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ABSTRACT. We investigate the temperature effect on the size and stability of two major
blood plasma proteins, human serum albumin and fibrinogen in aqueous NaCl solution.
Dynamic Light Scattering measurements were carried out in the physiological temperature
range up to 45◦C. The analysis of the results provided the temperature dependences of the
macromolecular hydrodynamic radius and the ζ -potential. For albumin the hydrodynamic
radius remained unchanged, while the ζ -potential increased sharply at approximately 40◦C.
For fibrinogen the radius increased significantly above 45◦C and the ζ -potential increased
similar to albumin at slightly below 40◦C. The dynamics of albumin macromolecule was
simulated using classical Molecular Dynamics, which showed no change in the gyration
radius, root mean square deviation, and the composition of disulfide and salt bridges, but
substantial change in the secondary structure of the protein. We conclude that these changes
in the structure and dynamics of the proteins are correlated with the qualitative change of
water dynamics at 42◦C in the hydration shell of the proteins.

1. Introduction

The stabilising effects of water on the protein structure have been discussed in (Takano
et al. 2003; Park and Saven 2005). Single water molecules stabilise proteins by filling
internal cavities. The backbone residues of loops and other polar atoms interact with
the water molecules buried in the protein core. Buried water may also act as lubricant
to favour loop dynamics. Various techniques have been used for investigations of the
solvation properties of peptide and protein aqueous solutions (Abseher et al. 1996; Garcia
and Hummer 2000; Makarov et al. 2000; Tarek and Tobias 2002; Pizzitutti et al. 2007;
Frauenfelder et al. 2009; Sterpone et al. 2012; Rahaman et al. 2013) . The static and
dynamic properties of the hydration water and their relation with the properties of the
hydrated molecules have been investigated in recent experimental studies (Comez et al.
2016). Rotational and translational motion at the picosecond timescale, and the vibrational
density of water molecules surrounding proteins and peptides were studied by quasi-elastic
(QENS) and inelastic neutron scattering (INS) techniques (Russo et al. 2005; Frölich
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et al. 2008; Khodadadi et al. 2010). Brillouin neutron scattering technique was used to
investigate the fast collective dynamics in biomolecular solutions (Orecchini et al. 2009).
The combination of QENS and Molecular Dynamics (MD) simulation has revealed spatial
heterogeneity in the first hydration shell of the protein molecule. As it was shown the
water translational and rotational dynamics within the critical hydration shell are slow in
comparison with the bulk water and molecules of the first hydration layer form a barrier
for the outer water molecules (Russo et al. 2004). The INS results (Orecchini et al. 2002;
Paciaroni et al. 2008, 2009) indicate that the dynamics of the biomolecule is slaved by
the surrounding water in pico- and nanosecond timescale reflecting the re-formation of
the hydrogen bonds effect on the motion of the protein’s surface. THz spectroscopy
investigations (Born et al. 2009; Nibali and Havenith 2014) provided the possibility to
probe the influence of the water structure on peptides and proteins and detect the radii of
the hydration shells for such proteins as lysozyme, myoglobin, BSA (Bye et al. 2014) and
(Sushko et al. 2015) and ubiquitin (Born et al. 2008). The values of the hydration shell
thickness obtained in (Born et al. 2008) are substantiated by NMR studies (Mattea et al.
2008; Qvist et al. 2008), X-ray scattering (Svergun et al. 1998), and neutron scattering
(Pertsemlidis et al. 1996).

Molecular dynamics studies have revealed that the perturbation of the inter-helical
hydrogen bonds, which are important determinants of the local protein structure, can be
coupled to the rapid changes in water dynamics (Del Val et al. 2014). It was shown in (Jiang
et al. 2016) that water clusters are driven by the binding of various ions.

In our study we focused on the thermal stability of major blood plasma proteins (human
serum albumin (HSA) and fibrinogen) and the dynamics of surrounding water at different
temperatures. The region of the especial interest is the temperature point of 42◦C , where in
the vicinity of this temperature the spatial connectivity between H-bonded linear molecular
chains is disrupted (Lokotosh et al. 2000; Bulavin et al. 2008; Fisenko et al. 2008; Fisenko
and Malomuzh 2009; Lokotosh et al. 2010). Possibly this temperature can be considered
as the threshold temperature of protein conformational stability and the dynamics of water
can be related to the protein’s conformational changes (Rezaei-Tavirani et al. 2006). As
a subject of study we considered the temperature dependences of the hydrodynamic and
the gyration radii and the ζ -potential, which can be used as an indicator of the stability and
the degree of repulsion between adjacent protein molecules. Thus, we tried to correlate the
changes of the macromolecular size and the ζ -potential with the thermal dynamic in water.
We also have presented the results of MD simulation for HSA.

