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Abstract 

Recognition of paediatric autoimmune/ immune-mediated encephalitis and epileptic 

encephalopathy (e.g. NMDAR-Ab encephalitis) has rapidly increased over the last ten years. 

While we are succeeding in the diagnosis and identification and even early treatment of these 

encephalitidies, with studies describing >80% are making a “good” recovery, we are now 

recognising that a “good” medical outcome does not cover the cognitive, social and behavioural 

sequelae that can occur, particularly in paediatric patients. Basic measures of medical outcome, 

for example the modified Rankin Scale (MRS) or the Paediatric Cerebral Performance Category 

(PCPC), offer the advantage of being quick to use, but do not reveal the more complex difficulties 

that can impact the future of affected children. This article reviews the current literature on 

neurodevelopmental outcomes in children affected with autoimmune and immune-mediated 

encephalitis/ epileptic encephalopathy and provides guidance on post-onset surveillance aimed at 

identifying those most likely to experience ongoing long-term difficulties. 
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Introduction 

Immune-mediated/ autoimmune epileptic encephalopathy (AEE) is characterized by the presence 

of neuronal autoantibodies that bind to proteins essential for normal brain function and 

development. When synaptic proteins are targeted (e.g. the NMDA receptor), paediatric patients 

present with a range of neurological and neuropsychiatric symptoms including seizures, movement 

disorder, and behavioural change. Acute demyelinating events (e.g. optic neuritis, transverse 

myelitis) occur with encephalopathy and seizures when autoantibodies are directed against myelin 

associated proteins, i.e. myelin oligodendrocyte (MOG). Regardless of their differing autoantibody 

targets, paediatric AEEs all have the potential to cause long-term adverse neurodevelopmental 

changes as well as the severe acute neurological and neuropsychiatric syndromes. This review 

briefly summarises the diagnosis and treatment of the common peadiatric AEEs and then focuses 

on current knowledge regarding neurodevelopmental outcomes. 

N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis  

NMDAR-Ab encephalitis was first described in 2007 as a paraneoplastic neuroimmune disorder 

primarily affecting young women with ovarian teratoma1.  It is now widely recognised as the most 

common AEE, and has been described in patients of all ages, with and without the presence of 

tumours. Affected patients present with seizures, neuropsychiatric symptoms, cognitive and 

autonomic dysfunction, movement disorder and decreased level of consciousness 2. In children, 

seizures, abnormal movements, insomnia, and irritability are the more frequent symptoms 

recognised, whereas in adults, abnormal behavior and psychosis are more likely to herald the onset 

of disease 3. In pre-school children, abnormal behavior may initially be misdiagnosed as another 

neurodevelopmental disorder such as autism 4. Estimated incidence in UK children is 0.85 per 

million children per year 5, and paediatric cases make up over a third of reported cases in the 

literature 3. Diagnosis is made on the basis of clinical features and the detection of NMDAR-

antibodies directed against the NRI subunit in the cerebrospinal fluid (+/- serum) of affected 

patients 6. The EEG is almost always abnormal showing focal or diffuse slowing/encephalopathy, 

epileptic activity, or extreme delta brush 3, 7, 8. Brain MRI is only reported as abnormal in 

approximately 33% of patients, and not associated with clinical severity or neurological outcome 

3.  However, this disparity is explained by functional MRI and connectivity studies which do 



demonstrate abnormalities in hippocampal and frontoparietal network connectivity despite the 

majority having unremarkable routine brain MRI 9.   

The standard treatment regime for paediatric AEE including NMDAR-Ab encephalitis begins with 

first-line immunotherapy (e.g. steroids, immunoglobulins or plasma exchange), escalating rapidly 

to second line agents if there is no sign of clinical improvement (e.g. rituximab, 

cyclophosphamide). Although early use of rituximab in paediatric CNS autoimmune and 

inflammatory diseases is associated with improved outcomes 10, no randomized controlled trial 

evidence currently exists that compares the stepwise immunotherapy approach to initiation of 

rituximab from day of diagnosis. 

Recovery and outcomes in paediatric NMDAR-Ab encephalitis are measured primarily through 

basic assessment criteria, for example, the five point modified Rankin scale (mRS) 3, 5, 7. With 

early recognition and prompt treatment, a significant neurological improvement is seen in up to 

85% of paediatric patients using theses scales 3, 5.  More recently, however, smaller retrospective 

paediatric studies with more detailed functional and neuropsychological outcomes have been 

published and rather worryingly, suggest that compared to adults, children with NMDAR-

Ab encephalitis may have long-term effects impacting daily life 11. Using the Adaptive Behaviour 

Assessment System (ABAS-3), this study showed that pediatric patients had changes in adaptive 

behaviour that were not captured when focusing on neurological disability using the mRS scale. 

