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ABSTRACT This paper proposes a novel probabilistic framework for the design of probabilistic message
passing mechanism for complex and large dynamical systems that are operating and governing under a
decentralized way. The proposed framework considers the evaluation of probabilistic messages that can
be passed between mutually interacting quasi-independent subsystems that will not be restricted by the
assumption of homogeneity or conformability of the subsystems components. The proposedmessage passing
scheme is based on the evaluation of the marginal density functions of the states that need to be passed
from one subsystem to another. An additional contribution is the development of stochastic controllability
analysis of the controlled subsystems that constitute a complex system. To facilitate the understanding and the
analytical analysis of the proposed message passing mechanism and the controllability analysis, theoretical
developments are demonstrated on linear stochastic Gaussian systems.

INDEX TERMS Probabilistic control, probabilistic message passing, stochastic systems.

I. INTRODUCTION
Complex systems are ubiquitous in nature andman-made sys-
tems. They appear in a wide range of domains including neu-
ronal [1], intracellular, ecological [2], and engineering and
infrastructure [3]. They are composed of a large number of
interacting parts and exhibit collective dynamical behaviour
that cannot be predicted from the properties of the individual
parts themselves. Advances in communication, network sci-
ence, and computing technologies have over the last decades
created a burst of research activity, aiming to uncover new
efficient and cost-effective approaches to model and control
a complex system. As a result, several promising competing
approaches appeared to address the decentralization of the
modelling and control of a complex system. Here we mention
some of the more promising methods.

Current advances include, multiagent systems [4], dis-
tributed control [5], [6], pinning control [7]–[9] and decen-
tralized control [10], [11] to name a few. These advances
however suffer from either over-representing single-agent
architectures as far as the controller design is concerned,
which are centralized and so complete observation of the
global state must be known, or are decentralized and
decisions are based only on incomplete and disconnected
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knowledge, or based on an approximate solution consider-
ing only a single simplifying averaged effect. In addition,
these advances tend to avoid the dynamical characteristic
of a control process, thus cannot effectively handle many
of the dynamical properties of a complex network and do
not allow intelligent and adaptive decisions to be taken.
Similarly, recent developments on distributed and decentral-
ized control still suffer from the lack of a reliable mes-
sage passing framework that can operate efficiently under
the presence of heterogenous or uncertain complex systems
components [12]–[15]. Although some recent studies have
considered the distributed synchronization of multi-agent
systems with heterogeneous agents [15], [16], the agents are
assumed to be represented by linear equations and they are
assumed to have identical dimensions in most of these stud-
ies. Other properties and challenges in controlling a complex
system have aslo been addressed and discussed in the recent
literature. Examples include, the development of adaptive
control methods which considered uncertain switched sys-
tems for networks that change typology overtime [17], [18],
the development of synchronisation methods for complex
networks with time delay [19], and the development of syn-
chronisation methods for uncertain multiagent systems [20].

A fundamental property often overlooked conventionally
is that the control process of a subsystem of these typical
networks-of-networks needs to consider constraints imposed
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from the external environment and neighboring subsystems.
This has been addressed in our recent work [21], [22] where
we postulated a decentralized architecture that incorporates
higher interaction across the network through decoupling the
effect of a subsystem into the subsystem’s own state and
external inputs from neighboring subsystem states estimated
via probabilistic message passing. However, the decentral-
ized architecture in [21], [22] has focused on the problem
of determining optimal control inputs that make the com-
plex system behave in a pre-specified way and have only
developed incipient message passing technique that pass the
parameters from one subsystem to another.

Nonetheless, message passing has significant impact on the
design of optimal control inputs as it provides the collabora-
tive element and offers informative feedback on the states of
the neighbouring subsystems which is an enabler for closing
the loop and optimising design and operation. Therefore,
to address the aforementioned challenges, we provide in this
paper one such approach to the design of a probabilistic
message passing mechanism that is applicable to networked
systems that are operating and governing in a decentralized
way. The proposed message passing scheme is based on the
evaluation of the marginal density functions of the states
that need to be passed from one subsystem to another. Our
solution follows a fully probabilistic framework where a local
subsystem is controlled purely based on local information and
driven only by local coupling to neighbouring subsystems
by probabilistic message passing. The proposed framework
can achieve the control objective of the decentrally controlled
complex system even in the presence of heterogeneous and
dimensionally nonidentical subsystems components that also
operate under uncertainty and are affected by noise and
randomness. An important consequence of the local control
of complex systems which is underappreciated in the study
of complex systems is that following a small perturbation
these systems may undergo undesirable faulty states when
in fact there are other accessible desirable states in which
those undesirable states could be avoided. We will show that
this drawback will not arise in our probabilistic control and
message passing framework. Therefore, we will prove the
stochastic controllability of the decentrally controlled system
that exchanges messages using our proposed probabilistic
message passing method. To facilitate the analytical analysis
of the proposed method, the theoretical development will be
demonstrated on a class of linear stochastic systems that can
be described by Gaussian probability density function.

