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Abstract—This paper proposes a new delivery-centric abstrac-
tion. A delivery-centric abstraction allows applications to gen-
erate content requests agnostic to location or protocol, with the
additional ability to stipulate high-level requirements regarding
such things as performance, security, resource consumption and
monetary cost. A delivery-centric system therefore constantly
adapts to fulfil these requirements, given the constraints of
the environment. This abstraction has been realised through
a delivery-centric middleware called Juno, which uses a re-
configurable software architecture to (¢) discover multiple sources
of an item of content, (i7) model each source’s ability to provide
the content, then (ii7) adapt to interact with the source(s) that can
best fulfil the application’s requirements. Juno therefore utilises
existing providers in a backwards compatible way, supporting
immediate deployment. This paper evaluates Juno using Emulab
to validate its ability to adapt to its environment.

I. INTRODUCTION

A number of recent studies have highlighted the importance
of content delivery, showing that a predominant amount of
traffic is attributable to content distribution [1]. To exploit
this, emergent content-centric designs such as CCNx [2]
incorporate support for performing content publication and
consumption at the network-level. Currently, however, such
infrastructure is not available; instead, a large number of
independent (application-level) content delivery schemes exist,
ranging from client-server HTTP [3] to peer-to-peer models
such as BitTorrent [4]. These systems have been built to
address particular requirements that arise when operating
with divergent workloads and environments. Hence, it is the
responsibility of the developer to select how to best access
content at design-time.

This process first involves the developer selecting one or
more providers to publish their content through. Generally,
the developer will utilise the application’s core requirements
to decide which provider is best suited at design-time. Once
this has taken place, the content must be published before
integrating the necessary software support into the application
(e.g. using an FTP API to access a file server). In this paper,
however, we argue that this is an inefficient approach consid-
ering the developer’s true needs. Instead of wishing to utilise a
particular delivery protocol to connect to a given provider, the
developer, in fact, wishes to simply gain access to a unique
item of content within certain requirement constraints.

This observation is exploited to propose a new delivery-
centric abstraction, which extends the traditional notion of

content-centricity [5]. Current content-centric systems place a
significant focus on detaching content from location. However,
in practice, applications require greater (high-level) control
over their content access in regards to such issue as per-
formance, security, resource consumption and anonymity. A
delivery-centric abstraction therefore further allows applica-
tions to dynamically stipulate complex delivery requirements
that place constraints on how the content is accessed, thereby
fueling underlying system adaptation.

This paper first formalises the delivery-centric abstraction
before detailing the Juno middleware, which implements it.
Therefore, unlike previous solutions, we do not take a network
infrastructure approach; through this, we gain the flexibility to
interpret high-level requirements and perform the necessary re-
configuration to select and utilise the optimal content source(s)
based on per-node runtime conditions. This is achieved by dy-
namically computing the abilities of any discovered providers
to fulfil the application’s requirements, before transparently
adapting to interoperate with the source(s) that best address the
application’s needs. Consequently, Juno offers a mechanism to
immediately deploy a content-centric and delivery-centric in-
terface in an interoperable and backwards compatible manner.

The rest of this paper is structured as follows. First the
background to the issue is covered. Next, a new delivery-
centric API is presented, before detailing Juno. Following this,
Juno is evaluated using a set of Emulab experiments. Last, the
paper is concluded.

II. BACKGROUND AND RELATED WORK

A content-centric network is one that treats content as a
first-class routable entity. It allows hosts to generate requests
for uniquely identified content, which are routed towards the
nearest source. We consider two aspects of research relevant,
(i) content-centric APIs, and (i7) content-centric systems.

The first to propose a standard content-centric API were
Demmer et. al. [5]. The API allows applications to get and put
content using a unique key. This, however, has little support
for applications that wish to stipulate diverse provision and
consumption requirements, e.g. performance, security, over-
heads. In the existing development paradigm, application-level
technologies allow these different requirements to be satisfied
by developers intelligently selecting protocols, services and
technologies (e.g. using FreeNet [6] for anonymous access).



This, however, is not possible using content-centric APIs as
they do not expose the ability to represent complex preferences
and requirements beyond simple attributes, e.g. NetAPI [7].

