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Abstract. This work presents a comparison of results obtained by dif-
ferent methods for the Multiobjective Open-Pit Mining Operational Plan-
ning Problem, which consists of dynamically and efficiently allocating a
fleet of trucks with the goal of maximizing the production while reducing
the number of trucks in operation, subject to a set of constraints defined
by a mathematical model. Three algorithms were used to tackle instances
of this problem: NSGA-II, SPEA2 and an ILS-based multiobjective op-
timizer called MILS. An expert system for computational simulation of
open pit mines was employed for evaluating solutions generated by the
algorithms. These methods were compared in terms of the quality of the
solution sets returned, measured in terms of hypervolume and empirical
attainment function (EAF). The results are presented and discussed.

Keywords: Open pit mines, dispatch, multiobjective optimization, per-
formance comparison

1 Introduction

The efficient use of available resources by companies is a requirement in any
highly competitive market. For mining companies, using the fleet of trucks and
shovels in the best possible way can enable a significant reduction in operational
costs and a considerable improvement in productivity. According to Nel et al.
[21] the cost of operating trucks and shovels in a open pit mine corresponds
to between 50 to 60 percent of the total cost of operation. Moreover, trucks
ranging from 100 to 240 tonnes of transport capacity usually cost from $1.8 to
$4.7 million dollars, respectively [8]. Therefore, investment in efficient usage of
available equipments can result in significant reductions in the total costs of a
mining operation.
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The solution to the problem of truck dispatching in open pit mines consists
basically of answering the question: where each truck should go after leaving
each place? Any answer must be provided with the aim of satisfying the needs
of the mine using the available resources in the best possible way. Thus, the
answer to this question must consider issues such as what should be produced,
what is the expected quality, travel time to the next location, and even possible
queues that may occur on the way to a given destination. When requesting a
new dispatch, a truck moves to a pit, which must have a shovel compatible with
that particular truck. The material removed from each pit has a certain quality
that is associated with the proportion of chemical elements such as Iron, Silicon,
Manganese, among others. If there is no queue at the place of loading, the truck
is loaded and moves up to a crusher. Each crusher has quality requirements that
the material produced must meet. Material that has no commercial value (that
is, waste) is conducted by the trucks to mine sites reserved for storage of this
type of material (rock piles).

The objectives of this work are twofold: first, to present a multiobjective
model that defines, for a given fleet of trucks, a sequence of dispatches for the
efficient use of equipment, minimizing the occurrence of queues and idle shovels.
The proposed multiobjective model for the open-pit mining operational planning
problem (OPMOPP) additionally includes the modeling of possible queues for
truck loading operations as well as different speeds for loaded and empty trucks.
The second objective is to propose and compare the performance of three ap-
proaches for the solution of the proposed model: two multiobjective evolutionary
algorithms (MOEAs) and a metaheuristic based on the Pareto Iterated Local
Search (PILS). A specific solution encoding and operators for generating candi-
date solutions are proposed for the evolutionary approaches, in order to generate
feasible solutions given the operational constraints of the problem, therefore en-
abling a more effective search for the solution of this class of problems. The
algorithms are compared using standard quality indicators: hypervolume and
empirical attainment function (EAF).

2 Previous Works

The work of Doig and Kizil [8] studied the impact of the truck cycle time dif-
ferences in mine productivity. The authors conclude in their work that the cycle
time and the subutilization of the truck fleet impacts significantly on productiv-
ity in a mine, thus justifying the efficient use of available equipment. Addition-
ally, roads in good condition for transportation were also found to be relevant.
The work of Topal [26] asserts that proper planning of maintenance of trucks
is essential to minimize its costs. That is, assuming availability of the entire
fleet of trucks when looking for a solution may lead to oversensitive solutions,
as units may be unavailable due to the preventive maintenance schedule. A case
study of a large-scale gold mine showed a significant reduction (10%) of annual
maintenance costs and more than 16% of overall reduction in maintenance costs
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over 10 years of operation, in comparison with the baseline spreadsheet used in
operation [25].