To summarize, the main contribution of this paper is the
development of the probabilisticmessage passingmethod and
the analysis of the stochastic controllability of the controlled
systems. Compared with the existing results on the topic, this
article has the following distinct features that have not been
reported in the literature. Firstly, a fully probabilistic frame-
work for the design of decentralized controllers and proba-
bilistic message passing is developed where local controllers,
systems models, and communications between the subsys-
tems of a complex system are characterized by probability

density functions. It will be demonstrated that this probabilis-
tic framework guarantees synchronization in the presence of
noise and systems uncertainties. Secondly, the subsystems
components are not restricted by the homogeneity assump-
tion and they are not required to have identical lengths.
This makes the proposed framework more appropriate for
application to real world problems, such as national power
grid systems, water and gas supply networks, a city’s commu-
nication infrastructure and vehicle transport network, which
usually have non-homogeneous and non-identical compo-
nents. Thirdly, the subsystems pass only partial information
about the states of their dynamics. This partial information
is received by neighbouring nodes as probabilistic messages
and treated as external signals. Finally, the stochastic control-
lability of the subsystems is analyzed and the required result
is obtained.

The rest of the paper is organized as follows. The problem
formulation is given in Section II. Here the subsystems repre-
sentation with the notion of external signals is discussed and
the subsystems local randomized controllers are introduced
and their optimized pdfs are given. The main results are
given in Section III. In particular, this section develops the
proposed probabilistic message passing scheme. The analysis
of the stochastic controllability of the subsystems constituting
a complex system is given in Section IV. Section V, pro-
vides the simulation results where the proposed decentralized
probabilistic control andmessage passing framework is tested
and compared to the centralized control approach. Finally,
Section VI concludes the paper by providing a brief summary
of the proposed framework and the obtained results.

II. PROBLEM FORMULATION
As discussed in the introduction section, this paper considers
a fully probabilistic decentralized control framework where
each subsystem in the complex system is controlled based on
its local information and uncertain information provided by
the external signals from the neighbouring subsystems states
estimated via probabilistic message passing. Within the pro-
posed framework, system complexity, variability and uncer-
tainty will be dealt with by using probabilistic designmethods
to design local controllers. Once the closed loop behaviour
from local controllers is obtained, local controllers will be
required to diffuse information to neighbouring subsystems.
Information diffusion will be achieved through probabilistic
message passing in order to update the knowledge of the
subsystems about their external inputs which will be achieved
by using probabilistic inference methods. The mathematical
representation of the system dynamics with external signals
from neighbouring subsystem states is given in the next
section.

A. SUBSYSTEMS REPRESENTATION
This paper considers the decentralized control of a com-
plex stochastic system which consists of a collection of
N mutually interacting quasi-independent subsystems that
evolve under local constraints driven only by local coupling to
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neighbouring subsystems by probabilistic message passing.
Each subsystem is locally controlled by a randomized con-
troller, c(ut;i|zt−1;i). Here ut;i represents a sequence of multi-
variate inputs that governs subsystem i, t ∈ {1, . . . ,H} is the
time index, H is the control horizon, and zt;i = [yt;i, xt;i]T

is the subsystem state vector with yt;i being the multivariate
output of the local subsystem and xt;i being the multivariate
observed external signals received from neighbouring subsys-
tems. The interaction of these multivariate random variables
is assumed to be modelled by a Markov type pdf as follows,

s(yt;i, ut;i, xt;i|ut−1;i, . . . u0;i, yt−1;i,. . ., y0;i, xt−1;i, . . . , x0;i)

= s(yt;i|ut;i, zt−1;i)s(xt;i|xt−1;i)c(ut;i|zt−1;i) (1)

where s(yt;i|ut;i, zt−1;i) and c(ut;i|zt−1;i) represent the pdf
of the multivariate output and randomized controller of the
local subsystem i respectively. Also, s(xt;i|xt−1;i) represents
the pdf of the external random signals to subsystem i. The
conditioning of this pdf of external signals on the previous
external signals only stems from our assumed legitimate fact
that the inherent dynamics of these external variables cannot
be influenced by the inputs ut;i or outputs yt;i of the ith local
subsystem.
Remark 1: Inmost of the existing literature, the subsystems

dynamics are described by dynamical equations which do not
provide a complete characterization for stochastic systems
that operate under high levels of uncertainty and noise. In this
paper the system dynamics are completely characterized by
their pdfs as given in Equation (1). Furthermore, These pdfs
are not assumed to be known apriori, therefore they are
estimated online using the method proposed in [23].
Remark 2: In many real world complex systems, the sub-

systems components constituting the complex system are het-
erogeneous. Therefore, the formulation in this paper will
not be restricted by the assumption of homogeneity of the
subsystems components. In particular, we consider N non-
identical mutually interacting quasi-independent subsystems
that can be characterized by nonidentical pdfs and that can
have different lengths. Furthermore, the mutual interaction
of the independent subsystems is not necessarily assumed to
be symmetric, which implies that the message passing of the
corresponding typological network is allowed to be either
directed or undirected.

Each local subsystem i, is controlled by a local controller
that is optimized to achieve its control objectives. In this paper
local controllers are designed using the fully probabilistic
design (FPD) control method [23], [24]. This method spec-
ifies the control objective of subsystem i by an ideal pdf that
determines the steady state behaviour of the joint distribution
of the closed loop system dynamics,

Is(yt;i, ut;i, xt;i|ut−1;i,. . .u0;i, yt−1;i,. . ., y0;i, xt−1;i,. . ., x0;i)

=
Is(yt;i|ut;i, zt−1;i)s(xt;i|xt−1;i) Ic(ut;i|zt−1;i), (2)

where here the superscript I is used to denote the ideal pdf
of the corresponding factor of pdf in Equation (1). The pdf
factor, s(xt;i|xt−1;i) in Equation (2) is taken to be equal to its

corresponding factor in Equation (1) to reflect our assumed
legitimate fact that xt are external multivariate signals,
thus they cannot be influenced or changed in node i.
The randomized controller is then optimized such that the
Kullback–Leibler divergence between the actual joint distri-
bution (1) and ideal joint distribution (2) is minimized,

− ln
(
γ
(
zt−1;i

))
= min

c(ut;i|zt−1;i)
D(s(yt;i, ut;i, xt;i|zt−1;i)||

×
Is(yt;i, ut;i, xt;i|zt−1;i)), (3)

where, − ln
(
γ
(
zt;i
))

is the value function, and D(.) repre-
sents the Kullback-Leibler divergence.