HSA and fibrinogen play important roles in functioning of living organisms and perform
many different functions such as the transport of lipids, hormones, vitamins and metals in
the circulatory system, the regulation of acellular activity and the immune system. HSA
accounts for 55% of blood proteins, and it is a major contributor to maintaining the osmotic
pressure of plasma to assist in the transport of lipids, steroid hormones, metabolites and
binding of different ligands (Rothschild et al. 1988; Carter and Ho 1994; Kratz 2008; Rzga
and Bal 2010). Fibrinogen comprises 7% of blood proteins. It is one of the key proteins
in thrombosis and the conversion of fibrinogen to insoluble fibrin is essential for blood
clotting.
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2. Methodology, results, and discussion

2.1. Photon correlation spectroscopy. The photon correlation spectroscopy (PCS) (Cum-
mins 1974) was actively used in the investigations of aqueous solutions of DNA, proteins,
alcohols, and polymers (Magazù et al. 1989; Donato et al. 1996; Jannelli et al. 1996;
Magazù et al. 1997; Branca et al. 1999; Faraone et al. 1999; Magazù et al. 1999a,b;
Sidebottom 2007; Sidebottom and Tran 2010). Some studies based on the PCS showed
that water furnished the temperature evolution of the hydration number, while incoherent
quasi-elastic neutron scattering (IQENS) revealed the presence of entangled water and
evidenced the effects of H-bond on the diffusive motions. The comparative studies of the
rotational relaxation times obtained by IQENS and PCS for such systems as polymeric
aqueous solutions, alcohols and homologous disaccharide aqueous solutions separated the
self-particle contribution from the collective one (Magazù 1996; Magazù et al. 2007).

Hydrodynamic radius. At low concentrations of protein (Magazù 1996; Magazù et al.
2007) the macromolecular hydrodynamic radius is related to the diffusion coefficient by the
Einstein-Stokes relation

RH = kT/6πηD (1)

where, T is temperature, k is the Boltzmann constant and η is the dispersant viscosity.
The measurements were carried out in the range of temperatures 30-45◦C, which corre-
sponds to physiological temperature interval, using commercial spectrometer Zetasizer
Nano ZS (ZEN3600).

ζ -potential (ZP).. We have measured ZP in the temperature interval 30-70◦C in order to
correlate the dynamic of water in the ‘hydration shell’ with conformational changes of a
macromolecule. The ZP magnitude is one of key parameters which describes the surface
charge of a protein and characterises its hydration layer (Sze et al. 2003; Maduar et al.
2015; Bhattacharjee 2016; Fischer and Schmidt 2016; Predota et al. 2016). The dynamics
of surrounding ions is affected by the charge distribution at the macromolecule surface. We
can separate two regions in the macromolecule environment: the so called Stern layer or
an inner region where a macromolecule is tightly bound with the surrounding molecules
and an outer region where the molecules are not strongly attached with the surface atoms
of the protein. A protein macromolecule moves together with the surrounding molecules
and the ions in the Stern layer, while in the outer region the drift of the macromolecule
and the surrounding molecules is uncoupled. A boundary between the Stern and diffusive
layers is the surface of the hydrodynamic shear or the so-called slipping plane and the
potential existing at this boundary is the ζ -potential. ZP was defined using electrophoretic
light scattering technique based on the measurement of electrophoretic mobility by the
application of the Henry equation

µr =
2εrε0ζ f (Ka)

3η
(2)

where, εr is the relative permittivity/dielectric constant, ε0 is the permittivity of vacuum,
ζ is the zeta potential, η is viscosity, f (Ka) is the Henry’s function, which generally
accepts one of two values either 1.5 or 1.0. The electrophoretic mobility was defined with
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FIGURE 1. The hydrodynamic radius RH of HSA in the temperature interval 30
– 50◦C at HSA concentration 1mg/ml and NaCl concentrations: 0.075 mol/l, 0.15
mol/l, 0.225 mol/l.

the accuracy of 0.12·10−8m2/V·s for particle diameters 3.8nm – 100 microns. The error in
calculation of the zeta potential did not exceed 5%.