A small set of systems have been developed, which imple-
ment variations of Demmer’s API. Prominent example are the
Data Oriented Network Architecture (DONA) [8], CCNx [2]
and LIPSIN [9]. These generally build network infrastructure,
which allows low-level provision and consumption packets
to be routed through. This creates significant deployment
challenges and makes complex delivery-centric adaptation
difficult. A variation on these is the Data Oriented Transfer
service (DOT) [10], which allows applications to abstract
control over deliveries to a software toolkit. The DOT service
then accesses the content on the application’s behalf. However,
it does not support the receipt of content-centric identifiers,
instead requiring the application to perform the necessary
negotiations with the chosen content source. We believe that
these principles should be combined to build a deployable
system, which allows applications’ needs and requirements to
be satisfied in a flexible, content-centric manner.

III. THE DELIVERY-CENTRIC PARADIGM

Current content-centric interfaces place a significant focus
on detaching content from location with little support for
adapting and specialising the delivery process. However, we
believe that a content-centric API should not compromise the
fine grained control of content deliveries in an attempt to
homogenise access and protocols. To this end, this section
defines a variation of existing content-centric APIs [5][7]. We
term this API delivery-centric, allowing an application to (i)
generate content requests using unique identifiers that do not
pre-define the access mechanism or source, (i%) issue abstract
computable requirements that define how the content should
be accessed, and (77) receive content in a way that is agnostic
to how it has been acquired.

A. Modelling Delivery Requirements

To enable the content delivery process to be specialised,
it is necessary for applications to represent their requirements
computationally. The interfaces defined within the section both
utilise such requirements. Requirements are presented to the
API in the form of selection predicates, which we term rules.
A rule is defined by the tuple,

rule =< attribute, comparator, value >

The attribute value must adhere to an ontology exported
by the underlying API implementation, whilst the comparator
can be =,>,<,min or maz (it is also possible to plug
new functions in). For instance, a rule ‘avg_bit_rate >= 500
Kbps’ indicates that the underlying method of delivery must
achieve a download rate of at least 500 Kbps. Subsequently,
the requirements are stipulated through a set of these rules
bound by a logical AND, i.e. R = {rule!,rule?...rule"}.

B. Interface Definitions

There are two aspects of a delivery-centric system: provision
and consumption. Within this paper, these are represented by
two interfaces, IProvider and IConsumer.

1) IProvider: The delivery-centric IProvider interface is
presented to publishers that wish to distribute their content,
and consists of two methods,

o put(InputStream input, Set<Rule> rules) — ContentID
o remove(Content]D) — HashMap<String, Boolean>

The first method, put, allows an application to publish an
item of content. It accepts two parameters: (¢) input is the
data stream, and (4) rules is a set of requirements for how the
content should be distributed. It returns a Content|D handle
to the caller.

The second method, remove, then allows an application
to remove a published item of content. As the content may
be published through multiple means, the method returns a
HashMap containing the success of the operation for all the
providers through which the content has been published.

2) IConsumer: The IConsumer interface is presented to
client applications. The defining properties of the consumer
delivery-centric interface are two-fold: () it receives content
requests formatted as unique content identifiers without any
reference to location or the method of access, and (i%) it allows
the association of (high-level) abstract requirements with such
requests. The interface consists of three methods,

o get(ContentID, Type type, Set<Rule> rules) — Content

« stop(ContentID) — Boolean

« update(ContentID, Set<Rule> rules) — Boolean

The first method, get, allows an application to request a
given item of content. It accepts three parameters: (i) Con-
tentID is a globally unique identifier, (i7) type is a reference to
the desired method of access (e.g. file reference, live stream,
etc.), and (i7i) rules is a set of requirements. Calling this
method returns a Content object, which offers an object
handle on the content. This is an abstract class that is extended
by four subclasses: FileStoredContent, MemoryStoredCon-
tent, RangeStoredContent and StreamedContent. Each
one allows the application to view the content in a different
way; the choice of which is stipulated by the type parameter.

The second method, stop, allows an application to cancel
a delivery. The third method, update, allows an applica-
tion to update its previously issued requirements regarding
a given delivery. Following this method call, the underlying
implementation should adapt the delivery to satisfy these new
requirements (the success of this is returned via a Boolean).