The differences in adaptive behavior observed suggested that children may be left with long-term 

impairment following NMDAR-Ab encephalitis, whereas adults assessed in a comparable way 

appeared to regain normal function. Subtle neurocognitive deficits may have affected the adaptive 

behavior resulting in an increased likelihood for affected children to require additional support at 

home and/or school for everyday living. Data from a larger retrospective study of 28 paediatric 

patients seen at a median of 31 months after disease, found that many patients had cognitive 

problems and fatigue, and this was associated with lower academic achievement and poorer quality 

of life 12. Lower scores were recorded in the sustained attention, speed and short –term verbal 

memory and language domains. Surprisingly, important predictors for “good” mRS outcomes (e.g. 

early treatment) were not associated with neuropsychological outcome, again emphasising the 

notion that mRS scales do not reflect the complete picture of recovery. One recent prospective 

study of 10 children found deficits in all domains tested in the acute phase of illness (general 



intellectual abilities, receptive and expressive language, short-term verbal memory, planning, 

selective and sustained attention and visual-motor integrations)13. During subsequent follow-up, 

general intellectual abilities were within normal limits at the most recent assessment (median 31 

months). Nevertheless, specific cognitive deficits were still present in over half of the patients at 

the same time-point, mainly affecting verbal fluency, working memory, executive functions and 

short-term memory. These persisting deficits affected quality of life, social relationships and 

academic achievement, but despite this, all children resumed their everyday lives 13. A small series 

of six children (6 to 13 years at first assessment) tested within one month of discharge through to 

24 or more months also highlighted the presence of early impairments in executive skills and 

information processing speed that persisted at long-term follow up in up to half of cases 14. Visual 

motor functions were also impaired and in a seventh case assessed first at 18 months of age, deficits 

emerged over the course of two years.  Most longitudinal studies do show improvement in 

cognitive processing over time which is encouraging for patients and families. However, the 

concern is that while patients report that their children have no residual difficulties, cognitive 

impairments that impact on social and academic functioning are still detected on formal testing 15. 

It is unclear whether this represents true deterioration, perhaps reflecting late-effects of the incident 

neurological event or its treatment, or rather a failure to attain developmentally appropriate skills 

in line with peers. The latter phenomenon is well recognized in the paediatric neuropsychology 

literature and this “early vulnerability”16 highlights the need to understand the specific profile of 

outcomes in children with AEE. This in turn underscores the importance of clinicians being aware 

of the long-term persistence of neuropsychological deficits in children following NMDAR-Ab 

encephalitis, in order to counsel families and recommend access to neuropsychology testing. Given 

the relative paucity of high quality studies in the area, it is difficult to recommend a comprehensive 

set of assessments for this cohort of children. However, based on existing findings, referral for 

age-appropriate measurement of general intellectual abilities, new learning, executive functions 

and information processing speed seems warranted. Furthermore, screening for behavioural 

impairments, again with age appropriate measures of symptomatology, is appropriate. The timing 

of assessments should be planned for key transition points in the young person’s education (into 

primary school, transition to secondary and/or further education). 

Ideally, early recognition of neuropsychological deficits will allow timely, specific interventions 

aimed to improve long-term neurodevelopmental outcomes and support families of children with 



impairments to receive tailored input from school and allied health services. Further prospective 

longitudinal studies are required to identify which children are likely to experience 

neurodevelopmental sequelae, as well as the effect of treatment on subsequent brain development. 

The other autoantibodies associated with childhood AEE along with available outcome data are 

summarized in Table 1 below.  

 

Table 1. Neuronal targets and outcomes in paediatric autoimmune epileptic encephalopathies  

 

 

Neuronal 
target 

Clinical features and pediatric outcome data 

GABAA 

receptors 
Severe autoimmune encephalitis with refractory seizures and extensive MRI cortical/subcortical 
FLAIR abnormalities17, 18. Antibodies bind to co-expressed α1/β3 or α1, γ2 subunits18, 19. Strong 
association with underlying tumour in adults. 
Most patients, including children, present with refractory status epilepticus or seizures, as well 
as varying symptoms of memory, cognitive and affective problems, and movement disorder 17. 
Only one child made a complete recovery in this series of 10 cases (8/10 partial recovery; 1/10 
death)18. 
Cases also described of Febrile Infection-Related Epilepsy Syndrome (FIRES), a devastating 
epilepsy of childhood 20. Early treatment with immunotherapy is associated with improved 
outcomes in children21, 22. 