Since the focus of this paper is on the challenging problem
of probabilistic message passing, the next section will only
briefly give the results of the solution of the optimized sub-
systems local randomized controllers. No details on the FPD
method, its procedure, or the optimisationmethodology of the
randomized controllers will be provided here, however, they
can be found in [23]–[25].

B. SUBSYSTEMS LOCAL CONTROLLERS
Given the probabilsitic description of the joint distribution of
the controlled system dynamics given in Equation (1) and its
ideal joint pdf given in Equation (2), the optimal randomized
controller that minimizes the Kullback-Leibler divergence
specified in Equation (3) is given in the following proposition.
Proposition 1: The optimal randomized controller that

minimizes the Kullback–Leibler divergence defined in Equa-
tion (3) subject to the joint distribution of the stochastic
system given in Equation (1) and its ideal distribution given
in Equation (2) is given by,

c(ut;i|zt−1)=
Ic(ut;i|zt−1;i) exp[−β(ut;i, zt−1;i)]

γ (zt−1;i)
,

γ (zt−1;i)=
∫

Ic(ut;i|zt−1;i) exp[−β(ut;i, zt−1;i)]dut;i,

β(ut;i, zt−1;i)=
∫
s(yt;i|ut;i, zt−1;i)

× ln
(

s(yt;i|ut;i, zt−1;i)
Is(yt;i|ut;i, zt−1;i)γ̃ (yt;i, xt−1;i)

)
dyt;i,

ln(γ̃ (yt;i, xt−1;i))

=

∫
s(xt;i|xt−1;i) ln(γ (zt;i))dxt;i. (4)

Proof: The derivation of the above result can be found
in [21].

To emphasize, the randomized control solution given in
Equation (4) is not restricted by the pdf of the system dynam-
ics or its ideal distribution. It provides the general solution
without constraints on the required pdfs. However, the evalu-
ation of the analytic solution for this randomized controller is
not possible except for the special case of linear and Gaussian
pdfs. Therefore, to facilitate the understanding and the ana-
lytical solution of the proposed probabilistic message passing
method, the rest of the paper will focus on the development of
the required solutions for the optimal randomized controllers
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and the probabilistic message passing for the case where
the pdfs given in Equations (1) and (2) are assumed to be
Gaussian.

Thereupon, consider subsystems that are characterized by
linear Gaussian pdfs and that receive messages from neigh-
bouring subsystems as external multivariate signals. To be
more specific, the pdf of the mutivariate output of local
subsystem i is given by,

s(yt;i|ut;i, zt−1;i) = N (ȳt;i,Qi),

s(xt;i|xt−1;i) = N (x̄t;i,Ri), (5)

where Qi and Ri are the covariances of the subsystem output
and external signals respectively, and where,

ȳt;i = Aizt−1;i + Biut;i,

x̄t;i = Cixt−1;i. (6)

Within the FPD control framework, the control objective
can be achieved through the specification of the appropri-
ate parameters of the ideal distribution that will realise the
desired objective. Therefore, the solution in this section will,
without any loss of generality, be given for the regulation
problem where it is required to bring all the system states
from their initial values back to zero. Thus, given this control
objective the ideal distribution is assumed to be given by,

Is(yt;i|ut;i, zt−1;i) = N (0, 6i),
Is(xt;i|xt−1;i) = N (x̄t;i,Ri), (7)

where 6i specifies the desired fluctuations of the system
output around zero that need to be achieved. Also, note that
Is(xt;i|xt−1;i) is taken to be the same as the subsystem distri-
bution of the external signals, emphasising that the external
signals should not be governed or even affected by the subsys-
tem output. Similarly, the ideal distribution of the controller
is assumed to be given by,

Ic(ut;i|zt−1;i) = N (0, 0i), (8)

where 0i determines the allowed range of the optimal control
inputs. The next proposition specifies the solution to the
optimized randomized controller based on (3) for subsystems
with observed external signals.
Proposition 2: The optimal randomized controller for the

subsystem described by (5) and ideal distributions of system
dynamics and control inputs described by (7) and (8) respec-
tively is given by,

c(ut;i|zt−1;i) = N (ūt;i, 0t;i) (9)

where,

ūt;i = −Kt;izt−1;i,

0t;i = (0i−1 + BTi Mt;iBi),

Kt;i = 0
−1
t;i B

T
i
[
Mt;iAyt−1;i Mt;iAxt−1;i + St,2;iCi

]
,

Mt;i = 6i
−1
+ St,1;i, (10)

and where,

− ln
(
γ
(
zt;i
))
= 0.5zTt;iSt;izt;i + 0.5ωt;i, (11)

with

St−1,1;i = −ATyt−1;iMt;iBi0
−1
t;i B

T
i M

T
t;iAyt−1;i

+ATyt−1;iMt;iAyt−1;i, (12)

St−1,2;i = −2ATyt−1;iMt;iBi0
−1
t;i B

T
i M

T
t;iAxt−1;i

+ 2ATyt−1;iMt;iAxt−1;i + 2ATyt−1;iMt;iCi

− 2ATyt−1;iMt;iBi0
−1
t;i B

T
i St,2;iCi, (13)

