based upon the protocol properties
provided by the Automata Engine. Further discussion of
the two behaviour engines is provided in IV-B.

To illustrate this framework in action consider interoperation
between two protocols, e.g. SLP and Bonjour. An SLP MDL
would specialise a message composer and parser component
(similarly for the Bonjour MDL at the other side of the
connection). A merged automata for SLP and Bonjour would
then specialise the Automata Engine. The framework is trans-
parently deployed in the network, and neither application is
aware that it is communicating with a heterogeneous protocol.

A. Message Description Language

Starlink employs a simple mechanism to communicate with
legacy protocols. Parsers read messages sent by legacy proto-
cols (these are received as an array of bytes from the network
engine) and then transform these to the abstract message
representation. Composers do the reverse to create legacy

2http://starlink.sourceforge.net

Merged MDL: Merged MDL: MDL: Merged MDL: MDL: Merged MDL: MDL:

Protocol A

Merged

Automata
MDL:

Protocol BProtocol A Automata Protocol BModels Protocol A Automata Protocol BModels Protocol A Automata Protocol BModelsModels

Network Engine
Application Application

Network Engine
Application

Concrete Abstract Abstract Application
Network Engine

Message

Application
Concrete Abstract

Message
Abstract Application

Message
Concrete

Messages

Abstract

Messages Message
Abstract

MessagesMessage
Messages Messages Message Messages

Automata
Message

Parser
Messages Messages Message

Composer

Messages

Software Automata Parser ComposerSoftware Automata Parser

Protocol A

Composer

Protocol B
Software Automata

EngineMessage
Protocol A

Message
Protocol B

Software

Framework EngineMessage
Protocol A

Message
Protocol B

Framework EngineMessage Message Framework EngineMessage

Composer

Message

Parser Concrete

Framework
Composer Parser Concrete Composer Parser Concrete

MessagesMessagesMessages

Fig. 6. Architecture of the Starlink framework

protocol messages as a byte array and transmit these using the
network engine. In the framework, composers and parsers are
implemented as general interpreters that execute the message
description language (MDL) specifications that are loaded. For
example, a parser that interprets an SLP MDL instance will
parse SLP messages into the abstract message representation;
concretely, this is a Java object which conforms to an XML
schema of the abstract message representation (as described in
Section III-A). Note, this conformance to the schema allows
XPath expressions (see section IV-B to be used to read and
write field values from and to these objects respectively).
This process is based upon the similar idea of generating
parsers for common transfer syntax approaches (e.g., Common
Data Representation in GIOP from IDL). However, this is the
reverse–we are modelling and generating parsers for multiple
transfer syntax into a language (in this case Java) that can then
execute the translations.

The Starlink framework is flexible to allow different types of
language to be used to specify message formats; each language
can be termed an MDL. This flexibility better supports the
parsing and composing of a wide range of protocols. For
example, specialised languages for binary messages, text mes-
sages and XML messages can be plugged into the framework.
To illustrate the approach we present a language for binary
messages here. Fig. 7 shows part of the MDL specification
for the SLP protocol (which employs binary messages). In this
specification there are two important constructs: <Types> and
<Header>.

Element <Types> specifies the types used by message
fields, and the format of each entry is <label>type</label>
(lines 1-6); the label is the name for a field, and the type entry
states the type of the data. To underpin the reading and writing
of data from messages, Starlink employs pluggable marshallers
and unmarshallers for each of the types. For example, Integer
has a plug-in marshaller that writes Java Integers to a byte
array, and a corresponding unmarshaller that transforms a byte
array to a Java Integer. This mechanism allows the language to
be dynamically extended to incorporate complex types (with
no need to re-implement a compiler). For example the FQDN
type is a format for domain names (Fully Qualified Domain
Name); to add the FQDN type to this language, we simply
plug-in marshallers that map FQDN byte arrays to a Java
String. The final feature of the types are functions. Functions
can be defined on types using the [f-method()] construct e.g.
[f-length(URLEntry)] (line 5); the named f-method is
executed by the marshaller when writing the type. Importantly

1 <Types>
2 <Version>Integer</Version>
3 . . .
4 <URLEntry>String</URLEntry>
5 <URLLength>Integer[f-length(URLEntry)]</URLLength>
6 </Types>
7 . . .
8 <Header type=SLP>
9 <Version>8</Version>

10 <FunctionID>8</FunctionID>
11 <MessageLength>24</MessageLength>
12 <reserved>16</reserved>
13 <NextExtOffset>24</NextExtOffset>
14 <XID>16</XID>
15 <LangTag>LangTagLen</LangTag>
16 </Header>
17 . . .
18 <Message type=SLPSrvRequest>
19 <Rule>FunctionID=1></Rule>
20 <PRLength>16<PRLength>
21 <PRStringTable>PRLength</PRStringTable>
22 <SRVTypeLength>16</SRVTypeLength>
23 <SRVType>SRVTypeLength</SRVType>
24 <PredLength>16</PredLength>
25 <PredString>PredLength</PredString>
26 <SPILength>16</SPILength>
27 <SPIString>SPILength</SPIString>
28 </Message>
29 . . .