Tan et al. [24] presented a procedure for obtaining the optimal number of
trucks in operation at the mine and also to estimate the capacity of the fleet.
For the simulation of mine the software Arena [17] was employed. The data used
for the simulations were collected using a GPS system and used weekly average
values as the reference. Souza et al. [22] proposed a solution to an open-pit min-
ing planning problem with dynamic truck allocation. The objective considered
in their work was the minimization of the number of trucks used in the mine,
and determination of the extraction rate at each pit to fulfill production and
quality goals. They developed a heuristic called GGVNS, which combines ideas
from both the Greedy Randomized Adaptive Search Procedure (GRASP) [9]
and General Variable Neighborhood Search (GVNS) [19]. The GGVNS was suc-
cessfully applied to solve the 8 distinct testing scenarios, with results validated
using the commercial optimization software CPLEX [16]. More recent work pre-
sented three heuristics to solve the same problem, considering a multiobjective
approach. Moreover, the work does not consider a possible queue to load and
unload the trucks and also does not define the order of dispatches [3].

Subtil et al. [23] proposed a multi-stage approach for dynamic allocation of
trucks in real environments for open pit mines. The proposed approach was val-
idated through a simulation model based on discrete events. The authors report
significant results using the algorithm, yielding increased production and also
reduced operational delays of equipments. The work also states that, although
the model is able to predict ore quality, this ability was not studied due to lack of
relevant data for analysis. He et al. [14] sought to reduce the number of vehicles
used in a mine by minimizing transportation costs and maintenance using GAs.
Although satisfactory results were achieved, the model employed does not con-
sider multiple constraints (compatibility between vehicles, production equipment
and shovels, among others) found in dispatching problems in mines.

Given the many works in the literature, one realizes that they each have
a different mathematical model and treat different objectives using techniques
such as weighted sum of funcions or goal programming. None of these works
directly address the multiobjective nature of the problem by using multicriteria
optimization techniques. Moreover, a large portion of these works aims at opti-
mizing functions related to production, but fail to consider the quality of material
produced or even operational constraints such as compatibility between shovels
and trucks. In the next section we propose a multiobjective model to address
these issues.

3 The Multiobjective Open-Pit Mining Operational
Planning Problem

This section presents a new multiobjective mathematical model that includes
two objectives: the first one is to maximize production at the mine, be it ore or
waste rock. The second one is to minimize the number of trucks in operation.
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However, as there are trucks with different capacities it is necessary to take their
size into consideration. To facilitate understanding of the model, the parameters
and variables are first presented. The parameters are defined by the test instances
discussed in section 6.1. Let the parameters be:

– C is the set of crushers;
– O is the set of active ore pits;
– P is the set of pits formed by O

⋃
W ;

– Q is the set of chemical elements of the ore;
– S is the set of shovels;
– T represents the set of trucks available;
– W is the set of active waste pits;
– Capt is the payload (in tonnes) of the truck t;
– fts is a flag variable. 1, if truck t is compatible with shovel s and 0, otherwise.
– Limcp is the number of shovels that can be allocated to pit p;
– Qlqc is the lower limit of the amount of concentration (in percent) of the qth

chemical element to the crusher c;
– Quqc is the upper limit of the amount of concentration (in percent) of the
qth chemical element to the crusher c;

– qqo is the content of chemical concentration (in percent) of the element q in
the oth pits of the ore;

– ysp ∈ {0, 1} is a flag variable. 1, if shovel s operates in pit p and 0, otherwise;
– ytp is a flag variable. 1, if truck t can operate in pit p and 0, otherwise;

Let the variables be:

– v ∈ {0, 1}|T | is the vector of optimization variables responsible for repre-
senting the availability of the trucks, with the tth position of the vector (vt)
indicating whether the truck is in operation (vt = 1) or not (vt = 0);

– M̃ defines the sequence of dispatches received for each truck in operation
inside the mine;

– xo is the production (in tonnes) of the ore pit o;
– xw is the production (in tonnes) of the waste pit w;
– xoc is the production of the oth ore pit, crusher c (in tonnes).

