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Abstract. Multiobjective evolutionary algorithms based on decomposition
(MOEA/Ds) represent a class of widely employed problem solvers for multi-
criteria optimization problems. In this work we investigate the adaptation of
these methods for incorporating preference information prior to the optimiza-
tion, so that the search process can be biased towards a Pareto-optimal region
that better satisfies the aspirations of a decision-making entity. The incorpora-
tion of the Preference-based Adaptive Region-of-interest (PAR) framework into
the MOEA/D requires only the modification of the reference points used within
the scalarization function, which in principle allows a straightforward use in
more sophisticated versions of the base algorithm. Experimental results using
the UF benchmark set suggest gains in diversity within the region of interest,
without significant losses in convergence.

1. Introduction

Decomposition-based algorithms represent a widely used class of problem solvers for
multiobjective optimization problems (MOPs). In particular, methods based on the Mul-
tiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) framework have
been adopted for a variety of applications since its introduction in 2007 [Zhang and Li
2007], as evidenced by a recent comprehensive survey of the literature [Trivedi et al.
2016].1

Similarly to dominance and indicator-based approaches, MOEA/Ds have been ex-
tensively developed and used in the context of a posteriori techniques to the solution
of MOPs. This approach consists of first trying to obtain an extensive coverage of the
Pareto-optimal front - which is generally seen as converging to a Pareto-optimal set of
points homogeneously distributed in the space of objectives - and then delivering this set
of options to a decision-making entity, which is tasked with the function of selecting a
single solution for implementation.

Recent works have called this a posteriori approach into question, pointing out
that in many cases one is not interested in actually mapping out the full Pareto front
in detail, which can lead to wasteful optimization approaches that spend most of their
computational budgets refining solutions that are clearly of no interest to the end user.

1Throughout this text we use the term “MOEA/Ds” to refer to the class of algorithms based on de-
composition for multiobjective optimization, i.e., the original MOEA/D and its many variants found in the
literature.



Goulart and Campelo [Goulart and Campelo 2016] summarize this position (in the con-
text of many-objective optimization), by declaring that “finding Pareto-optimal points
does not necessarily mean that one has solved the practical many-objective optimization
problem” [Goulart and Campelo 2016]. Indeed, even discounting the computational bud-
get issue, it can be argued that returning hundreds of Pareto-optimal points for a decision-
making entity to sort out and deal with poses an unnecessarily complex problem, which
can be addressed by incorporating the preferences within the multiobjective optimization
algorithm itself.

This work presents an adaptation of the approach originally proposed by Goulart
and Campelo [Goulart and Campelo 2016] for generating preference-guided multiobjec-
tive evolutionary algorithms. In that work, the authors presented a framework for incor-
porating information regarding the stated preferences of a decision-making entity in the
form of a reference point, but only in the context of dominance- and indicator-based algo-
rithms. In the present work we extend those concepts to decomposition-based algorithms,
which have been shown to perform well in the very classes of problems for which prefer-
ence incorporation seems to be most critical [Goulart and Campelo 2016]: many-objective
optimization problems [Asafuddoula et al. 2015, Li et al. 2015] and applied engineering
problems (where preference information is often available) [Trivedi et al. 2016].

The remainder of this paper is organized as follows: Section 2 provides a quick
introduction to the MOEA/D, and Section 3 reviews a few works dealing with prefer-
ence incorporation within the MOEA/D structure. Section 4 discusses the concepts of
the Preference-based Adaptive Region-of-interest (PAR) framework. The proposed PAR-
MOEA/D is described in Section 5, and the results of computational experiments are
presented in 6. Finally, Section 7 closes the paper with discussions, conclusions and
perspectives.