Fig. 7. MDL specification of the SLP service

the function can take other message fields as parameters e.g.
to compose the value of the URLLength field, you need to
obtain the length of the URLEntry field. Hence, the marshaller
takes the value to be written to the URLEntry field, calculates
the length and then composes this as the URLLength value.

Elements <Header> (line 8) and <Message> (line 18)
specify the content of the message headers and bodies. These
are both composed of <label>size</label> entries for each
field in the message. The size is the length of the field content
in bits. There is one special label: <rule>case</rule>. This
is used to relate the correct message body with the header.
For example, the SLP SrvRequest message applies when
the FunctionID field in the header equals one (line 19).

B. Automata Engine

The Automata Engine, like the message composers and
parsers, interprets a loaded runtime model. In the case of the
automata engine this is the behaviour model that describes how
two protocols interoperate, which is composed of the i) merged
automata from Section III-C,which defines the sequence of
state transitions, and ii) the translation logic which specifies
how the data fields are translated at particular states as stated
in Section III-D. This engine is implemented to read these
models from XML content (however, the notation provided
in Section III offers a concise presentation, and hence we do
not reproduce the XML equivalents here). To give a flavour of
the concrete operation of the framework we briefly summarise
the behaviour that occurs at the different state types: receiving,
sending, and no-action.

At a receiving state R1, the automata engine listens for
messages using the network engine for the protocol address
and port (of the state); when a message is received it is parsed
by the message parser. If the abstract message’s name label

1 <Bridge>
2 . . .
3 <TranslationLogic>
4 <Assignment>
5 <Field>
6 <Message>SSDP Search</Message>
7 <Xpath>/field/primitiveField[label=’ST’]/value</Xpath>
8 </Field>
9 <Field>

10 <Message>SLPSrvRequest</Message>
11 <Xpath>/field/primitiveField[label=’SRVType’]/value</Xpath>
12 </Field>
13 </Assignment>
14 </TranslationLogic>
15 . . .
16 </Bridge>

Fig. 8. Translation logic expressed in XML

matches one of the transition labels then the automata moves to
the pointed to state S1, and then pushes the abstract message
(Java object) onto the message queue at R1.

At a sending state S1, the automata engine reads the label
of the transition and then constructs this message using a
message composer before using the network engine to send
it correctly with the required network transport semantics of
the protocol. In the case where content has been translated by
a prior state, the state S1 retrieves the message to be sent from
the queue of a prior state before composing and sending.

A bridge state B1, represents an intermediary state from
the bi-coloured states (e.g. ·, ¹ and » in Fig. 4). These states
do not send and receive messages, they only translate content
from one abstract message to another or perform logic required
to underpin interoperability. The XML content in Fig. 8 shows
an example of such a state (for the SLP SrvReq to SSDP
M-SEARCH translation), presenting only the translation logic.
For field assignments, the engine reads the value from the
second field (as pointed to by the XPath expression), this
equates to reading the value from the Java object of the abstract
message, and then writes the content to the abstract message
whose field is pointed to by the first field node of the XML.

V. CASE STUDY EVALUATION

We use a case-study approach to evaluate the ability of
the framework to achieve its primary contribution, i.e., to
ensure interoperability between heterogeneous communication
protocols. We hypothesize that we can create a connector
between two protocols at runtime using only high-level models
of these communication protocols i.e., there is no implemen-
tation or deployment of legacy code that is specific to the
behaviour of an individual protocol. We concentrate on one
domain of protocols, namely, service discovery (this offers
an ideal first case due to the semantic similarities between
the protocols) and from this we select three protocols: SLP,
UPnP and Bonjour. For these, we then developed simple legacy
applications to lookup a simple test service, and respond to
lookup requests for the simple service. For SLP we used
the OpenSLP protocol implementation3; for UPnP we used

3http://www.openslp.org/

the Cyberlink Java implementation4; and for Bonjour we
employed the Apple Bonjour SDK for Windows5.