Next, the Eqs. (1)-(9) present the mathematical model for the problem under
consideration. It is important to highlight at this point that xo, xw, and xoc
are calculated as a function of optimization variables v and M̃ . The objective
functions are given as:

Maximize:
∑
∀o∈O

xo(v, M̃) +
∑

∀w∈W

xw(v, M̃) (1)

Minimize:
∑
∀t∈T

vt × Capt (2)

subject to a number of operational constraints, that define key aspects of the
operating environment of a mine:



Multiobjective Open-Pit Mining Operational Planning Problems 5

∑
∀o∈O

qqoxoc(v, M̃)∑
∀o∈O

xoc(v, M̃)
≥ Qlqc, ∀q ∈ Q; c ∈ C (3)

∑
∀o∈O

qqoxoc(v, M̃)∑
∀o∈O

xoc(v, M̃)
≤ Quqc, ∀q ∈ Q; c ∈ C (4)

∑
∀s∈S

ysp ≤ Limcp, ∀p ∈ P (5)

∑
∀p∈P

ysp ≤ 1, ∀c ∈ C (6)

ysp + ytp − 2fts = 0 (7)

|C|, |S|, |P |, |Q|, |T | > 0 (8)

Qlqc, qqo, h, ut > 0, ∀q ∈ Q; c ∈ C; t ∈ T ; o ∈ O (9)

The optimization variables v and M̃ are discussed in detail in section 4.1.
The constraints of the model represent the limits of chemical quality deviation
(3)–(4); the shovel allocation constraints (5)–(6); the compatibility between shovel
and trucks constraint (7); and theensures that the variables are greater than zero
(8)–(9).

4 Multiobjective Evolutionary Algorithms

The optimization problem presented in the previous section can be solved using
evolutionary algorithms. Evolutionary algorithms (EAs) [5] represent a family of
metaheuristics that perform an adaptive iterative sampling of the design space by
means of a population of candidate solutions. EAs generally work by iteratively
updating the current population to create a new population by means of four
main operators: selection, crossover, mutation and elite-preservation. Evolution-
ary methods can be easily designed or adapted to solve multiobjective problems,
with or without constraints [7]. Moreover, these algorithms are easily adjusted
to handle a diversity of problem domains, which allows for their straightforward
adaptation to the multiobjective OPMOPP.

In this work two algorithms were adapted to solve the multiobjective OP-
MOPP: the NSGA-II [6] and the SPEA2 [27]. A detailed description of these
two algorithms can be found in the references, and will not be provided here.
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In common with other EAs, successful multiobjective implementations require
well-designed representation systems for individual problems and also genetic op-
erators that are appropriate for the task. Recombination (crossover) operators
can be particularly problematic. In the following sections a new representation
to allow the dispatch fleet of trucks in a open pit mine is presented, together
with operators to perform the crossover and mutation of candidate solutions
coded according to this representation. Moreover, it is important to note that
in this work the initial populations of all algorithms were randomly initialized.
Additionally, binary tournament selection [5] was used in all cases.

4.1 Representation

The proposed codification initially builds a matrix P̃ wherein each column j
represents a location of the mine. For each location, a subset of the possible
places to where a truck can be dispatched is defined. Therefore, each cell pij of
the matrix indicates a possible target location for a truck that is in location p.

From the initial matrix P̃ , the candidate solutions can be created without
the need for additional information from the mine, ensuring that the constraint
(7) is satisfied. For the generation of individuals it is necessary to inform the

value of k which aims to define the number of rows (i) of the matrix M̃ of the

solution s = [v|M̃ ]. The number of columns (j) is the same as in matrix P̃ . For

each cell of column j a random place p in column j of the matrix P̃ is chosen.
The vector v ∈ {0, 1}|T | is randomly constructed, indicating whether the truck
is in operation (vt = 1) or not (vt = 0). With this structure, for each request
for a new order by a truck in operation the candidate solution informs the next
destination for that truck, considering the location of the truck at the time of
the request.