St−1,3;i = CT
i St,3;iCi + A

T
xt−1;iMt;iAxt−1;i

+ 2ATxt−1;iSt,2;iCi−A
T
xt−1;iMt;iBi0−1t BTMt;iAxt−1;i

−CT
i St,2;iBi0

−1
t BTi St,2;iCi

− 2ATxt−1;iMt;iBi0
−1
t;i B

T
i St,2;iCi,

ωt−1;i = ωt;i + tr(St,1;i6i)+ tr(St,3;iRi)

+ ln|I + (Bi00.5
i )TMt;i(Bi00.5

i )|, (14)

is the quadratic cost function. We have also introduced the

following partitioning of the matrices, St;i =
[
St,1;i St,2;i
St,2;i St,3;i

]
,

and Ai =
[
Ayt−1;i Axt−1;i

]
.

Proof: The proof of this proposition can be obtained by
evaluating Equation (4) using the corresponding pdfs speci-
fied in Equations (5), (7), and (8). Its detailed derivation can
be found in [21]. As can be seen from Equation (10), only
the two blocks defined in Equations (12) and (13) of the full
Riccati matrix St;i need to be solved. The third block defined
in (14) of the Riccati equation does not need to be solved. This
decreases the computational efforts in obtaining the optimal
randomized control law compared to the global solution.

The following sections will focus on the development of
the proposed probabilistic message passing algorithm for the
non-identical mutually interacting quasi-independent subsys-
tems and the controllability analysis of these subsystems con-
stituting a complex system, which are the main contributions
of this paper.

III. MAIN RESULTS
Our decentralized framework is based on the decomposition
of a complex system into smaller subsystems that can be
controlled individually to achieve their local control objec-
tives. Messages can then be passed between the subsystems
to keep them informed about each others objectives and the
whole system objectives thus ensuring the achievement of
these objectives without the need to centrally control each
subsystem in the complex system. When passed from one
subsystem to another, messages enter the receiving subsys-
tem as external multivariate signals. External here empha-
sizes our hypothesis that the receiving subsystem can only
receive these signals from its neighbouring subsystems with-
out being allowed to influence these signals or change their
values or dynamics. In another word, the message passing
in our decentralized framework is done with the objective of
sending information about the state of the passing subsystem
to the receiving neighbour subsystem keeping it informed
about its surrounding environment. This allows the local
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controllers to control their local environments, and at the
same time harmonize their actions with the surrounding envi-
ronment by making use of uncertain information provided
by the external signals. Once the closed loop behaviour from
local controllers is obtained, local controllers will be required
to diffuse information to neighbouring subsystems. Informa-
tion diffusion will be achieved through probabilistic message
passing in order to update the knowledge of the subsystems
about their external inputs which will be achieved by using
probabilistic inference methods as will be detailed in this
section.

A. PROBABILISTIC MESSAGE PASSING
As discussed in previous sections, the state of each subsystem
is decoupled into its own state and external inputs from
neighbouring subsystem states estimated via probabilistic
message passing. In the probabilistic framework proposed in
this paper, information of the subsystem about its external
states that are received from neighbouring subsystems can
be obtained using probabilistic inference methods. Since the
subsystems constituting the complex system are assumed in
this paper to be inherently stochastic, complete description of
the closed loop behaviour of each subsystem can be described
by the joint probability density function of its interacting
variables including its internal and external states and its
control input. This can be expressed as follows,

s(yt;i, xt;i, ut;i
∣∣zt−1;i ). (15)

Subsystem i will then be required to pass information about
a subset of its internal state variables, yt;i to its neighbouring
subsystems. This means that the marginal distribution of the
subset of the states that will be required to be passed from
one subsystem to another need to be evaluated. To achieve
this objective we introduce the following definition for the
messages to be passed from subsystem i to subsystem j
Definition 1: Let s(yt;i, xt;i, ut;i

∣∣zt−1;i ) be the complete
description of the interacting variables of subsystem i, and
assume that the probabilistic message to be passed from sub-
system i to subsystem j constitutes information about a subset
q of its internal states, yt;i, then the probabilistic message to
be passed from subsystem i to subsystem j is defined as,

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫
s(yt;i, xt;i, ut;i

∣∣zt−1;i )dyq+1t;i . . . dynt;idxt;idut;i. (16)

Following Definition 1, the probability density function of
the states to be passed from subsystem i to subsystem j can
be shown to be given by the following theorem.
Theorem 1: Given the probability density function of

the multivariate output of local subsystem i defined in
Equation (5), the probability density function of the random-
ized controller of subsystem i defined in Equation (9), and
Definition 1, the probabilistic message to be passed from
subsystem i about a subset q of its internal states to subsystem

j is given by,

Mj←i(y
q
t;i

∣∣zt−1;i ) = N (µqyt;i , 6
q
yt;i ), (17)

where,

µyt;i = Aizt−1;i + Biūt;i,

6yt;i = [BTi Q
−1
i Bi + 0

−1
t;i ]. (18)

and where we introduced the following notation and parti-
tioning of the matrices,

yqt;i =

 y1,t;i. . .

yq,t;i

 , yn−qt;i =

 yq+1,t;i. . .

yn,t;i

 , yt;i =
[
yqt;i
yn−qt;i

]
,

µqyt;i =

µy1,t;i. . .

µyq,t;i

 , µn−qyt;i =

µyq+1t;i. . .