The objective of the case study is to develop Starlink
models for each of the protocols such that we can take the
legacy applications implemented upon the three protocols and
ensure they can interoperate with one another i.e. that an
SLP application’s lookup request can be answered by either a
UPnP service or a Bonjour Service by deploying the Starlink
framework in the network. There are six particular cases i.e.
SLP to UPnP and Bonjour, UPnP to SLP and Bonjour, and
Bonjour to SLP and UPnP. For each case, the legacy lookup
application received a response to the lookup request from the
heterogeneous protocol. For conciseness, we discuss only two
cases in detail:
• SLP to Bonjour. These two protocols are both binary

protocols and their message sequences are similar. They
differ in message content and network addresses.

• SLP to UPnP. In this case, there is heterogeneity of
the protocol messages and the behaviour message se-
quence. SLP employs binary messages, while UPnP uses
text-based messages. SLP is a simple request response,
whereas UPnP involves multiple requests to the service.

A. SLP to Bonjour

To provide a system enabling interoperability from SLP to
Bonjour, we create five different specifications that are loaded
into the Starlink framework: i) an MDL specification of SLP
messages as previously illustrated in Fig. 7, ii) an MDL spec-
ification of Bonjour messages (Bonjour uses DNS messages
so this MDL describes DNS questions and responses), iii)
a coloured automaton of SLP (see Fig. 1), iv) a coloured
automaton of Bonjour as shown in Fig. 9, and v) a merged
automaton as shown in Fig. 10.

Once the aforementioned specifications have been loaded
into Starlink, SLP SrvReq messages generated from the
client, to perform a service lookup, are captured on address
239.255.255.253 : 427 by Starlink that dynamically applies
the translation logic. Particularly, it translates captured mes-
sages to abstract messages to extract thereafter their service
type field SrvType in the aim of assigning their value into
the DomainName field of DNS questions (See Fig. 10,·)
that are then multicasted to address 224.0.0.251 : 5353 (See
Fig. 10,¸). Handlers for outgoing messages are suspended
until their corresponding responses are received. Received
responses are in turn translated to abstract messages enabling
Starlink to compose new SLP SRVReply abstract messages
(See Fig. 10,¹). Two of their fields are mandatory: (i) the URL
reply of the service (this was transfered from the RDATA value
of the DNS Response), and (ii) the XID field (which is the
XID field of the original request message, this was retrieved
from the message at state 2’s queue). At the end, a SRVReply
is generated from its abstract representation and sent back to
the SLP address that legacy client is listening on.

4http://www.cybergarage.org
5http://developer.apple.com/opensource/

!DNS_Question

?DNS_Response

transport_protocol="udp"
port=5353
mode="async"
multicast="yes"
group="224.0.0.251"

s4
0 s4

1

s4
2

Fig. 9. mDNS colored automaton

?SLP_SrvReq
!DNS_Question

?DNS_Response!SLP_SrvReply

2 3

4

.SLP_SrvReq SRVType

.DNS_Question DomainName

=

DNS_Question

SLP_SrvReq

|=

|=

s1
0 s1

1

� �=s1
1

1

s4
0 s4

1

s4
0

s4
2

SLP_SrvReply DNS_Response

=

s1
1

.DNS_ResponseURL s1
1.SLP_SrvReply� RDATA

s1
1.SLP_SrvReply�

�s4
2

XID .SLP_SrvReq �XID s1
1

Fig. 10. A merged automaton for SLP and mDNS protocols

B. SLP to UPnP

UPnP uses two protocols to perform discovery: SSDP
multicasts a lookup request and receives an SSDP response.
A further HTTP request is then needed to retrieve the URL
of the service from this device. Hence, in this case seven
models were loaded into the framework: i) the SLP MDL,
ii) the SLP coloured automaton, iii) the SSDP MDL, iv) the
SSDP coloured automaton, v) the HTTP MDL, vi) the HTTP
coloured automaton, and vii) the merged automaton for the
three protocols. An important difference here is that SSDP
and HTTP are text messages and as such require a different
MDL and corresponding parser and composer. Fig. 11 shows
the SSDP MDL, this identifies the general boundaries of fields
“e.g.\r\n” (chars 13,10) because there is no fixed layout or
ordering of fields. The inner field boundary (e.g. the ‘:’ split
- char 58) then takes the field label from the left and the field
value from the right to build a field in the abstract message.
When the SLP client was executed, the merged automaton
successfully sent an SLP SrvReply message composed of
the content from the SSDP and HTTP fields.

C. Analysis

Originally we stated that we required the following from
the Starlink framework:

• We require transparent interoperability. In the case study,
the legacy protocols are implemented and deployed in-
dependently of the Starlink, they are never aware of
the framework and hence the case studies show that
transparent interoperability has been achieved.