2. Multiobjective Evolutionary Algorithms based on Decomposition
For the purposes of this work we deal with continuous MOPs subject only to box con-
straints, as defined as in (1):

min
x

f (x) =
(
f1(x), . . . , fnf

(x)
)

subject to: x ∈ Rnv | xmini ≤ xi ≤ xmaxi , ∀i ∈ {1, . . . , nv}
(1)

where nf is the number of objectives, nv is the number of decision variables, x ∈ Rnv

represents a candidate solution, f(·) : Rnv 7→ Rnf is a vector of objective functions, and
the feasible decision space (Ω) is defined by the real space R bound by xmini and xmaxi , the
lower and upper limits allowed for each variable. The image of the set Ω, f(Ω), defines
the set of attainable objective values [Miettinen 1999, Hidden and Hidden 2017].

MOEA/Ds decompose a MOP into a finite number of scalar optimization sub-
problems, each of which is defined by a weight vector and a scalar aggregation function.
As discussed in [Hidden and Hidden 2017], a MOEA/D can be fully characterized by the
design choices made for each of its components. For the algorithm considered in this
work, these choices are:

• Decomposition strategy (which generates the weight vectors λi used for defining
each subproblem): simplex-lattice design (SLD) [Chan 2000,Zhang and Li 2007];



• Scalar aggregation function (which provides the scalar subproblems to be mini-
mized): as defined in Section 5;
• Neighborhood strategy (which regulates the locality of the exchange of informa-

tion between subproblems): fixed neighborhood based on the distances between
the weight vectors [Zhang and Li 2007];
• Objective function scaling: simple scaling [Hidden and Hidden 2017];
• Variation operators: differential mutation, binomial recombination, and polyno-

mial mutation [Li and Zhang 2009];
• Update strategy (which selects which candidate solutions will compose the popu-

lation at the end of each iteration): standard greedy selection [Zhang and Li 2007];
• Stop criterion: number of candidate solution evaluations.

The general structure of the MOEA/D is provided in Algorithm 1 [Hidden and
Hidden 2017]. For more information on each module of the algorithm please refer to
the references provided, particularly the original MOEA/D [Zhang and Li 2007] and the
MOEA/D-DE [Li and Zhang 2009]. Details on the scalarizing functions will be given in
Section 5.

Algorithm 1 MOEA/D structure
1: t← 0
2: Generate weights λi
3: Generate initial population X(t)

4: Define neighborhoods bi
5: while t ≤ tmax do
6: X′(t) ← DifferentialMutation

(
X(t) | F

)
7: X′(t) ← BinomialRecombination

(
X′(t) | CR

)
8: X′(t) ← PolynomialMutation

(
X′(t) | ηM , pM

)
9: Evaluate solutions in X(t) and X′(t) using scalarizing function;

10: Update population using standard greedy selection;
11: t← t+ 1
12: end while

3. Preference-based MOEA/Ds
The incorporation of preference information into the structure of multiobjective evolution-
ary algorithms has been explored for some time (an extensive review of dominance- and
indicator-based methods can be found in the references provided [Goulart and Campelo
2016, Goulart 2015]). In the present work three works incorporating preferences within
the specific MOEA/D framework are briefly discussed.

The first reference dealing with this particular aspect in the context of
decomposition-based approaches dates from 2011, in the form of a paper by Gong et
al. [Gong et al. 2011]. That work proposes an interactive version of the MOEA/D, in
which a human decision-maker (DM) is required, once every few iterations, to select its
most preferred candidate solution from a subset of the current population. The main draw-
back of this approach is the need for iteratively querying the decision maker, which puts
a heavy burden on the human operator. This can also make solutions subject to priming
or anchoring effects [Tversky and Kahneman 1975], wherein the judgment of the DM



becomes subjectively biased by the solutions presented, and deviates from her rational
utility model.

A second strategy was presented by Mohammadi, Omidvar and Li [Mohammadi
et al. 2012], employing the concept of predefined reference points to bias the search
towards template solutions provided by the DM. Their approach starts by running a com-
mon MOEA/D for a few iterations, and then transitions to a preference-guided scheme in
which the weight vectors associated with the closest solution to each reference point are
determined, and a new set of weight vectors is generated around each of these vectors.
More recent versions of this method [Mohammadi et al. 2014] maintain the same general
idea. While this eliminates the DM from the algorithmic loop, the method still relies on
several additional external parameters that must be provided by the user - in general, it
more than doubles the number of required user-defined parameters.