4.2 Crossover Operator

The crossover operators proposed for this representation are based on cutting
operators, as discussed in several studies of the literature [12] [4]. Cutoff crossing

(1PX) considers two candidate solutions x
′

and x” represented by matrices M̃
of dimension I × J . An integer cutoff value c ∈ [1, J ] is randomly drawn from a
discrete uniform random variable, and a new candidate solution y

′
is generated

by combining the first c columns from x
′

and the final J − c columns from x”.
A second candidate solution y” is also generated with the c first columns of x”

and the last J − c columns from x
′
, as is the case of the usual 1-point vector

crossover employed in the EAs. Vector v uses binary crossover [5].

4.3 Mutation Operator

The mutation proposed for this representation is known as flip mutation [2]. In

this case, each cell of the M̃ of the solution s selected for mutation receives a
new value obtained from the random matrix P̃ . This operator is applied, with a
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certain probability of occurrence pm, to the candidate solutions generated by the
crossover operator. For the vector v, the bits are changed by turning individual
trucks on or off.

5 Multiobjective Iterated Local Search

To provide a comparison baseline for the evolutionary approaches NSGA-II [6]
and SPEA2 [27] using the operators defined in the previous section, and to
evaluate the potential of the specific operators proposed for the multiobjective
OPMOPP, we employ a method based on the Pareto Iterated Local Search
(PILS) [11], which is an adaptation of the Iterated Local Search (ILS) [18] for
multiobjective problems.

Algorithm 1: Multiobjective Iterated Local Search (MILS)

Input: maxIter
Input: maxCount
Output: Front

1 Front← makeInitialSolutions()
2 iter ← 1
3 while iter ≤ maxIter do
4 s′ ← selection(Front)
5 labeled(s′)
6 count← 1
7 while count ≤ maxCount do
8 s′′ ← perturbation(s′)
9 s′′ ← localSearch(s′′)

10 inserted← refresh(Front, s′′)
11 if inserted then
12 count← 1
13 s′ ← s′′

14 else
15 count← cont+ 1
16 end

17 end
18 iter ← iter + 1

19 end
20 return Front

The operation of the MILS is illustrated in Algorithm 1. It starts by generat-
ing an initial population and extracting the nondominated set, which gets stored
in the Front set (line 1). After this initial step, the iterative cycle is started. For
maxIter iterations, a solution from Front is selected and the iteration of the
main algorithm (lines 7-17) is executed. In this step, the procedures of pertur-
bation (line 8) and local search (line 9), similar to those existing in PILS, are
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executed. The front set is updated (line 10) with the refined solution obtained
after local search. If the solution generated after the procedures of perturbation
and local search is nondominated, it is inserted into the set Front, and the count
variable is reset (line 12). Otherwise, count is incremented by one (line 15). The
maxCount variable indicating the maximum number of times the solution is
operated without inserting a non-dominated solution in the set front.

The procedure defined as perturbation (line 8) is responsible for generating
the solutions known as neighbors. For the problem addressed in this work, the
neighboring solutions are constructed as follows: two random integers p1 and p2
are generated such that 0 ≤ p1 ≤ (J − jd) and p2 = p1 + jd, where J represents

the number of columns of the matrix M̃ and jd is the number of columns to be
changed. All values in the interval [p1, p2] of the matrix M̃ are changed, creating
a new solution.

The other procedure used by Algorithm 1 is responsible for performing a
local search (line 9) with the objective of exploring neighboring regions of the
search space. To accomplish this task we use an algorithm known as reduced VNS
(RVNS) [13]. The RVNS is a simplified version of the Variable Neighbourhood
Search (VNS), where the deterministic local search procedure (the most time-
consuming part of VNS) is removed in order to reduce the computational cost.
This algorithm receives the solution to be perturbed and uses the mutation
operator (line 3) defined in this work. If the solution changed (s′′) dominates
the current solution (s′), it is replaced (line 4-5) and the variable iter is reset (line
6). The procedure for generating neighboring solutions is performed N times,
where N is an input of the algorithm.