IV. JUNO MIDDLEWARE DESIGN

This section details Juno, which implements the above inter-
faces. In contrast to existing content-centric systems, Juno is
built as a middleware rather than a network infrastructure, pro-
viding it with the flexibility to scalably interpret and address
high-level requirements. It does this by utilising an extensible
set of protocol plug-ins stored within a Configuration Engine
to select and interoperate with the source(s) that best fulfil
each content request’s requirements.

A. Content Manager

Within Juno, a Content Manager handles the local storage
and indexing of content, alongside managing content naming.



1) Content Storage: Juno abstracts the content management
away from any individual plug-ins, thus allowing them to
share a common content library. Whenever a content request
is received by Juno, the Content Manager is first queried as
to whether a local copy is available. If not, it is acquired and
stored in the Content Manager.

2) Content Naming: Content identifiers in Juno are created
by generating one or more hash values from the content’s
data. Consequently, when content is published, it is first
passed through a set of hashing algorithms. This approach
allows self-certifying identifiers that can be used to validate
content on arrival. More important, however, is the observation
that a large number of existing discovery systems already
support the use of such hash-based identifiers. Thus, allowing
interoperable and open access to previously published content
that is unaware of Juno, as well as more convenient interaction
with existing content protocols. To further enable this, Juno
utilises the Magnet Link [11] addressing standard, which
provides a format for passing hash-based content requests into
a variety of different content distribution systems. This allows
consumers to request uniquely identified content from a range
of different systems; according to one study, ~99% of peer-
to-peer traffic supports Magnet Link identification [1]. Exam-
ples of delivery systems that support Magnet Links include
Gnutella, ED2K, BitTorrent, Kazzaa and Direct Connect. The
use of this standard thereby simplifies interaction with a range
of different content protocols, as well as often allowing access
to open third party sources.

B. Publishing Content in Juno

The first mode of operation supported by Juno is that
of a provider. This is exposed by the Provider Framework,
which handles any publication requests (through IProvider).
When an item is published, a set of hash-based identifiers are
first generated by passing the data through a set of hashing
algorithms (SHA-1, MDS5, and MD4). The values returned
from these algorithms become the content’s identifiers.

Once this has taken place, the framework utilises one or
more provider plug-ins to publish the content. A provider plug-
in has the ability to expose an item of content through one or
more delivery schemes. This could perhaps be by instantiating
a locally hosted web server, uploading the content to a cloud
service (e.g. S3) or offering it to a peer-to-peer network.

Once this process has completed, the Provider Framework
uploads tuples (one tuple for each content identifier) consisting
of < contentID,sources > to a bespoke indexing service
called the Juno Content Discovery Service (JCDS). This is
a simple lookup service, which allows consumers to map
unique content identifiers to any potential sources known by
Juno. Currently, there are two versions of this: a client-server
implementation and a distributed hash table implementation.
Importantly, by also utilising common hashing algorithms such
as SHAL, it becomes possible to perform the same mapping
in existing search protocols such as Gnutella and eMule,
which already support the use of Magnet Link addressing.
Consequently, any consumers possessing the unique hash
identifier(s) can locate any sources indexed on the JCDS, as
well as in any third party providers supporting Magnet Links.

C. Consuming Content in Juno

The second mode of operation is that of a consumer.
This is exposed by the Content-Centric Framework, which
is composed of the Discovery and Delivery Frameworks, as
shown in Figure 1.
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Fig. 1: Overview of Juno’s Consumer-Side Operation

1) Discovery Framework: The Discovery Framework is
responsible for performing the mapping between content iden-
tifier and location; it is therefore used to discover any potential
sources of content. Evidently, however, within Juno’s design,
content can be provided from a range of different providers.
This could be due to the use of multiple plug-ins by the
Provider Framework or, alternatively, because the application
is accessing open content that is widely distributed by third
parties (for instance, Linux ISOs are openly available through
various HTTP, FTP and BitTorrent sources). Consequently, it
is necessary for the Discovery Framework to enable interop-
eration with this wide range of providers.