LGI1 The Leucine-rich glioma inactivated 1 (LGI1) protein is complexed to the voltage gated 
potassium channel (VGKC-complex) which functions to control membrane excitability. Found in 
adults with facio-brachial dystonic seizures, which can evolve into limbic encephalitis (LE) 
without prompt recognition and treatment23. 
One case report of 14 year old boy with Type 1 diabetes mellitus presenting with subacute 
memory dysfunction, left hippocampal swelling on imaging, and positive oligoclonal bands in 
the cerebrospinal fluid. Good recovery with plasma exchange and immunotherapy, although 
residual memory problems remained24. 

GABAB 
receptor 

Seizure predominant limbic encephalitis phenotype, associated with small-cell lung carcinoma 
in adults, very rare in children25. Single paediatric case, aged 3 years, presented with mixed 
movement disorder and refractory seizures, died of overwhelming sepsis despite 
immunomodulatory therapy26. 

AMPA 
receptor 

Limbic encephalitis phenotype, rare in adults and children. One 14 year old patient described 
with favourable outcome post immunotherapy (mRS of 1) 27. Two cases of childhood onset 
Rasmussen encephalitis (RE) positive for AMPAR-Abs, likely to be secondary to inflammatory 
changes rather than causative; both had a very typical course of RE28. 

Glycine 
receptor 

Most commonly associated with Progressive encephalomyelitis with rigidity and myoclonus in 
adults (PERM)29. Can present with epileptic encephalopathy, rare in children (3 paediatric 
cases in literature, 2/3 responded well to immunotherapy 30).   

GAD65 Intracellular antigen. Paraneoplastic antibody, mainly associate with limbic encephalitis and 
stiff-person-syndrome in adults31. Rarely reported in children, invariably associated with poor 
outcome.32 



Acute Disseminated Encephalomyelitis  (ADEM) and Myelin oligodendrocyte antibodies (MOG-

Abs) 

Generalised or focal seizures are frequently seen in the presentation of Acute Disseminated 

Encephalomyelitis (ADEM), a CNS inflammatory demyelinating disease of childhood, 

characterised by encephalopathy, polyfocal CNS deficits and multifocal brain MRI lesions 33-35. 

Response to immunotherapy is good, and outcomes generally favourable, however, some patients 

may relapse 33. Whilst most children with ADEM go on to develop in line with their peers, up to 

43% show impairments in specific cognitive or behavioural domains. Although meta-analysis did 

not reveal overall differences, it seems that a subset of children appears to have ongoing cognitive 

(e.g. processing speed) or behavioural difficulties (internalizing symptoms) 36. Furthermore, earlier 

work raised concern that children with early onset (<5 years) were more likely to have significant 

social and cognitive impairments at follow up 37. 

 

Antibodies to the myelin-oligodendrocyte protein (MOG-Abs) have been identified in ADEM 

patients, and appear to predict a non-multiple sclerosis but multiphasic disease course 38, 39. MOG-

ab associated disease includes adult cases of unilateral cerebral cortical encephalitis presenting 

with generalised epileptic seizures, with or without encephalopathy, which are responsive to anti-

epileptic drugs and immunotherapy 40. This highlights that MOG-Ab associated disease goes 

beyond white matter effects, with patients more likely to present with seizures as well as 

encephalopathy. With the relapsing nature of the disease spectrum associated with MOG-Abs, as 

well as the encephalitis and grey matter effects, there is concern that without early identification 

and treatment, there may be long lasting cognitive sequelae. This is of particular concern in 

paediatrics as there is a predilection for brain lesions in the younger age group (<9yrs) 27.  Recent 

cohort studies in both children and adults show that MOG-Ab associated disease is more likely to 

present with seizures, and incur an increased risk of  developing long-term “autoimmune epilepsy” 

41, 42. A recent UK study in MOG-Ab positive ADEM paediatric patients showed a trend towards 

a greater risk of post ADEM epilepsy associated with MOG-Abs, which may be the result of 

ongoing subclinical inflammation. This hypothesis was supported by the higher rate of intrathecal 

oligoclonal bands detected in these patients 42. MOG-Ab associated disease may reflect a true 

antibody-mediated epilepsy syndrome, and treatment may best be directed towards ameliorating 

the ongoing inflammation. Although studies show that 30% of children with MOG antibodies will 



relapse within 2 years 43, at the moment we cannot predict which children will relapse or recover, 

and we do not know how MOG-Abs directly contribute to the problems seen. Long-term cognitive 

problems are seen in up to 50% of children with MOG-Ab disease and brain involvement, but 

there are marked differences in both the progression of cognitive impairment and rate of 

accumulation of physical disability 44, 45.  