Albumin. Such factors as pH and temperature affect the protein structure and dynamics
(Brown 1977). HSA is a single chain protein with 585 aminoacid residues with a pre-
dominant α-helical heart-shaped structure (Carter et al. 1989; Carter and Ho 1994). For
illustrative purpose we demonstrate here the measurements of HSA aqueous solutions at
various NaCl concentrations, which have been already published in our previous paper
(Atamas et al. 2017). One can see that the value of the hydrodynamic radius is practically
constant in the temperature interval 30 – 50◦C (Figure 1) and NaCl concentration does not
cause a change in the hydrodynamic radius value. The temperature dependence of ZP in the
temperature range 25-70◦C is presented in Figure 2.

According to general principles (Hunter 1981; Sze et al. 2003) a colloid system usually
loses stability when the ZP magnitude decreases to less than 25-30 mV (positive or negative).
Thus, the vicinity with zero value of ZP (the isoelectric point, or IEP) is the region of
instability where proteins may agglomerate in aqueous solutions or conformational changes
may happen in the macromolecule’s structure at the initial stage of denaturation process.
In our case we observe the decrease of ZP magnitude starting from -27mV at temperature
35◦C and pH 7.4 up to zero value around the temperature point 42◦C, then the value of ZP
varies from -2.5mV to 2.5mV up to the denaturation temperature.

Fibrinogen. Fibrinogen has been intensively studied by different methods, including trans-
mission electron microscopy (TEM)(Hall and Slayter 1985; Weisel et al. 1985; Veklich et al.
1993), atomic force microscopy (AFM) (Agnihotri and Siedlecki 1999, 2004; Yermolenko
et al. 2011; Zavyalova et al. 2011; Protopopova et al. 2015) and X-ray diffraction (Spraggon
et al. 1997; Kollman et al. 2009; Protopopova et al. 2015). A fibrinogen macromolecule is
a dimer, which comprises 2964 amino-acid and 4 carbohydrate residues. Each monomer
unit consists of three non-identical polypeptide chains. The monomer units as well as
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FIGURE 2. Temperature dependence of the zeta potential (ZP) for albumin aque-
ous solution (pH=7.4 at temperature 30◦C) and NaCl concentration of 0.075
mol/l.

FIGURE 3. Temperature dependence of the fibrinogen macromolecular hydrody-
namic radius RH pH=7.4 and I=0.15 (NaCl concentration of 0.15 mol/l).

polypeptide chains are linked by the disulfide bonds. The measurements of RH (Figure 3)
and ZP (Figure 4) have been carried out under physiological condition pH=7.4 and ionic
strength I=0.15 or NaCl concentration of 0.15 mol/l in the temperature interval 30–50°◦C.

We can see insignificant changes of the hydrodynamic radius in the temperature interval
30-45◦C where starting from 45◦C the value of RH increases significantly. Thus, in the
case of fibrinogen we observe completely different behavior of the hydrodynamic radius
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FIGURE 4. Temperature dependence of the zeta potential (ZP) for albumin aque-
ous solution (pH=7.4 at temperature 30◦C) and NaCl concentration of 0.075
mol/l.

with temperature increase in contrast to albumin and substantially similar temperature
dependence for ZP with the location of IEP in the vicinity of 42◦C.

2.2. Simulation. In this section we demonstrate main results (Atamas et al. 2017).of the
HSA macromolecule dynamics in aqueous solution at different temperatures obtained using
the multifunctional package HARLEM, which combines the methods of molecular and
Brownian dynamics. We have analysed the temperature effect on the gyration radius, the
distances between the sulphur atoms (Sγ ) in pairs of cysteines and COO-groups of aspartic
or glutamic acids and NH3-groups of lysine or arginine (salt bridges). The values of the
gyration radius in the temperature interval 25-45◦C are presented in Fig.5. The gyration
radius was calculated with using formula (3) and the crystallographic data (Sugio et al.
1999) for the coordinates of atoms, which change with temperature

R2
g = ∑mir2

i /∑mi (3)

where, ri is the distance from the centre of mass to the i-th atom, mi is the mass of the i-th
atom.

The gyration radius also remains unchanged in the temperature range 25-50◦C. The
values of the gyration radius differ from the hydrodynamic radius by approximately 1.5
nm, because the hydrodynamic radius indicates the apparent size of the solvated particle,
while the gyration radius is calculated as the average distance from the centre of mass to the
macromolecular surface (Kok and Rudin 1981). Interestingly, this value coincides with the
values of the hydration shell (Bye et al. 2014; Sushko et al. 2015).