Finally, a third method was presented in 2015 by Pilát and Neruda [Pilát and
Neruda 2015], which incorporates preferences via a coevolutionary approach in which
the weights undergo an iterative refinement similar to that of the population. Preferences
are initially expressed in the form of a binary judgment associated with each candidate
solution as either preferred or non-preferred. The preference value associated to each
point is then refined, and the preference function that emerges from this process is then
used at each iteration as a quality value to compare the weight vectors, which are subject
to a mutation-based variation. Despite presenting very interesting results for preference-
guided multiobjective optimization, this approach also suffers from the same problem
of an explosion in the number of free parameters. The algorithm structure also seems
overly complex, which may possibly be an unavoidable price for incorporating arbitrar-
ily complex preference structures within the framework of a multiobjective optimization
approach, but can also be a result of the common practice of assembling an algorithm
without much regard to the contribution of individual components, as suggested in the lit-
erature on component-based design and analysis of algorithms [Bezerra et al. 2016, Bez-
erra et al. 2015, Hidden and Hidden 2017].

Regardless, we argue that more parsimonious approaches are possible in the case
of simple preference structures, which emerge in several engineering problems. The PAR
framework [Goulart and Campelo 2016] represents a straightforward way to incorporate
preferences within a MOEA, without the need for interactive querying or the addition
of new parameters. While its current definition accepts only a single reference point as
a template solution to express the preferences of the DM, its simplicity and easy incor-
poration into dominance- and indicator-based MOEAs motivated the current proposal of
using it within the MOEA/D structure. The following section describes the adaptation of
the MOEA/D for using the PAR framework for incorporating preferences into its opti-
mization procedure.

4. The PAR framework
Assume the DM possesses aspiration levels zri for the i-th objective, which collectively
compose a preference point2 zr ∈ Rnf . A straightforward way of satisfying the DM is

2The original term is reference point [Wierzbicki 1982]. However, we opted for preference point to
prevent confusions with the actual reference point employed by the MOEA/D to generate the subproblems,
and to emphasize its character of representing the DM’s preferences.



by computing a solution that is closest to zr according to some indicator, as performed in
techniques such as goal programming and weighted metrics [Miettinen 1999]. However,
minimizing the distance to zr by means of a regular norm does not guarantee Pareto-
optimality [Wierzbicki 1982], which motivated the use of achievement scalarizing func-
tions (ASFs) [Wierzbicki 1982], such as the augmented Tchebycheff function:

s(f ′(x), zr′) = max
i
{f ′i(x)− zr′i }+ εa

nf∑
i=1

(f ′i(x)− zr′i ) (2)

where εa ∈ R>0 is a small positive multiplier for the augmentation term. This formulation
assumes that the objectives and the preference point are properly scaled [Goulart 2015],
which can be guaranteed by defining:

f ′i (x) =
fi (x)− f (t)

i,min

f
(t)
i,max − f

(t)
i,min

, ∀i ∈ {1, . . . , nf}

zr′i =
zri − f

(t)
i,min

f
(t)
i,max − f

(t)
i,min

, ∀i ∈ {1, . . . , nf}
(3)

where f (t)
i,min and f (t)

i,max denote the smallest and largest values of the ith objective function
at the iteration within which the evaluation is being performed, t.

If the underlying algorithm already possesses a mechanism to handle multiple so-
lutions, as is the case in the MOEA/D, we can approximate a region of interest (ROI)
that is close to the preference point. The underlying technique to define the ROI is de-
pendent on each method. The Preference-guided Adaptive Region of interest (PAR) ap-
proach [Goulart and Campelo 2016] has the advantage of not requiring any additional
parameters to be set by the user. Its general structure can be described as follows:

1. Given a set of available solutions X = {x1, . . . ,xµ}, compute the ASF value of
each point with relation to the preference point zr using (2). Denote the smallest
ASF value in the set as smin;

2. Compute nf auxiliary points by adding smin to each coordinate of zr:

zraux,i = zr + eismin, ∀i ∈ {1, . . . , nf} (4)

where ei ∈ Rnf is the unit vector with the i-th coordinate set to unity and all others
to zero.