 

In ADEM, rehabilitation is focused on the motor impairment during the acute phase. Presentation 

with cognitive impairment can be late, and therefore the window of cognitive rehabilitation is often 

missed. Most studies make use of the EDSS (Extended Disability Severity Score) to measure 

outcome which is more representative of physical disabilities as opposed to cognitive problems, 

so underreporting of cognitive sequelae is a possibility. With the uncertainty surrounding whether 

or not a child with MOG-Abs will relapse, treatment and prognostication of these antibody positive 

cases is particularly challenging 39.  

 

Future challenges 

One of main prognostic and treatment challenges in children with immune-mediated and 

autoimmune epileptic encephalopathy is identifying those most at risk of severe disease and long-

lasting cognitive dysfunction when they first present. There is a pressing need to invest in 

collaborative cohort studies to track the natural history of disease and recognize the potential 

predictive features of poor outcome to facilitate timely effective therapeutic interventions. 

Although some studies show that affected children may be at a higher risk of long-term impairment 

than adults, the exact relationship between age of disease onset and eventual outcome is far from 

clear. Confounding factors include the late recognition of disease in children if the presentation is 

not typical causing a delay in treatment onset. The NEOS (anti-NMDAR Encephalitis One-Year 

Functional Status) score was developed using retrospective data from 382 NMDAR-Ab 

encephalitis patients to score affected patients within 4 weeks of initiating treatment and predicts  

the probability of good functional status at 1 year after initial symptom presentation 46. Treatment 

delay of more than 4 weeks, absence of improvement within 4 weeks of starting treatment, 

abnormal MRI, and elevated CSF white blood count were independent predictors for outcome and 

each assigned one point to construct the score. Although the score correlated with the probability 



of poor functional outcome at 1 year, patients with high NEOS scores at outset still progressed to 

recovery after 1 year. Therefore, functional status at one year did not represent the final clinical 

outcome, but was useful in delineating the speed of clinical improvement 46. The development of 

similar tools to predict ultimate clinical outcomes using prospective standardized patient datasets 

should be the aim of future trials. Consideration should also be given to including a qualitative 

component in long-term outcome studies, in order to capture patient and family perspectives at 

crucial time points during recovery 47. 

Immunotherapy is the mainstay of treatment for paediatric immune-mediated epileptic 

encephalopathy and aims to remove circulating neuronal autoantibodies or halt their production. 

Neuronal antibodies target ion channels and receptors (antigens), disrupting neuronal networks at 

a synaptic level during critical time points in a child’s development. There are, as yet, no available 

treatments that ameliorate the specific synaptic effects. This could also be contributing to the long-

term recovery of children with, for example, NMDAR-Ab mediated autoimmune epileptic 

encephalopathy. Pre-clinical studies in rodent models have shown promise in the use of agents that 

modulate the function of the NMDAR at the synapse 48-50, the future challenge will be to translate 

these findings to the bedside. Adjunctive individualised therapies that rescue the target antigen 

dysfunction may allow reduction in the amount of immunotherapy required, thereby minimising 

potential side-effects, and prevention of long-term cognitive problems. 

 

Finally, the increased use of advanced imaging and neurophysiology techniques may also help 

improve identification of underlying brain dysfunction and cognitive impairment early in the 

disease course. The use of resting state functional MRI and connectivity studies in NMDAR-Ab 

encephalitis 9, 51 show potential clinical utility, however translation to standard clinical practice is 

hampered by the small numbers and retrospective analysis. Another important tool for studying 

intrinsic brain activity is resting-state connectivity estimation with magnetoencephalography 

studies (MEG). Global connectivity analysis can highlight abnormal functional networks in 

different frequency bands. For example, in multiple sclerosis (MS) patients a lower functional 

connectivity in the alpha2 band and higher functional connectivity in the beta band have been 

recently found 52. More recently, using clinically applicable MEG-measures it has been 

demonstrated that there is a clinically relevant slowing of neuronal activity in MS patients in 

parietotemporal cortical areas and the thalamus, strongly related to cognitive impairment 53. These 



findings illustrate the relationship between thalamic atrophy, altered functional connectivity and 

clinical and cognitive dysfunction in MS, which could serve as a bridge to understand how 

neurodegeneration is associated with altered functional connectivity and subsequently clinical and 

cognitive decline. The application of resting-state MEG as a biomarker for cognitive disturbances 

in MS and other demyelinating diseases such as MOG-Ab disease in a clinical setting is therefore 

an increasing possibility.  

To date, no study has related the clinical, paraclinical, radiological and neurophysiological features 

at presentation to eventual neuropsychological and neurodevelopmental outcome in peadiatric 

patients with immune-mediated epileptic encephalopathy. This would enable early identification 

of children at risk, leading to better support and cognitive rehabilitation allowing children to reach 

their educational potential, later their vocational potential. Setting the expectations and maximising 

children’s developmental trajectory will improve the quality of life for children and their families. 
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