To achieve this, the Discovery Framework hosts one or more
discovery plug-ins, which each contain the functionality to
discover content in one or more indexing services. By default,
the Discovery Framework always utilises the JCDS plug-in,
which is used by the Provider Framework to upload references
to any known sources of the content. However, alongside this,
a range of other discovery plug-ins can simultaneously be
queried to discover sources that are not within the remit of
Juno’s control. This allows third party sources to be exploited,
thereby improving performance. The most prevalent examples
of this are peer-to-peer sources. Through Juno’s use of Mag-
net Links it becomes possible to discover such sources and
pass them to the Delivery Framework, alongside any sources
available via the JCDS.

2) Delivery Framework: The Delivery Framework is re-
sponsible for accessing an item of content once the Discovery
Framework has provided a set of available sources. Evidently,
the discovery process will potentially return multiple sources
utilising different protocols. It is therefore necessary for the
Delivery Framework to select the optimal one(s) based on the
application’s requirements.

To achieve this, the Delivery Framework hosts one or more
delivery plug-ins, which each contain the functionality to
access content using a given protocol (or set of protocols).
This, for instance, could consist of a generic BitTorrent client



implementation or, alternatively, a provider-specific implemen-
tation that only operates with a single service. The interface
that the plug-ins expose differs between different types of
delivery plug-ins based on how the consumer wishes to ‘view’
the content. Currently, there are interfaces and plug-ins defined
for four content types: FileStoredContent (stored as a file),
MemoryStoredContent (stored in memory), RangeStored-
Content (stored in memory with the ability to request different
data ranges) and StreamedContent (stored in memory and
allows stream access). This allows applications to operate
with content using the abstraction that is most convenient
for their needs. For instance, a file sharing application would
request a FileStoredContent plug-in whilst a video streaming
application would request a StreamedContent plug-in.

3) Delivery Plug-in Selection: To achieve delivery-
centricity, the Discovery Framework attempts to acquire as
many sources as possible, whilst the Delivery Framework
dynamically selects the one(s) that best fulfil the application’s
needs. This is done on a per-node basis, as optimality can vary
significantly between consumers; for instance, two nodes will
get different throughputs from a server, based on their TCP
connection delays [12].

To allow Juno to map delivery requirements to the op-
timal underlying delivery mechanism, each plug-in is re-
quired to expose meta-data about itself, structured as <
attribute,value > pairs. This meta-data consists of both
static (e.g. supports encryption, anonymity) and dynamic (e.g.
performance, reliability, startup delay) attributes. Clearly, static
meta-data is trivial to maintain, however, dynamic meta-data
must be generated at runtime. To enable this, each delivery
plug-in exposes the following method,

« generate(Attribute, RemoteContent) — Object

This method requests a plug-in to return a particular item of
meta-data (attribute) regarding the access of a specific item
of content. The ontology of this meta-data is shared with
the ontology used by applications to stipulate their delivery
requirements (e.g. avg_bit_rate). Consequently, the selection
process simply involves comparing the requirements against
the meta-data of all the available plug-ins to find the one(s)
that are compatible. Currently, when multiple compatible plug-
ins are found, a random one is simply selected. Alternatively,
if no compatible plug-ins are found, an exception is thrown.
This is unlikely to happen in the usual circumstance, in which
the provider and consumer applications are deployed by the
same organisation. However, if the consumer is solely using
third party providers, the exception can be used to re-design
the requirements or, alternatively, to discard the request (e.g.
if security requirements are compromised).

Dynamic meta-data can be generated in any manner; for
instance, Juno-aware providers offer an ‘oracle’ interface,
which exposes supportive meta-data. In contrast, unaware
providers must be modelled without support. Currently, Juno
supports a single dynamic item of meta-data: ‘avg_bit_rate’,
which refers to the throughput that can be expected from a
particular source. Transparent generation techniques have been
defined for the following plug-ins,

e HTTP: The iPlane service [13] is used in conjunction with

the model detailed in [12] to calculate predicted download
performance.

e BitTorrent: The model from [14] is used to calculate
predicted download performance. The necessary runtime
parameters are obtained using the publicly available
dataset detailed in [15].

o Limewire: History-based predictions are used to predict
download performance [16]. HTTP predictions between
each individual source can also be utilised to augment this
information, as Limewire utilises multi-source HTTP to
perform downloads.