Algorithm 2: Reduced Variable Neighbourhood Search (RVNS)

Input: s′

Output: s′

1 iter ← 1
2 while iter ≤ N do
3 s′′ ←MakeNeighborhood(s′)
4 if s′′ ≺ s′ then
5 s′ ← s′′

6 iter ← 1

7 else
8 iter ← iter + 1
9 end

10 end
11 return s′
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6 Experimental Setup

In this section we define the test problems and the experimental design of the
computational experiments employed to verify the ability of the NSGA-II and
SPEA2 heuristics to obtain a good set of tradeoff solutions for the multiobjective
OPMOPP. This experiment has essentially two goals: to evaluate whether any
of the algorithms will be able to find feasible, interesting solution tradeoffs for
the multiobjective OPMOPP instances considered, and to check whether the
algorithms will yield significantly different performances.

First we describe the test scenarios employed and the configurations of the
algorithms. Afterwards the performance metrics and experimental design are
provided.

6.1 Test problems

In this study we considered benchmark instances of problems based on those
proposed by Souza et al. [22] 5. Table 1 describes the main characteristics of the
test instances. Columns # Pits, # Shovels, # Trucks and # Par indicate the
number of pits, shovels, trucks and control parameters (chemical), respectively.
The column Details provides the number and capacity (in case of trucks), or the
productivity (in case of shovels). For example, the pair (15;50t) means there are
15 shovels (or trucks) of 50 tonnes of capacity (or maximum productivity). The
difference between Mines 1 and 2 are the levels of quality of chemical elements.

Table 1. Test Instances.

Instance
Details

# Pits (# Shovels,capacity) (# Trucks,capacity) # Par

Mine1 8 (4,900t) (2,1000t) (2,1100t) (15,56t) (15,90t) 10

Mine2 8 (4,900t) (2,1000t) (2,1100t) (15,56t) (15,90t) 10

Mine3 7
(2,500t) (2,400t) (1,600t)

(30,56t) 5
(1,800t) (1,900t)

Mine4 10
(2,400t) (2,500t) (1,600t)

(22,56t) (7,90t) 5(1,800t) (1,900t) (3,1000t)
(3,2600t)

6.2 Evaluation of the solutions

An expert simulation system, based on discrete events, was built to evaluate the
solutions generated by the optimization algorithms. This system has an interface
with these algorithms, in which candidate solutions are processed and returned
by the simulator to the algorithms, including the values of the objectives and

5 The definitions of the test instances used can be retrieved online [1].



10 R. F. Alexandre, F. Campelo, C. M. Fonseca and J. A. de Vasconcelos

constraints. Dispatches for mining fronts consider the distance and the average
speed of trucks to calculate the time required for the trucks reaching their desti-
nation. In addition, the simulator considers the possbilidade queue occur when
loading trucks. The load time of each truck depends on the productivity of the
shovels and truck capacity. The trucks are then dispatched to the crusher or
waste piles, according to the quality of material produced. The stopping crite-
rion of the simulation is the operation time of the mine.. This simulator was
built using a programming language Java JDK 1.7.

6.3 Algorithm Setup

All the experiments considered the following (arbitrarily set) parameters: Pop-
ulation size = 200; Maximum number of evaluations = 20,000; Crossover rate
= 0.9; and Mutation rate = 0.4. The dispatch matrices (M̃) have J=20, i.e.,
twenty columns. The selection operator employed was the Binary Tournament
[5]. Initial populations were generated randomly, and all trucks were considered
as starting their operation in the crusher. The MILS used maxIter = 100 and
maxCount = 20, and N = 10 for the RVND. All runs consider one hour of op-
eration of the mine. All algorithms were coded in Java and compiled with JDK
1.7, and were tested in a PC Intel(R) Core(TM) i7-3632, 2.2 GHz, with 8 GB of
RAM, running Windows 8.1.

6.4 Quality Indicators

Evolutionary multiobjective optimization techniques usually need to consider
complementary goals, namely the acquisition of a set of tradeoff solutions that
are at the same time near the true (oftentimes unknown) Pareto-optimal front,
and to have this set evenly covering the whole extension of the Pareto-optimal
front - dual objectives usually referred to as convergence and diversity. To con-
sider this multi-criterion nature in the evaluation of multiobjective algorithms,
regarding the convergence and diversity of the solutions, the following quality
indicator is used in this work.