µyn,t;i

 ,
µyt;i =

[
µ
q
yt;i

µ
n−q
yt;i

]
, 6yt;i =

[
6
q
yt;i 6

q,n−q
yt;i

6
n−q,q
yt;i 6

n−q
yt;i

]
,

6−1yt;i = � =

[
�q �q,n−q

�n−q,q �n−q

]
. (19)

Proof: The evaluation of the probabilistic message to
be passed from subsystem i to subsystem j can be obtained
by applying the chain rule to the integral on the right hand
side of Equation (16). This yields,

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫
s(yt;i

∣∣ut;i, zt−1;i )s(xt;i ∣∣xt−1;i )s(ut;i ∣∣zt−1;i )
× dyq+1t;i . . . dynt;idxt;idut;i. (20)

Integrating over xt;i in Equation (20), we obtain,

Mj←i(y
q
t;i

∣∣zt−1;i ) = ∫ s(yt;i
∣∣ut;i, zt−1;i )s(ut;i ∣∣zt−1;i )
× dyq+1t;i . . . dynt;idut;i. (21)

Using Equations (5), (6) and (9) in Equation (21) we get,

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫ (∫
exp

{
− 0.5

[
yt;i − (Aizt−1;i + Biut;i)

]T
Q−1i

×

[
yt;i − (Aizt−1;i + Biut;i)

]
− 0.5

[
ut;i − ūt;i

]T
0−1t;i [ut;i−ūt;i

]}
dut;i

)
dyq+1t;i . . . dynt;i.

(22)
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Integrating over ut;i in Equation (22) we get,

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫
exp

{
− 0.5

[
yTt;iQ

−1
i yt;i

+ zTt−1;iA
T
i Q
−1
i Aizt−1;i − 2 yTt;iQ

−1
i Aizt−1;i + ūTt;i0

−1
t;i ūt;i

−

(
0−1t;i ūt;i + B

T
i Q
−1
i yt;i − BTi Q

−1
i Aizt−1;i

)T
× [BTi Q

−1
i Bi + 0

−1
t;i ]
−1
(
0−1t;i ūt;i + B

T
i Q
−1
i yt;i

−BTi Q
−1
i Aizt−1;i

)]}
dyq+1t;i . . . dynt;i. (23)

The integral in Equation (23) can then be rewritten as,

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫
exp

{
− 0.5

[
yt;i − (Aizt−1;i

+Biūt;i)
]T

[BTi Q
−1
i Bi + 0

−1
t;i ]
−1
[
yt;i − (Aizt−1;i

+Biūt;i)
]}

dyq+1t;i . . . dynt;i. (24)

Using Equations (18) and (19) in Equation (24), yields

Mj←i(y
q
t;i

∣∣zt−1;i )
=

∫
exp

{
− 0.5

[
yt;i − µyt;i

]T
6−1yt;i[

yt;i − µyt;i

]}
dyq+1t;i . . . dynt;i,

=

∫
exp

{
− 0.5

[
yqt;i − µ

q
yt;i

yn−qt;i − µ
n−q
yt;i

]T [
�q �q,n−q

�n−q,q �n−q

]
×

[
yqt;i − µ

q
yt;i

yn−q − µn−qyt;i

]}
dyq+1t;i . . . dynt;i. (25)

The evaluation of the above integral can be achieved by
rewriting the exponent in Equation (25) in the following form,

−0.5

[
yqt;i − µ

q
yt;i

yn−qt;i − µ
n−q
yt;i

]T [
�q �q,n−q

�n−q,q �n−q

]
×

[
yqt;i − µ

q
yt;i

yn−q − µn−qyt;i

]
= −0.5

{[
(yqt;i − µ

q
yt;i )

T (�q
−�q,n−q�n−q−1�n−q,q)(yqt;i

−µqyt;i )
]
+

[
(yn−qt;i −µ

n−q
yt;i )+�

n−q−1�n−q,q(yqt;i−µ
q
yt;i )
]T

×�n−q
[
(yn−qt;i − µ

n−q
yt;i )+�

n−q−1�n−q,q(yqt;i − µ
q
yt;i )
]}

= −0.5
{
(yqt;i − µ

q
yt;i )

T6q−1
yt;i (y

q
t;i − µ

q
yt;i )+ (yn−qt;i − ht;i)

T

�n−q(yn−qt;i − ht;i)
}
, (26)

where we have introduced the definition, ht;i = µ
n−q
yt;i −

�n−q−1�n−q,q(yqt;i − µ
q
yt;i ), and where based on Theo-

rem 8.2.1 in [26] we replaced (�q
− �q,n−q�n−q−1�n−q,q)

with6q−1
yt;i . Noting that since the elements in yqt;i are constants

with respect to the variables of integration in Equation (25),
the evaluation of the integral in (25) gives,

Mj←i(y
q
t;i

∣∣zt−1;i )= exp{−0.5[yqt;i−µ
q
yt;i ]

T6
q−1
yt;i [y

q
t;i−µ

q
yt;i ]}

(2π )q/2|6q
yt;i |

1/2
,

(27)

which proves the theorem. �
According to the proposed fully probabilistic decentralized

control and message passing framework, subsystem j will
then use the message passed from subsystem i about the
subset q of the internal state values of subsystem i as defined
in Equation (17), to update its knowledge about its external
state variables. In particular, the message received at node
j about the subset q of the internal states of subsystem i
represents the observation information on the external states
of subsystem j,

Mj←i(y
q
t;i

∣∣zt−1;i ) = N (µqyt;i , 6
q
yt;i ), where, xt;j← yqt;i.