Dynamic meta-data is re-generated periodically (default 2
minutes) to ensure that the optimal plug-in is continually used.
If a superior one is found, the current one is replaced. This is
greatly simplified by the use of the shared Content Manager.
Currently, the Delivery Framework also supports the following
static meta-data: ‘upload_resources_ required: bool’, ‘anony-
mous: bool’, ‘encrypted: bool’ and ‘encryption_strength: int’.
Importantly, these are protocol-specific static items and are
extremely efficient to compare.

V. EVALUATION

A Juno prototype has been developed with support for
a number of protocols, including BitTorrent, HTTP, RTP
and Limewire. Within this section, we focus on evaluating
Juno’s ability to re-configure itself to address performance
requirements. Due to space constraints, we only investigate
this single scenario; a more detailed system evaluation can be
found at [17]. To realise this scenario, we have built a simple
Juno application that has been deployed on the Emulab testbed
[18]. This consists of a media service, which publishes content
alongside a consumer application, which accesses it. Within
the scenario, the consumer application first requests a 4.2 MB
music file, followed by a 72 MB video file, associated with the
following delivery-centric requirement: ‘avg_bit_rate=max’.
To study Juno’s ability to perform adaptation on a per-node ba-
sis, two instances of the consumer application were deployed:
a low capacity consumer, Node Low Capacity, which oper-
ates over a typical asynchronous DSL connection (1.5 Mbps
down/784 Kbps up); and a high capacity consumer, Node
High Capacity, which operates over a 100 Mbps synchronous
connection. Three shared providers were also created: a HTTP
server with 2 Mbps capacity, a BitTorrent swarm (with 9 seeds
and 15 leeches, possessing bandwidth taken from [4]), and four
Limewire peers possessing 1 Mbps capacity each. Beyond this,
a network replication service containing a replica was also
available to Node HC.

Figure 2 details the performance of Juno, alongside the
results that would have been obtained by selecting each of the
providers for both nodes. The results show that the optimal
provider for Node LC is different to Node HC, validating that
a traditional, statically configured application would not be
able to fulfil the requirements for both nodes. In the best case,
the application could therefore only optimise the delivery for
one of the nodes unless it integrated complex control logic
like Juno’s. This is attributable to three variations that are
frequently observed between different consumers,
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« Different consumers can locate different sources, e.g.
Node HC has access to a replication service; alternatively,
peer-to-peer systems will often return different sources
for different queries.

« Different consumers have different characteristics, e.g. for
the 72 MB delivery, HTTP is the optimal plug-in for Node
LC but the most suboptimal plug-in for Node HC. This
is because Node HC can gain better performance in peer-
to-peer alternatives through tit-for-tat [4].

o The ability for a provider to fulfil a requirement can
vary between different content requests, e.g. BitTorrent
is faster than HTTP for the 72 MB file but slower than
HTTP for the 4.2 MB file (on Node HC). This is because
BitTorrent performs far better with larger files [19].

Importantly, the results show that for both consumers, Juno
adapts to access content in a way that best fulfils the appli-
cation’s requirement on a per-node basis. This therefore, in
turn, improves the application’s performance without requiring
significant development or resource overhead (Juno’s memory
footprint is only 472 KB). It therefore highlights that (7)
Juno can dynamically adapt to address delivery requirements,
(74) Juno can interoperate with a range of existing protocols
making it backwards compatible (each provider was setup
using an existing third party implementation), and (¢iz) Juno’s
abstraction successfully allows content requests to be gener-
ated and resolved at runtime.

VI. CONCLUSION

This paper has investigated the extension of the content-
centric paradigm. A middleware, Juno, has been detailed,
which implements the newly defined delivery-centric abstrac-
tion, which allows application to stipulate content require-
ments on a per-node and per-request basis. Through this, Juno
adapts the underlying mechanism through which content is
accessed by modelling the ability of each source to fulfil
the requirements. This is achieved through an extensible set
of plug-ins, which allow interoperation with third party sys-
tems. Future work includes further investigation into dynamic
requirements, as well as dynamic meta-data generation; the
integration of new plugs; and an open source deployment for
developers.
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