Hypervolume or S-Metric Proposed by Zitzler and Thiele [28], returns the
hypervolume of the region covered between the points present in the frontier
and a Pref point. This point (Pref ) is used as a reference and is dominated by
all solutions presented on this frontier. For each solution i ∈ PF is constructed
a hyperrectangle (ci) with reference to Pref . The result of this metric can be
calculated as:

HV (PF) =

|PF|∑
i∈PF

vi (10)

where vi provided by ci. The higher the value of HV better the quality of the
solution indicating that there was a better spread and also a better convergence
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although the metric is more sensitive to convergence of solutions in relation to
the real Pareto frontier. For all the test problems we considered a reference point
10% higher than the upper limits of the Pareto optimal frontier.

Empirical Attainment Function In the face of random Pareto-set approxi-
mations, unary quality indicators provide a convenient transformation from ran-
dom sets to random variables. To prevent the transformation of sets of solutions
in a unary indicator and allow at the same time, a statistical analysis of the set
of solutions obtained by multiobjective algorithm was proposed calls Empirical
Attainment Function (EAF) [10]. Furthermore, an analysis using EAF allows
one to identify in which regions of the objective space one algorithm is better
than another, and to visualize this difference. The attainment function gives the
probability of a particular point in the objective space vector being attained
by (dominated by or equal to) the outcome of a single run of an algorithm.
This probability can be estimated from several runs of an algorithm, in order to
calculate the EAF of an algorithm. The EAF from to is defined as:

αn(z) =
1

N
·

n∑
i=1

bi(z) (11)

where b1(z), ..., bn(z) be n realizations of the attainment indicator bx(z), z ∈ Rd.
Then, the function defined as αn : Rd → [0, 1].

In the case of bi-objective optimization problems, the empirical attainment
function (EAF) is fast to compute, and its graphical representation provides
more intuitive information about the distribution of the output of an algorithm
than unary (or binary) quality indicators. A tool for graphical analysis of the
EAF is proposed on the work of Ibáñez et al. [15].

6.5 Experimental Design

The algorithms NSGA-II, SPEA2, and MILS were applied for the solution of
the four test instance on 33 independent runs, after which each quality metric
described in the previous section was calculated. The experimental model used
was a 2-way factorial design, with both the algorithms and instances as factors
[20]. Since our main interest is on the effects of the algorithms, only their effects
were analyzed.

We first assessed the convergence of the three algorithms used considering
the hypervolume for the four scenarios considered. Figure 1 considers the average
of these metrics. The estimated Pareto frontier of the problem was constructed
assessing 106 solutions that aim to cover the search space of the problem.

The results presented by Figure 1 suggest that NSGAII and SPEA2 algo-
rithms have similar behavior except for instance 2, wherein the NSGAII has a
relatively better performance. Additionally, it is important to note that MILS
has worse performance for all test instances.

Tables 2 to 5 shows the results obtained by comparing the algorithm used
in the experiments for the four scenarios mine. The tests considered as null
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(a) Instance: Mine 1 (b) Instance: Mine 2

(c) Instance: Mine 3 (d) Instance: Mine 4
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Fig. 1. Average hypervolume for the algorithms on each test case considered.

hypothesis (H0) that the two proposed algorithms have the same performance.
Otherwise, there is a statistical difference between the algorithms. We consider
first-and second tests similar to those proposed in order Fonseca et al. [10].

Table 2. Hypothesis test results for Mine 1 (α = .05).