• Offer rich translations. The case studies show that we can
translate correctly between three different protocols that
are heterogeneous in terms of protocol sequences, e.g.
SLP compared to UPnP, and heterogeneous in terms of
message content e.g. binary to text messages.

1 <Types>
2 <Method>String<Method>
3 <URI>String<URI>
4 <Version>String<Version>
5 <ST>String<ST>
6 <MX>Integer<MX>
7 . . .
8 </Types>
9

10 <Header type=SSDP>
11 <Method>32</Method>
12 <URI>32</URI>
13 <Version>13,10</Version>
14 <Fields>13,10:58</Fields>
15 </Header>
16
17 <Message type=SSDP M−Search>
18 <Rule>Method=M-SEARCH</Rule>
19 </Message>
20
21 <Message type=SSDP Resp>
22 <Rule>Method=HTTP/1.1</Rule>
23 </Message>

Fig. 11. MDL specification of SSDP

• Minimise development effort. In the cases we only need
to provide high-level models, there is no low-level pro-
gramming. Further, we are able to reuse the models across
the cases i.e. we only need to model SLP once and then
write only the merged automata for the particular case
(typically, these automata are around 100 lines of XML,
but this depends on the complexity of the translation).

VI. PERFORMANCE EVALUATION

Starlink performances are evaluated by investigating the
time taken to perform interoperability translation. We then
compare this to the typical responsiveness of discovery pro-
tocols in terms of the time taken to return a service reply
to a lookup request. Fig. 12(a) shows the results of the bench
measures of the individual protocols (these are measures of the
legacy applications implemented using OpenSLP for SLP, the
Apple Windows SDK for Bonjour and Cyberlink for UPnP).
To obtain the measures, we calculated the time from when the
client sent the message until the response was received. For
each case, we repeated the experiment 100 times and took
the min, max, median of these results. All experiments were
performed with the client and the service on the same machine
(3 Ghz CPU, 2Gb memory running Windows Vista Operating
System, the Java VM was version 1.6.2) to avoid measuring
additional network latency, which may not be constant.

Subsequently, we measured the time taken to translate from
one protocol to another within the Starlink framework. This
measures the time from when the message was first received
by the framework until the translated output response was sent
on the output socket. Fig 12(b) shows these measures. We
can see from the results that there is a significant but varied
expense to additional translation: in case 6 it is approximately
a 600 percentage increase in response time, while in case
1 it is 5 percent. This is because the cost of translation is
bounded by the response of the legacy protocols; if SLP takes
6 seconds to respond that is added to the translation. However,
in the domain of service discovery protocols the timeout of the

Response time measures for legacy discovery protocols
Protocol Min (ms) Median (ms) Max (ms)
SLP 5982 6022 6053
Bonjour 687 710 726
UPnP 945 1014 1079

(a)

Translation times of Starlink connectors
Case Min(ms) Median (ms) Max (ms)
1. SLP to UPnP 319 337 343
2. SLP to Bonjour 255 271 287
3. UPnP to SLP 6208 6311 6450
4. UPnP to Bonjour 253 289 311
5. Bonjour to UPnP 334 359 379
6. Bonjour to SLP 6168 6190 6244

(b)

Fig. 12. Native service discovery vs. Starlink (ms)

request response is generally in terms of seconds (OpenSLP
sets the default timeout to 15 seconds, while Cyberlink does
not bound the response time); all of the results are within this
range and the solution is both possible and acceptable.

VII. CONCLUDING REMARKS AND FUTURE WORK

In this paper we have presented the Starlink framework
whose key contribution is the ability to create and deploy
runtime solutions to interoperability using only high-level
models of protocol behaviour. We have shown that in the
domain of service discovery, Starlink is able to successfully
ensure that a range of protocol types can interoperate with one
another in a transparent fashion. This is done so with no need
to implement or compile interoperability solutions in advance,
or implement code specific to individual protocols. Finally, we
have shown that the framework adds an overhead to the general
communication cost; while this cost can be minimized it can
never be removed because additional behaviour (translations,
extra protocol messages etc.) must be executed; however, this
cost remains within the bounds of expected performance from
the legacy applications in the use case.

Future work aims to increase automation. At present, the
merged automata with the corresponding translation logic is
modelled by a developer; however, in order for it to be a
true runtime solution this model should be generated by the
framework itself. That is, the framework will reason about the
MDLs and the coloured automata of multiple protocols and
then generate the correct merge to achieve interoperability.
For this we see two important directions:
• Ontology integration. To reason about and generate the

translation of field content between messages we believe
that additional semantic models can be used to infer the
translation logic. For this we are investigating the use of
ontologies [7] and their associated tools. Here ontologies
describing two protocols would be reasoned upon and the
semantic matches would be inferred, i.e., the fields where
data can be translated.