3. Compute the ASF of each point of X in relation to each zraux,i, and find the points
with the smallest value for each auxiliary point. Denote these nf points as x?,i;

4. The points belonging to the ROI are then defined as those for which
fi(x) ≤ fi(x?,i) for any i ∈ {1, . . . , nf}.

Notice that the size of the ROI is dependent only on the distance of the preference
point zr to the image of the population in the space of objectives. This allows for an
adaptive process that reduces the ROI size as the population converges, without having to
adjust any additional parameters. More details are given in [Goulart and Campelo 2016].



5. PAR-MOEA/D

Incorporating preference information within the MOEA/D using the PAR framework is
quite straightforward, requiring only a small modification in the way the scalarized value
is calculated for each candidate solution. The procedure is contained within the evaluation
step of the MOEA/D (Algorithm 1: line 9), and can be described as follows:

1. Follow the PAR structure to determine the points x?,i (Section 4, step 3);
2. Based on the points x?,i, generate a new reference point ẑ with elements calculated

as:
ẑj = min

i
f ′j(x?,i),∀j ∈ {1, . . . , nf} (5)

where f ′j (·) is the value of the j-th objective function at the point, scaled according
to (3).

3. For each point in the population, calculate the performance value using the
MOEA/D scalarization strategy as defined below.

By following the procedure above, we are essentially adopting the idea of the
PAR framework, namely that of adaptively modifying a region of interest, based on the
stated preferences of the decision-making entity and the current state of the population.
All aspects of the MOEA/D remain unchanged, with the exception of the scalarization
procedure and reference point used therein. This means that, at least in principle, this
adaptation can be easily adopted within existing implementations without much effort,
regardless of specific variation operators, constraint handling approaches, decomposition
methods, or any other aspects of the method.

5.1. Scalarization functions

In this work we investigate the use of several different scalarization functions within the
proposed PAR-MOEA/D. Notice that in all cases the reference point used is ẑ, calculated
as in (5), and not the estimated ideal point used in regular, non-preference MOEA/Ds. In
the definitions below, let � denote the Hadamard product; ‖·‖∞ the Tchebycheff norm;
ε0 ∈ R>0 a small positive constant used to prevent divisions by zero; and εa ∈ R>0 the
small positive multiplier for the augmentation factor in the scalarization strategies that
adapt the ASF.3

1. Weighted Tchebycheff (WT) [Miettinen 1999, Zhang and Li 2007]:

fagg (x | λ, ẑ) = ‖λ� (f (x)− ẑ)‖∞ (6)

2. Adjusted Weighted Tchebycheff (AWT) [Qi et al. 2014, Wang et al. 2013]:

fagg(x | λ, ẑ, ε0) = ‖ρ� (f (x)− ẑ)‖∞ (7)

where ρ ∈ Rnf has elements given as:

ρj =
(λj + ε0)

−1∑nf

j=1 (λj + ε0)
−1 , ∀j ∈ {1, . . . , nf}

3In this work we set ε0 = εa = 10−6.



3. WT with augmentation term from ASF (ASF-WT), an extension of the WT ap-
proach which incorporates the augmentation term from the ASF formulation in
Equation (2):

fagg (x | λ, ẑ) = ‖λ� (f (x)− ẑ)‖∞ + εa

nf∑
i=1

(fi(x)− ẑi) (8)

4. AWT with augmentation term from ASF (ASF-AWT), an extension of the AWT
approach which incorporates the augmentation term:

fagg (x | λ, ẑ) = ‖ρ� (f (x)− ẑ)‖∞ + εa

nf∑
i=1

(fi(x)− ẑi) (9)

It should be mentioned at this point that there is one existing method that em-
ploys scalarization by weighted ASF and a weight determination formula similar to the
ASF-AWT in the context of preference-guided multiobjective optimization. This method,
known as WASF-GA [Ruiz et al. 2014], defines a region of interest by means of a refer-
ence point, and employs a scalarization analogous to (9) to assign utility values to each
point in a population. To our knowledge, there is no precedent for either ASF-WT or ASF-
AWT in the MOEA/D literature, even though the use of analogous scalarization strategies
in different contexts can be found in earlier works [Wierzbicki 1982, Miettinen 1999].