(28)

Therefore, the prior information that node j retains about its
external signals, xt;j can be fused using Bayes’ rule with
the new observed information received through the passed
message from node i about the subset q of its internal states,
thus updating the knowledge of node j about its external
signals. This is stated in the following theorem.
Theorem 2: The information provided by the message

passed from node i to node j as given in Equation (28) and
the prior information retained by node j about its external
states, s(xt;j|xt−1;j) = N (x̄t;j,Rj) can be fused using Bayes’
rule, thus yielding the following message passing update of
the external states of node j,

s(xt,j,fused ) = N (x̄t,j,fused , 6t;j,fused ) (29)

where,

x̄t,j,fused = x̄t;j + Kt;j(µqyt;i − x̄t;j), (30)

6t;j,fused = Rj − Kt;jRj, (31)

and where,

Kt;j = Rj(Rj +6q
yt;i )
−1. (32)

Proof: The new pdf of the external signals in node j
that represents the fusion of the information from their prior
distribution in node j, s(xt;j|xt−1;j) = N (x̄t;j,Rj) and the
passed probabilistic message from node i, Mj←i(y

q
t;i

∣∣zt−1;i )
defined in Equation (28) where yqt;i is mapped to xt;j,
can be obtained using Bayes’ rule by multiplying the two
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together,

s(xt,j,fused )

= exp{−0.5[xt;j − µqyt;i ]
T6q−1

yt;i [xt;j − µ
q
yt;i ]

− 0.5[xt;j − x̄t;j]TR
−1
j [xt;j − x̄t;j]},

= exp{−0.5xTt;j[6
q−1
yt;i + R

−1
j ]xt;j + xTt;j[6

q−1
yt;i µ

q
yt;i

+R−1j x̄t;j]− 0.5µq
T

yt;i6
q−1
yt;i µ

q
yt;i − 0.5x̄Tt;jR

−1
j x̄t;j},

= exp{−0.5(xt;j − x̄t,j,fused )T [6q−1
yt;i + R

−1
j ]−1

(xt;j − x̄t,j,fused )+ [6q−1
yt;i µ

q
yt;i + R

−1
j x̄t;j]T

×[6q−1
yt;i + R

−1
j ]−1[6q−1

yt;i µ
q
yt;i + R

−1
j x̄t;j]

− 0.5µq
T

yt;i6
q−1
yt;i µ

q
yt;i − 0.5x̄Tt;jR

−1
j x̄t;j}, (33)

where we have used the following definitions,

x̄t,j,fused = [6q−1
yt;i + R

−1
j ]−1[6q−1

yt;i µ
q
yt;i + R

−1
j x̄t;j], (34)

6t;j,fused = [6q−1
yt;i + R

−1
j ]−1 (35)

Applying the Woodbury identity to Equations (34) and (35)
and introducing the definition Kt;j = Rj(Rj + 6

q
yt;i )
−1 yields

the results given in Equations (30) and (31). This proves the
theorem. �

IV. STOCHASTIC CONTROLLABILITY
This section is concerned with the analysis of the stochastic
controllability of the subsystems that are controlled using
the decentralized probabilistic message passing and control
framework. Here, we will show that most of the developed
results in the study of controllability [27], [28] of complex
systems are not valid under the proposed framework and
better controllability can be achieved through the developed
collaborative and cooperative control as proposed in this
paper. As will be seen from further analysis, the probabilistic
passing of messages from one subsystem to another will
facilitate the controllability of the controlled complex system
even if it has inaccessible states. To show this, we con-
sider the stochastic representation of the subsystems given in
Equations (5) and (6). In particular, consider the stochastic
representation of subsystem j,

yt;j = Ajzt−1;j + Bjut;j + εt;j, (36)

xt;j = Cjxt−1;j + νt;j, (37)

where εt;j and νt;j are Gaussian noises with zero means and
Qj and Rj covariances respectively as can be inferred from
Equation (5). The optimized randomized controller for the
subsystems in the proposed decentralized control framework
is defined in Equation (9). Based on (9), the stochastic rep-
resentation of the randomized controller of subsystem j is
given by,

ut;j = ūt;j + ηt;j, (38)

where ηt;j is Gaussian noise with zero mean and 0t,j covari-
ance. Using Equation (38) in Equation (36) and partitioning

the matrix Aj in Equation (36) into the part that is multiply-
ing the internal states, Ayt−1;j and the part that is multiplying
the external signals, Axt−1;j, Equations (36) and (37) can be
rewritten in the following compact form,[
yt;j
xt;j

]
︸ ︷︷ ︸
zt;j

=

[
Ayt−1;j Axt−1;j

0 Cj

]
︸ ︷︷ ︸

Ãj

[
yt−1;j
xt−1;j

]
︸ ︷︷ ︸

zt−1;j

+

[
Bj
0

]
︸ ︷︷ ︸
B̃j

ūt;j +
[
εt;j + ηt;j
νt;j

]
︸ ︷︷ ︸

κ̃t;j

. (39)

The above equation represents the stochastic representation
of subsystem j before it communicates with its neighbours
through the proposed probabilistic message passing. From
this equation it is clear that xt;j, being treated as external
signals, are inaccessible to subsystem j and their values can-
not be changed or affected by the local controller designed
for subsystem j. Therefore this subsystem cannot be con-
trolled by controlling its internal states only. However, within
the proposed decentralized control framework subsystem j,
updates its information about its external signals through
probabilistic message passing. With this update we will show
here that the external states are in fact controllable as their val-
ues are controlled in neighbouring subsystems before being
passed to the corresponding subsystem.