• Learning. We are also investigating learning techniques to
understand and model the behaviour of the individual pro-
tocols. For example, dynamic binary analysis approaches
have been used to identify the field structure of network
messages [5] and learning algorithms have been utilised

to learn the interaction behaviour of protocols [15]. We
hope to build upon these techniques in order to learn both
MDLs and coloured automata for protocols.

ACKNOWLEDGMENTS.
This work was in part funded under the European FP7 ICT

FET CONNECT project (http://connect-forever.eu/).

REFERENCES

[1] Soap2corba and corba2soap. http://soap2corba.sourceforge.net/.
[2] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael

Champion, Chris Ferris, and David Orchard. Web services architecture,
February 2004.

[3] Y.-D. Bromberg and V. Issarny. Indiss: Interoperable discovery system
for networked services. In IFIP/ACM/Usenix International Middleware
Conference, pages 164–183, 2005.

[4] Y.-D. Bromberg, L. Réveillère, J. L. Lawall, and G. Muller. Auto-
matic generation of network protocol gateways. In Middleware ’09:
Proceedings of the 10th ACM/IFIP/USENIX International Conference on
Middleware, pages 21–41, Urbana Champaign, IL, USA, 2009. Springer-
Verlag New York, Inc.

[5] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot:
automatic extraction of protocol message format using dynamic binary
analysis. In Proceedings of the 14th ACM conference on Computer
and communications security, CCS ’07, pages 317–329, New York, NY,
USA, 2007. ACM.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
services description language (wsdl) 1.1. In http://www.w3.org/TR/wsdl,
March 2001.

[7] Michael C. Daconta, Leo J. Obrst, and Kevin T. Smith. The Semantic
Web: A Guide to the Future of XML, Web Services and Knowledge
Management. Wiley, Indianapolis, IN, 2003.

[8] M. Duftler, N. Mukhi, S. Slominski, and S. Weerawarana. Web services
invocation framework (wsif). In OOPSLA 2001 Workshop on Object
Oriented Web Services, 2001.

[9] C. Flores, G. Blair, and P. Grace. An adaptive middleware to overcome
service discovery heterogeneity in mobile ad hoc environments. IEEE
Distributed Systems Online, 2007.

[10] UPnP Forum. Upnp device architecture version 1.0.
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.0.pdf, October 2008.

[11] P. Grace, G. Blair, and S. Samuel. A reflective framework for dis-
covery and interaction in heterogeneous mobile environments. ACM
SIGMOBILE Mobile Computing and Communications Review, 9(1):2–
14, Janaury 2005.

[12] Object Management Group. The common object request broker: Archi-
tecture and specification version 2.0. Technical report, 1995.

[13] Object Management Group. Model driven architecture (mda), document
number ormsc/2001-07-01. Technical report, 2001.

[14] E. Guttman, C. Perkins, and J. Veizades. Service location protocol
version 2, IETF RFC 2608. http://www.ietf.org/rfc/rfc2608.txt, June
1999.

[15] Falk Howar, Bengt Jonsson, Maik Merten, Bernhard Steffen, and Sofia
Cassel. On handling data in automata learning - considerations from the
connect perspective. In ISoLA (2), pages 221–235, 2010.

[16] IBM. Websphere message broker.
www.ibm.com/websphere/wbimessagebroker.

[17] IONA. Artix esb. [online]. http://www.iona.com/products/artix/, 2007.
[18] N. Limam, J. Ziembicki, R. Ahmed, Y. Iraqi, D. Li, R. Boutaba, and

F. Cuervo. Osda: Open service discovery architecture for efficient cross-
domain service provisioning. Computer Communications, 30(3):546–
563, 2007.

[19] J. Nakazawa, H. Tokuda, W. Edwards, and U. Ramachandran. A bridging
framework for universal interoperability in pervasive systems. In
26th IEEE International Conference on Distributed Computing Systems
(ICDCS 2006), 2006.

[20] M. Roman, F. Kon, and R. Campbell. Reflective middleware: From your
desk to your hand. IEEE Distributed Systems Online, 2(5), August 2001.

[21] R. Spalazzese, P. Inverardi, and V. Issarny. Towards a formalization of
mediating connectors for on the fly interoperability. In The IEEE/IFIP
Conference on Software Architecture and European Conference on
Software Architecture (WICSA/ECSA), 2010.