We present the results of simulation (Atamas et al. 2017) for the distances between
Sγ (1) and salt bridges (2). The data for the dynamics of amino-acid residues studied by
calculating the root-mean-square displacement (RMSD) are presented in Figure 6.
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Distance between Sγ atoms, Å
Disulfide bridges 25◦C 27◦C 30◦C 32◦C 35◦C 37◦C 40◦C 42◦C 45◦C
Cys360 Cys315 2,079 1,936 2,085 2,079 2,079 2,067 2,09 2,054 2,032
Cys359 Cys368 2,099 2,009 2,109 2,033 1,962 2,085 2,025 2,107 2,038
Cys101 Cys90 2,054 2,064 2,061 2,038 2,043 2,042 2,061 1,993 2,083
Cys75 Cys91 2,029 1,965 2,01 1,969 2,01 2,066 2,017 2,011 1,979
Cys460 Cys476 2,046 2,002 2,062 2,044 2,016 2,027 2,042 2,049 2,068
Cys475 Cys486 2,114 2,07 2,111 2,09 2,091 2,054 2,117 2,021 2,119
Cys53 Cys62 2,043 2,009 2 1,978 2 2,056 1,949 2,085 2,048
Cys264 Cys278 2,105 1,984 1,961 2,076 2,081 2,009 1,965 2,046 2,138
Cys288 Cys277 2,053 2,091 2,059 2,05 2,011 2,078 2,01 2,032 2,064
Cys168 Cys123 2,036 2,051 2,038 2,051 2,053 2,103 2,03 2,033 2,001
Cys167 Cys176 2,062 2,108 2,036 2,077 2,079 2,077 2,083 2,025 2,034
Cys513 Cys558 1,992 2,054 1,989 2 2,023 2,124 2,022 2,047 2,028
Cys557 Cys566 1,981 2,049 1,981 2,001 1,97 1,996 2,067 2,041 1,996
Cys436 Cys447 1,977 2,021 1,982 1,998 2,021 1,972 2,046 1,993 1,979
Cys437 Cys391 2,072 1,996 2,036 2,046 2,054 2,029 2,009 1,951 2,081
Cys199 Cys245 2,069 2,039 2,09 2,04 2,051 1,928 2,111 2,025 2,082
Cys244 Cys252 2,029 2,054 2,078 2,025 2,019 2,049 1,938 2,102 2,052

TABLE 1. Distances between Sγ atoms in disulfide bridges of HSA
(Atamas et al. 2017).

Amino-acid residues \ Å Amino-acid residues \ Å Amino-acid residues \ Å
ASP72 ARG98 4,08 GLU424 ARG458 3,86 ASP255 LYS239 3,59
ASP108 ARG196 3,70 GLU441 ARG444 4,04 ASP313 LYS312 3,60
ASP236 LYS32 3,71 GLU449 ARG347 3,90 ASP517 LYS520 3,47
ASP254 ARG10 4,13 GLU449 ARG484 3,92 ASP254 LYS12 3,65
ASP450 ARG194 4,18 ASP13 LYS12 3,74 GLU6 LYS439 3,61
GLU6 ARG10 3,91 ASP108 ARG458 3,95 ASP86 ARG81 4,37
GLU16 LYS51 3,94 ASP108 ARG465 3,33 ASP311 LYS316 3,79
GLU73 LYS76 3,02 ASP311 LYS312 3,65 ASP258 LYS261 3,62
GLU140 ARG143 4,07 ASP313 LYS316 3,33 GLU332 ARG335 4,07
GLU152 ARG256 4,05 ASP450 LYS439 3,89 ASP323 LYS322 3,95
GLU186 ARG435 4,08 GLU152 LYS261 3,53 GLU424 ARG427 4,50
GLU243 LYS239 3,04 GLU530 LYS504 3,61
GLU351 LYS375 3,41 GLU570 LYS556 3,19
GLU357 LYS322 3,30 GLU570 LYS573 4,37

TABLE 2. Lengths of salt bridges in HSA amino-acid residues (Atamas
et al. 2017).
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FIGURE 5. The gyration radius of HSA calculated from the simulation data
(Atamas et al. 2017).