To proceed with the controllability analysis of the subsys-
tems in the complex network, the external signals to subsys-
tem j are assumed to be received from subsystem i only. This
provides no restriction of any kind and subsystem j can still
be allowed to be connected to other neighbouring subsystems
in the complex network. Using the message that is passed
from subsystem i to subsystem j as defined in Equations (29)
and (30), the stochastic representation of the dynamics of the
external signals of node j as defined in Equation (37) can be
rewritten as,

xt;j=Cjxt−1;j+Kt;j(A
q
i z
q
t−1;i+B

q
i ū
q
t;i−Cjxt−1;j)+ν̃t;j, (40)

where ν̃t;j is a Gaussian noise with zero mean and 6t;j,fused
covariance matrix. Using Equations (36), (38) and (40),
the stochastic description of node j can be re-expressed as,[

yt;j
xt;j

]
︸ ︷︷ ︸
zt;j

=

[
Ayt−1;j Axt−1;j

0 Cj − Kt;jCj

]
︸ ︷︷ ︸

Āt;j

[
yt−1;j
xt−1;j

]
︸ ︷︷ ︸

zt−1;j

+

[
Bj 0
0 Kt;jB

q
i

]
︸ ︷︷ ︸

B̄t;j

[
ūt;j
ūt;i

]
︸ ︷︷ ︸
ūt;j,aug

+Kt;j

[
0 0

Aqyt−1;i A
q
xt−1;i

]
︸ ︷︷ ︸

Āqt;i

×

[
yqt−1;i
xqt−1;i

]
︸ ︷︷ ︸

zt−1;j

+

[
εt;j + ηt;j
ν̃t;j

]
︸ ︷︷ ︸

κt;j

,

zt;j = Āt;jzt−1;j + B̄t;jūt;j,aug + Ā
q
t;iz

q
t−1;i + κt;j. (41)
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A quick inspection to the above equation, shows that the
external signals, xt,j to subsystem j are in fact controllable
through the control signal of subsystem i, ūt;i where the
values of these external signals to subsystem j can be changed
as desired in subsystem i. In addition, the solution of Equa-
tion (41) can be easily verified to be given by,

zt+L;j = φ(t + L, t + 1)zt;j

+

L∑
n=1

φ(t + L, n+ t + 1)B̄t+n;jūt+n;j,aug

+

L∑
n=1

φ(t + L, n+ t + 1)Āqt+n;iz
q
t+n−1;i

+

L∑
n=1

φ(t + L, n+ t + 1)κt+n;j, (42)

where,

φ(t + L, t + 1)

=

{
At+L;jAt+L−1;j . . .At+1;j if t + 1 < t + L
I if t + 1 > t + L

(43)

It can be seen from Equation (42), that the mean and covari-
ance of the state of subsystem j at time t + L are given by,

z̄t+L;j = φ(t + L, t + 1)zt;j

+

L∑
n=1

φ(t + L, n+ t + 1)B̄t+n;jūt+n;j,aug

+

L∑
n=1

φ(t+L, n+t+1)Āqt+n;iz
q
t+n−1;i, (44)

cov(zt+L;j)=
L∑

n=t+2

φ(t+L, n)cov(κt+n;j)φT (t+L, n). (45)

Therefore, obviously, for complete controllability of the
subsystem j defined in Equation (41), the covariance of
the stochastic subsystem distribution, cov(zt+L;j) defined in
Equation (45) should remain bounded [25]. This condition
guarantees that the residual error of subsystem j remains
bounded.

V. NUMERICAL SIMULATION
The proposed probabilistic decentralized control and mes-
sage passing framework is validated in this section on the
following stochastic discrete time dynamical system,
X1,t
X2,t
X3,t
X4,t
X5,t

 =

−0.6 0.87 0 0 0.50
−0.31 −0.178 0 0 1.2

0 1.0 0 0 0
1 0.064 0 0 0

0.062 −0.1 0 0.1 −0.236



×


X1,t−1
X2,t−1
X3,t−1
X4,t−1
X5,t−1

+

−0.13 0.035
−0.012 −0.025

0 0
0 0

0.002 0.008


[
U1,t
U2,t

]
+κt ,

(46)

FIGURE 1. The state and control inputs of the controlled system as a
result of using decentralized control and the proposed message passing:
(a) the states of the system derived using decentralized control and the
proposed message passing. Red solid line is system state 1, green
dash-dot line is state 2, purple with asterisk line is state 3, black dotted
line is state 4, and dashed yellow line is state 5 (b) the control inputs of
the system using decentralized control and the proposed message
passing. Blue dashed line is the control input of subsystem i , red dotted
line is the control input of subsystem j , and Yellow solid line is the
control input of subsystem k .

where κt is Gaussian noise with zero mean and covariance
matrix equal to 0.01I5×5, I is the identity matrix, and where
X and U refer to the state and control input respectively
of the global complex system. Three sets of experiments
were then conducted for comparison. The first set considers
the globally centralized FPD randomized control [24] of
the dynamical system (46), the second considers the decen-
tralized FPD where the subsystems communicate by pass-
ing information about the parameters of their models [22],
while the third considers the decentralized control of the
system (46) according to the proposed probabilistic message
passing. In these experiments, the high level control aim is
to return the whole system state of 5 nodes from its ini-
tial value x0 =

[
10.989 5.2551 3.7985 6.5140 −1.1645

]T
to the origin or a state close to the origin. In addition all
pdfs of the systems/subsystems dynamics are assumed to
be unknown apriori, therefore they are estimated online as
discussed in [23].