Optimiser Hypothesis test Test statistic Critical value 𝐩-value Decision

MILS – NSGAII 1st-order EAF 0.696 0.454 0 Reject 𝐻0

MILS – NSGAII 2nd-order EAF 0.848 0.575 0 Reject 𝐻0

MILS – SPEA2 1st-order EAF 0.727 0.454 0 Reject 𝐻0

MILS – SPEA2 2nd-order EAF 0.878 0.575 0 Reject 𝐻0

NSGAII – SPEA2 1st-order EAF 0.424 0.454 > 0.05 Do not Reject 𝐻0

NSGAII – SPEA2 2nd-order EAF 0.606 0.575 0.044 Reject 𝐻0

Table 3. Hypothesis test results for Mine 2 (α = .05).

Optimiser Hypothesis test Test statistic Critical value 𝐩-value Decision

MILS – NSGAII 1st-order EAF 0.636 0.454 0 Reject 𝐻0

MILS – NSGAII 2nd-order EAF 0.787 0.575 0 Reject 𝐻0

MILS – SPEA2 1st-order EAF 0.727 0.454 0 Reject 𝐻0

MILS – SPEA2 2nd-order EAF 0.606 0.575 0.044 Reject 𝐻0

NSGAII – SPEA2 1st-order EAF 0.333 0.454 > 0.05 Do not Reject 𝐻0

NSGAII – SPEA2 2nd-order EAF 0.454 0.575 > 0.05 Do not Reject 𝐻0
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Table 4. Hypothesis test results for Mine 3 (α = .05).

Optimiser Hypothesis test Test statistic Critical value 𝐩-value Decision

MILS – NSGAII 1st-order EAF 0.393 0.393 > 0.05 Do not Reject 𝐻0

MILS – NSGAII 2nd-order EAF 0.575 0.484 0.004 Reject 𝐻0

MILS – SPEA2 1st-order EAF 0.393 0.393 > 0.05 Do not Reject 𝐻0

MILS – SPEA2 2nd-order EAF 0.636 0.484 0 Reject 𝐻0

NSGAII – SPEA2 1st-order EAF 0.242 0.393 > 0.05 Do not Reject 𝐻0

NSGAII – SPEA2 2nd-order EAF 0.333 0.484 > 0.05 Do not Reject 𝐻0

Table 5. Hypothesis test results for Mine 4 (α = .05).

Optimiser Hypothesis test Test statistic Critical value 𝐩-value Decision

MILS – NSGAII 1st-order EAF 0.757 0.454 0 Reject 𝐻0

MILS – NSGAII 2nd-order EAF 0.909 0.575 0 Reject 𝐻0

MILS – SPEA2 1st-order EAF 0.727 0.454 0 Reject 𝐻0

MILS – SPEA2 2nd-order EAF 0.909 0.575 0 Reject 𝐻0

NSGAII – SPEA2 1st-order EAF 0.454 0.454 > 0.05 Do not Reject 𝐻0

NSGAII – SPEA2 2nd-order EAF 0.575 0.575 > 0.05 Do not Reject 𝐻0

Tables 2-5 show the comparisons between pairs of algorithms on each sce-
nario, regarding the EAF indicator. The Optimiser column of the tables highlight
the algorithms performed better whenH0 was rejected. Overall, these results sug-
gest that NSGAII and SPEA2 algorithms perform better when compared with
MILS algorithm. The comparison between the NSGAII and SPEA2 algorithms
does not allows to identify statistical differences between them except for Mine
1 (Table 2).

7 Conclusions

This work presented the definition of a multiobjective formulation for the open-
pit mining operational planning problem. This model considers as objectives the
maximization of production (ore and waste) and the minimization of the number
of trucks in operation. An innovative representation of candidate solutions was
proposed and employed by three multiobjective optimization methods: SPEA2,
NSGA-II, and MILS. The proposed encoding enables the use of algorithms for
heterogeneous fleets and also ensures that the solutions created are operationally
feasible.

An experiment to compare the algorithms in terms of hypervolume and
empirical attainment function values was performed. The results suggest that
NSGA-II and SPEA2 algorithms have a better performance when compared with
MILS for the problems considered, with the NSGA-II being marginally better
than the SPEA2. As future work, we intend to evaluate the idleness of trucks and
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shovels. Moreover, the mathematical model can be extended to consider other
variables, such as, operating conditions of the mine.
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