FIGURE 6. The amino-acids residue displacements of HSA and the RMSD values
at corresponding temperature intervals. Blue and silver colours indicate the con-
formational state in the first temperature point, red indicates the conformational
state in the second temperature point for every snapshot (Atamas et al. 2017)

We can see that the lengths of disulfide bridges and salt bridges are stable in the investi-
gated temperature interval. The conformational changes of the structure by comparing the
residue positions in the reference points were studied by the evaluation of RMSD values
for close conformational states in certain temperature intervals with respect to the initial
structure defined by PDB (Sugio et al. 1999).

We can conclude that the overall structure of the macromolecule does not undergo
significant transformations with the temperature increase, only slight deflection of the
RMSD values is observed with respect to the reference temperature in certain temperature
interval.

3. Conclusions

The results presented here demonstrate specific correlation between the stability of
two major blood plasma proteins, albumin and fibrinogen, and water dynamics in the
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FIGURE 7. The behavior of τ̃d(t) as a function of dimensionless temperature:
t = T/Tc, where Tc is the critical temperature. Experimental data are taken
from the works (Simpson and Carr 1958; Pruppacher 1972; Okada et al. 1999;
Eisenberg and Kauzmann 2007). Points present interpolation values of τd , the
dot line corresponds to exponential dependence.

physiological temperature range. For albumin the hydrodynamic radius and the simulated
gyration radius, the stability of disulfide bonds and salt bridges support the fact of the
macromolecule stability in the temperature range 25-50◦C. The MD simulations provided
the value of the gyration radius supported by the results (Bye et al. 2014; Sushko et al. 2015).
Furthermore, the value 1.5 nm coincides with the thickness of the hydration layer obtained
by THz spectroscopy (Bye et al. 2014). In the case of fibrinogen the RH measurements
indicate that the structure of the macromolecule undergoes significant transformations with
the temperature increase and the temperature interval 42-45◦ can be considered as an initial
stage of irreversible conformation changes in the macromolecule (denaturation). For both
proteins the magnitude of the ζ -potential suggests instability in the protein structure and
the surrounding. ZP behaviour may imply conformational changes in the macromolecule
structure, surface modifications and also it indicates changes in water dynamics in the
hydration layer close to the temperature 42◦C. The concept of characteristic times (Bulavin
et al. 2008; Fisenko et al. 2008; Fisenko and Malomuzh 2009; Lokotosh et al. 2010) gives
deeper understanding of the water collective dynamics around the protein and the correlation
with conformation changes. According to this concept the rotational motion of a molecule
in the bulk is directly reflected in the dipole relaxation. The temperature dependence of the
dipole relaxation time τd(t) is presented in Figure 7.

The value of dimensionless τ̃d(t) = τd(t)/τr is close to unity in the temperature interval
0.6 < t < 1 with the implication that the rotation of the molecules tends to be quasi-free.
Here τr ∼ 2π/ωT is the characteristic time of a molecule complete turn, ωT ∼

√︁
kBT/I is

the characteristic value of the angular velocity, I ∼ mHr2
OH is the inertia moment of a water

molecule (mH is the mass of the hydrogen atom and is the distance between the hydrogen
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and oxygen atoms). The essential deviation of τ̃d(t) from unity is observed in the region
t < 0.5 and especially in the super cooled region t < 0.42.

For these temperatures the behaviour of τ̃d(t) is approximated by the exponential func-
tion: τ̃d = τ̃d

(0)exp(εH/t), where τ̃d
(0) = 5.1 · 10−4 and εH = EH/kBTc = 4.71 is the

characteristic activation energy. The estimated value of takes the same magnitude as the
H-bond. Thus one can suggest that at temperatures the rotation of the molecules has a
discontinuous character: every rotation on a small angle is realised after the destruction of
the H-bond. It is clear that the character of the molecular rotation reflects the stability of
the H-bond network in the bulk water. The stability of the H-bond network is significantly
changed in the close proximity of 42◦C or the dimensionless value 0.5.

This fact should be manifested in all phenomena whose specificity is caused by the
H-bonds. Similar behaviour of the H-bond network is appropriate for proteins aqueous
solutions due to the fact that the H-bonds are formed between: 1) water-water molecules, 2)
water molecules and fragments of protein macromolecules as well as 3) various fragments
in protein macromolecules. Therefore the essential changes in the temperature behaviour
of the ζ -potential are well substantiated. In other words, the destruction of the H-bond
networks in the blood plasma plays determinative role in the death of living organisms
starting from the temperature of 42◦C.
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