In the decentralized control experiments, the control task
is designated by three separated subsystems to be controlled
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FIGURE 2. The state and control inputs of the controlled system as a
result of using decentralized control and parameters message passing:
(a) the states of the system derived using decentralized control and
parameters message passing. Red solid line is system state 1, green
dash-dot line is state 2, purple with asterisk line is state 3, black dotted
line is state 4, and dashed yellow line is state 5 (b) the control inputs of
the system using decentralized control and parameters message passing.
Blue dashed line is the control input of subsystem i , red dotted line is the
control input of subsystem j , and Yellow solid line is the control input of
subsystem k .

by local knowledge where each subsystem is responsible for
controlling a different set of states of the global system (46).
To clarify, node i takes X1,t = y1,t;i, X4,t = y2,t;i as
internal states, and X2,t = x1,t;i, X5,t = x2,t;i as exter-
nal states. Hence, the system model of node i is descri-
bed by,

s(yt;i|ut;i, zt−1;i) = N (Aizt−1;i,Qi),

where Ai =
[
−0.6000 0 0.8700 0.5000
1.0000 0 0.0640 0

]
,

Bi =
[
1
1

]
,

s(xt;i|xt−1;i) = N (Cixt−1;i,Ri),

where Ci =
[
0 0 c1;i c2;i
0 0 c3;i c4;i

]
. (47)

Node j takes Xt,3 = y1,t;j, and Xt,5 = y2,t;j as internal states,
and Xt,4 = x1,t;j as external state. Hence the system model of

FIGURE 3. The state and control inputs of the controlled system as a
result of using centralized control: (a) the states of the system derived
using centralized control. Red solid line is system state 1, green dash-dot
line is state 2, purple with asterisk line is state 3, black dotted line is state
4, and dashed yellow line is state 5 (b) the control inputs of the system
using centralized control. Blue solid line is control input 1, and red
dashed line is control input 2.

node j is described by,

s(yt;j|ut;j, zt−1;j) = N (Ajzt−1;j,Qj),

where Aj =
[
0 0 0
0 −0.2360 0.100

]
,

Bj =
[
1
1

]
,

s(xt;j|xt−1;j) = N (Cjxt−1;j,Rj),

where Cj =
[
0 0 c1;j

]
. (48)

Node k takes Xt,2 = y1,t;k as internal state, and Xt,1 =
x1,t;k as external state. Hence the system model of node k
is described by,

s(yt;k |ut;k , zt−1;k ) = N (Akzt−1;k ,Qk ),

where Ak =
[
−0.178 −0.31

]
,

Bk =
[
1
]
.

s(xt;k |xt−1;k ) = N (Ckxt−1;k ,Rk ),

Ck =
[
0 c1;k

]
. (49)
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These three subsystems are nonidentical as can be seen from
their parameters and they also have different lengths and
different number of external signals.

The states of the system and the control signals that
result from the decentralized control approach and the
proposed probabilistic message passing are shown in
Figures 1, (a) and (b) respectively. From these figures, it can
be clearly seen that the controlled systems are globally syn-
chronised and that the designed probabilistic control and
message passing approach has been effective in reconstruct-
ing the global desired state using only decentralized local
knowledge.

The states of the system and the control signals as a result
of the decentralized control approach and the message pass-
ing of the parameters of the subsystems models are shown
in Figures 2, (a) and (b) respectively. The figures show
that the local controllers exhibit larger transient overshoot
compared to the decentralized controllers with the proposed
probabilistic message passing. This is expected because in
this method, the subsystems communicate information about
the parameters of their models which will not have converged
in this transient period.

The third experiment considers the control of system (46)
using the fully probabilistic control designmethod [24] where
the 5 states of the system are controlled using two control
inputs as specified in Equation (46). The resulting opti-
mized states of the system and control input are shown in
Figure 3, (a) and (b) respectively. As can be concluded from
these figures, the centralized controller is again capable of
bringing all the states of the system to the required zero value,
but it shows higher fluctuations in the transient and steady
state periods compared to the decentralized controller.

VI. CONCLUSION
This paper developed a new probabilistic message passing
framework for a class of complex and large dynamical sys-
tems that are controlled decentrally by controlling their indi-
vidual subsystems components. The proposed probabilistic
message passing scheme for the important decentralized con-
trol problems is the main contribution of this paper. It uses
the probabilistic inference method to evaluate the marginal
distributions of the states to be passed from one subsys-
tem to another keeping the receiving subsystems informed
about their surrounding environment. Following the success-
ful development of this message passing scheme, the stochas-
tic controllability of the subsystems constituting a complex
system is analyzed. It is shown here that because of the
message passing between the subsystems, the subsystems
states remain controllable even if they are inaccessible in
that subsystem. The developed message passing method is
not constrained by the assumption of the homogeneity of the
individual subsystems and they do not require them to have
identical lengths thus, extending the results of many of the
existing methods. Finally, the theoretical development of the
proposed message passing framework is demonstrated on a

stochastic dynamical system consisting of five nodes and its
effectiveness is proved.

The proposed framework is readily applicable to a wide
range of application areas including biological networks,
autonomous unmanned vehicles, animal cooperative aggre-
gation and flocking, and societal networks. It is also suitable
for industry 4.0 [29] and can be applied to a broad range of
production processes and complex cyber-physical systems.
Future work will consider the extension of the decentral-
ized randomized control solution to take into considerations
delays in the control input and state of the stochastic system.
Although it is desirable but hard, the application of the pro-
posed solution to practical real world problems will also be
sought.
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