6. Experimental validation
For this preliminary testing of the PAR-MOEA/D, we employed all 2-objective problems
of the UF benchmark set4, UF1-UF7, as test functions. The preference points were arti-
ficially created in the following way: given the true ideal point of a given test problem,
z̃, and a randomly selected efficient solution f(x∗) of that problem, we generated the zr

points over the line segment between these two points:

zr = αf(x∗) + (1− α)z̃− εr (10)

with α ∈ {0, 0.25, 0.50, 0.75, 1}, to investigate the performance of the algorithms tested
for preference points ranging between the ideal point and a region close to the true Pareto-
optimal front. A small constant εr = 0.025 is used to prevent the ROI from collapsing
into a single solution when α = 1 and zr lies exactly on the efficient front.

6.1. Algorithms
In this work we compare the PAR-MOEA/D variants described in the previous sec-
tion against the two original PAR approaches, namely PAR-DEMO(nds) and PAR-
DEMO(ind) [Goulart and Campelo 2016]. Both algorithms equip the PAR approach
within the structure of the DEMO algorithm [Robič and Filipič 2005], the first (nds)
using nondominated sorting as its main selection approach, and the second (ind) using the
additive ε indicator instead.

Both PAR-DEMO approaches were configured as described in [Goulart and
Campelo 2016], while the PAR-MOEA/D used the following configurations (arbitrarily
set based on values commonly practiced in the MOEA/D literature, without any specific
tuning effort):

4http://dces.essex.ac.uk/staff/qzhang/moeacompetition09.htm



• Differential mutation: F = 0.5;
• Binomial recombination: CR = 0.4;
• Polynomial mutation: η = 20 and pm = 1/30;
• Neighborhood size: T = 20;

All algorithms have a population size of µ = 100. The stopping condition is set
to interrupt the execution after 30,100 function evaluations, which corresponds to 300
iterations.5 All algorithms were run n = 30 times on each (problem, preference point)
pair.

6.2. Quality indicators

The outcome of each algorithm was evaluated according to three quality indicators: con-
vergence, pertinence and diversity [Goulart and Campelo 2016, Goulart 2015]. The spe-
cific definition of these three indicators is provided below.

For convergence, we employed the inverted generational distance (IGD) indicator
[Zitzler et al. 2003], which is defined as follows: let Xf denote the set of nondominated
points returned at the end of a given run of an algorithm on a problem, and P∗ be a set of
uniformly distributed points belonging to the Pareto-optimal front of the problem. Then:

IGD (X,P∗) =

∑
∀p∗∈P∗

[
min
xi∈Xf

{‖p∗ − xi‖2}
]

|P∗|
(11)

Given that the aim of the algorithms under comparison is to approximate only
points within their ROI, only Pareto-optimal points belonging to the exact ROI of each
method (which can be easily obtained by following the procedure from Section 4 using
the full set P∗) were used for calculating this indicator.

For diversity, we used the Hierarchical Cluster Count (HCC) indicator, as pro-
posed in [Guimarães et al. 2009]. This indicator, which is able to measure both the
spread and the uniformity of a set of points and does not require any external parameter,
is calculated as follows:

1. Set k = 0, τk = 0 and rk = 0;
2. Let each point xi ∈ Xf define a cluster, Ci, with itself as the single element;
3. Find the clusters Ci1 and Ci2 with the smallest value of separation distance, using

complete linkage [Guimarães et al. 2009]. Assign this minimal value of separation
distance to rk+1 and join these clusters;

4. Set τk+1 = τk + (rk+1 − rk)(|P| − k + 2) and k ← k + 1;
5. Go back to step 3 until there is only one cluster left. Return τk as a value of the

diversity of the set Xf .

For the calculation of this indicator, the final population of each algorithm was
standardized to the interval [0, 1]nf in the objective space, and the diversity was computed
for these transformed data.

Finally, the pertinence indicator, which measures the degree of satisfaction of the
preferences expressed by the DM, was calculated as the smallest ASF in relation to the

5The initial population requires µ evaluations before the iterations start to be counted.
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Figure 1. Box plots of the performance of each algorithm for each value of pref-
erence point distance, regarding the three quality indicators. Each box is com-
posed by the averages of the performance of an algorithm on all problems for
that value of α.

preference point zr, as suggested by [Goulart and Campelo 2016]:

smin(Xf | zr) = min
xi∈Xf

{s(f(xi), zr)} (12)

The scaling when computing this indicator was performed as in (3), but employing
the true ideal and Nadir solutions of each test problem.

Before proceeding, it is important to highlight that IGD and pertinence are indica-
tors for which smaller is better, whereas for the HCC larger is better.

6.3. Results

The results obtained for the 30 replicates, summarized by means within each (problem
instance, preference point distance, indicator) tuple, are illustrated in Figure 1. From the
box plots, a few trends seem to be apparent, as discussed below.

First, IGD values seem to be slightly better for the PAR-MOEA/D approaches in
lower values of α (i.e., for preference points farther from the true Pareto-optimal front),
with comparable average values but smaller variability. These approaches start losing to
the PAR-DEMO methods as the preference points approach the attainable region of the
space of objectives.

With respect to diversity, the PAR-MOEA/D approaches appear to return superior
(i.e., larger) values of the HCC indicator across all values of α, when compared to the



PAR-DEMO ones. The absolute HCC values of all methods is reduced as α increases,
which is consistent it being harder to maintain good diversity in a smaller ROI.

Finally, regarding the pertinence indicator, which measures the degree of satisfac-
tion of the stated preferences, the results also seem to be comparable across all values of
α, with the PAR-DEMO approaches seemingly slightly better for preference points closer
to the true Pareto-optimal front.
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Estimate

Figure 2. Simultaneous 95% confidence intervals for differences between each
algorithm and PAR-DEMO(ind) in each quality indicator.

To reinforce these qualitative considerations, an RCBD ANOVA model [Mont-
gomery 2012] was fit for the data within each value of α, with algorithm as the exper-
imental factor and problem instance as a blocking variable. After fitting the model, the
PAR-DEMO(ind) was selected as a reference method (since its performance is similar
to the other PAR-DEMO approach for all cases) and all-vs-one paired comparisons were
performed using Dunnett contrasts [Crawley 2007]. The results of these comparisons are
illustrated in the form of simultaneous 95% confidence intervals in Figure 2, and corrob-
orate the observations derived from examining the box plots.

7. Conclusion
In this work the Preference-guided Adaptive Region-of-interest (PAR) framework was
included into the MOEA/D structure, allowing this method to incorporate preference in-
formation in its search procedure. While only a simple MOEA/D was used as the base
algorithm in this work, the introduction of the PAR approach is straightforward, requiring
only a modification in the procedure for calculating the scalarized utility of each point,
which allows for its use with more sophisticated MOEA/D variants without much effort.

Results obtained using the UF benchmark set for different preference point speci-
fications suggest that the PAR-MOEA/D versions tend to compare favorably to the PAR-
DEMO approaches in terms of diversity of the nondominated set returned, while main-



taining the same overall convergence and pertinence characteristics. Since the original
PAR work [Goulart and Campelo 2016] already shows that the PAR-DEMO approaches
used here as the comparison baseline tend to outperform other preference-based MOEAs
(such as the R-DEMO and PBEA) in terms of both convergence and pertinence, but lose
in terms of diversity, the use of MOEA/D as the basis for the PAR framework (which
improves diversity over the PAR-DEMO) seems like an interesting step in the direction
of improving the performance of PAR-based methods in the treatment of multiobjective
optimization problems for which preference information is available.

Future works include the investigation of more sophisticated MOEA/D variants
as base algorithms for the PAR framework, the incorporation of methods for treating
nonlinear constraints, and tests in many-objective scenarios.
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